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Abstract. We show that every ergodic dynamical system induces a system with pure
Lebesgue spectrum of infinite multiplicity.

1. Introduction

Given a dynamical system pT, X, µq, we define for a measurable set A Ă X with
µpAq ą 0, the induced dynamical system pTA, A, µAq with TA being the first return map
to the set A, and for any measurable set B Ă A, µApBq “ µpBq{µpAq.

Recall that, given a dynamical system pT, X, µq, the corresponding Koopman operator
UT acts on the space L2

0pX, µq of complex square integrable zero mean functions as
UT f “ f ˝ T . As each unitary operator acting on a separable Hilbert space, UT is
determined by its maximal spectral type σT measure (a spectral measure on the circle
T which dominates all other spectral measures) and by the multiplicity function MT :
TÑ t1, 2, . . .u Y t8u (defined σT -a.e.).

We say pT, X, µq has pure Lebesgue spectrum when σT is equivalent to the Lebesgue
measure on the circle. We say pT, X, µq has pure Lebesgue spectrum with infinite multi-
plicity, when in addition MT p¨q “ 8 Lebesgue almost surely.

In [1], De La Rue showed that any ergodic dynamical system pT, X, µq induces an
ergodic dynamical system pTA, A, µAq that has pure Lebesgue spectrum. He asked if it
is possible to insure that the induced system has infinite Lebesgue spectrum. In this
note, we adapt the construction of De La Rue to show that the answer to this question is
positive.

Theorem A. For any ergodic dynamical system pT, X, µq there exists an induced system
that has a pure Lebesgue spectrum with infinite multiplicity.

2. Notations, Definitions and Preliminaries

2.1. Weak and strong closeness between measures on the circle.

Definition 1. For α ą 0 and τ ą 0, a function φ P C0pT,Rq is said to be pα, τq-good if
φp¨q ě 0 and φpθq ą α for θ outside p´τ, τq.

Definition 2 (Strong closeness of densities). Suppose φ is pα, τq-good. Given ε ą 0, we
say that a function φ1 is ε-strongly close to φ and denote this by φ1 «ε φ if

for any θ < p´τ, τq :
1

1 ` ε
φpθq ď φ1

pθq ď p1 ` εqφpθq.
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Definition 3 (Weak closeness of probability measures on the circle). We equip the set
of positive measures on the circle with the topology of weak convergence and denote by
d the distance that defines it. We denote σ „ρ σ

1 when dpσ,σ1q ă ρ.

For an absolutely continuous measure on the circle of the form φpθqdθ, we often abuse
notations and denote the measure simply as φ. In consequence, we often will use the
notation σ „ρ φ when the measure σ is ρ-close in the weak topology to the measure
φpθqdθ.

For f P L2
0pX, µq we denote by Hp f q the cyclic space generated by the family t f ˝

T kukPZ.

Lemma 1. Given τn Ñ 0, αn ą 0, εn ă minp2´n, αn{2q and ρn Ñ 0, and a sequence of
measures on the circle σn such that

σn „ρn φn

where φn is a sequence of pαn, τnq-good functions such that

φn`1 «εn φn

then φn converges on Tzt0u to a strictly positive continuous function φ8 and the mea-
sures σn converge weakly to the measure σ with density φ8.

Proof. From σn „ρn φn, it suffices to see that for any τ ą 0, φn converges in the strong
topology on rτ, 1 ´ τs to a strictly positive continuous function φ8. But the sequence
φn|rτ,1´τs is a Cauchy sequence from the fact that τn Ñ 0 and from the fact that εn ă

minp2´n, αn{2q. □

Lemma 2. Let pT, A, µq be a dynamical system such that there exists a sequence εn Ñ 0
and a sequence of functions t f ju jPN in L2pA, µq, and a sequence of functions tφ ju jPN in
C0pT,R˚

`q such that for every i P N,

(1) σp fiq “ φi «εi 1;

and for all 1 ď i ă j, and for η P t1, iu, there exists φi, j,η P C0pT,R˚
`q such that

(2) σp fi ` η f jq “ φi, j,η «εi 2

then, the system pT, A, µq has a spectral component that is Lebesgue with infinite multi-
plicity.

Proof. Condition (1) implies that the system pT, A, µq has a spectral component for
which the maximal spectral type is Lebesgue. Let

À8

1 L2pT, µkq be the spectral de-
composition of the latter component where µ1 “ dθ, µ1 " µ2 " . . .. We can take
µk “ χCkpθqdθ where tCku is a sequence of nested measurable subsets of the circle.

If the multiplicity of the Lebesgue component is not infinite, there exists K such that
LebpCKq ă 1. We assume that this holds, and take the first K ě 2 with this property,
and we will get a contradiction.

Let f̂l “ fN`l, l P t1, . . . ,K ` 1u for some N " 1 to be determined later. The
goal from choosing N large is to have due to (1) and (2) that the f̂l are pairwise almost
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orthogonal while the densities of their spectral measures are almost equal to 1. This will
show that by choosing N sufficiently large, we get a contradiction with the assumption
that LebpCKq ă 1.

Note that since the spectral measure of every f̂l is absolutely continuous with respect
to Lebesgue, they all spectrally belong to

À8

1 L2pT, µkq. For every l P t1, . . . ,K ` 1u,
let f̂ 1

l , f̂ 2
l , . . . denote the successive orthogonal projections of f̂l on

À

L2pR, µkq.
For any ε ą 0, if N is chosen sufficiently large, (1) and (2) imply that for any pair

i , j P t1, . . . ,K ` 1u2, and any n P N, and η P t0, 1, iu
ˇ

ˇx f̂i ` η f̂ j, p f̂i ` η f̂ jq ˝ T n
y
ˇ

ˇ ă ε,(3)

which gives

(4)
ˇ

ˇx f̂i, f̂ j ˝ T n
y
ˇ

ˇ ă ε.

From the spectral isomorphism this yields

(5) ε ą
ˇ

ˇx f̂i, f̂ j ˝ T n
y
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

f̂ k
i pθq f̂ k

j pθqep´nθqϕkpθqdθ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since ε can be chosen arbitrarily small (after K and CK are given), this implies that
for more than 99% of θ P Cc

K , for any pair i , j P t1, . . . ,K ` 1u2,

(6)

ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

f̂ k
i pθq f̂ k

j pθq

ˇ

ˇ

ˇ

ˇ

ˇ

ă
?
ε.

On the other hand by (1) and the spectral isomorphism, we have for any l P t1, . . . ,K`

1u

(7)
8
ÿ

k“1

| f̂ k
l pθq|

2ϕkpθq “ φipθq «ε 1.

Hence, for more than 99% of θ P Cc
K , for any l P t1, . . . ,K ` 1u, it holds that

(8)
K

ÿ

k“1

| f̂ k
l pθq|

2
P r1 ´

?
ε, 1 `

?
εs.

In conclusion, there exists θ P Cc
K for which both (7) and (8) hold. A contradiction,

because K`1 vectors inCK cannot have all norm almost 1 and be almost orthogonal. □

2.2. Simple functions. In all the note, we will only consider functions f on the space
pX, µq or the inductions spaces pA, µAq that are simple in the sense that f is constant on
the atoms of a finite measurable partition P of A, and that the average of f is 0. We will
denote this by f P SpAq. This is useful to make sure that when inducing the function f
on a subset A1 Ă A as f 1 :“ f|A, then we can guarantee that avµAp f 1q “ 0 provided A1 is
independent of the partition P that defines f .
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2.3. Criterion for the convergence of a sequence of induced systems to a system
with an infinite Lebesgue component. We always assume given an ergodic dynam-
ical system pT, X, µq. We will use the following criterion that allows to construct a
measurable set A Ă X such that the system pTA, A, µAq has a Lebesgue component of
infinite multiplicity in its spectrum.

Proposition 3. Assume given τn Ñ 0, αn ą 0, εn ă minp2´n, αn{2q and ρn Ñ 0, and a
nested sequence of measurable sets An such that µpAn´1zAnq ă εn.

Assume also given arrays of functions in C0pT,R`q, tφ
pnq

j u jPr1,ns, tφ
pnq

i, j,ηu1ďiă jďn,ηPt1,iu,
n ě 1, such that

pA1nq For all j P r1, ns, φpnq

j is pαn, τnq-good,
pA2nq For all j ď n ´ 1, for all 1 ď i ă j ď n ´ 1 and for η P t1, iu

φ
pnq

j «εn φ
pn´1q

j , φ
pnq

i, j,η «εn φ
pn´1q

i, j,η , φ
pnq

j,n,η «εn φ
pnq

j ` 1, φ
pnq
n «εn 1,

and an array of functions t f pnq

j u jPr1,ns P SpAnq, n ě 1, such that An is orthogonal to

t f pn´1q

j u jPr1,n´1s, and for every j P r1, n ´ 1s

pA3nq } f pnq

j ´ f pn´1q

j |An
}2 ď εn;

pA4nq For the induced system pT|An , An, µAnq, for all j ď n, for all 1 ď i ă j ď n, and
for η P t1, iu,

σp f pnq

j q „ρn φ
pnq

j , σp f pnq

i ` η f pnq

j q „ρn φ
pnq

i, j,η;

then, the limiting system T|A8
has a spectral component that is Lebesgue with infinite

multiplicity.

Proof. From the fact that µpAn´1zAnq ă εn and pA3nq we see that the system pT|A8
, A8, µA8

q

is well defined and that for every i, f pnq

i converges in L2
0pA8q to a function f p8q

i .
By pA1nq, pA2nq, pA4nq with η “ 0, Lemma 1 implies that for every j P N, σp f p8q

j q “

φ
p8q

j is equivalent to the Lebesgue measure on the circle, and φp8q

j «ε j 1.
Finally pA4nq and pA2nq with η P t1, iu implies that for i ă j

σp f p8q

i ` η f p8q

j q “ φ
p8q

i, j,η «ε j φ
p jq
i, j,η «2ε j φ

p jq
i ` 1 «3ε j φ

p8q

i ` 1 «3εi 2

which by Lemma 2 implies that pT|A8
, A8, µA8

q has a spectral component that is Lebesgue
with infinite multiplicity. □

2.4. De La Rue’s strategy for inducing Lebesgue spectrum. In [1] the following
strategy to induce a Lebesgue spectrum. First of all, one shows how, starting from
a simple function f , it is possible to induce on a set A8 to get a function f p8q with
spectral measure equivalent to Lebesgue.

For this purpose A8 is constructed inductively as a limit of nested sets An and f p8q is
the limit of the sequence f pnq :“ f pn´1q

|An
, f p0q :“ f .
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Each step of the inductive procedure relies on two mechanisms. First, spread out
the spectral measure of f pnq into a measure that is equivalent to Lebesgue using the
Meilijson skew products ([2]) of T and T 2 above the Bernoulli shift on t1, 2uZ. Second,
induce on a set An`1 Ă An so that the spectral measure of f pn`1q “ f pnq

|An`1
is as close as

desired in the weak distance to the spread out measure (inducing can imitate Bernoulli
convolution). While doing so inductively, it is possible to make sure that the densities
of the spread out measures at each step n are converging in the strong sense of Lemma
1, which guarantees that the spectral measure of f p8q for the system TA8

is equivalent
to Lebesgue.

Starting from a dense countable family of functions in SpX, µq and performing the
regularizing induction simultaneously for all the functions, one thus gets a limit system
with maximal spectral type equivalent to Lebesgue (see Section 4 where we come back
on this density argument since we will need it to conclude our proof of Theorem A).

The two main ingredients of [1] that we just discussed are summarized in the follow-
ing two propositions that will also be crucial in our proof of Theorem A.

For f P L2
0pXq we use the notation σp fδq for the measures σp f qδ as in Definition 3 of

[1]. These are the spreadout measures coming from the Meilijson skew products. For
the convenience of the reader we include the definition.

Definition 4. Given a positive measure σ on T such that σpt0uq “ 0, and given δ ą 0,
we define a positive measure σδ on T by its Fourier coefficients

xσδp0q “ σpTq

xσδppq “

ż

T

zδpτq
pdσpτq, @p ą 0

xσδppq “ xσδp´pq, @p ă 0

where zδpτq “ p1 ´ δqe´iτ ` δe´2iτ.
Given an ergodic dynamical system pT, X, µq and f P L2

0pXq and let σ be the spectral
measure on T associated to f , then we define σp fδq :“ σδ.

Proposition 4 (Weak closeness implies strong closeness for the spread out densities.
[1, Lemme 8]). Let pφ jq, j “ 1, . . . ,K be a finite family of pα, τq-good functions. For
any ε ą 0, for all δ ă δpα, τ, εq, there exists ρ ą 0 such that if f1, . . . , fK are simple
functions such that σp f jq „ρ φ j, then the densities φ j,δ of σp f j,δq are strictly positive
continuous functions on p0, 1q and satisfy φ j,δ «ε φ j.

Proposition 5 (Approaching the spread densities by inducing, [1, Proposition 7]). If
δ P p0, 1{2q, and f1, . . . , fK are simple functions, then for any ρ ą 0 there exists A such
that µpAcq ă 2δ and for f 1

j “ f j|A and pTA, A, µAq we have

σp f 1
jq „ρ σp f j,δq.

Moreover, A can be chosen to be independent of the functions f1, . . . , fK such that the
functions f 1

j are simple.
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2.5. Adding one almost orthogonal function to a family. In our inductive construc-
tion to prove Theorem A based on Lemma 3, we will need to introduce at each step n an
additional function to the almost orthogonal functions already constructed so that at the
end we guarantee an infinite multiplicity. For this, we will need the following simple
lemma.

The following lemma shows that it is possible to import spectral multiplicity in the
weak sense. The regularizing lemma transforms it into an actual increase of the spectral
multiplicity.

Lemma 6. Let pX,T q be an ergodic dynamical system. Given ρ ą 0 and a family of K
functions t f ju j“1,2,...K P L2pXq, there exists a simple function fk`1 such that :

(a) σp fK`1q „ρ 1
(b) for all η P t´1,`1u, for all j “ 1, 2, ...K,

σp fK`1 ` η f jq „ρ σp f jq ` 1

Proof. We consider pY, Bq where B is a Bernoulli shift acting on Y and we form the
product pX ˆ Y,T ˆ Bq. Because B is Bernoulli, there exists an Y-measurable function ϕ
(in L2pX ˆ Yq) such that (1) the pT ˆ Bqiϕ, i P Z, are orthogonal and furthermore (2) Hϕ

is orthogonal to L2pXq (in L2pX ˆ Yq). By a simple application of Rokhlin’s lemma, we
know that if two finite partitions P and Q are given in pX ˆ Yq where P is X-measurable
together with an integer n and δ ą 0, there exists a partition Q̃ which is X-measurable

such that the two finite partitions
n

Ž

0
pT ˆ BqipP

Ž

Qqq and
n

Ž

0
pT ˆ BqipP

Ž

Q̃q have

very close distributions (how close controlled by δ). Applying this to suitable simple
functions approximating ϕ and the fi’s (Q being the support of fK`1 which approximates
ϕ and P being spanned by the supports of the simple approximations of the fi’s) one gets
(a) and (b) as a direct consequence of (1) and (2). □

3. Inducing a system with infinite Lebesgue spectral component

In this section, we see how we can find an induced system of any ergodic system
pT, X, µq that has a spectral component that is Lebesgue with infinite multiplicity. The
proof of the main Theorem A, that we postpone to the last section, will be a direct com-
bination of the construction that we will propose in this section and of the construction
in [1] of an induced system with pure Lebesgue spectrum.

Theorem 7. For any ergodic dynamical system pT, X, µq there exists an induced system
that has a spectral component of pure Lebesgue type and infinite multiplicity.

3.1. The inductive step. The proof of Theorem 7 relies on the criterion of Proposition
3 and of the following main inductive step that is based on Propositions 4 and 5 and on
Lemma 6.

Proposition 8. Suppose K P N and tφ ju j“1,...,K are pα, τq-good and tφi, j,ηu1ďiă jďK are
in C0pT,R`q. For any ε ą 0, there exist ρ “ ρptφ ju j“1,...,K , tφi, j,ηu1ďiă jďK , εq ą 0 such
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that if t f ju j“1,...,K are simple functions such that @pi, j, ηq P t1, . . . ,Ku2 ˆ t1, iu with
i ă j

(9) σp fiq „ρ φi, σp fi ` η f jq „ρ φi, j,η.

then there exist
!

φ1
j

)

j“1,...,K
such that φ1

j ą 0 on p0, 1q for every j and tφi, j,ηu1ďiă jďK in

C0pT,R`q such that
φ1

j «ε φ j, φ1
i, j,η «ε φi, j,η

and such that for any ρ1 ą 0, one can find A Ă X such that µpXzAq ă ε, A orthogonal to
t f ju j“1,...,K , and simple functions f 1

j defined on A such that f 1
j “ f j|A and for the system

pT|A, A, µAq we have

(10) σp f 1
i q „ρ1 φ1

i, σp f 1
i ` η f 1

jq „ρ1 φ1
i, j,η.

Note that since φ1
j ą 0 on p0, 1q, there exists α1 ą 0 such that φ1

j is pα1, τ{2q-good,
which will allow to iterate the above proposition.

3.2. Proof of Theorem 7. Before proving the proposition, we see how it implies The-
orem 7. We fix τn “ 1{2n.

From Proposition 3, it suffices to construct inductively αn ą 0, εn ă minp2´n, αn{2q

and ρn Ñ 0, and a nested sequence of measurable sets An and an array of simple
functions t f pnq

j u jPr1,ns P SpAnq, n ě 1 such that µpAn´1zAnq ă εn, An orthogonal to
!

f pn´1q

j

)

j“1,...,n´1
, and arrays of functions tφ

pnq

j u jPr1,ns, tφ
pnq

i, j,ηu1ďiă jďnPr1,ns, n ě 1, such

that pA1nq ´ pA4nq hold.
Moreover, we suppose that in the construction ρk is given by

ρk “ ρptφ
pkq

j u jPr1,k`1s, tφi, j,ηu1ďiă jďk`1, εk`1q

where ρk is the function from the first part of Proposition 8 and where we took φpkq

k`1 :“ 1
and φi,k`1,η :“ 1 ` φ

pkq

i for i P r1, ks.

The construction for n “ 1. We let ρ1 “ ρptφ
p1q

1 u, ε2q where ρp¨q is given by the first
part of Proposition 8.

Using Lemma 6, we start with A1 “ X, φp1q

1 ” 1, and f p1q

1 simple and such that

σp f p1q

1 q „ρ1 φ
p1q

1 .

Inducing from n to n ` 1. Next, we suppose that everything is constructed up to n,
that is: An such that µpAn´1zAnq ă εn and an array of simple functions t f pnq

j u jPr1,ns P

SpAnq, An orthogonal to
!

f pn´1q

j

)

j“1,...,n´1
, and tφ

pnq

j u jPr1,ns that are pαn, τnq-good for

some αn ą 0, and tφ
pnq

i, j,ηu1ďiă jďn that satisfy pA1nq ´ pA4nq. We define φpnq

i,n`1 “ 1 and

φ
pnq

i,n`1,η “ φ
pnq

i ` 1 and take ρn`1 “ ρptφ
pnq

j u jPr1,n`1s, tφ
pnq

i, j,ηu1ďiă jďn`1, εn`1q.



8 FATNA ABDEDOU, BASSAM FAYAD, JEAN-PAUL THOUVENOT

Using Lemma 6, we add to t f pnq

j u jPr1,ns P SpAnq a function fn`1 P SpAnq such that

(11) σp fn`1q „ρn`1 1, σp f pnq

i ˘ fn`1q „ρn`1 φ
pnq

i ` 1.

Now we apply Proposition 8 to t f pnq

1 , . . . , f pnq
n , fn`1u and tφ

pnq

j u jPr1,n`1s and tφ
pnq

i, j,ηu1ďiă jďn`1.

Then, the proposition gives us An`1 orthogonal to t f pnq

1 , . . . , f pnq
n , fn`1u such that µpAnzAn`1q ă

εn`1 and an array of simple functions t f pn`1q

j u jPr1,n`1s P SpAn`1q and tφ
pn`1q

j u jPr1,n`1s

that are pαn`1, τn`1q-good for some αn`1 ą 0, and functions tφ
pn`1q

i, j,η u1ďiă jďn`1 P C0pT,R`q

that satisfy pA1n`1q ´ pA4n`1q.
In conclusion, Theorem A now follows from Proposition 3. □

3.3. Proof of Proposition 8. The proof of Proposition 8 has two steps, analogous to
the main two steps of [1].

Step 1. Spreading out. In the first step we elaborate on Proposition 4 and get the
following

Lemma 9. Suppose K P N and tφ ju j“1,...,K are pα, τq-good and tφi, j,ηu1ďiă jďK are in
C0pT,R`q. For any ε ą 0, there exist ρptφ ju j“1,...,K , tφi, j,ηu1ďiă jďK , εq ą 0 such that if
t f ju j“1,...,K are simple functions such that @pi, j, ηq P t1, . . . ,Ku2 ˆ t1, iu

(12) σp fiq „ρ φi, σp fi ` η f jq „ρ φi, j,η.

then for any δ sufficiently small, we have that σp f j,δq and σp fi,δ ` η f j,δq have continuous
densities φ j,δ and φi, j,η,δ, with φ j,δ ą 0 and for pi, jq P r1,Ks2 and i ă j,

(13) σp f j,δq «ε φ j, σp fi,δ ` η f j,δq «ε φi, j,η.

Proof. The proof is a direct application of Proposition 4 to several functions at the same
time. □

Step 2. Approaching by induction. Suppose K P N, α, τ, ε, δ ą 0, tφ ju j“1,...,K ,
tφi, j,ηu1ďiă jďK , ρ and t f ju j“1,...,K are as in Lemma 9.

We can apply Proposition 5 to the family of simple functions t f ju j“1,...,K , and get for
any ρ1 ą 0 a set A orthogonal to t f ju j“1,...,K such that µpXzAq ă ε, and for the simple
functions f 1

j “ f j|A and the system pTA, A, µAq it holds that

(14) σp f 1
i q „ρ1 φ1

i :“ σp f j,δq «ε φ j, σp f 1
i ` η f 1

jq „ρ1 φ1
i, j,η :“ σp fi,δ ` η f j,δq «ε φi, j,η,

with φ1
j ą 0 on p0, 1q for every j and tφ1

i, j,ηu1ďiă jďK in C0pT,R`q.
The proof of Proposition 8 is thus completed. □
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4. Proof of Theorem A

To go from Theorem 7 to Theorem A, we can keep the inductive construction of
Theorem 7 essentially as is, and add a feature to guarantee that the maximal spectral
type is equivalent to Lebesgue. To do so, we just need to make sure that the family of
functions we are constructing becomes dense in L2

0pX, µq. In fact, we find it simpler to
just adjunct to the array of simple functions t f pnq

j u jPr1,ns P SpAnq another array of simple

functions thpnq

j u jPr1,ns P SpAnq whose role is to guarantee pure Lebesgue spectrum for
the final induced system. For this, we follow verbatim [1, Section 3.3]. We recall first
the approach in [1] to guarantee a pure Lebesgue spectrum for the final induced system:

Start with a family of simple functions th ju jPN that is dense in L2
0pX, µq. At each step

of the construction, pick a set An that works simultaneously for the family thpnq

j u jPr1,ns,

where hpkq

j “ h j
pk´1q

|Ak
for every j ď k ´ 1 and hpkq

k “ hk|Ak , in the sense that for every

fixed j, σphpnq

j q „ρn ψ j,n where the spectral measures are considered with respect to the
induced system T|An , and ψ j,n is a sequence of densities that converge in L2 in the sense
of Lemma 1. To keep the functions simple at each step of the induction, the set An is
chosen independent of the partitions that define the simple functions thpnq

j u jPr1,ns.
At the end of the construction the spectral measure of h8

j for the system T|A8
is

equivalent to Lebesgue for every j P N.
Since for every j, h8

j “ h j|A8
, it follows from the density of the family th ju jPN that

the family th8
j u jPN is dense. Hence the system pTA8

, A8q has pure Lebesgue spectrum.
Returning to our construction and suppose given at the beginning a family of simple

functions th ju jPN that is dense in L2
0pX, µq.

As in [1], we remark that when we carry on the inductive construction in the proof
of Theorem 7, it is possible to choose An`1 that works simultaneously for t f pnq

j u jPr1,ns

(defined as in §3.2) as well as for thpnq

j u jPr1,ns (defined as above). Note that, in this

procedure, at each step n of the induction, the family t f pnq

j u and the family thpnq

j u jPr1,ns

are updated by mere induction hpnq

j “ h j
pn´1q

|An
. Hence, the density of the family th ju jPN

is automatically transmitted to th8
j u jPN.

In conclusion, from the family t f p8q

j u jPN we get the infinite multiplicity of the Lebesgue

component, and from the family thp8q

j u jPN we get that the spectrum is pure Lebesgue.
The proof of Theorem A is thus complete. □
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