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Abstract. We construct a C1 symplectic twist map g of the an-
nulus that has an essential invariant curve Γ such that Γ is not
differentiable and g restricted to Γ is minimal.

We denote T = R/Z the circle and A = T × R the annulus. An
important class of area preserving maps of the annulus are the so called
twist maps or maps that deviate the vertical, since this class of maps
describes the behavior of area preserving surface diffeomorphisms in
the neighborhood of a generic elliptic periodic point.

More precisely, a C1 diffeomorphism g of the annulus that is isotopic
to identity is a positive twist map (resp. negative twist map) if, for any
given lift g̃ : R2 → R2 of g, and for every θ ∈ R, the maps r 7→ π̃◦g̃(θ, r)
is an increasing (resp. decreasing) diffeomorphisms. A twist map may
be positive or negative. Here π̃ denotes the lift of the first projection
map.

An essential invariant curve by a diffeomorphism g of the annulus is
a homotopically non-trivial simple loop that is invariant by g.

When f is a C1 twist map, it is known from Birkhoff theory that any
invariant essential curve by g is the graph of a Lipschitz map over T.
Furthermore, it was proven by M.-C. Arnaud in [A09] that the latter
map must be C1 on a Gδ set of T of full measure.

Numerical experiment show that the invariant curves of a smooth
twist map are actually more regular than just what the Birkhoff theory
predicts. Moreover, in the perturbative setting of quasi-integrable twist
maps, KAM theory provides a large measure set of smooth invariant
curves. The question of the regularity of the invariant curves of twist
maps is thus a natural question that is also related to the study of how
the KAM curves disappear as the perturbation of integrable curves
becomes large.

Another natural and related question is that of the regularity of the
boundaries of Birkhoff instability zones. A Birkhoff instability zone of
a twist map g is an open set of the annulus that is homeomorphic to the
annulus, that does not contain any invariant essential curve, and that
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is maximal for these properties. By Birkhoff theory the boundary of an
instability zone is an invariant curve that is a Lipschitz graph. We refer
to the nice introduction of [A11] where many features and questions
are discussed about the boundaries of Birkhoff instability zones.

In [EKMY98] the following question was asked.

Question 1. (J. Mather, [EKMY98, Problem 3.1.1]) Does there exist
an example of a symplectic Cr twist map with an essential invariant
curve that is not C1 and that contains no periodic point?

In [H83][§III], Herman gave an example of a C2 twist map of the
annulus that has a C1 invariant curve on which the dynamic is con-
jugated to the one of a Denjoy counterexample. By Denjoy theorem
on topological conjugacy of C2 circle diffeomorphisms with irrational
rotation number, such a curve cannot be C2.

In [A13], M.-C. Arnaud gave an example of a C2 twist map g of
the annulus that has an invariant curve Γ that is non-differentiable on
which the dynamic is conjugated to the one of a Denjoy counterex-
ample. In addition, she showed that in any C1 neighborhood of g,
there exist twist maps with Birkhoff instability zones having Γ for a
boundary, and having the same dynamics as g on Γ.

In [A11] the following natural question is raised.

Question 2. (M.-C. Arnaud) Does there exist a regular symplectic
twist map of the annulus that has an essential invariant curve that is
non-differentiable on which the restricted dynamics is minimal?

In this note we give a positive answer to this question in low regu-
larity.

Theorem 1. For every α ∈ R \ Q, there exists a symplectic C1 twist
map of the annulus that has a non differentiable essential invariant
curve Γ such that the restriction of g to Γ is C0 conjugated to the circle
rotation of angle α, hence minimal.

Due to [A11, Theorem 2] we can deduce the following

Corollary 2. There exists a symplectic C1 twist map g of the annulus
that has a non differentiable essential invariant curve Γ such that the
restriction of g to Γ is minimal and such that Γ is at the boundary of
an instability zone of g.

The derivation of Corollary 2 from Theorem 1 follows from the gen-
eral result of [A11], Theorem 2 asserting that any essential invariant
curve of a C1 twist map g that has an irrational rotation number, can
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be viewed as a boundary dynamics of Birkhoff instability zone of an
arbitrarily nearby C1 twist map. This result relies on a perturbation
argument involving the Hayashi C1-closing lemma.

Due to a construction by Herman in [H83][§II.2], Theorem 1 can be
derived from the following result on circle homeomorphisms.

Theorem 3. For every α ∈ R \ Q, there exists a non-differentiable
orientation preserving (minimal) homeomorphism of the circle f , topo-
logically conjugate to the circle rotation of angle α, such that f + f−1

is of class C1.

Proof of Theorem 1. To prove that Theorem 3 implies Theorem 1, we
use Herman’s beautiful trick that associates to some circle homeomor-
phisms f a twist map of the annulus which preserves a circle that is
determined by f and on which the restricted dynamics is given by f .
For completeness, we state and prove Herman’s observation.

First of all, note that if f̃ is a lift of a circle homeomorphism f and
if there exists a C1 function φ : T→ R, that we also view as a function
from R to R of period 1, satisfying

(1) IdR +
φ(·)

2
=

1

2
(f̃(·) + f̃−1(·)),

then the map

(2) g : A→ A : (θ, r) 7→ (θ + r, r + φ(θ + r)),

is a C1 Hamiltonian twist map of the annulus (this follows from the
fact that

∫
T φ(θ)dθ = 0 as proved in [H83][§II.2.3]). Moreover, with

ψ := f̃ − idR, that we view as function from T to R, or from R to R of
period 1, the following holds:

Claim [H83][§II.2]. The graph Γ of θ 7→ ψ(θ) is invariant by g and
the dynamics of g restricted to Γ is conjugated (via the first projection)
to f .

Proof. From (1), we have that

2f̃ + φ ◦ f̃ = f̃ ◦ f̃ + IdR = f̃ + ψ ◦ f̃ + IdR

hence
ψ ◦ f − ψ = φ ◦ f,

and finally (2) implies

g(θ, ψ(θ)) = (f(θ), ψ(θ) + φ(f(θ)))

= (f(θ), ψ(f(θ))).

�
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The proof that Theorem 3 implies Theorem 1 is now straightforward
from the claim. �

To prove Theorem 3, we will work with a special class of circle dif-
feomorphisms that we call C-great.

Definition 1. Let f : T → T be a C1 minimal diffeomorphism. For
C > 1, we say that x is C-good if

∑
n≥0 |Dfn(x)|−2 < C, while

supn<0 |Dfn(x)| =∞ and
∑

n<0 |Dfn(x)|−2 =∞.
We say that f is C-great if the set of C-good points is uncountable

and supx∈T |Df(x) +Df−1(x)| < C.
Moreover, we say that x is C-great if it is accumulated by an un-

countable set of C-good points. We then say that the pair (f, x) is
C-great.

It is not hard to see that if f is C-great then it has a C-great point x.
Moreover, a C-great point is actually accumulated by an uncountable
set of C-great points.

Let 0 < u < v. For an injective map f defined from [x− v, x+ v] to
R, we define

∆(f, x, u, v) =
v

u

f(x+ u)− f(x)

f(x+ v)− f(x)
.

The following is a straightforward criterion of non-differentiability of
f .

Lemma 4. If f is a differentiable circle diffeomorphism then it must
satisfy for every x ∈ T that the limit as u, v go to 0 of ∆(f, x, u, v)
exists and equals 1.

The proof of Theorem 3 is based on the following two lemmas.

Lemma 5. For every α ∈ R \ Q, there exist C > 1 and a circle
diffeomorphism f topologically conjugate to the circle rotation of angle
α that is C-great.

We will prove Lemma 5 at the end of the note.
We first show how starting from a C-great diffeomorphism we can

prove Theorem 3. The proof is based on an inductive application of
the following lemma.

Lemma 6. For every C > 1 there exists ε0 > 0 with the following
property. Let (f, x) be C-great. Then for every ε > 0 there exists a
C1-diffeomorphism h : R/Z→ R/Z such that g = h ◦ f ◦h−1 satisfies :

• h is ε-close to IdT in the C0 topology,
• g + g−1 is ε-close to f + f−1 in the C1 topology,
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• there exists y ∈ T such that |y − x| < ε and (g, y) is C-great,
and there exists u, v ∈ (0, ε) such that ∆(g, y, u, v) > 1 + ε0.

Proof that Lemma 5 and Lemma 6 imply Theorem 3. Let α ∈ R \ Q.
We want to construct a sequence of circle diffeomorphisms (fn) that
converges to a circle homeomorphism f∞ that is topologically conju-
gated to Rα and such that f∞ is not a diffeomorphism while f∞ + f−1

∞
is C1. We will use the criterion of Lemma 4 to gurantee the non-
differentiability of f∞.

In light of Lemma 5, we can start with a C1 circle diffeomorphism f0

and x0 such that (f0, x0) is C-great and f0 is topologically conjugate to
the circle rotation of angle α. Using Lemma 6, we construct inductively,
for n ≥ 1, sequences (hn) of circle diffeomorphisms, and (xn) of points
in T, and (un) and (vn) of positive numbers, such that for

fn := hn ◦ fn−1 ◦ h−1
n , Fn := fn + f−1

n , Hn := hn ◦ · · · ◦ h1,

the following holds

• (fn, xn) is C-great;
• un + vn ≤ 2−n;
• ‖xn+1 − xn‖ ≤ 2−n;
• ∆(fn, xn, un, vn) > 1 + ε0
• ‖Hn −Hn−1‖C0 ≤ 2−n;
• ‖Fn+1 − Fn‖C1 ≤ 2−n.

We also ask that the convergence of (Hn) and (xn) is sufficiently fast
so that ∆(fm, xm, un, vn) > 1 + ε0 for all m ≥ n.

From the convergence of Hn we get that fn converges to a circle
homeomorphism f∞ that is topologically conjugated to Rα. In addi-
tion, the C1 limit of Fn must be f∞ + f−1

∞ . Since ∆(fm, xm, un, vn) >
1 + ε0 for all m ≥ n, we guarantee that the limit point x∞ of (xn)
satisfies ∆(f∞, x∞, un, vn) > 1 + ε0 for every n. Hence f∞ is not differ-
entiable by Lemma 4.

In conclusion f∞ satisfies all the properties of Theorem 3. �

Proof of Lemma 6. To motivate what follows, note that if g = h◦f◦h−1

with Dh(x) = 1 + e(x) then in order to have g + g−1 = f + f−1 one
must have

h ◦ f + h ◦ f−1 = f ◦ h+ f−1 ◦ h.
The latter implies that

e(f(x))Df(x) +
e(f−1(x))

Df(f−1(x))
= e(x)(Df(h(x)) +

1

Df(f−1(h(x))
) + ∆,
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with

∆ = Df ◦ h−Df +Df−1 ◦ h−Df−1.

Assuming h is C0 close to id, we see that for g + g−1 to be C1-close to
f+f−1 we should choose e such that (e(f(x))−e(x))Df(x)Df(f−1(x))
is close to e(x)− e(f−1(x)).

To construct the conjugacy h of Lemma 6, we start by defining a
sequence (ej)j∈Z that will serve to define h along the orbit of a point
that is C-good for f .

Let x be a C-good point for f . Let bj = Df(f j(x)), j ∈ Z. Define
cj, j ∈ Z by c0 = 1 and cjbjbj−1 = cj−1.

Sublemma 7. For any ν > 0, we can define a sequence (ej)j∈Z such
that ej = 0 for j /∈ [−N ′, N ] for some N,N ′ ∈ N∗ and

• ej ≥ 0, ∀j ∈ Z.
• e1 − e0 = −1
• e0 ≤ C3

• ηj := |(ej+1 − ej)bjbj−1 + (ej−1 − ej)| ≤ ν, ∀j ∈ Z

Proof. We will need the following properties on the orbit of x that will
be a consequence from the fact that x is C-good for f .

Claim. We have that
∑

j≥0 cj ≤ C3, and
∑

j≤0 cj =∞, lim infj≤0 cj =
0.

Proof. We have that for j ≥ 0 cj = Df(x)Df(fj(x))
(Dfj+1(x))2

. Hence it follows from

Definition 1 that
∑

j≥0 cj ≤ C3.

For j ≤ −1, we have that cj = Df(x)
Df(fj(x))

1
(Dfj(x))2

. Hence it follows

from Definition 1 that
∑

j<0 cj =∞ as well as lim infj≤0 cj = 0. �

Let us now define ej, j ∈ Z as follows. Fix N large such that c−N
is small. Note that by taking N sufficiently large we will have that cN
is also small. We let ej = 0 for j > N . For |j| ≤ N , we define ej
so that ej+1 − ej = −cj. We now let N ′ be much larger than N such

that c−N ′+1 is small and such that α =
∑
−N′≤j<−N cj

e−N
is large. We set

then ej+1 − ej =
cj
α

for −N ′ ≤ j ≤ −N − 1. We now define ej = 0 for
j < −N ′. By construction, e1 − e0 = −c0 = −1.

Note that

• For j ∈ [−N,N ], we have that ej =
∑N

k=j ck.

• For j ∈ [−N ′,−N), we have that ej = e−N − 1
α

∑−N−1
k=j ck.
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From the definition of α we deduce that e−N ′ = 0, and that ej ≥ 0 for all
j ∈ Z. Also, −e0 = eN+1−e0 = −

∑
0≤j≤N cj, so e0 =

∑
0≤j≤N cj ≤ C3.

Note that by construction, since cjbjbj−1 = cj−1, we have that

ηj = (ej+1 − ej)bjbj−1 + (ej−1 − ej) = 0,

for all j ∈ Z, except for j = −N ′, j = −N and j = N + 1. We also
have, since e−N ′−1 = e−N ′ = 0, that η−N ′ = c−N ′/α is small since c−N ′
is small and α is large. Next, we compute η−N = −c−N−1 − c−N−1

α
,

which is also small since cN is small and α is large. Finally ηN+1 = cN
is also small by our choice of N . �

We want now to modify f by conjugation along a neighborhood of
the orbit of x between the times −N ′ and N to obtain the diffeomor-
phism g with the required properties of Lemma 6. We will look for
the conjugacy under the form Dh(x) = 1 + e(x). The choice of the
sequence (ej) in Sublemma 7, would essentially allow to get a good
control on g and g + g−1 along the orbit of the point x if the function
e takes the values ej along the orbit of x. We need however to define
h in the neighborhood of the orbit of x without losing the required
properties on g and g + g−1 and this will will require some additional
technicalities that we now address.

To guarantee a good control of g + g−1 everywhere, we start by
slightly modifying f to make it affine along the −N ′ to N orbit of a
small interval around x. For this, choose a small interval I0 centered
around x, and let Ij = f j(I0), j ∈ Z. We may assume that Ij∩Ij′ = ∅ if
0 < |j−j′| ≤ 2N ′. Then for every δ > 0 we can define a diffeomorphism
h′ : R/Z → R/Z, which is the identity outside ∪−N ′+1≤j≤N+1Ij, such
that supy |Dh′(y) − 1| < δ, and such that letting f ′ = h′ ◦ f ◦ h′−1

we have f ′(y) = f j+1(x) + bj(y − f j(x)) whenever y is near f j(x) and
−N ′ ≤ j ≤ N .

Let us now select an interval I ′0 ⊂ I0 centered around x such that
letting I ′j = f ′j(I ′0), j ∈ Z, we have that f ′|I ′j is affine for −N ′ ≤ j ≤ N .

Note that by choosing δ > 0 small we get that F ′ = f ′ + f ′−1 is C1

close to F = f + f−1.
We now define another diffeomorphism h : R/Z → R/Z which is

the identity outside ∪−N ′+1≤j≤NI
′
j as follows. In order to specify h it is

enough to define Dh on I ′j for −N ′+1 ≤ j ≤ N . We let φ : R→ [−δ, 1]
be a smooth function supported on (−1/2, 1/2), symmetric around 0
and such that φ(0) = 1 and

∫
φ(x)dx = 0. We then let Dh = 1+ejφ◦Aj

where Aj : I ′j → [−1/2, 1/2] is an affine homeomorphism. If δ > 0 is
chosen sufficiently small h is indeed a diffeomorphism since all the ej
are positive.
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Finally, let

g := h ◦ f ′ ◦ h−1 = h ◦ h′ ◦ f ◦ h′−1 ◦ h−1.

Claim. The diffeomorphism g satisfies the requirements of Lemma 6.

Proof. Let us show that G = g + g−1 is C1 close to F ′ = f ′ + f ′−1.
Note that G = F ′ in the complement of

⋃
−N ′≤j≤N I

′
j, so it is enough

to show that DG−DF ′ is small in each I ′j, −N ′ ≤ j ≤ N . Indeed for
y ∈ I ′j, letting κ = φ ◦ Aj(y), we have

DG(h(y))−DF ′(h(y)) =
κ

(1 + ejκ)bj−1

((ej+1 − ej)bjbj−1 + ej−1 − ej),

which is small since the term κ
(1+ejκ)bj−1

is bounded : Indeed, −δ ≤ κ ≤
1, and 1 + ejκ ≥ 1− ejδ ≥ 1/2 provided δ is chosen sufficiently small,
and finally bj−1 > C−1 since supx∈T |Df(x) +Df−1(x)| < C.

Moreover, we have Dg(x)−Df(x) = (1+e1)b0
1+e0

−b0 = −b0
1+e0

< − 1
C(1+C3)

.

Since g(x+u)−g(x)
u

∼ Dg(x) for u � |I0|, while g(x+v)−g(x)
v

∼ Df(x) for
1 � u � |I0|, this allows to exhibit u and v such that ∆(g, x, u, v) ≥
1 + ε0 with ε0 = 1

2C2(1+C3)
.

To conclude, we must show that there exists arbitrary close to x a
point y such that (g, y) is C-great. It suffices for this to show that in any
interval J around x there is an uncountable set of C-good points for g.
By definition of x, we know that the latter is true for f . Note that if y
is C-good for f then y′ = h(h′(y)) is C-good for g if

∑
n≥0 |Dgn(y′)|−2 <

C.
Fix some Λ > 0 much larger than sup ej. Notice that for small λ > 0,

we can choose m > 0 such that there is an uncountable set K ′ ⊂ J of
y such that∑

n≥0

|Dfn(y)|−2 < C − λ, and
∑
n≥m

|Dfn(y)|−2 < λ/Λ.

Now, notice that h ◦h′ = id except in ∪−N ′+1≤j≤N+1Ij, and the deriva-
tive of h ◦ h′ is bounded by (1 + δ)(1 + sup ej). In particular, if y ∈ K ′
then h(h′(y)) will be C-good for g provided gn(y) /∈ ∪−N ′+1≤j≤N+1Ij
for 0 ≤ n ≤ m. If we choose the size of I0 sufficiently small, we will
have the latter property for uncountably many y ∈ K ′ ⊂ J . �

The proof fo Lemma 6 is thus accomplished. �

To finish we still need to show the existence of C-great diffeomor-
phisms.
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Proof of Lemma 5. Given an interval I = [a, b], let l(I) = a+ 3
8
(b− a)

and r(I) = a+ 5
8
(b− a).

Our construction will depend on a sequence of integers mn ∈ N,
n ≥ 0, such that m0 is large and mn+1 is much larger than mn.

Let Ω be the set of all finite sequences ω = (ω1, ..., ωn) of l’s and r’s
and length |ω| ≥ 0. For ω ∈ Ω, we define intervals Iω inductively as
follows. Let n = |ω|. If n = 0 we let Iω be the interval of length 2−m0

centered on 0. If n ≥ 1, let ω′ consist of ω stripped of its last digit, and
let Iω be the interval of length 2−mn centered on t(Iω′) where t ∈ {l, r}
is the last digit of ω.

Let φ : R → [0, 1] be a smooth function symmetric around 0, sup-
ported on [−1/2, 1/2] and such that φ|[−1/4, 1/4] = 1.

Let Aω : Iω → [−1/2, 1/2] be an affine homeomorphism. Let us now
define functions smooth functions φω : R/Z→ R supported inside the
intervals Iω + kα, 1 ≤ k ≤ 2n− 1, such that

φω(x+ kα) = (n− |n− k|)φ(Aω(x)).

Note that by selecting mn sufficiently large, we may assume the
following property

(Low recurrence) - For any n ∈ N, for all |ω| = |ω′| = n for any
0 ≤ |k| ≤ 22n , Iω+kα does not intersect Iω′ . In particular the supports
of φω and φω

′
do not intersect.

We let φn =
∑
|ω|=n φω. Note that low recurrence implies for any

x ∈ R/Z:

(L1) |φn(x+ α)− φn(x)| ≤ 1.
(L2) φn(x−mα) = 0 if m ≥ 0 and 2n− 1 +m ≤ 22n .
(L3) φn(x) ≤ n.

Finally, define a non-decreasing sequence of smooth function ΦN :
R/Z→ R by

ΦN =
∑

0≤n≤N

1

(n+ 1)4/3
φn.

Define the uncountable set K :=
⋂
n

⋃
|ω|=n Iω. Note that for x ∈ K

we have for N ≥ 1

(K1) ΦN(x) = 0.
(K2) ΦN(x+Nα) ≥ 1

10
N2/3.

(K3) For m ∈ [0, 22n − 2n+ 1], ΦN(x−mα) ≤ n(n+1)
2

.

To see the last item, just observe that if ΦN(x −mα) ≥ n(n+1)
2

, then
φn′(x−mα) > 0 for some n ≤ n′ ≤ N (since φn ≤ n by (L3)), and by
(L2) we must have m > 22n − 2n+ 1.
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Next, observe that (L1) implies that ΦN(·+α)−ΦN(·) converges in
the C0 topology to some continuous function Θ : R/Z→ R.

Introduce ξN :=
∫
eΦN (x)dx and ΨN := eΦN/ξN . Again by letting

the integers mn grow fast we obtain that ξN is close to 1 for all N ≥ 1,
and that if we consider the circle homeomorphism hn : R/Z → R/Z
given by Dhn = Ψn and hn(0) = 0, we get that hn converges in the C0

topology to some homeomorphism h : R/Z→ R/Z.
Since ΦN(x + α) − ΦN(x) converges in C0 to a continuous function

Θ, we get that fn(x) = hn(h−1
n (x)+α) is converging in the C1 topology

to some f satisfying f(x) = h(h−1(x) + α) and lnDf = Θ ◦ h−1. In
particular, f is minimal.

Note that all x ∈ h(K) are C-good for some absolute C, since

Dfn(x) ≥ e
n2/3

10 for x ∈ h(K) by (K2).
On the other hand, (K2) also implies that for each x, from time to

time h−1(x)− nα, for n ≥ 0, will visit regions where supN ΦN is large,
so for x ∈ h(K), Df−n(x) will be large, since ΦN(h−1(x)) = 0 by (K1).
Moreover, if x ∈ h(K), (K3) implies that ΦN(h−1(x)− nα) is at most
of order (ln lnn)2, so

∑
n≥1 |Df−n(x)|−2 =∞. �

Acknowledgment. We are grateful for the referee for many useful
comments on the first versions of this paper.
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