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ABSTRACT. The following dichotomy for affine Zk actions on the
torus Td, k, d ∈ N is shown to hold : i) the linear part of the ac-
tion has no rank-one factors, and then the affine action is locally
rigid; ii) the linear part of the action has a rank-one factor, and
then the affine action is locally rigid in a probabilistic sense if and
only if the rank-one factors are trivial. Local rigidity in a proba-
bilistic sense means that rigidity holds for a set of full measure of
translation vectors in the rank-one factors.

1. INTRODUCTION

1.1. Local rigidity of Zk actions. A smooth Zk action ρ on a smooth
manifold M is given by a homomorphism ρ from Zk into the group
Diff(M) of C∞ diffeomorphisms of M.

An action ρ is said to be locally rigid if there exists a neighborhood
U of ρ in the spaceA(k, M) smooth Zk actions on M, such that every
η ∈ U is C∞ conjugate to ρ via a conjugacy which is C1 close to
identity. We recall that the action η is said to be C∞ conjugate to
ρ if there is a conjugacy h ∈ Diff(M) of M such that h(g) ◦ ρ(g) ◦
h(g)−1 = η(g) for every g ∈ Zk.

We say that a Zk action ρ has a rank one factor if k = 1 or if ρ

factors to a Zk action which is (up to a finite index subgroup of Zk)
generated by a single diffeomorphism. If a Zk action has no rank-one
factors, we will call it a higher rank action .

1.2. Local rigidity of higher rank Zk linear actions on the torus. A
Zk linear action on the torus is given by a homomorphism from Zk

to the group of automorphisms of the torus.
For linear Zk actions on the torus, it is proved in [22] that the action

is higher rank if and only if:
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(HR) The Zk action contains a subgroup L isomorphic to Z2 such that
every element in L, except for identity, is ergodic with respect to the stan-
dard invariant measure obtained from the Haar measure.

The local picture for higher-rank Zk actions on the torus by toral
automorphisms is fairly well understood. The condition (HR) is a
necessary and sufficient condition for local rigidity ([3] and refer-
ences therein).

1.3. KAM rigidity in rank-one dynamics. It is widely believed that
local rigidity for actions with rank one factor never holds. The only
known situation in rank-one dynamics where some form of local
rigidity happens, is for Diophantine toral translations. In this case
translation vectors with respect to invariant probability measures
serve as moduli of smooth conjugacy. More precisely, if a diffeo-
morphism of a torus has a Diophantine average displacement vector
α with respect to some invariant probability measure and if it is suffi-
ciently close to the translation Tα by vector α, then it is smoothly con-
jugated to Tα, [15]. This phenomenon is a consequence of KAM the-
ory (after Kolmogorov, Arnol’d and Moser) on the stability of Dio-
phantine quasi-periodic motion in close to integrable systems [13],
and we call it KAM rigidity.

Another point of view on KAM rigidity is given by parametric
families of diffeomorphisms. If a torus translation is perturbed into
a parametric family of diffeomorphisms and if the translation vec-
tors relative to invariant measures satisfy an adequate transversality
condition along the family, then for a large set of parameters the dif-
feomorphisms of the family are smoothly conjugate to translations.
A typical example is given by Arnol’d family of circle diffeomor-
phisms [1] : ft(θ) = θ + t + ε sin(2πθ), θ ∈ R/Z which are smoothly
conjugate to a rotation for a set of t ∈ [0, 1] of measure converging
to 1 as ε goes to 0. Transversality in the parameter t ensures that the
rotation number of ft is Diophantine for a large set of the parameters
t ∈ [0, 1], which implies the smooth conjugation result.

1.4. Local rigidity and KAM rigidity of higher rank Zk affine ac-
tions on the torus. In this paper we consider affine volume preserv-
ing Zk actions on the torus. Each element of such an action is a dif-
feomorphism of the torus which is a composition of a translation on
the torus and an automorphism of the torus. Therefore every such
action has the translation part, and the linear part which is gener-
ated by automorphisms. We denote by ρL the linear part of an affine
action ρ on the torus.
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We give now an informal statement that summarizes the main
findings of this paper. The precise statement will be made in the
next section.

Theorem. The following dichotomy holds for an affine Zk actions ρ on the
torus Td, k, d ∈ N : i) ρL has no rank-one factors, and then the affine
action is locally rigid; ii) ρL has a rank-one factor and ρ is KAM locally
rigid if and only if the rank-one factors are trivial.

The first part of the dichotomy was proved in [3, Section 1.3.1],
where it was observed that the (HR) condition on ρL is sufficient for
local rigidity of the affine action ρ. It is not hard to see that (HR) is
also necessary for local rigidity of affine actions on the torus, see for
example Section 2 in [10].

What we prove here is part ii) that complements the local rigidity
picture for Zk affine actions on the torus by showing that some kind
of rigidity, namely KAM rigidity, holds for affine actions having a
rank-one factor provided this rank-one factor is trivial.

To illustrate this specificity of affine actions, take for example the
Z2 action on Td+1 generated by Ā = A × Id, B̄ = B × Id, where
A and B are commuting automorphisms Td and (A, B) is (HR) (or
d = 0). Of course the Z2 action (Ā, B̄) does not satisfy the (HR)
assumption. But in the affine setting, consider the Z2 action gen-
erated by A × Rα and B × Rβ, where Rα and Rβ are two circle ro-
tations such that 1, α, β are rationally independent. All non-trivial
elements of this action are ergodic, while its linear part is not er-
godic for any element of the action. This action is clearly not locally
rigid. We can for example change the frequencies α and β to pro-
duce a nearby action which is not conjugate to the initial action. But
even with fixed frequencies satisfying fast approximations by ratio-
nal pairs, Anosov-Katok Liouville constructions show that we can
perturb Rα × Rβ into a non linearizable commuting pair of circle
diffeomorphisms having rotation numbers α and β [4].

In this paper, we show that actions of the type discussed above
are actually KAM rigid in the following sense. If (α, β) satisfy some
arithmetic condition of full measure and if the generators of the ac-
tion A× Rα and B× Rβ are perturbed into a commuting pair ( f , g)
that is sufficiently small (as a function of A, B and the arithmetic con-
dition on (α, β) and that keep the same mean rotation numbers in the
d + 1 direction of Td+1 for a pair of invariant measures for f and g
then f and g are simultaneously conjugated to A× Rα and B× Rβ.
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Note that if d = 0, this is due to a result by Moser on smooth lin-
earization of commuting pairs of circle diffeomorphisms [16] (see
also [4] for a global result). This is the content of Theorem 1. In The-
orem 2 we prove a parametric form of KAM rigidity for affine torus
actions similar to the phenomenon described above for Arnol’d fam-
ilies.

In fact, the two types of affine actions we just described, with lin-
ear parts (HR) or having trivial rank one factors, are the only ones
for which local rigidity or KAM rigidity happen. For all other affine
actions, local rigidity and KAM rigidity do not hold. The reason is
that if the affine action does not belong to one of the two classes de-
scribed above, then its linear part has a non-trivial rank one factor.
In Theorem 2, we show how KAM rigidity does not hold for any
parametric family of Zk actions having a non-trivial rank one factor
in their linear part. Namely, we show that any such a family can be
perturbed so that no element of the perturbed family of actions is
conjugated to an affine action.

The question of global rigidity. Global rigidity has been proved
for abelian Anosov (HR) actions on tori in [20] (see references therein
for prior works). Without the Anosov condition, it is not expected
that for Zk higher rank actions global rigidity holds. An exception
are circle actions, where Herman?s global Theory on circle diffeo-
morphisms applies ([23, 4]). In the case of a partially hyperbolic
abelian (HR) action with one dimensional central direction, it may
be possible to combine the above global rigidity results of hyper-
bolic (HR) actions on the torus and the global rigidity of circle ac-
tions. This is clearly possible if the action is assumed to be a direct
product of a hyperbolic (HR) action on the torus and an action on the
circle. For the general case, one may first investigate whether a (HR)
partially hyperbolic Zk-action with a one dimensional central direc-
tion is necessarily a product action. We do not pursue this question
here and stay focused on local rigidity of affine actions without any
dimension restrictions.

To finish this introduction, we mention some earlier works on local
rigidity of affine group actions.

1.5. Local rigidity of affine actions by higher rank groups. Affine
actions have been discussed by Hurder in [9]. Local rigidity of affine
actions of higher rank non abelian groups was extensively studied
(see for example the survey [6]). In [5] Fisher and Margulis pro-
vide a complete local picture for affine actions by higher rank lattices
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in semisimple Lie groups. The methods they use are very different
from ours and are specific to groups with Property (T).

Prior to [5], the question about local rigidity of perturbations of
product actions of large higher rank groups has been addressed in
[17], [18], [21]; the actions considered there are products of the iden-
tity action and actions that generalize the standard SL(n, Z) action
on Tn. Local rigidity and deformation rigidity are obtained for such
actions. We note that the actions we consider in this paper even
though they belong to families of actions, are not deformation rigid
in the sense of [8].

Local rigidity results for algebraic abelian Anosov actions were
obtained by Katok and Spatzier in [12], including the case of affine
actions on tori and nilmanifolds. For higher rank non-Anosov linear
and affine Zk actions on nilmanifolds, the classification of perturba-
tions is still an open problem. It is not known if KAM rigidity holds
for some Zk affine actions on nilmanifold whose linear part is a triv-
ial action, or has a trivial action in the factor. There are examples of
families of R2 actions on 2-step nilmanifolds which display a weak
form of rigidity for perturbed families [2], but it is not known if KAM
rigidity holds or not for the corresponding families of Z2 actions.

2. STATEMENTS

2.1. KAM-rigidity for Diophantine affine actions. We denote by
( f , g) a Z2 action generated by two commuting diffeomorphisms f
and g. Let ( f0, g0) be the action generated by

(2.1) f0 = (A + a)× (Id
Td2 + ϕ), g0 = (B + b)× (Id

Td2 + ψ).

Here, d2 ∈ N∗ and ϕ, ψ ∈ Rd2 . Also, d1 ∈ N and either d1 = 0 or
A and B are two commuting toral automorphisms of Td1 and a, b ∈
Rd1 . We denote by (Ā, B̄) the linear part of ( f0, g0).

Let ( f , g) be a perturbation of the action ( f0, g0) on Td, where d =
d1 + d2.

We define for any pair µ1, µ2 of invariant probability measures for
f and g respectively, the translation vectors along the Td2 direction
corresponding to these measures as follows

α = ρµ1( f ) =
∫

Td
π2( f (x)− x)dµ1(x),

β = ρµ2(g) =
∫

Td
π2(g(x)− x)dµ2(x)
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Here π2 denotes the projection on the Td2 variable. We say that
(α, β) ∈ Td2 × Td2 is simultaneously Diophantine with respect to
a pair of numbers (λ, µ) if there exists τ, γ > 0 such that

max(|λ− ei2π(k,α)|, |µ− ei2π(k,β)|) > γ

|k|τ

where ‖ · ‖ denotes the closest distance to the integers, and we de-
note this property by (α, β) ∈ SDC(τ, γ, λ, µ). We say that (α, β) ∈
SDC(τ, γ, Ā, B̄) if given any pair of eigenvalues (λ, µ) of (Ā, B̄), it
holds that (α, β) ∈ SDC(τ, γ, λ, µ). Observe that SDC pairs of vec-
tors relatively to any pair (Ā, B̄) form a set of full Haar measure in
Td2 ×Td2 .

We call such an action generated by ( f , g) Diophantine. We have
the following KAM rigidity statement for Diophantine actions.

THEOREM 1. Let d1 ∈ N, d2 ∈ N∗ and d = d1 + d2. If d1 > 0, let A
and B be commuting automorphisms of Td1 such that the Z2 action (A, B)
satisfies the condition (HR).

For any τ, γ > 0, there exist r(τ) > 0 and ε = ε(τ, γ) > 0 such that:
given ( f , g)-a smooth (C∞) Z2 action on Td, and probability measures
µ1, µ2 invariant by f and g, respectively, if

(α, β) = (ρµ1( f ), ρµ2(g)) ∈ SDC(τ, γ, Ā, B̄),

and if

‖ f − (A + a)× Tα‖r ≤ ε, ‖g− (B + b)× Tβ‖r ≤ ε,

for some a, b ∈ Rd1 and translations Tα and Tβ of Td2 , then the action
( f , g) is smoothly conjugate to the affine action. Namely, there exists h ∈
Diff(Td) such that

h ◦ f ◦ h−1 = (A + a)× Tα, h ◦ g ◦ h−1 = (B + b)× Tβ.

In the case d2 = 1, the SDC condition is reminiscent of the condi-
tion used by Moser to prove local rigidity of commuting circle diffeo-
morphisms with this condition on their rotation numbers [16]. The
ingredients of the proof of Theorem 1 are indeed a mixture of the in-
gredients used in the higher rank rigidity of toral automorphisms [3]
and the KAM rigidity in the quasi-periodic setting as in [1] and [16].
Note that the case d1 = 0 corresponds to a generalization to higher
dimensional tori of Moser’s result on local rigidity of commuting
circle diffeomorphisms of [16].
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2.2. Parametric KAM-rigidity for affine actions. Similar to the the-
ory of circle diffeomorphisms, we have the parametric version of
KAM rigidity for affine Zk actions.

Let ( ft, gt), t ∈ [0, 1], be a family of affine Z2 actions on Td which
is of class Cd in the parameter t. By continuity, all the actions in the
family must have a common linear part (Ā, B̄). The generators ft, gt
of the Z2 action ( ft, gt) are then given by Ā + āt and gt = B̄ + b̄t,
where āt, b̄t ∈ Rd are translation vectors that are of class Cd in the
parameter t.

We denote this family by ( f·, g·). Denote by ‖ · ‖l,r the combination
of Cl norm in parameter t and Cr norm in the torus variable.

To state a parametric version of KAM rigidity, we need some transver-
sality on the frequencies along the elliptic factor of the action. We
will use a Pyartli [19] type condition (although other common transver-
sality conditions in KAM theory may be applied as well).

Definition 1. We say that a function ρ ∈ Cr([0, 1], Rd), r ≥ d, sat-
isfies a Pyartli condition if for any t ∈ [0, 1] we have that the first d
derivatives of ρ are linearly independent. There exists then a con-
stant ν > 0 such that

(2.2) |det(ρ′, ρ′′, . . . , ρ(d))| ≥ ν, ‖ρ‖d ≤ ν−1

The Pyartli condition is clearly a generic condition in Cr([0, 1], Rd),
for any r ≥ d.

Now we are ready to state the KAM rigidity theorem for families
of actions.

THEOREM 2. Let ( ft, gt) = (Ā + āt, B̄ + b̄t), t ∈ [0, 1], be a family of
affine Z2 actions on Td which is of class Cd in the parameter t. Then the
following trichotomy holds relative to the pair (Ā, B̄):

(1) (Ā, B̄) satisfies (HR) and every action in the family is locally rigid.
(2) (Ā, B̄) = (A × Id

Td2 , B × Id
Td2 ) with d2 > 0, d1 + d2 = d and

if d1 6= 0, (A, B) is a higher rank action on Td1 . Then, the family ( ft, gt)
is KAM rigid for a generic choice of āt and b̄t. More precisely, if āt =
(at, ϕ(t)) ∈ Rd1 ×Rd2 , and if ϕ satisfies a Pyartli condition with some
ν > 0, then there exists r0(A, B, d2) > 0 and for any η > 0 there exists
ε = ε(η, ν, ‖a‖d, ‖b‖d) > 0 such that: if the action ( ft, gt) is perturbed
into ( f̃t, g̃t) such that ‖ f̃· − f·‖d,r0 ≤ ε, ‖g̃· − g·‖d,r0 ≤ ε, then the set of
parameters t for which ( f̃t, g̃t) is smoothly conjugated to an affine action is
larger than 1− η.
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(3) (Ā, B̄) is not as in (1) or (2). The family ( ft, gt) is not KAM rigid: it
can be perturbed into a family of actions so that no element of the perturbed
family is conjugated to any affine action.

REMARK 1. The Pyartli condition on ϕ can be of course repalced by
a Pyartli condition on the affine part of any generator of the action.
Namely, let b̄t = (bt, ψ(t)) ∈ Rd1 ×Rd2 . Then the condition is that
for some (n, m) ∈ Z2 the function nϕ(t) + mψ(t) satisfies a Pyartli
condition with some ν > 0. The same consequence in Theorem 2(2)
then holds with r0 and ε depending additionally on n and m.

Part (1) of Theorem 2 is proved in [3].
Part (2) is the main result of this paper. As for the Part (3), this is

when the affine action has a non trivial rank one factor, and where
KAM rigidity does not hold. We will prove part (3) in the next sec-
tion.

For the clarity of the exposition, the proof of part (2) of Theorem 2
will be first carried in detail only in the case d2 = 1. The generaliza-
tion to any d2 is explained in Section 5. Since the proof of Theorem 1
follows essentially the same lines as the proof of Theorem 2 and is in
fact easier (no dependance on a parameter t must be taken into con-
sideration in the KAM algorithm), we will only give a detailed proof
of the latter and explain in Section 6 the main differences required
for the proof of the former.

2.3. Proof of part (3) of Theorem 2.
To exclude alternative (1) in Theorem 2, assume that the linear

part (Ā, B̄) of the given family of actions ( ft, gt) is not (HR). Since
(Ā, B̄) is a Z2 action by toral automorphisms, it preserves the stan-
dard Haar measure on the torus. It is proved in [22] that in this case
there is a proper (Ā, B̄)-action invariant subtorus Tl of Td on which
the action (Ā, B̄) is rank-one. This means that up to a change of coor-
dinates in the acting group Z2 we may assume that (Ā, B̄) acts on Tl

as a Z2 action generated by (Id, C) where C is some toral automor-
phism. If for any rank-one factor of (Ā, B̄) the map C is the identity,
then we are in the alternative (2) of Theorem 2.

This leaves the case when C is not the identity. This is precisely
the alternative (3) of Theorem 2. So consider now an affine Z2 action
with linear part (Id, C). Such an action is generated by two commut-
ing maps: Id + φ and C + ψ, where φ and ψ are translation vectors.
The commutativity condition implies that φ is an eigenvector for C
with eigenvalue 1.

(a) C has an ergodic factor.
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By passing to a factor we may assume without loss of generality
that C is ergodic. Then no eigenvalues of C are roots of 1 (see for
example [22]). This implies on one hand that φ(t) ≡ 0, and on the
other hand that C + ψ(t) has periodic points xt,p of any period p. To
create a non-linearizable perturbation of the family C + ψ(t), fix the
period p and consider the family of periodic points xt,p. Next, it suf-
fices to perturb for every t the eigenvalues of the derivative map at
xt,p to avoid C1 linearizability (this is folklore, see for example Sec-
tion 2 in [10]). Because the map t 7→ xt,p is as smooth as ψ, and the
eigenvalues of C + ψ(t) do not depend on t, it is clear that the per-
turbed family can be obtained with the dependence on t as smooth
as ψ and as small as we want.

(b) C has no ergodic factors and C is not the identity. By passing to
a finite index subgroup of the acting group, we may assume that C
has all eigenvalues equal to 1. Assume that C acts on some torus Tl.
Then in some basis of Tl the map C has matrix representation which
is upper triangular with 1’s on the diagonal and at least one non-zero
entry off the diagonal. Recall that φ(t) is such that Cφ(t) = φ(t) and
we have to perturb C + ψ into a non-linearizable Cε + ψ(t) that still
satisfies Cεφ(t) = φ(t). This is easy to do as we now illustrate in the
case l = 2. In this case C(x, y) = (x + ay, y) for some a ∈ R and all
(x, y) ∈ T2, and φ(t) = (φ1(t), 0). For any ε > 0, define

Cε(x, y) = (x + ay + ε sin y, y),

and observe that for every t ∈ [0, 1] we have that Cε + ψ(t) is non-
linearizable (because x 7→ x + ay+ ε sin y+ψ(t) cannot be smoothly
conjugated to a rotation for every y!). On the other hand, we clearly
have Cεφ(t) = φ(t) for every t, hence the family (Id + φ(t), Cε +
ψ(t)) is indeed a perturbation of the action (Id+ φ(t), C+ψ(t)). The
higher dimensional case can be dealt with exactly in the same way.

REMARK 2. We mention here that the essential difference between
the case when C is parabolic (as in the part (b) above) and when C
is the identity, is in the space of invariant distributions of the map
C + ψ. When C is the identity, whenever ψ is irrational, the space
of invariant distributions under the map C + ψ is one-dimensional:
it is generated by the Lebesgue measure. In contrast to this, when
C is parabolic and ψ is Diophantine, the space of C + ψ invariant
distributions is infinite dimensional. This is proved in Section 3 in
[11] in case C + ψ acts on T2, and it can be generalised to any Tl.

2.4. Reduction to actions which are linear transversally to the el-
liptic factor. The subsequent sections contain the proof of part (2)
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of Theorem 2 in the case when the unperturbed action is purely
linear transversally to the elliptic factor. Namely, assume that ft =
A× Rϕ(t) and gt = B× Rψ(t), where Rϕ(t) and Rψ(t) denote transla-
tion maps on the circle.

The same arguments extend to the case when the unperturbed
action is affine transversally to the elliptic factor. In this case the
action is generated by (A + at) × Rϕ(t) and (B + bt) × Rψ(t). The
proof in this case are identical to the purely linear case, except that
certain constants which appear in estimates will be slightly different,
without any incidence on the proof. This is explained in Remark 3 at
the end of Section 2.

2.5. Exact statement of part (2) of Theorem 2 in the case of a one
dimensional elliptic factor. Let d1 ≥ 0 and, if d1 > 0, let A and B be
two commuting toral automorphisms satisfying the (HR) condition.
For ϕ, ψ ∈ Lip(I0, R), I0 = [0, 1], let

{
fϕ(t)(x, θ) = (Ax, Rϕ(t)(θ))
gψ(t)(x, θ) = (Bx, Rψ(t)(θ)).

(2.3)

For I ∈ R, we denote by Clip,∞(I, Td+1, Rd+1) the set of families
of smooth maps in the Td+1 variable and Lipschitz in the parameter
t ∈ I. We denote by Clip,∞

0 (I, Td+1, Rd+1) the subset of maps f ∈
Clip,∞(I, Td+1, Rd+1) such that if we write ft(z) = ( f 1

t (z), f 2
t (z)) ∈

Td ×T, then
∫

Td+1 f 2
t (z)dz = 0 for t ∈ I.

Consider

{
f̃t(x, θ) = fϕ(t)(x, θ) + ∆ ft(x, θ)
g̃t(x, θ) = gψ(t)(x, θ) + ∆gt(x, θ),(2.4)

with ∆ f , ∆g ∈ Clip,∞
0 (I0, Td+1, Rd+1) and such that f̃t and g̃t com-

mute for all t ∈ I0. For f ∈ Clip,∞
0 (I0, Td+1, Rd+1), we use the nota-

tion ‖ f ‖lip(I),r = max|ι|≤r Lip( f (ι)), where Lip( f ) is the maximum of
the supnorm of f and its Lipschitz constant over all t ∈ I. Here |ι|
is the maximal coordinate of the multi-index ι ∈ Nd+1. We will also
use the notation ‖v‖0(I),r for the supremum of the usual Cr norms of
v(t) as t ∈ I.

Assume that ϕ satisfies the following transversality condition for
some M > 0
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(∗) max(‖ϕ‖lip(I0), ‖ψ‖lip(I0)) ≤ M, inf
t∈I0

ϕ′(t) ≥ 1
M

.

THEOREM 3. Let the family ( ft, gt) be as in (2.3) and (∗). There exists
r0(A, B) ∈ N such that for any η there exists ε0(A, B, M, η) > 0 such
that if max(‖∆ f ‖lip(I),r0

, ‖∆g‖lip(I),r0
) ≤ ε0, then the set of parameters t

for which the pair ( f̃t, g̃t) as in (2.4) is simultaneously smoothly conjugate
to an affine action, has measure larger than 1− η.

Note that in case d1 = 0, Theorem 3 becomes a version of KAM
rigidity of the Arnol’d family of circle diffeomorphisms, in the con-
text of commuting actions. The result is then an immediate conse-
quence of the KAM rigidity within the Arnol’d family. Indeed, the
commutation relation implies that if ft is conjugated to an irrational
rotation, then the same conjugacy linearizes gt.

2.6. Plan of the paper. Sections 3 and 4 below are devoted to the
proof of Theorem 3. Sections 5 and 6 explain how this proof is mod-
ified to give the proof of part (2) of Theorem 2 and of Theorem 1.

Acknowledgments. The authors are grateful to Artur Avila, Hakan
Eliasson, Anatole Katok and Raphael Krikorian for fruitful discus-
sions and suggestions.

3. THE INDUCTIVE STEP

The goal of this section is to prove Proposition 1, that is the main
ingredient in the proof of Theorem 3. It consists of the inductive
step of the KAM algorithm, or quadratic scheme, that will allow to
establish linearizability on a large measure set of parameters of the
perturbed action. It essentially states that a perturbation of order ε of
an affine action, of which the translation part satisfies Diophantine
property up to some order N, can be conjugated to a new affine ac-
tion plus a perturbation of order ε2 times some power of N and a rest
controlled by inverse powers of N. Indeed, N is the order of trun-
cation that will be applied to the perturbation terms before they are
eliminated at first order through solving the linearized equations.

In Section 4, the order of truncation Nn is chosen at each step of
the inductive scheme to guarantee the convergence of the algorithm
and the linearization on a large measure set of the parameters.
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Definition 2. Let E(A) be the set of eigenvalues of A union 1 (if
d1 = 0 then E is just the set {1}). For N ∈N, define

D(N, A) = {α ∈ I0 / |λ− ei2πkα| ≥ N−3, ∀λ ∈ E(A), ∀0 < |k| ≤ N}.

PROPOSITION 1. Let the family ( ft, gt) be as in (2.3) and (∗), and ( f̃t, g̃t)
be as in (2.4). There exists σ(A, B) such that if N ∈N and I is an interval
such that I ⊂ {t ∈ I0 / ϕ(t) ∈ D(N, A)}, then there exist ϕ̃, ψ̃ ∈
Lip(I, R) and h, ∆̃ f , ∆̃g ∈ Clip,∞

0 (I, Td+1, Rd+1) such that if we write
H = Id + h we have that

(3.1)
H ◦ f̃ = ( f ϕ̃ + ∆̃ f ) ◦ H

H ◦ g̃ = (gψ̃ + ∆̃g) ◦ H,

with

∆S ≤ C0Nσ∆0

‖h‖lip(I),r+1 ≤ CrSNσ∆r + CrSNσ∆0∆r

∆̃r ≤ CrSNσ∆0∆r + Cr,r′Nσ+r−r′∆r′ ,

where:

S = max(‖ϕ‖lip(I), ‖ψ‖lip(I))

∆S = max(‖ϕ− ϕ̃‖lip(I), ‖ψ− ψ̃‖lip(I))

∆r = max(‖∆ f ‖lip(I),r, ‖∆g‖lip(I),r)

∆̃r = max(‖∆̃ f ‖lip(I),r, ‖∆̃g‖lip(I),r).

We will reduce the proof of Proposition 1 to the solution of a set of
linear equations in the coordinates of h. These equations are solved
using Fourier series and part of the solution is obtained with the
higher rank techniques as in [3]. Another part is obtained from solv-
ing linear equations above a circular rotation. This requires parame-
ter exclusion to insure that the parameters that are kept satisfy ade-
quate arithmetic conditions that allow to control the small divisors.

3.1. Reduction of the conjugacy step to linear equations. By sub-
stituting H = id + h, the first equation in (3.1) becomes:

(3.2) ∆ f − (D f ϕ̃h− h ◦ fϕ) = f ϕ̃ − fϕ + ∆̃ f (id + h) + EL,A,

where EL,A = f ϕ̃(Id + h)− f ϕ̃ − D f ϕ̃h− h( fϕ + ∆ f ) + h fϕ. The map
D f ϕ̃ actually does not depend on ϕ̃, in fact it is the map Ā = (A, Id),
where A acts on Rd and Id acts on R. The second equation in (3.1) is
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linearized in the same way, so the linearization of (3.1) is the system
of equations in h:

(3.3)
Āh− h ◦ fϕ = ∆ f

B̄h− h ◦ gψ = ∆g,

where B̄ = (B, Id) and EL,B := gψ̃(Id + h) − gψ̃ − Dgψ̃h − h(gψ +

∆g) + hgψ.
Given a pair of commuting automorphisms Ā and B̄ we call (λ, µ)

a pair of eigenvalues of (Ā, B̄) if λ and µ are eigenvalues of Ā and B̄
for the same eigenvector.

If A and B are semisimple, then by choosing a proper basis in Rd in
which A and B simultaneously diagonalize, the system (3.3) breaks
down into several systems of the following form

(3.4)
λh− h ◦ fϕ = v
µh− h ◦ gψ = w,

where λ and µ are a pair of eigenvalues of A × Id and B × Id and
v, w ∈ Clip,∞(I×Td+1, R). If A and B have non-trivial Jordan blocks,
then instead of (3.7), for each Jordan block we would get a system of
equations. Lemma 4.4 in [3] shows that this system of equations can
be solved inductively in finitely many steps (the number of steps
equals the size of a Jordan block), starting from equation of the form
(3.7). We will not repeat the argument here, instead we assume
throughout that A and B are semisimple and we refer to Lemma 4.4
in [3] for the general case.

3.2. Reduction of the commutativity relation. Since fϕ and gψ com-
mute and are linear, the equation ( fϕ + ∆ f ) ◦ (gψ + ∆g) = (gψ +
∆g) ◦ ( fϕ + ∆ f ) reduces to:

Ā∆g− ∆g( fϕ + ∆ f ) = B̄∆ f − ∆ f (gψ + ∆g).

If we push the terms linear in ∆ f and ∆g to the left and all the non-
linear terms to the right hand side we obtain

(3.5) Ā∆g− ∆g ◦ fϕ − B̄∆ f − ∆ f ◦ gψ = Φ,

where

(3.6) Φ = ∆g( fϕ + ∆ f )− ∆g ◦ fϕ − (∆ f (gψ + ∆g)− ∆ f ◦ gψ).

Similarily to section 3.1, if A and B are semisimple, the equation
(3.5) reduce to several equations of the form:

(λw− w ◦ fϕ)− (µv− v ◦ gψ) = φ.(3.7)



14 DANIJELA DAMJANOVIĆ AND BASSAM FAYAD

3.3. An approximate solution to (3.4). The main ingredient in the
proof is that the system of linear equations (3.4) can be solved up to
an error term that is controlled by Φ which is quadratically small in
the perturbation terms ∆ f , ∆g.

LEMMA 1. For v, w, φ ∈ Clip,∞(I ×Td+1, R) satisfying (3.7), and λ 6=
1, µ 6= 1, if N ∈ N and I is an interval such that I ⊂ {t ∈ I0 / ϕ(t) ∈
D(N, A)}, then there exists h ∈ Clip,∞(I ×Td+1, R) such that:
‖h‖lip(I),r+1 ≤ CrSNσ‖v‖lip(I),r + CrSNσ‖φ‖lip(I),r−2

‖v− (λh− h ◦ fϕ)‖lip(I),r ≤ Cr,r′Nd+r−r′‖v‖lip(I),r′ + CrSNσ‖φ‖lip(I),r−2

‖w− (µh− h ◦ gψ)‖lip(I),r ≤ Cr,r′Nd+r′−r‖w‖lip(I),r′ + CrSNσ‖φ‖lip(I),r−2

for all r′ > r ≥ 0 and σ = σ(A, B, λ, µ, d). The same holds true for
(λ, µ) = (1, 1) provided v, w ∈ Clip,∞

0 (I ×Td+1, R).

3.4. Proof of Proposition 1. Before we give the proof of Lemma 1,
we show how it implies Proposition 1.

By applying Proposition 3 from the Appendix to the equation (3.6),
we have that

(3.8) ‖Φ‖lip(I),r−2 ≤ Cr∆0∆r.

Since ∆ f , ∆g ∈ Clip,∞
0 (I × Td+1, Rd+1) we can apply Lemma 1 to

all the coordinates in (3.3) and get h such that

‖h‖lip(I),r+1 ≤ CrSNσ∆r + CrSNσ∆0∆r

‖∆ f − (Āh− h ◦ fϕ)‖lip(I),r ≤ CrSNσ∆0∆r + Cr,r′Nd+r−r′∆r′

‖∆g− (B̄h− h ◦ gψ)‖lip(I),r ≤ CrSNσ∆0∆r + Cr,r′Nd+r′−r∆r′ ,

where the new constant σ is d times the constant σ from Lemma 1.
For the bound on h we use Lemma 1 and (3.8) with r′ = r. In light of
(3.2), we take

(3.9)
ϕ̃ := ϕ + Ave(E2

L,A ◦ (Id + h)−1)

ψ̃ := ψ + Ave(E2
L,B ◦ (Id + h)−1).

Let

∆̃ f =
(
(∆ f0 − (Ah− h ◦ fϕ))− EL,A)

)
◦ (Id + h)−1 + fϕ − f ϕ̃,

and define ∆̃g similarily.
Then we have that ϕ̃, ψ̃, h and ∆̃ f , ∆̃g satisfy the conclusion of

Proposition 1. �

The rest of Section 3 is devoted to the proof of Lemma 1.
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3.5. Proof of Lemma 1.

3.5.1. Description of the obstructions to the solution of the lin-
earized conjugacy equations. We describe now the obstructions for
solving a single coboundary equation in (3.4). For a fixed t ∈ I the
first equation in (3.4) becomes:

(3.10) λht − ht ◦ fϕ(t) = vt,

where ht = h(t, ·) and similarily for v and w. By reducing to Fourier
coefficients, for every (n, m) ∈ Zd ×Z we have:

λ ∑
(n,m)

hn,m,tχn,m(x, θ)−∑ hn,m,tχn,m(Ax, θ + ϕ(t)) = ∑ vn,m,tχn,m(x, θ)

∑
(n,m)

(λhn,m,t − hA∗n,m,te2πimϕ(t)χn,m(x, θ)) = ∑ vn,m,tχn,m(x, θ),

where hn,m,t denotes the (n, m)-Fourier coefficient of the function ht,
χn,m(x, θ) = e2πi(n·x+mθ), and A∗ = (At)−1. Thus for every (n, m)

λhn,m,t − hA∗n,m,te2πimϕ(t) = vn,m,t.

By denoting: λm,t := e−2πimϕ(t)λ and v′n,m,t := e−2πimϕ(t)vn,m,t, we
have

(3.11) λm,thn,m,t − hA∗n,m,t = v′n,m,t.

For a fixed m and n 6= 0 and for a fixed t the equation (3.11) has
been discussed in [3]; the obstructions are precisely defined as well
as the construction which allows for removal of all the obstructions
(Lemma 4.5 in [3]). The obstructions are:

(3.12) OA
n,m(vt) = ∑

k∈Z

λ
−(k+1)
m,t v′Akn,m,t,

where we abuse notation a bit by using Ak to denote the k-th iter-
ate of the dual map A∗. The proof of Lemma 1 relies on two claims.
In the first one we solve a system of the type (3.4) provided a set of
obstructions computed with the right hand side vanish. In the sec-
ond claim, we show how the commutation relation allows to modify
the right hand side in (3.4) to set the obtructions to 0. Moreover, the
modification will be of the order of the ”commutation error” Φ in
(3.5).
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3.5.2. Solving the linearized equations if all the obstructions van-
ish. The goal of this section is to prove the following claim.

Claim 1. Let v be in Clip(I),∞(I, Td+1, R) such that for all t ∈ I and
|m| > N, v0,m,t = 0. If for all n, m, and t ∈ I, n 6= 0, OA

n,m(vt) = 0,
and ave(vt) = 0 in the case λ = 1, then there exists a solution h to the
equation λh− h ◦ fϕ = v in Clip(I),∞(I ×Td+1, R) satisfying

(3.13) ‖h‖lip(I),r ≤ CrSN3‖v‖lip(I),r+σ

for all r ≥ 0, where σ = σ{λ, d, A}. Moreover, if h and v are smooth maps
with h0,m,t = v0,m,t = 0 for |m| > N, and with averages zero, such that
λh− h ◦ fϕ = v on I ×Td+1, then h satisfies the estimate (3.13).

Proof of Claim 1. The proof is similar to the proof of the Lemma 4.2 in
[3], except that here one extra (isometric) direction causes somewhat
greater loss of regularity.

Solution h is defined via its Fourier coefficients hn,m,t, each of which
can be defined, in case n 6= 0, by using one of the two forms:

(3.14) hn,m,t =
∞

∑
k=0

λ
−(k+1)
m,t v′Akn,m,t = −

−1

∑
k=−∞

λ
−(k+1)
m,t v′Akn,m,t.

One can use one or the other form to obtain an estimate for the
size of hn,m,t depending on whether a non-trivial n is largest in the
expanding or in the contracting direction for A. This is completely
the same as in [3] and it automatically gives an estimate of the size
of hn,m,t with respect to the norm of n. In order to obtain here the full
estimate for the Cr norm of h we need to estimate the size of hn,m,t
with respect to the norm of (n, m) and this is the only additional
detail needed here. But this is not a big problem: since n is non-
trivial, after approximately log m iterations of n by A, the resulting
vector will surely be larger than m. We have:

(3.15)

|hn,m,t| ≤
∞

∑
k=0
|λ−(k+1)

m,t ||v′Akn,m,t|

=
∞

∑
k=0
|λ|−(k+1)|vAkn,m,t|

≤ ‖v‖0(I),r

∞

∑
k=0
|λ|−(k+1)‖(Akn, m)‖−r.
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Take the norm in ZN ×Z to be ‖(n, m)‖ = max{‖n‖, |m|}, where
for n ∈ ZN, ‖n‖ is the maximum of euclidean norms of projections
of n to expanding, contracting and the neutral directions for A. Let
nexp denote the projection of n to the expanding subspace for A. Due
to ergodicity of A this projection is non-trivial. For example we say
that n is largest in the expanding if ‖nexp‖ ≥ C‖n‖ where C is a
fixed constant (C = 1/3 works). Similarily, we say that n is largest in
the contracting (resp. neutral) direction if the projection of n to the
contracting (resp. neutral) direction is greater than constant times
the norm of n.

Then if ρ denotes the expansion rate for A in the expanding di-
rection for A, we have by the Katznelson Lemma (See for example
Lemma 4.1 in [3]):

‖(Akn, m)‖ ≥ max{‖Aknexp‖, |m|} ≥ max{ρk‖nexp‖, |m|}
≥ max{Cρk‖n‖−d, |m|} ≥ max{Cρk−k0ρk0‖n‖−d, |m|}.

Since ρk‖n‖−d ≥ ‖(n, m)‖ for all k ≥ d+1
ln ρ ln ‖(n, m)‖, we have:

‖(Akn, m)‖ ≥ Cρk−k0‖(n, m)‖,

for all k > k0 = [ d+1
ln ρ ln ‖(n, m)‖].

Now if n is largest in the expanding direction for A then for 0 ≤
k ≤ k0: ‖(Akn, m)‖ ≥ C‖(n, m)‖. If n is largest in the neutral direc-
tion for A, then for 0 ≤ k ≤ k0: ‖(Akn, m)‖ ≥ C(1 + k)−d‖(n, m)‖.

Thus for all t ∈ I (in the worst case scenario, when |λ| < 1):

|hn,m,t| ≤ ‖v‖0(I),r(
k0

∑
k=0
|λ|−(k+1)‖(n, m)‖−r +

∞

∑
k=k0

|λ|−(k+1)(Cρk‖(n, m)‖)−r)

≤ ‖v‖0(I),r(k0|λ|−(k0+1)‖(n, m)‖−r + |λ|k0(Cρk0‖(n, m)‖)−r
∞

∑
k=0
|λ|−kρ−kr

≤ Cr‖v‖0(I),r(‖(n, m)‖
d+1
lnρ log ‖(n, m)‖)‖(n, m)‖−r + (Cρk0‖(n, m)‖)−r)

≤ Cr‖v‖0(I),r‖(n, m)‖−r+σ.

Here σ = 2 + d + a + δ, δ > 0, and a = a(λ) = d+1
lnρ > 0 in general

depends only on the eigenvalues of A. Note that for the convergence
of the sum ∑∞

k=0 |λ|−kρ−kr it suffices to assume that the regularity
r of v is greater than a constant − ln |λ|

ln ρ , which in general depends
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on eigenvalues of A. We recall that the norm ‖v‖0(I),r denotes the
supremum of the usual Cr norms of v(t) as t ∈ I.

When n is largest in the contracting direction for A then just as
in [3] we repeat the above estimates using the expression hn,m,t =

−∑−1
k=−∞ λ

−(k+1)
m,t v′Akn,m,t for the coefficients hn,m,t instead to obtain

the same bound: |hn,m,t| ≤ Cr‖v‖0(I),r‖(n, m)‖−r+σ. The constant
σ is now slightly different (changed by a constant) to include the
eigenvalues for A in the contracting directions.

Now in the case n = 0, and for any non-zero m the equation (3.11)
implies:

λh0,m,t − h0,m,te2πimα = v0,m,t,

µh0,m,t − h0,m,te2πimβ = w0,m,t,

λh0,m,t − h0,m,te2πimϕ(t) = v0,m,t.
Therefore in this case

(3.16) h0,m,t =
v0,m,t

λ− e2πimϕ(t)
.

Thus for |λ| 6= 1 we have that for all t ∈ I:

|h0,m,t| ≤ (|λ| − 1)−1‖v‖0(I),r|m|−r.

In the case |λ| = 1 this is a small divisor problem. When t ∈ I we
have ϕ(t) ∈ D(N) and thus for |m| ≤ N we have:

|h0,m,t| ≤ N3|v0,m,t| ≤ ‖v‖0(I),rN3|m|−r.

Since for |m| > N, v0,m = 0, we define h0,m = 0 for |m| > N.
Accumulating all the estimates, we have for all t ∈ I:

|hn,m,t| ≤ Cr‖v‖0(I),rN3‖(n, m)‖−r+σ.

All this implies that the function h defined via its Fourier coefficients
hn,m,t satisfies the equation λh− h ◦ fψ = v and the estimate:

(3.17) ‖h‖0(I),r ≤ CrN3‖v‖0(I),r+σ,

for all r > r0. Here σ is a fixed constant, σ = d+ 2+max{|λ|, |λ|−1},
which in our set-up depends only on the eigenvalues of A and the
dimension of the torus.

We estimate now h in the direction of the parameter t. First we
can characterise x ∈ Clip,∞(I, Td+1, R) by a property of Fourier coef-
ficients of x. Let ∆x := xt − xt′ , and similarly ∆xn,m = xn,m,t − xn,m,t′ .
Namely, x ∈ Clip,s(I, Td+1, R) implies not only that that xn,m,t de-
cay faster than ‖(n, m)‖−s but also from ‖∆x(s)‖0 ≤ Ls|t − t′| we
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get that |∆xn,m| ≤ Cs‖(n, m)‖−s|t − t′| for some constant Cs. It is
then easy to check that |∆xn,m| ≤ Cs‖(n, m)‖−s−d−1|t − t′| suffices
for x ∈ Clip,s(I, Td+1, R).

By using (3.14) (denote for simplicity by Σ± positive or negative
sum in (3.14)) we have for n 6= 0:

|∆hn,m| = |Σ±λ−(k+1)(e2πikmϕ(t)vAkn,m,t − e2πikmϕ(t′)vAkn,m,t′)|

= |Σ±λ−(k+1)((e2πikmϕ(t) − e2πikmϕ(t′))vAkn,m,t + e2πikmϕ(t′)∆vAkn,m,t)|

≤ (2π‖ϕ‖lip(I)‖v‖0(I),r + ‖v‖lip(I),r)|t− t′|Σ±|λ|−(k+1)|k|‖(Akn, m)‖−r+1.

From the discussion following (3.15) we have that for every (n, m),
n 6= 0, either the positive or the negative sum in the last expression
above can be bounded by Cr‖n, m‖−r+σ+1. When n = 0 from (3.16)
and for t, t′ ∈ I it is clear that ∆h0,m ≤ CN3∆v0,m. This gives the
bound for the Lipschitz constant for any r-th derivative of h which
combined with (3.17) implies ‖h‖lip(I),r−σ−2−d ≤ CrN3S‖h‖lip(I),r.

For the second part of the claim, if h and v are smooth and satisfy
λh − h ◦ fϕ = v for t ∈ I then for n 6= 0 the obstructions OA

n,m(vt)
are all zero. Thus if v satisfies in addition that v0,m,t = 0 for |m| > N
then by the first part of the Claim 1 there exists h′ such that λh′− h′ ◦
fϕ = v on I and satisfies the estimate (3.13). Then for h” = h− h′,
λh” = h” ◦ fϕ on I. But this implies h” = 0 in case λ 6= 1, or it is
constant in case λ = 1. However, by construction, h′ has average 0,
and so does h by assumption, so in any case h = h′ on I. This implies
that h satisfies the estimate (3.13). Claim 1 is thus proved. �

3.5.3. Removing the obstructions. We show here how to exploit the
commutation relation to modify the right hand side in (3.4) to set
the obtructions to 0. Moreover, the modification will be of the same
”quadratic” order of the ”commutation error” Φ in (3.5). This is the
content of the following claim. We first need to define, following [3],
a special integer on the orbit of any integer that will be used to zero
the obstructions OA

n,m(vt) defined in (3.12).

Definition 3 ([3]). For every n ∈ Zd there exists a point n∗ on the
orbit {Akn}k∈Z such that the projection of n to the contracting sub-
space of A is larger than the projection to the expanding subspace of
A, and for An the opposite holds: projection of An to the contract-
ing subspace of A is smaller than the projection to the expanding
subspace of A. For each n choose an n∗ on the orbit of n with this
property.
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Claim 2. Assume that for all t ∈ I the following holds:

(3.18) (λwt − wt ◦ fϕ(t))− (µvt − vt ◦ gψ(t)) = φt

and v0,m,t = w0,m,t = φ0,m,t = 0 for |m| > N. Define ṽt by

ṽn,m,t =

{
OA

n,m(vt), n 6= 0, n = n∗

0, otherwise.

Then:
(1) For n 6= 0, OA

n,m(vt − ṽt) = 0.
(2) ‖ṽ‖lip(I),r ≤ CrN3S‖φ‖lip(I),r+σ, where σ = σ(A, B, λ, µ, d) and

r ≥ 0.

Proof of claim 2.
(1) This is immediate from the definition of OA

n,m and ṽt.
(2) In Fourier coefficients (3.18) becomes:

(λwn,m,t − wAn,m,te2πimϕ(t))− (µvn,m,t − vBn,m,te2πimψ(t)) = φn,m,t.

This implies that for non-zero n the obstructions OA
n,m for

(µvn,m,t − vBn,m,te2πimψ(t)) + φn,m,t

are trivial. Therefore OA
n,m(vt) satisfies the equation:

(3.19) µOA
n,m(vt)− e2πimψ(t)OA

Bn,m(vt) = OA
n,m(φt),

where OA
n,m(vt) and OA

n,m(φt) are defined as in (3.12). From this, by
backward and forward iteration by B, one obtains two expressions
for OA

n,m(vt):

OA
n,m(vt) = ∑

l≥0
µ
−(l+1)
m,t e−2πimψ(t)OA

Bln,m(φt)

= −∑
l<0

µ
−(l+1)
m,t e−2πimψ(t)OA

Bln,m(φt),

where µm,t := e−2πimψ(t)µ.
It is proved in Lemma 4.5 in [3] that if every AkBl for (k, l) 6=

(0, 0) is ergodic, and if n = n∗ then either for l > 0 for l < 0,
the term ‖(Bl Akn, m)‖ has exponential growth in (l, k) for ‖(l, k)‖
larger than some C log |n|, and polynomial growth for ‖(l, k)‖ less
than C log |n|. Hence, for n = n∗, it follows exactly as in Lemma 4.5
[3], that either one or the other sum above are comparable to the size
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of ‖φt‖r‖(n, m)‖−r+σ. Here σ is a constant which depends only on
A, B and the dimension d. Therefore in case n 6= 0 for all t ∈ I

(3.20) |ṽn,m,t| = |OA
n,m(vt)| ≤ Cr‖φ‖0(I),r‖(n, m)‖−r+σ.

This implies the ‖ · ‖0(I),r-norm estimate for ṽ. To obtain the estimate
in the t direction, just as in the Claim 1, we look at ∆ṽn,m. For n 6=
0, n = n∗:

∆ṽn,m = OA
n,m(vt − v′t) =

Σ±l Σkµ−(l+1)λ−(k+1)e−2πim(lψ(t)+kϕ(t))(φBl Akn,m,t − φBl Akn,m,t′)

+ Σ±l Σkµ−(l+1)λ−(k+1)(e−2πim(lψ(t)+kϕ(t)) − e−2πim(lψ(t′)+kϕ(t′)))φBl Akn,m,t′ .

If ϕ and ψ are Lipschitz and φ is in Clip(I),r, we have:

|∆ṽn,m| ≤ ‖φ‖lip(I),r|t− t′|Σ±l Σk|µ|−(l+1)|λ|−(k+1)‖(Bl Akn, m)‖−r

+ 2πS|t− t′|‖φ‖0(I),rΣ±l Σkµ−(l+1)λ−(k+1)|k||l|‖(Bl Akn, m)‖−r+1.

Now the same argument as above (based on Lemma 4.5 [3]) implies
that for every n = n∗ one of the sums (for l > 0 or l < 0)
Σ±l Σkµ−(l+1)λ−(k+1)|k||l|‖(Bl Akn, m)‖−r+1 can be bounded by ‖(n, m)‖−r+σ,
where σ is a constant depending on A, B, λ, µ and d. This implies

|∆ṽn,m| ≤ CS‖φ‖lip(I),r‖(n, m)‖−r+σ|t− t′|.
Taking into account all the estimates above, we have:

‖ṽ‖lip(I),r ≤ CrN3S‖φ‖lip(I),r+σ,

with σ fixed depending only on A, B, λ and d. Claim 2 is thus proved.
�

3.5.4. We proceed now with the proof of Lemma 1. Given v, w such
that (λw− w ◦ fϕ)− (µv− v ◦ gψ) = φ, first truncate vt to TNvt for
all t ∈ I. We choose the same N for all t ∈ I. The truncation and the
residue satisfy the following estimates for every t and r ≤ r′

(3.21)
‖TNvt‖r′ ≤ Cr,r′Nr′−r+d‖vt‖r

‖RNvt‖r ≤ Cr,r′Nr−r′+d‖vt‖r′ .

Since the same truncation is used for all t, it is easy to check that

‖TNv‖lip(I),r′ ≤ Cr,r′Nr′−r+d‖v‖lip(I),r

‖RNv‖lip(I),r ≤ Cr,r′Nr−r′+d‖v‖lip(I),r′ .
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Now the Claim 2 applies to TNv. It gives T̃Nv such that for TNv− T̃Nv
the obstructions OA

n,m(TNvt − T̃Nvt) vanish for n 6= 0 and

‖T̃Nv‖lip(I),r ≤ CrN3S‖TNφ‖lip(I),r+σ.

Notice that T̃Nvt by construction has all (0, m, t)-Fourier coefficients
equal to zero for |m| > N. Thus the Claim 1 can be applied to TNv−
T̃Nv. Therefore there exists h ∈ C∞(A× Td+1, Rd+1) as in Claim 1
such that for all t ∈ A:

TNvt − T̃Nvt = λht − ht ◦ ft

and

(3.22)
‖h‖lip(I),r+1 ≤ CrN3S‖TNv− T̃Nv‖lip(I),r+1+σ

≤ CrN3S(‖TNv‖lip(I),r+1+σ + CrN3‖TNφ‖lip(I),r+1+2σ)

≤ CrSN4+σ‖v‖lip(I),r + CrSN6+2σ‖φ‖lip(I),r−2.

Also

‖v− (λh− h ◦ f )‖lip(I),r = ‖RNv + T̃Nv‖lip(I),r

≤ ‖RNv‖lip(I),r + CrSN3‖TNφ‖lip(I),r+σ

≤ Cr,r′Nr−r′+d‖v‖lip(I),r′ + CrSN5+σ‖φ‖lip(I),r−2.

Now to estimate w− (µh− h ◦ g) we use:

(λw− w ◦ f )− (µv− v ◦ g) = φ

(λw− w ◦ f )− (µTNv− TNv ◦ g)− (µRNv− RNv ◦ g) = φ

(λw− w ◦ f )− (µ(TNv− T̃Nv)− (TNv− T̃Nv) ◦ g)

− (µT̃Nv− T̃Nv ◦ g)− (µRNv− RNv ◦ g) = φ

(λw− w ◦ f )− (µ(λh− h ◦ f )− (λh− h ◦ f ) ◦ g)− (µT̃Nv− T̃Nv ◦ g)
− (µRNv− RNv ◦ g) = φ

λ(w− (µh− h ◦ g))− (w− (µh− h ◦ g)) ◦ f =

φ + (µT̃Nv− T̃Nv ◦ g)− (µRNv− RNv ◦ g).
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This implies:

λ(TNw− (µh− h ◦ g))− (TNw− (µh− h ◦ g)) ◦ f =

φ + (µT̃Nv− T̃Nv ◦ g)− (µRNv− RNv ◦ g)− (µRNw− RNw ◦ g) =

TNφ + (µT̃Nv− T̃Nv ◦ g).

Since both TNw − (µh − h ◦ g) (by construction of h) and TNφ +

(µT̃Nv− T̃Nv ◦ g) (by construction of T̃Nv), satisfy that their (0, m, t)
Fourier coefficients are zero for |m| > N, the second part of the
Claim 1 applies and gives an estimate for TNw− (µh− h ◦ g):

‖TNw− (µh− h ◦ g)‖lip(I),r ≤ CrSN3‖TNφ + (µT̃Nv− T̃Nv ◦ g)‖lip(I),r+σ

≤ CrSN5+2σ‖φ‖lip(I),r−2.

Therefore:
‖w− (µh− h ◦ g)‖lip(I),r ≤ CrSN5+2σ‖φ‖lip(I),r−2 + ‖RNw‖lip(I),r

≤ CrSN5+2σ‖φ‖lip(I),r−2 + Cr,r′Nd+r′−r‖w‖r′ .

Finally we can redefine the constant σ by σ := 6+ 2σ. This completes
the proof of Lemma 1. �

REMARK 3. In case when the unperturbed actions are affine transver-
sally to the elliptic factor, rather than linear, they are generated by
(A + at)× Rϕ(t) and (B + bt)× Rψ(t). In this case, Lemma 1 implies
in the same way the Proposition 1. The only difference appears in
the beginning of the proof of Lemma 1. Namely, the number λm,t
should be replaced with λm,n,t = e−i2π(mϕ(t)+〈n,at〉)λ. This change
does not effect in a substantial way any of the subsequent arguments
in Lemma 1. It also does not affect substantially any estimates ob-
tained in Lemma 1 because the two constants λm,t and λm,n,t have
the same absolute value.

4. THE KAM SCHEME

The goal of this section is to derive Theorem 3 using a quadratic
KAM like scheme, with parameter exclusion. More precisely, we ap-
ply inductively Proposition 1 to conjugate the perturbed family ac-
tion closer and closer to an affine one. Doing so, we have to discard
some parameters at each step n of the induction, to guarantee the
validity of the Diophantine condition up to an order Nn that will be
chosen below. The following simple lemma will allow to us to con-
trol the measure of the remaining set of parameters after successive
exclusions.
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LEMMA 2. Let M > 0. There exists N0(M) such that if N > N0 and
Ñ = N3/2 and if I is an interval of size 1 ≥ |I| ≥ 1/(2MN2) and if
M−1 < ϕ′(t) < M for every t ∈ I, then there exists a union of disjoint
intervals U = { Ĩj} such that ϕ( Ĩj) ∈ D(Ñ, A) and Ĩj ⊂ I and | Ĩj| ≥
1/(2MÑ2) and ∑ | Ĩj| ≥ (1− 2dM2Ñ−1)|I|.

Proof. We just observe that the set of tk ∈ I such that λ + ei2πϕ(t) = 0
with λ ∈ E(A) and k ≤ Ñ consists of at most d([MÑ2|I|] + 2)
points separated one from the other by at least 1/(MÑ2). Exclud-
ing from I the intervals [tk − M/Ñ3, tk + M/Ñ3] leaves us with a
collection of intervals of size greater than 1/(2MÑ2) of total length
|I| − d([MÑ2|I|] + 2)M/Ñ3 ≥ (1− 2dM2Ñ−1)|I|. �

We now describe the inductive scheme that we obtain from an it-
erative application of Proposition 1. For the new translation frequen-
cies ϕn and ψn that will appear during the induction, we will require
the following transversality condition:

(C1) max(‖ϕn‖lip(An), ‖ψn‖lip(An)) ≤ 2M, inf
t∈An

ϕ′n(t) ≥
1

2M
.

Recall that by our hypothesis (∗), we have that ϕ and ψ satisfy (C1)
with M instead of 2M. During the induction, we will see that ϕn and
ψn, where they are defined, remain very close to the original ϕ and
ψ, and this will guarantee inductively the validity of (C1). We will
come back to this below. But we first introduce the truncation order
Nn and the notations for the parameter exclusion.

Let N0 ≥ N0(M) of Lemma 2 and define for n ≥ 1,

Nn = N
3
2
n−1.

Observe that Lemma 2 implies that if at step n, we have a setAn ⊂
[0, 1] that is a collection of intervals of sizes greater than 1/(4MN2

n)
and ϕn and ψn are functions satisfying (C1) on An, then there exists
An+1 that is a collection of intervals with sizes greater than 1/(4MN2

n+1)
such that ϕn(An+1), ψn(An+1) ⊂ D(Nn+1) and λ(An+1) ≥ (1 −
8dM2N−1

n+1)λ(An).
At step n we have fn = fϕn + ∆ fn,gn = gψn + ∆gn defined for t ∈
An, withA−1 = [0, 1]. We denote εn,r = max(‖∆ fn‖lip(An),r, ‖∆gn‖lip(An),r).
We obtain hn and ϕn+1 and ψn+1 defined on An+1 such that

Hn fnH−1
n = fϕn+1 + ∆ fn+1

HngnH−1
n = gψn+1 + ∆gn+1
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with ∆ fn+1, ∆gn+1 ∈ Clip(An+1),∞
0 (I, Td+1, Rd+1). Also, if we denote

ξn,r = ‖hn‖lip(An+1),r+1 and νn = max(‖ϕn+1 − ϕn‖lip(An+1)
, ‖ψn+1 −

ψn‖lip(An+1)
), we have from Proposition 1 that

ξn,r ≤ CrγnNσ
n εn,r(4.1)

νn ≤ εn,0(4.2)

εn+1,r ≤ CrγnNσ
n εn,0εn,r + Cr,r′γnNσ+r−r′

n εn,r′(4.3)

with γn = (1 + Sn + εn,0)
σ.

If during the induction we can insure that ∑ εn,0 < M/100 we can
conclude from (4.2) that for all n, ϕn and ψn satisfy on An the induc-
tive condition (C1). Lemma 2 then insures that An+1 is well defined
and λ(An+1) ≥ (1− 8dM2N−1

n+1)λ(An). To be able to apply the in-
ductive procedure we also have to check that Hn is indeed invertible.
This is insured if during the induction we have

(C2) ξn,0 <
1
2

.

We call the two conditions (C1) and (C2), the inductive conditions.
The proof that the scheme (4.1)–(4.3) converges provided an ade-

quate control on ε0,0 and εr0,0 for a sufficiently large r0, is classical,
but we provide it for completeness.

LEMMA 3. Let α = 4σ+ 2, β = 2σ+ 1, and r0 = [8σ+ 5]. If Sn, ξn,r, εn,r
satisfy (4.1)–(4.3), there exists N̄0(σ) such that if N0 = N̄0M and

ε0,0 ≤ N−α
0 , ε0,r0 ≤ Nβ

0 ,

then for any n the inductive conditions (C1) and (C2) are satisfied and in
fact εn,0 ≤ N−α

n , ξn,0 ≤ N−σ
n , and for any s ∈N, there exists C̄r such that

max(εn,s, ξn,s) ≤ C̄sN−1
n .

Proof. We first prove by induction that for every n, εn,0 ≤ N−α
n and

εn,r0 ≤ Nβ
n , provided N̄0(σ) is chosen sufficiently large.

Assuming the latter holds for every i ≤ n, the inductive hypothe-
sis (C1) and (C2) can be checked up to n immediately from (4.1) and
(4.2). Now, (4.3) applied with r = 0 and r′ = r0 yields

εn+1,0 ≤ C0Nσ
n (2 + M)σN−2α

n + C0,r0 Nσ−r0
n Nβ

n

≤ N−α
n+1

provided N̄0(σ) is sufficiently large.
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On the other hand, applying (4.3) with r′ = r = r0 yields

εn+1,r0 ≤ Cr0 Nσ
n (2 + M)σN−α

n Nβ
n + Cr0,r0 Nσ

n Nβ
n

≤ Nβ
n+1

provided N̄0(σ) is sufficiently large.
To prove the bound on εn,s we start by proving that for any s, there

exist C̃s and ns such that for n ≥ ns we have that εn,s ≤ C̃sNβ
n . Let

indeed ns be such that N−1/10
ns ((1 + M)σCs + Cs,s) < 1. Let C̃s be

such that εns,s ≤ C̃sNβ
ns . We show by induction that εn,s ≤ C̃sNβ

n for
every n ≥ ns. Assume the latter true up to n and apply (4.3) with
r = r′ = s to get

εn+1,s ≤ CsNσ
n (1 + M)σN−α

n εn,s + Cs,sNσ
n εn,s

≤ Nσ+1/10
n εn,s

≤ C̃sNσ+1/10+β
n ≤ C̃sNβ

n+1.

We will now bootstrap on our estimates as follows. Let s′(s) =
s + [σ + β + 3

2(σ + 1)] + 1, and define ñs = max(ns, ns′). Let C̄s be
such that ε ñs,s ≤ C̄sN−σ−1

n . We will show by induction that for any
n ≥ ñs we have that εn,s ≤ C̄sN−σ−1

n . Indeed, apply (4.3) with r = s
r′ = s′ to get

εn+1,s ≤ C̄sCsNσ
n (1 + M)σN−α

n N−σ−1
n + Cs,s′C̃s′N

β
n Nσ+s−s′

n

≤ C̄sN−σ−1
n+1

if ns was chosen sufficiently large.
Finally, (4.1) yields that for n ≥ ñs, ξn,s ≤ C′sN−1

n . �

Proof of Theorem 3. The sets An are decreasing and we let A∞ =
lim infAn. The result of Lemma 3 implies that

λ(A∞) ≥ Π(1− 8dM2N−1
n+1) ≥ 1− η

if N0 ≥ N0(η). On A∞, ϕn and ψn converge in the Lipschitz norm
and the maps Hn ◦ . . . ◦ H1, H−1

n ◦ . . . ◦ H−1
1 converge in the Clip,∞

norm to some G, G−1 such that G fϕG−1 = fϕ∞ , GgψG−1 = gψ∞ ,
where (ϕ∞, ψ∞) = limn→∞(ϕn, ψn). �
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5. PROOF OF THEOREM 2 IN THE CASE OF HIGHER DIMENSIONAL
ELLIPTIC FACTORS (d2 > 1)

Define instead of the set D(N, A) of Section 3 the following

D(N, A) = {α ∈ Td2 / |λ + ei2π(k,α)| ≥ N−b,

∀λ ∈ E(A), ∀k ∈ Zd2 − {0}, ‖k‖ ≤ N}

where b = 30d2
2. Instead of Lemma 2 we have the following more

general statement.

LEMMA 4. Let ν > 0. There exists N0(ν, d2) such that if N > N0 and if
I is an interval of size 1 ≥ |I| ≥ 1/Na, a = 4d2 + 20, and if ϕ : I → Td2

satisfies a Pyartli condition with constant ν, then for Ñ = N3/2, there
exists a union of disjoint intervals U = { Ĩj} ⊂ I such that Ĩj ∈ D(Ñ, A)

and | Ĩj| ≥ 1/Ña and ∑ | Ĩj| ≥ (1− Ñ−1)|I|.

Proof. The proof is a direct consequence of the Pyartli condition and
a repeated application of the intermediate value theorem. We just
deal with case λ = 1 the other cases being similar. More precisely, for
any fixed k, ‖k‖ ≤ Ñ, after excluding d2 intervals of size 1/N2a from
I we get that |(k, ϕ′)| ≥ N−2a(d2+1). After further excluding O(Ñ)

intervals of size N2a(d2+1)Ñ−b we remain with intervals on which
‖(k, ϕ)‖ ≥ Ñ−b. We then apply this procedure for every k ∈ Zd2

such that 0 < ‖k‖ ≤ Ñ, then further eliminate all the remaining
intervals that are smaller than Ñ−a, and finally observe that the re-
maining part of I is a union of intervals satisfying the conditions of
the lemma. �

The effect of changing the exponent in the definition of D(N, A)
just modifies σ(A, B) of Proposition 1 to make it σ(A, B, d2). This is
because in (3.16) the small divisor (in the case |λ| = 1) becomes

1
|λ−e2πi(m,ϕ(t))| ≤ Nb if m ∈ Zd2 is such that |m| ≤ N. The rest of the
proof of Proposition 1 is identical to the case d2 = 1, except that ev-
erywhere the Lipschitz norm in the parameter direction should be
replaced by the Cd2 norm. The control of the Cd2 in the parameter di-
rection is required to maintain the Pyartli condition during the KAM
algorithm. Indeed, since ϕ satisfies an initial Pyartli condition with
constant ν, then similarly to what was done in the case d2 = 1, we
can insure in the KAM scheme that a Pyartli condition with a fixed
constant ν/2 is satisfied by the functions ϕn, provided the perturba-
tion ε is sufficiently small.
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6. PROOF OF THEOREM 1

Let A, B, α, β and f , g be as in the statement of Theorem 1. Let us
momentarily assume that α ∈ DC(τ, γ, A) that is |λ− ei2π(k,α)| > γ

|k|τ

for every non zero vector k ∈ Zd2 and every λ ∈ E(A). This clearly
plays a similar role to ϕ(t) ∈ D(N, A) and the same proof as that of
Proposition 1 yields a conjugacy H = Id + h such that

(6.1)
H ◦ f = ( f̃0 + ∆̃ f ) ◦ H

H ◦ g = (g̃0 + ∆̃g) ◦ H.

Here f̃0 = A × Rα̃, g̃0 = B × Rβ̃, and h, ∆̃ f , ∆̃g satisfy estimates as
in Proposition 1. Now, the fact that (ρµ1( f ), ρµ2(g)) = (α, β) implies
that (ρH∗µ1(H ◦ f ◦H−1), ρH∗µ2(H ◦ g ◦H−1)) = (α, β). In conclusion
we can replace f̃0, g̃0 by A× Rα, B× Rβ in (6.1) and include α̃− α,β̃−
β inside the error terms, without changing the quadratic nature of
the estimates.

For the general case (α, β) ∈ SDC(τ, γ, A, B) one cannot use just
one of the frequencies α or β to solve the linearized equations of (3.4).
Indeed, both α and β may be Liouville vectors and the small divisors
that appear in (3.16) may be too large. Actually the linearized sys-
tem (3.4) will not be solved as in Claim 1 but just up to an error term
that is quadratic as in Lemma 1. The idea goes back to Moser [16]
who observed the following: if for each m one of the small divisors
λ− e2πimα or µ− e2πimβ is not too small, as stated in the SDC condi-
tion, then the relation implied by the commutation (3.7)

(λw− w ◦ fϕ)− (µv− v ◦ gψ) = φ

insures that (3.4) can be solved up to an error term of the order of φ,
that is a quadratic error term as in (3.8).

The rest of the proof of Theorem 1 is identical to that of Theorem
3. �

7. APPENDIX

In this Appendix, we give references and proofs for the estimates
used in the proofs of Lemma 1 and Proposition 1.

7.1. Convexity estimates.

PROPOSITION 2. Let f , g ∈ Clip,∞(I, Td, R). Then
(i)

|| f ||lip(I),s ≤ Cs1,s2 || f ||
a1
lip(I),s1

|| f ||a2
lip(I),s2
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for all non-negative numbers a1, a2, s1, s2 such that

a1 + a2 = 1, s1a1 + s2a2 = s.

(ii)

|| f g||lip(I),s ≤ Cs(|| f ||lip(I),s||g||lip(I),0 + || f ||lip(I),0||g||lip(I),s)

for all non-negative numbers s.

Proof. (i) One way to show interpolation estimates in the scale of
Clip,s norms is to derive them from the existence of smoothing op-
erators and from the norm inequalities for the smoothing operators.
This is done in [24] for spaces Cα,s where 0 < α ≤ 1, which includes
the case of Clip,s. Another elementary proof for interpolation without
going through smoothing operators can be found in [14].

(ii) Immediate corollary of the interpolation estimates is the fol-
lowing fact:

‖ f ‖lip(I),i‖g‖lip(I),j ≤ C(‖ f ‖lip(I),k‖g‖lip(I),l + ‖ f ‖lip(I),m‖g‖lip(I),n)

if (i, j) lies on the line segment joining (k, l) and (m, n). (See Corol-
lary 2.2.2. in [7]). The statement (ii) in the Proposition follows from
this by using the product rule on derivatives (see Corollary 2.2.3. in
[7]) and the following inequality:

Lip( f g) = sup
x 6=y

|( f g)(x)− ( f g)(y)|
|x− y|

≤ sup(
| f (x)− f (y)||g(x)|

|x− y| +
|g(x)− g(y)|| f (y)|

|x− y| )

≤ L f ‖g‖0 + ‖ f ‖0Lg

where L f and Lg are Lipshitz constants for f and g, respectively. �

7.2. Composition.

PROPOSITION 3. Let f , g ∈ Clip,∞(I, Td+1, Rd+1).Then
(i) h(x) = f (x + g(x))− f (x) verifies

‖h‖lip(I),s ≤ Cs(‖ f ‖lip(I),0‖g‖lip(I),s+1 + ‖ f ‖lip(I),s+1‖g‖lip(I),0).

(ii) k(x) = f (x + g(x))− f (x)− D f g(x) verifies

‖k‖s ≤ Cs(‖ f ‖lip(I),0‖g‖lip(I),s+2 + ‖ f ‖lip(I),s+2‖g‖lip(I),0)

Proof. In the proof we shorten the notation ‖ · ‖lip(I),s to ‖ · ‖lip,s.
(i) It suffices to prove the estimates for the coordinate functions of

f , so in what follows we assume that f denotes a coordinate function
of f . Let D1

i denote partial derivation in one of the basis directions
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and let gj denote coordinate functions of g. Since D1
i h = D1

i ( f (x +

g(x))− f (x)) = ∑j D1
j f D1

i gj, we can apply part (ii) of the previous
proposition to D1

j f D1
i gj:

‖D1h‖lip,s ≤ C max
j
‖D1

j f D1
i gj‖lip,s

≤ Cs max
j

(‖D1
j f ‖lip,s‖D1

i gj‖lip,0 + ‖D1
j f ‖lip,0‖D1

i gj‖lip,s)

≤ Cs max
j

(‖ f ‖lip,s+1‖gj‖lip,1 + ‖ f ‖lip,1‖gj‖lip,s+1)

≤ C′s(‖ f ‖lip,s+2‖g‖lip,0 + ‖ f ‖lip,0‖g‖lip,s+2).

Here we invoked part (ii) of the previous proposition again to obtain
the last line of estimates above. Since for the lip, 0-norm we have:

‖h‖lip,0 = ‖ f (x + g(x))− f (x)‖lip,0 ≤ L f ‖g‖0 ≤ ‖ f ‖lip,0‖g‖lip,0,

the claim follows.
(ii) Again by reducing to coordinate functions we look at one co-

ordinate function of k and f (which we denote by k and f as well), so
we have k = f (x + g(x))− f − ∑i D1

i f gi, where D1
i denotes ∂/∂xi.

Then: D1
j k = −∑i D1

j D1
i f gi, where gi denotes coordinate functions

of g. This implies (by using (ii) of Proposition 2) the following esti-
mate for the first derivatives:

‖D1
j k‖lip,s ≤∑

i
‖D1

j D1
i f gi‖lip,s

≤ Cs(‖D1
j D1

i f ‖lip,s‖gi‖lip,0 + ‖D1
j D1

i f ‖lip,0‖g‖lip,s)

≤ Cs(‖ f ‖lip,s+2‖gi‖lip,0 + ‖ f ‖lip,2‖g‖lip,s)

≤ C′s(‖ f ‖lip,s+2‖g‖lip,0 + ‖ f ‖lip,0‖g‖lip,s+2).

For the lip, 0-norm we have:

‖k‖lip,0 ≤ L f ‖g‖0 + max
i
{‖D1

i f gi‖lip,0} ≤ C‖ f ‖lip,1‖g‖lip,0

which together with the estimates above implies the claim. �

7.3. Inversion.

PROPOSITION 4. Let h ∈ Clip,∞(I, Td+1, Rd+1) and assume that

‖h‖lip(I),1 ≤
1
2

.
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Then
f : Td+1 → Td+1, x 7→ H(x) = x + h(x)

is invertible and if we write H−1(x) = x + h̄(x) then

‖h̄‖lip(I),s ≤ Cs‖h‖lip(I),s

for all s ∈N.

Proof. For Cs norms this is proved for example in Lemma 2.3.6. in
[7]. The proof uses induction and interpolation estimates, and it is
general to the extent that it applies to any sequence of norms on C∞

which satisfy interpolation estimates. Thus the claim follows from
part (i) of the Proposition 2 and Lemma 2.3.6. in [7]. �
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