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Energy growth for systems of coupled oscillators with partial

damping

Dmitry Dolgopyat∗, Bassam Fayad†, Leonid Koralov‡, Shuo Yan§

Abstract

We consider two interacting particles on the circle. The particles are subject to stochastic
forcing, which is modeled by white noise. In addition, one of the particles is subject to friction,
which models energy dissipation due to the interaction with the environment. We show that,
in the diffusive limit, the absolute value of the velocity of the other particle converges to the
reflected Brownian motion. In other words, the interaction between the particles are asymptot-
ically negligible in the scaling limit. The proof combines averaging for large energies with large
deviation estimates for small energies.

1 Introduction

Understanding energy transfer in complex systems is a fundamental problem in mathematical
physics. There is vast literature on this subject and, despite rigorous results in a number of
important models, there are still many challenges in our understanding of this phenomenon. Energy
transfer plays a key role in several important phenomena including the following:

(a) Fermi acceleration. The problem is to describe the motion of a particle in random media
where the particle accelerates due to random energy exchange with the environment. Originally
introduced by Fermi [9] in order to explain the presence of highly energetic particles in cosmic rays,
this model is a subject of intense research (see, e.g., [19, 6] and references therein).

(b) Fourier Law. Here the problem is to describe how the heat emitted from some source(s)
spreads around a given domain. In particular, one would like to understand the heat conductivity
of different materials. We refer the readers to [2, 5, 18, 21] for a review of this subject. The Fourier
law remains an active area of research, see e.g. [16] and references therein.

(c) Energy cascade in turbulence. In mathematical terms, the problem is to understand how
the energy introduced at large scales is transferred to the smaller scales in Hamiltonian PDEs.
This problem has certain similarities to the previous problems as it can be reduced to a system
of interacting ODEs after passing to the Fourier basis. We refer the readers to [3, 7, 20] for more
information on this subject.

The difficulty of the transfer problems comes from the complex interaction network of multi-
particle systems (cf. [17]). A simpler situation appears in the rarified regime where each particle
interacts during long time intervals only with a fixed small collection of other particles. In an
effort to understand such systems, several authors considered local equilibria for a small number of
particles subjected to forcing and dissipation (see, e.g., [4, 11, 15] and references therein).
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In the present paper, we also deal with a simple system of this form. Namely, we consider
two one-degree-of-freedom particles interacting via a bounded potential. In addition, we suppose
that each particle gains energy via stochastic forcing that is modeled by white noise. The energy
dissipation is modeled by friction. We suppose that only one of the particles is subject to dissipation.
The question is whether the energy exchange between the particles is strong enough to transfer the
excess energy to the particle with the friction and eventually remove it from the system so as to
ensure that the total energy of the system does not grow on average. This turns out not to be the
case for the system we consider. The mechanism is the following. The first particle loses energy
quickly due to friction, so most of the time it has much smaller energy than the second particle.
When the second particle has high energy, the relative change in energy is small and so it can be
studied using perturbative methods. If we neglect the interaction as well as the forcing, then the
motion of the second particle is integrable, and so we can average the interaction along the orbit of
the unperturbed system. The averaged interaction vanishes due to the Hamiltonian nature of the
two-particle system. This ensures that the energy exchange is too slow at large energies to keep
the total energy of the system finite.

Let us now describe our model more precisely. Let V be a twice continuously differentiable
function on S

1 and H be defined as

H =
1

2
(r21 + r22) + V (θ1 − θ2), for (r1, r2, θ1, θ2) ∈ R

2 × T
2.

Consider the two-particle Hamiltonian system in R
2 ×T

2, subject to stochastic forcing and energy
dissipation: 




dr1(t) = −V ′(θ1(t)− θ2(t))dt+ dW1(t)

dr2(t) = V ′(θ1(t)− θ2(t))dt+ dW2(t)− r2(t)dt

dθ1(t) = r1(t)dt

dθ2(t) = r2(t)dt

(1.1)

where W 1
t and W 2

t are two independent Brownian motions.

Theorem 1.1. For each initial distribution µ of the processes in (1.1), the process |r1(t · T )|/
√
T

converges weakly, as T → ∞, to a Brownian motion starting and reflected at the origin.

The proof of Theorem 1.1 is given in Section 6.

2 Expansions

In this section, we obtain preliminary results on the typical behavior of the processes on
short time intervals. In particular, given r1(t), we give an accurate expansion of r1(t + σ), where
σ = 1/|r1(t)|. Let us introduce some notation first. Let Ft be the natural filtration generated
by the Brownian motions W1(t) and W2(t), and F̃T

t be the natural filtration generated by the
Brownian motions W1(t · T ) and W2(t · T ). For a random variable A and a function B defined on
the parameter space of A, we write A = O(B) (or A . B) if there is a constant M > 0 such that
|A| ≤ M |B|, A = Θ(B) if there is a constant M > 0 such that ‖A‖2 ≤ M |B|, and A = Θ̃(B) if
there is a constant M > 0 such that ‖A‖4 ≤ M |B|. In particular, the absolute value on S

1 is defined
to be the shortest distance to 0. These are often needed to describe the asymptotic behavior of A
(e.g., when the time parameter tends to zero). We start our analysis by solving explicitly for r1(t)
and r2(t):

r1(t) = r1(0) +W1(t)−
∫ t

0
V ′(θ1(s)− θ2(s))ds = r1(0) + Θ̃(

√
t) +O(t), (2.1)
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r2(t) = e−tr2(0) + e−t

∫ t

0
esV ′(θ1(s)− θ2(s))ds + e−t

∫ t

0
esdW2(s) (2.2)

= e−tr2(0) +O(1− e−t) + Θ̃(
√

1− e−2t).

For the other processes, we can write the following expansions:

θ1(t) = θ1(0) +

∫ t

0
[r1(0) + Θ̃(

√
s) +O(s)]ds = θ10) + r1(0)t+O(t2) + Θ̃(t3/2),

θ2(t) = θ2(0) +

∫ t

0

[
e−sr2(0) +O(1− e−s) + Θ̃(

√
1− e−2s)

]
ds

= θ2(0) + r2(0)(1 − e−t) +O(t2) + Θ̃(t3/2).

(2.3)

As our main result, Theorem 1.1, indicates, we aim to show that, away from the origin, the
coupling term −V ′(θ1(t) − θ2(t)) does not essentially change the behavior of r1(t) on large time
intervals. Namely, if we let Z(t) = −

∫ t
0 V

′(θ1(s)− θ2(s))ds, then

r1(t) = r1(0) +W1(t) + Z(t), (2.4)

and Z(t) is expected to be small compared with W1(t) on large time scales. When r1(t) is large
and r2(t) is relatively small, with σ = 1/|r1(0)|, we would like to show that Z(σ) is small compared
with σ. Eventually, we’ll be interested in asymptotically small values of σ, but the following result
holds for all σ ≤ 1.

Lemma 2.1. If |r1(0)| ≥ 1 and σ = 1/|r1(0)|, then

Z(σ) = r2(0)O(σ2) +O(σ3) + Θ̃(σ5/2), (2.5)

Z(σ) =
r2(0)

r1(0)2
V ′(θ1(0)− θ2(0)) + (r2(0)

2 + 1)O(σ3) + Θ(σ5/2). (2.6)

It is worth noting that, compared to (2.5), (2.6) provides a exact form the leading term.
However, one of the error terms depends on r2(0).

Proof. The proof utilizes the expansions we obtain above and Taylor’s expansion of V ′(θ1(s)−θ2(s))
at θ1(0) − θ2(0) + r1(0)s for s ∈ [0, σ]. Below, to simplify our notation, we denote ri = ri(0) and
θi = θi(0) for i = 1, 2. By (2.3),

Z(σ) = −
∫ σ

0
V ′(θ1(s)− θ2(s))ds

= −
∫ σ

0
V ′
(
θ1 − θ2 + r1s− r2(1− e−s) +O(s2) + Θ̃(s3/2)

)
ds (2.7)

= −
∫ σ

0
V ′(θ1 − θ2 + r1s)ds+

∫ σ

0
r2O(1− e−s) +O(s2) + Θ̃(s3/2))ds

= r2O(σ2) +O(σ3) + Θ̃(σ5/2).

This proves (2.5). Next, (2.7) gives

Z(σ) = −
∫ σ

0
V ′(θ1 − θ2 + r1s)ds

+

∫ σ

0
V ′′(θ1 − θ2 + r1s)[r2(1− e−s) +O(s2) + Θ̃(s3/2)]ds + r

2
2O(σ3) +O(σ5) + Θ(σ4)
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=

∫ σ

0
V ′′(θ1 − θ2 + r1s)r2sds

+

∫ σ

0
V ′′(θ1 − θ2 + r1s)[(r2O(s2) +O(s2) + Θ̃(s3/2)]ds+ r

2
2O(σ3) +O(σ5) + Θ(σ4)

=
r2

r21

V ′(θ1 − θ2) + r2O(σ3) +O(σ3) + Θ̃(σ5/2) + r
2
2O(σ3) +O(σ5) + Θ(σ4)

=
r2

r21

V ′(θ1 − θ2) + (r22 + 1)O(σ3) + Θ(σ5/2).

Let us briefly examine the right-hand side of (2.6) in order to motivate our further analysis.
This formula will be used iteratively to express the increment of r1 on longer time intervals. On
short time scales (of order σ = 1/|r1|, as above), the difference between the increment of r1 and the
Brownian motion is small (of order 1/r21(0)), provided that r2 is bounded and r1 is large. However,
at larger times, the cumulative effect of the terms containing V ′(θ1 − θ2) needs to be controlled.
Namely, we’ll use an averaging effect to show that the sum of N such terms (each corresponding
to a new starting point obtained after a new rotation) is much smaller than N/r21 , provided that
N is large (but not too large so that r1 does not change much on the corresponding time interval).

Our plan is as follows. First, in Section 3, we obtain various estimates on r2 and its joint
distribution with θ2. Those will help us to control the terms with the powers of r2 on the right-
hand side of (2.6) and prove averaging for the term containing V ′(θ1 − θ2). Next, in Section 4, we
will show that on relatively large time intervals r1 behaves as a Brownian motion plus a drift term
that is small, provided that r1 is large. The times when r1 is near the origin need to be analyzed
separately. In Section 5, we show that the exit times from a neighborhood of zero can be bounded
from above. After we control the number of excursions to the origin (see Lemma 6.2), it will be
seen that the time spent by the process near the origin can be ignored. Finally, the main result is
proved in Section 6.

In the rest of the paper, we make statements with assumptions on the initial condition of r1
and r2. Unless specified otherwise, the results hold uniformly in all the initial conditions of θ1 and
θ2. In addition, for simplicity, we assume that the function V is bounded by 1 along with its first
and second derivatives. From the proofs, it will be easy to see that the results hold for all twice
continuously differentiable V .

3 Behavior of r2 and θ2

We start this section by giving a result about the supremum of r2(t) during a large interval of
time. It demonstrates that, most of the time, r2(t) can be expected to be relatively small.

3.1 Growth of r2

Proposition 3.1. Consider a function D such that D(T ) → ∞ as T → ∞. Then for each t > 0
there is T0(t) such that for T ≥ T0(t) we have that for each initial distributions of r1(0) and r2(0)

P( sup
0≤s≤t·T

|r2(s)| > |r2(0)|+D(T )) ≤ 18tTD(T )e−(D(T )−1)2 (3.1)

Note that the right-hand side of (3.1) converges to 0 as T → ∞ provided that D(T ) ≥ 2
√
log T .

Proof. Let f(x) =
∫ x
0 ey

2
dy. By (2.2), we know that

P( sup
0≤s≤t·T

|r2(s)| > |r2(0)| +D(T )) ≤ P( sup
0≤s≤t·T

|r(s)| > D(T )− 1), (3.2)
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where r(s) is the Ornstein-Uhlenbeck process defined as:

dr(s) = −r(s)dt+ dW (s), r(0) = 0. (3.3)

Then it is not hard to see that f(r(s)) is a martingale. In order to apply Doob’s martingale
inequality, we compute an upper bound for E(f(r(s)) ∨ 0). Notice that xf(x) < ex

2
and r(s) ∼

N (0, 12(1− e−2s)). Hence, for all s sufficiently large,

E(f(r(s)) ∨ 0) = Eχ{0<r(s)<1}f(r(s)) +Eχ{r(s)≥1}f(r(s))

≤ e+Eχ{r(s)≥1}e
r(s)2/r(s) ≤ e+

∫ ∞

1

1

x
exp(x2 − x2

1− e−2s
)dx

= e+

∫ ∞

1

1

x
exp(− x2

e2s − 1
)dx = e+

∫ ∞

0
exp(−e2y/(e2s − 1))dy

≤ e+

∫ ∞

0
exp(−e2y−2s)dy ≤ e+ 2s+

∫ ∞

2s
exp(−e2y−2s)dy

≤ e+ 2s +

∫ ∞

2s
exp(−y2)dy ≤ 3s.

So, by Doob’s martignale inequality, for all T sufficiently large,

P( sup
0≤s≤t·T

r(s) > D(T )− 1) = P( sup
0≤s≤t·T

f(r(s)) > f(D(T )− 1))

≤ E(f(r(tT )) ∨ 0)/f(D(T )− 1) ≤ 3tT/f(D(T )− 1).

Since r(s) is symmetric, the right-hand side of (3.2) is at most 6tT/f(D(T ) − 1). The inequality
in (3.1) follows from the fact that 3xf(x) ≥ exp(x2) for all x sufficiently large.

Now let us focus on the situation where |r1(0)| = R is large and |r2(0)| ≤ Rα, with 0 < α < 1,
is relatively small. This situation is indeed representative, since we expect |r1(t ·T )|/

√
T to behave

like a Brownian motion reflected at the origin, hence it is typically of order
√
T during time of order

T , while Proposition 3.1 indicates that |r2(t)| typically stays below 2
√
log T . We are interested in

the behavior of the processes at time 0 ≤ t(R) ≤ Rαt , where αt > 0 is a constant less than 2/3.
The subscript t is used to stress that the constant appears in the upper bound on the function t(R).
During this time, it is unlikely for r1(t) to get too far away from its original location. Namely,
let c(R) = Rαc where αt/2 < αc < 1/3. We will see that the probability for r1(t) to exit from
[R − c(R), R + c(R)] within time t(R) is small. In order to describe the evolution of the process
r1(t), we will use the expansions in Section 2 and divide the time t(R) into small intervals that
correspond to the full rotations of θ1(t). Let τc = inf{t : |r1(t)− r1(0)| = c(R)}. Define

σ0 = 0,

σk+1 = σk + χ{σk<t(R)∧τc}1/|r1(σk)|, k ≥ 0,
(3.4)

and ñ = inf{k : σk ≥ t(R) ∧ τc} ≤ t(R)(R + 2c(R)). The large parameter R, the related functions
t(R), c(R), the stopping times τc, σk, k ≥ 0, and the quantity ñ are frequently used in the remainder
of the paper. Although we will choose different t(R) and c(R) in different results and their proofs,
unless otherwise specified, the stopping times and ñ are always defined as above. Since the error
terms in (2.6) involve r2(t) and r2(t)

2, we need bounds on r2(t) at those full rotation time steps
σk, 0 ≤ k ≤ ñ, which explains the need for the next lemma.
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Lemma 3.2. Let |r1(0)| = R, |r2(0)| ≤ Rα, where 0 ≤ α < 1, 0 ≤ t(R) ≤ Rαt , where αt < 2/3,
and c(R) = Rαc, where αt/2 < αc < 1/3. Then we have, for all R large and each k ≥ 0,

Eχ{k≤ñ}|r2(σk)|4 ≤ (2r2(0)e
−k/R + 3)4, (3.5)

where σk, k ≥ 0, and ñ is defined as in (3.4).

Proof. Since we have good control over r2(t) at deterministic times, we will compare r2(σk) with
r2(k/R). Note that σk is close to k/R if k ≤ ñ. To be more precise,

∣∣∣∣χ{k≤ñ}

(
σk −

k

R

)∣∣∣∣ ≤ χ{k≤ñ}

k−1∑

j=0

∣∣∣∣σj+1 − σj −
1

R

∣∣∣∣

≤ t(R)

1/(R + 2c(R))

(
1

R− c(R)
− 1

R

)
≤ 2t(R)c(R)

R
.

(3.6)

By the explicit solution in (2.2), we know that

‖r2(t)‖4 ≤ r2(0)e
−t + 2. (3.7)

Note that for each k ∈ N, we have

r2(σk) = r2

(
k

R

)
e

k
R
−σk + e−σk

∫ σk

k/R
esV ′(θ1(s)− θ2(s))ds + e−σk

∫ σk

k/R
esdWs. (3.8)

(In the case of σk < k/R,
∫ σk

k/R esdWs means −
∫ k/R
σk

esdWs.) Then it follows that

‖χ{k≤ñ}(r2(σk)− r2(k/R))‖4 ≤ ‖χ{k≤ñ}(r2

(
k

R

)
− r2

(
k

R

)
e

k
R
−σk)‖4

+‖χ{k≤ñ}e
−σk

∫ σk

k/R
esV ′(θ1(s)− θ2(s))ds‖4 + ‖χ{k≤ñ}e

−σk

∫ σk

k/R
esdWs‖4.

(3.9)

Here the first term on the right-hand side is bounded by

‖χ{k≤ñ}(r2

(
k

R

)
− r2

(
k

R

)
e

k
R
−σk)‖4 ≤ 3t(R)c(R)

R
‖χ{k≤ñ}r2(k/R)‖4

≤ 3t(R)c(R)

R
‖r2(k/R)‖4 ≤ 3t(R)c(R)

R
(r2(0)e

−k/R + 2).

The second term in (3.9) is bounded by 2|χ{k≤ñ}(σk − k/R)| ≤ 4t(R)c(R)
R → 0. The third term is

bounded by the fourth root of:

E|χ{k≤ñ}e
−σk

∫ σk

k/R
esdWs|4 = E|χ{k≤ñ}e

k/R−σk

∫ σk

k/R
es−k/RdWs|4.

Note that the integral in the right-hand side is a time change of a Brownian motion. Therefore

E|χ{k≤ñ}e
−σk

∫ σk

k/R
esdWs|4 = E|χ{k≤ñ}e

k/R−σkW̃ (
1

2
(e2(σk−k/R) − e−2k/R))− W̃ (

1

2
(1− e−2k/R))|4

≤ E sup
[− 4t(R)c(R)

R
, 4t(R)c(R)

R
]

|W̃ (
1

2
(e2t − e−2k/R))− W̃ (

1

2
(1− e−2k/R))|4 → 0,

where W̃ is another Brownian motion. So we have the estimate on the L4 norm of difference∥∥∥∥χ{k≤ñ}

(
r2(σk)− r2

(
k

R

))∥∥∥∥
4

= o(r2(0)e
−k/R + 1), (3.10)

proving the desired result.
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3.2 Invariant measure

The next objective is to show that the third term in (2.6) will be averaged to o(r−2
1 ) if one

considers an appropriate number of rotations. To this end we show that, if |r2| is much smaller
than |r1|, then the particles asymptotically decouple, so time averages involving r2 could be well
approximated by the invariant measure of the decoupled process.

Lemma 3.3. Let (r, θ) be the Markov process on R× S
1 defined by

dr(t) = −r(t)dt+ dW (t),

dθ(t) = r(t)dt.
(3.11)

Then E[r(t)V ′(θ(t) − θ0)] → 0 as t → ∞, uniformly in r(0) on a compact set, θ(0) ∈ S
1, and

θ0 ∈ S
1.

Note that in (3.11), r is an Ornstein-Uhlenbeck process. In particular, the stationary measure
for this process is the following: r has Gaussian distribution on R and θ is uniformly distributed
on the circle and independent of r.

Proof. The process (r(t), θ(t)) on R× S
1 has the generator L defined by Lu = −ru′r + ru′θ +

1
2u

′′
rr.

The unique invariant measure has the density p(r, θ) = 1√
π
e−r2 , and

∫

R×S1

rV ′(θ − θ0) · p(r, θ)drdθ = 0. (3.12)

We show that (r(t), θ(t)) converges, in total variation, to the invariant measure uniformly in the
initial data on a compact set. (Note that the convergence in total variation itself is not enough
since we have an unbounded function in the expectation. However, it is easy to see that r(t) =
r(0)e−t+e−t

∫ t
0 e

sdWs, and hence r(t) has bounded L2-norm for all non-negative t uniformly in r(0)
on a compact set. Combining both facts, with the help of the Cauchy-Schwarz inequality, we can
obtain the desired result.) Here we use Harris’s Theorem (see [10, 12], and the original statement
in [13]). The Harris Theorem implies the convergence in total variation if there is a function U
such that the following conditions are satisfied (see Assumption 3.1, Exercise 3.3, and Assumption
3.4 in [10]):

(i) There exist positive constants c and K such that LU ≤ K − cU ;

(ii) For every R > 0, there exist α > 0 and t > 0 such that TV (µt
x, µ

t
y) < 2(1−α), if U(x)+U(y) ≤

R, where µt
x and µt

y are the measures induced by (r(t), θ(t)) with starting points x and y,
respectively, and TV is the total variation distance.

Moreover, the convergence of µt
x in total variation, as t → ∞, is uniform in x on {U(x) ≤ R} for

any R > 0. We take U(r, θ) = r2. Part (i) is trivial since LU = 1 − 2U . To prove part (ii), it
is enough to show that µt

x, t > 0, has a density function ptx(x
′) that is positive everywhere and

continuous in both x and x′. This follows from Example 3.1 in [14].

The next lemma provides a similar result for the process (r2, θ2), which is not a Markov one
by itself. The idea is to wait for r2 to decrease to a compact set and, from then, we consider a
time scale on which (r2, θ2) is close to its Markov analogue defined as in (3.11), while the process
in (3.11) has the desired properties.
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Lemma 3.4. Suppose that |r1(0)| = R, |r2(0)| ≤ Rα, where α ∈ (0, 1). For each β ∈ (0, 1), we
have that E[r2(t)V

′(θ2(t)− θ0)] → 0 uniformly in all | logR|2 ≤ t ≤ Rβ and θ0 ∈ S
1, as R → ∞.

Proof. Consider the distribution of r2 at time t− logR ≥ logR. Recall that r2(u) can be expressed
explicitly:

r2(u) = e−ur2(0) + e−u

∫ u

0
esV ′(θ1(s)− θ2(s))ds + e−u

∫ u

0
esdW2(s). (3.13)

Then it follows that ‖r2(t− logR)‖2 ≤ 4 for R sufficiently large. On the other hand, since t ≤ Rβ,
P(|r1(t − logR) − R| > 2Rβ) → 0. By the boundedness of ‖r2(t)‖2 and the Cauchy-Schwarz
inequality, it suffices to prove that, for each C > 0, given that |r2(0)| ≤ C and |r1(0) −R| ≤ 2Rβ,

Er2(logR)V ′(θ2(logR)− θ0) → 0, as R → ∞. (3.14)

We will apply Lemma 3.2 to prove this. We start by choosing t(R) = 2 logR and c(R) = R1/4

and recalling the definitions of τc, σk, k ≥ 0, and ñ in (3.4). Since (r2(u), θ2(u)) is not a Markov
process, we need to compare (r2(u), θ2(u)) with (r(u), θ(u)) defined in (3.11) with starting point
(r2(0), θ2(0)). Note r(u) can also be expressed explicitly:

r(u) = e−ur2(0) + e−u

∫ u

0
esdW2(s). (3.15)

By (2.5), we have that if k < ñ, then

∫ σk+1

σk

esV ′(θ1(s)− θ2(s))ds

= eσk

∫ σk+1−σk

0
esV ′(θ1(σk + s)− θ2(σk + s))ds

= eσk

∫ σk+1−σk

0
V ′(θ1(σk + s)− θ2(σk + s))ds

+ eσk

∫ σk+1−σk

0
(es − 1)V ′(θ1(σk + s)− θ2(σk + s))ds

= eσk [(r2(σk) + 1)O(R−2) +O(R−3) + Θ̃(R−5/2)].

Then, for each 0 ≤ n ≤ t(R)R/2, we obtain with the help of Lemma 3.2,

E|r2(σn)− r(σn)| = E

∣∣∣∣e
−σn

∫ σn

0
esV ′(θ1(s)− θ2(s))ds

∣∣∣∣

≤ E

n−1∑

k=0

χ{k<ñ}

∣∣∣∣e
−σk+1

∫ σk+1

σk

esV ′(θ1(s)− θ2(s))ds

∣∣∣∣

= O(t(R)/R).

(3.16)

For any u ≤ logR, we take k̃(u) = ⌊uR⌋ ≤ t(R)R/2 and compare r2(u) with r2(k̃(u)/R).

E|r2(u)− r2(k̃(u)/R)| ≤ E|
∫ u

k̃(u)/R
r2(s)ds|+

1

R
+E|

∫ u

k̃(u)/R
dW2(s)| = O

(
1√
R

)
. (3.17)

On the other hand,

E|r2(k̃(u)/R) − r2(σk̃(u))| = Eχ{k̃(u)<ñ}|r2(k̃(u)/R) − r2(σk̃(u))| (3.18)

8



+Eχ{k̃(u)≥ñ}|r2(k̃(u)/R) − r2(σk̃(u))|. (3.19)

The first term (3.18) can be bounded by O

(√
t(R)c(R)

R

)
= o

(
1

3
√
R

)
as in Lemma 3.2, and the

second term (3.19) can be bounded by

Eχ{τc<logR}|r2(k̃(u)/R) − r2(σñ)| = o(1/R), (3.20)

since P(τc < logR) is exponentially small w.r.t. R and L2 norm of r2(σñ) can be bounded by

‖r2(σñ)‖2 ≤ C+1+‖e−σñ

∫ σñ

0
esdWs‖2 ≤ C+1+‖

∫ σñ

0
esdWs‖2 ≤ C+1+

√
E exp(2σñ) ≤ C+1+R3

since σñ < 3 logR. Thus, by combining this with (3.16) and (3.17) and noticing that the same
argument applies to r, we have, for each u ≤ logR,

E|r2(u)− r(u)| = O(t(R)/R) +O(R−1/2) + o(R−1/3) + o(1/R) = o(R−1/4), (3.21)

as R tends to infinity. By integrating r2 − r over time u, we obtain

E|θ2(u)− θ(u)| = o(logR ·R−1/4). (3.22)

(3.14) and, consequently, the desired result follow from Lemma 3.3 and the fact that

E|r2(u)V ′(θ2(u)− θ0)− r(u)V ′(θ(u)− θ0)|
≤ E|(r2(u)− r(u))V ′(θ(u)− θ0)|+ ‖r2(u)‖2‖V ′(θ2(u)− θ0)− V ′(θ(u)− θ0)‖2

≤ E|r2(u)− r(u)|+ (C + 2) ·
√

E|θ2(u)− θ(u)| → 0.

4 Behavior of r1 away from the origin

In this section, we will deal with different temporal and spatial scales that are powers of R.
Those exponents will be denoted by α with different subscripts. We will prove that, if initially
|r1(0)| is large and |r2(0)| is relatively small, then, after a certain time, the increment of r1(t) is
made up of a Brownian motion and a small correction term. Recall Z(t) = −

∫ t
0 V

′(θ1(s)−θ2(s))ds,
and

r1(t) = r1(0) +W1(t) + Z(t). (4.1)

Let XT
t = r1(t · T )/

√
T . The main result of this section essentially states that, if we start

with XT
0 of order 1 and stop it when X reaches a fixed (small) level ε, then the resulting process

converges as T → ∞ to the Brownian motion stopped at the same level (in fact, in order to complete
the proof of convergence we need a tightness result (Lemma 6.4) proved in Section 6).

Lemma 4.1. For ε>0, let η = inf{s : XT
s = ε}. Then, for each t > 0 and bounded f ∈ C3([0,+∞))

with bounded derivatives up to order three, we have

E

[
f(XT

t∧η)− f(XT
0 )−

1

2

∫ t∧η

0
f ′′(XT

s )ds

]
→ 0, (4.2)

as T → ∞, uniformly in XT
0 on a compact set K ⊂ [ε,+∞) and |r2(0)| ≤ 2 log T .

The proof is quite long, so we divide it into several steps.
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4.1 Short time behavior

Proposition 4.2. Suppose that |r1(0)| = R, |r2(0)| ≤ Rα, where α ∈ (0, 23 ). Suppose that αt and

α′
t satisfy α < α′

t < αt < 2/3. Then, uniformly in Rα′

t ≤ t(R) ≤ Rαt,

EZ(t(R))2 = O((t(R)/R)2), EZ(t(R)) = o(t(R)/R), as R → ∞. (4.3)

The proof of this proposition is deferred to later after we obtain technical results that will
be needed. The next lemma provides a rough estimate that shows that r1(t) cannot exit a large
interval too quickly.

Lemma 4.3. Suppose that |r1(0)| = R, |r2(0)| ≤ Rα, where α ∈ (0, 23). For each αt, α
′
t, and αc

that satisfy α < α′
t < αt < 2/3 and αt/2 < αc < 1/3, uniformly in Rα′

t ≤ t(R) ≤ Rαt,

P(τc < t(R)) = O((t(R)/Rc(R))4), as R → ∞, (4.4)

where c(R) = Rαc and τc = inf{t : |r1(t)− r1(0)| = c(R)}.
Proof. Let the stopping times σk, k ≥ 0, be defined as in (3.4). We will use the expansion (2.5) to
control the desired probability.

r1(σñ) = r1(0) +W1(σñ) +
ñ−1∑

k=0

r2(σk) ·O(R−2) +O(t(R)R−2) + Θ̃(t(R)R−3/2)

=: r1(0) +W1(σñ) +A1 +A2 +A3.

By Lemma 3.2 and the fact that ñ < 2t(R)R, we obtain that ‖A1‖4 = O(t(R)/R). Since σñ <
t(R)+2/R, the probability of |W1(σñ)| being significantly larger than

√
t(R) is exponentially small.

So

P(|r1(σñ)− r1(0)| >
4c(R)

5
) ≤ P(|W1(σñ)| > c(R)/5) +

3∑

j=1

P(|Aj | > c(R)/5)

.
1

R4
+

t(R)4

R4c(R)4
+ 0 +

t(R)2

R4c(R)6
≤ t(R)4

R4c(R)4
.

On the other hand, since on the event {τc < t(R)}, we have 0 ≤ σñ − τc < 2/R. Then,

P(τc < t(R), |r1(σñ)− r1(0)| ≤
4c(R)

5
)

≤ P(τc < t(R), |r1(τc)− r1(σñ)| > c(R)/5)

≤ P(τc < t(R), |
∫ σñ

τc

V ′(θ1(s)− θ2(s)ds|+ |W1(σñ)−W1(τc)| > c(R)/5)

≤ P(τc < t(R), |W1(σñ)−W1(τc)| > c(R)/6)

≤ P( sup
0≤s≤2/R

|W1(τc + s)−W1(τc)| > c(R)/6)

which is exponentially small w.r.t. R. The proof is completed by taking the sum of two probabilities.

Lemma 4.4. Suppose that |r1(0)| = R, |r2(0)| ≤ Rα, where α ∈ (0, 23). Suppose that αt, α
′
t, and

αc satisfy α < α′
t < αt < 2/3 and αt/2 < αc < 1/3. Let τc, σk, k ≥ 0, and ñ, be defined as in (3.4)

with c(R) = Rαc and let Z̃ = Z(σñ). Then, uniformly in Rα′

t ≤ t(R) ≤ Rαt,

EZ̃2 = O((t(R)/R)2), EZ̃ = o(t(R)/R), as R → ∞. (4.5)
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Proof. The result on the second moment does not require much extra work compared to (2.5).

Indeed, from (1.1) and (2.5), we know that Z̃ =

ñ−1∑

k=0

Z̃k, where

Z̃k =

∫ σk+1

σk

V ′(θ1(s)− θ2(s))ds = r2(σk) ·O(R−2) +O(R−3) + Θ̃(R−5/2).

Thus, by Lemma 3.2, we obtain

‖Z̃k‖2 . ‖r2(σk)‖2/R2 +R−5/2 ≤ (2|r2(0)|e−k/R + 3)/R2 +R−5/2 . (t(R)e−k/R + 1)/R2.

Note that ñ < L(R) := t(R)(R + 2c(R)). So ‖Z̃‖2 ≤
ñ−1∑

k=0

‖Z̃k‖2 = O(t(R)/R).

The result on the first moment requires more delicate treatment. Since ñ < L(R), by (2.6),

EZ̃ =

L(R)∑

k=0

E
(
χ{k<ñ}Z̃k

)
=

L(R)∑

k=0

E
(
χ{k<ñ}E(Z̃k|Fσk

)
)

=

L(R)∑

k=0

E

(
χ{k<ñ}

[
r2(σk)

r1(σk)2
V ′(θ1(σk)− θ2(σk))

])
(4.6)

+

L(R)∑

k=0

E
(
χ{k<ñ}(r2(σk)

2 + 1) · O(1/R3)
)
+O(t(R)R−3/2). (4.7)

By Lemma 3.2, (4.7) is bounded by

O((r2(0)
2R+Rt(R))/R3) +O(t(R)/R−3/2) = O(r2(0)

2/R2) + o(t(R)/R) = o(t(R)/R)

since t(R) ≥ Rα.
It remains to consider (4.6). We will replace r1(σk) with r1(0), θ1(σk) with θ1(0), r2(σk) with

r2(k/R), and θ2(σk) with θ2(k/R), for k < ñ, in the following steps.
1. To start with, we substitute r1(σk) by r1(0) for k < ñ. Due to the bound on r2(σk) in

Lemma 3.2, the difference made to (4.6) will be o(t(R)/R). So it remains to show that

L(R)∑

k=0

E
(
χ{k<ñ}

[
r2(σk)V

′(θ1(σk)− θ2(σk))
])

= o(t(R)R). (4.8)

2. We observe that θ1(σk), 0 ≤ k < ñ < L(R), are obtained from each other by almost exact
rotations. Namely, for each such k, we have that

‖θ1(σk)− θ1(0)‖2 = O(t(R)/R), (4.9)

as R → ∞. Indeed, recalling the expansion (2.3) of θ1, we obtain:

θ1(σk) = θ1(0) +

k−1∑

j=0

χ{j<ñ} · O(1/R2) +

k−1∑

j=0

χ{j<ñ}

∫ σj+1

σj

∫ t

σj

dW1(u)dt. (4.10)

The first sum here is O(t(R)/R) because k < L(R). Thus (4.9) follows from

E



k−1∑

j=0

χ{j<ñ}

∫ σj+1

σj

∫ t

σj

dW1(u)dt



2

= E



k−1∑

j=0

∫ σj+1

σj

∫ t

σj

dW1(u)dt



2
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= E

k−1∑

j=0

[∫ σj+1

σj

∫ t

σj

dW1(u)dt

]2
≤ E

L(R)∑

j=0

[∫ σj+1

σj

∫ σj+1

u
dtdW1(u)

]2

≤
L(R)∑

j=0

E

(∫ σj+1

σj

(σj+1 − u)2du

)
≤ t(R)

R2
.

Now we can replace the left-hand side (4.8) by

L(R)∑

k=0

Eχ{k<ñ}
[
r2(σk)V

′(θ1(0) − θ2(σk))
]
, (4.11)

with difference estimated by

L(R)∑

k=0

∣∣Eχ{k<ñ}r2(σk)[V
′(θ1(0)− θ2(σk))− V ′(θ1(σk)− θ2(σk))]

∣∣

≤
L(R)∑

k=0

‖χ{k<ñ}r2(σk)‖2 · ‖θ1(0) − θ1(σk)‖2 .
L(R)∑

k=0

(2e−k/R|r2(0)|+ 3) · t(R)/R

. t(R)R · 2t(R)/R = o(t(R)R).

3. It remains to estimate (4.11). Recalling (3.10), (4.11) can be approximated by

L(R)∑

k=0

Eχ{k<ñ}
[
r2(k/R)V ′(θ1(0)− θ2(σk))

]
(4.12)

since E|χ{k≤ñ}(r2(σk) − r2(k/R))| = o(r2(0)e
−k/R + 1). Now we discard the first

√
t(R)R terms,

which will not make a big difference since, by (2.2) (cf. (3.7)),

∣∣∣∣∣∣∣

√
t(R)R∑

k=0

Eχ{k<ñ}
[
r2(k/R)V ′(θ1(0) − θ2(σk))

]
∣∣∣∣∣∣∣

≤

√
t(R)R∑

k=0

(|r2(0)|e−k/R + 2) = O(r2(0)R) +O(
√

t(R)R) = o(t(R)R).

(4.13)

4. For the tail of the series, we substitute θ2(σk) by θ2(k/R), and the difference is

L(R)∑

k=
√

t(R)R

Eχ{k<ñ}
[
r2(k/R)[V ′(θ1(0)− θ2(k/R)) − V ′(θ1(0) − θ2(σk))]

]

.

L(R)∑

k=
√

t(R)R

‖r2(k/R)‖2 ·
√

Eχ{k<ñ}|θ2(k/R)− θ2(σk)|

.

L(R)∑

k=
√

t(R)R

‖r2(k/R)‖2 ·
√

E

∫ k/R+2t(R)c(R)/R

k/R−2t(R)c(R)/R
|r2(s)|ds
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.

L(R)∑

k=
√

t(R)R

√
t(R)c(R)/R = o(t(R)R),

where we used the Cauchy-Schwarz inequality and the fact that both V ′ and V ′′ are bounded by 1
in the first inequality, (3.6) in the second inequality, and (2.2) (cf. (3.7)) in the third inequality.

Similarly, we can discard the last 4t(R)c(R) terms. Now the problem reduces to proving

t(R)(R−2c(R))∑

k=
√

t(R)R

Eχ{k<ñ}
[
r2(k/R)V ′(θ1(0)− θ2(k/R))

]
= o(t(R)R). (4.14)

We can get rid of the indicator function by the Cauchy-Schwarz inequality, (3.7), and Lemma 4.3,
since P(k ≥ ñ) ≤ P(τc < t(R)) for k ≤ t(R)(R − 2c(R)). We finally arrive at proving

t(R)(R−2c(R))∑

k=
√

t(R)R

E
[
r2(k/R)V ′(θ1(0)− θ2(k/R))

]
= o(t(R)R), (4.15)

which is a consequence of Lemma 3.4.

Proof of Proposition 4.2. Choose αc such that αt/2 < αc < 1/3. Let c(R) = Rαc and stopping
times τc, σk, k ≥ 0, σñ be defined as in (3.4). By (1.1), we have

r1(t(R)) = r1(σñ) +W1(t(R))−W1(σñ) +

∫ t(R)

t(R)∧τc
V ′(θ1(s)− θ2(s))ds

−
∫ σñ

t(R)∧τc
V ′(θ1(s)− θ2(s))ds

= r1(σñ) +W1(t(R))−W1(σñ) + χ{τc<t(R)} · O(t(R)) +O(1/R).

The desired result follows from Lemma 4.4 and Lemma 4.3.

Corollary 4.5. Suppose that |r1(0)| = R, |r2(0)| ≤ Rα, where α ∈ (0, 23). For each αt and α′
t that

satisfy α < α′
t < αt < 2/3, as R → ∞, uniformly in Rα′

t ≤ t(R) ≤ Rαt,

Er1(t(R)) = r1(0) + o(t(R)/R), (4.16)

Er1(t(R))2 = r1(0)
2 + t(R) + o(t(R)). (4.17)

E[r1(t(R))− r1(0)]
2 = t(R) + o(t(R)), (4.18)

4.2 Moderate time behavior

The results of §4.1 concern a relatively small time scale, and r1(t) typically does not change
much compared to the its own magnitude. The next lemma gives time and probability estimates
on a larger interval. The idea is to iterate the process on time scale t(R) until it exits the interval.

Lemma 4.6. Suppose that α ∈ (0, 23). For every β > 1, κ > 0, and for all R sufficiently large
(depending on β and κ), if |r1(0)| = R and |r2(0)| ≤ Rα, we have

Eτ ≤ (21/β − 1)(1 − (
1

2
)1/β)R2 + κR2, (4.19)

P(|r1(τ)|β =
1

2
Rβ) ≤ 2

3
, (4.20)

where τ = inf{t : |r1(t)|β = 1
2R

β or 2Rβ} ∧ inf{t : |r2(t)| = Rα}.
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Proof. Without loss of generality, we assume that r1(0) = R. Fix α < αt < 2/3 and choose
t(R) = Rαt . Define ηk = k · t(R) and k̃ = inf{k : ηk ≥ τ}. Note that the difference between τ and
ηk̃ is bounded deterministically by t(R). So, by the equation of r1(t), we have

‖r1(τ)− r1(ηk̃)‖1 ≤ ‖r1(τ)− r1(ηk̃)‖2 . t(R). (4.21)

By (4.17) in Corollary 4.5, using the Markov property, we have that

Eχ{k<k̃}[r1(ηk+1)
2 − r1(ηk)

2] = Eχ{k<k̃}t(R) + o(Eχ{k<k̃}t(R)),

hence

E[r1(ηk̃)
2 −R2] =

∞∑

k=0

Eχ{k<k̃}[r1(ηk+1)
2 − r1(ηk)

2] = Eηk̃ + o(Eηk̃). (4.22)

Similarly, by (4.16), we have
E[r1(ηk̃)−R] = o(Eηk̃/R). (4.23)

We compute the difference in the second moment by the Cauchy-Schwarz inequality and (4.21):

E[r1(ηk̃)
2 − r1(τ)

2] = E[2r1(τ) + (r1(ηk̃)− r1(τ))][(r1(ηk̃)− r1(τ)] . Rt(R) = o(R2). (4.24)

Then, we obtain

E[r1(τ)−R]2 = Er1(τ)
2 − 2REr1(τ) +R2

= Er1(ηk̃)
2 + o(R2)− 2R(R +O(t(R)) + o(Eηk̃/R)) +R2

= Eηk̃ + o(Eηk̃) + o(R2)

= Eτ + o(Eτ) + o(R2),

(4.25)

where the second line follows from (4.24), (4.21), and (4.23); the third line follows from (4.22); and
the last line follows from the fact that |τ − ηk̃| ≤ t(R). By the definition of τ , we see that

E[r1(τ)−R− (21/β − 1)R][r1(τ)−R+ (1− (
1

2
)1/β)R] ≤ 0,

since the function inside the expectation in non-positive on [2−1/βR, 21/βR]. Opening the bracket,
we have

E[r1(τ)−R]2 −
(
21/β + (

1

2
)1/β − 2

)
R ·E[r1(τ)−R] ≤ (21/β − 1)(1 − (

1

2
)1/β)R2. (4.26)

As follows from (4.21) and (4.23),

|E[r1(τ)−R]| ≤ |E[r1(ηk̃)−R]|+E|r1(τ)− r1(ηk̃)| = o(Eτ/R) +O(t(R)), (4.27)

By combining this with (4.25) and (4.26), we obtain, for β > 1, κ > 0 small enough, and all R
sufficiently large,

Eτ ≤ (21/β − 1)(1 − (
1

2
)1/β)R2 + κR2 < R2.

Returning to (4.27), we obtain that, for each β > 1,

Er1(τ) = R+ o(R) ≥
[
1

3
· 21/β +

2

3
(
1

2
)1/β

]
R,

for all R sufficiently large. The desired result follows.
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4.3 Long time behavior

Proof of Lemma 4.1. We divide the time into smaller intervals and iteratively apply Corollary 4.5.
By Proposition 3.1, with overwhelming probability, r2(t) stays relatively small hence satisfies the
assumption in Corollary 4.5.

Let σ = inf{s : r1(s ·T ) = 2t ·T}∧ inf{s : |r2(s ·T )| = 3 log T}. We introduce this stopping time
for technical reasons only, and {σ ≤ t} is not likely to happen. Fix t(x) = x1/6. Define τ0 = 0 and
inductively define τk+1 = τk+ t(r1(τk)), and n̂ = inf{k : τk ≥ (t∧ η∧σ) ·T}. By the definitions, we
immediately see that τn̂ ≤ t ·T +(2t ·T )1/6. Before carrying out our plan of applying Corollary 4.5
repeatedly, we first prove a claim that reduces the proof.

Claim. It is enough to prove (4.2) with t ∧ η replaced by τn̂/T .
Proof of the claim. Since P(σ < t ∧ η) ≤ P(σ < t) → 0 as T → ∞, by (1.1), the assumption that
V ′ is bounded by 1, and Proposition 3.1, it is enough to show (4.2) with t∧ η replaced by t∧ η ∧σ.
Now it remains to consider the difference induced during the interval [t ∧ η ∧ σ, τn̂/T ] which has
length no more than t(r1(τn̂−1))/T = O(T−5/6). Then, uniformly in XT

0 on K and |r2(0)| ≤ 2 log T ,

E

[
f(XT

τn̂/T
)− f(XT

t∧η∧σ)−
1

2

∫ τn̂/T

t∧η∧σ
f ′′(XT

s )ds

]

.
∣∣∣E
[
f(XT

τn̂/T
)− f(XT

t∧η∧σ)
]∣∣∣+E|τn̂/T − (t ∧ η ∧ σ)|

. E

[
1√
T
|r1(τn̂)− r1((t ∧ η ∧ σ)T )|

]
+O(T−5/6) = O(T−1/3) → 0,

where the last line follows from (1.1) and the fact that |τn̂ − (t ∧ η ∧ σ)T | = O(T 1/6). The claim is
proved.

Now let us prove (4.2) with t ∧ η replaced by τn̂/T . We divide the interval [0, T ] into smaller
subintervals using τk, k ≥ 0, and obtain

E

[
f(XT

τn̂/T
)− f(XT

0 )−
1

2

∫ τn̂/T

0
f ′′(XT

s )ds

]

= E

[
f(r1(τn̂)/

√
T )− f(r1(0)/

√
T )− 1

2T

∫ τn̂

0
f ′′(r1(s)/

√
T )ds

]

=

∞∑

k=0

E

(
χ{k<n̂}

[
f(r1(τk+1)/

√
T )− f(r1(τk)/

√
T )− 1

2T

∫ τk+1

τk

f ′′(r1(s)/
√
T )ds

])

=

∞∑

k=0

E

(
χ{k<n̂}E

[
f(r1(τk+1)/

√
T )− f(r1(τk)/

√
T )− 1

2T

∫ τk+1

τk

f ′′(r1(s)/
√
T )ds

∣∣∣∣Fτk

])

=

∞∑

k=0

E

(
χ{k<n̂}E

[
1√
T
f ′(r1(τk)/

√
T )(r1(τk+1)− r1(τk))

∣∣∣∣Fτk

])

+

∞∑

k=0

E

(
χ{k<n̂}E

[
1

2T
f ′′(r1(τk)/

√
T )(r1(τk+1)− r1(τk))

2 − 1

2T
f ′′(ξ̃k)(τk+1 − τk)

∣∣∣∣Fτk

])

+

∞∑

k=0

E

(
χ{k<n̂}E

[
1

6T
√
T
f ′′′(ξk)(r1(τk+1)− r1(τk))

3

∣∣∣∣Fτk

])

=: T1 + T2 + T3,
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where ξk and ξ̃k are (random) numbers between r1(τk)/
√
T and r1(τk+1)/

√
T . Recall (4.16) in

Corollary 4.5. Let us deal with the first term T1:

T1 =
∞∑

k=0

E

(
χ{k<n̂}E

[
1√
T
f ′(

r1(τk)√
T

)(r1(τk+1)− r1(τk))

∣∣∣∣Fτk

])

.

∞∑

k=0

E

(
χ{k<n̂}o(

t(r1(τk))

εT
)

)
= o(Eτn̂/T ).

Now we recall (4.18) in Corollary 4.5 and deal with the second term T2:

T2 =
∞∑

k=0

E

(
χ{k<n̂}E

[
1

2T
f ′′(

r1(τk)√
T

)(r1(τk+1)− r1(τk))
2 − 1

2T
f ′′(ξ̃k)(τk+1 − τk)

∣∣∣∣Fτk

])

=
1

2T

∞∑

k=0

E

(
χ{k<n̂}f

′′(
r1(τk)√

T
)E

[
(r1(τk+1)− r1(τk))

2 − t(r1(τk))

∣∣∣∣Fτk

])

+
1

2T

∞∑

k=0

E

(
χ{k<n̂}t(r1(τk))E

[
f ′′(

r1(τk)√
T

)− f ′′(ξ̃k)

∣∣∣∣Fτk

])

.
1

2T

∞∑

k=0

E
(
χ{k<n̂}o(t(r1(τk)))

)
+

1

2T

∞∑

k=0

E

(
χ{k<n̂}t(r1(τk))E

[
1√
T
|r1(τk+1)− r1(τk)|

∣∣∣∣Fτk

])

= o(Eτn̂/T )

since ξ̃k is a number between r1(τk)/
√
T and r1(τk+1)/

√
T , and (4.18) is used in the penultimate

step. Finally,

T3 =
∞∑

k=0

E

(
χ{k<n̂}E

[
1

6T
√
T
f ′′′(ξk)(r1(τk+1)− r1(τk))

3

∣∣∣∣Fτk

])

.

∞∑

k=0

E
(
χ{k<n̂}t(r1(τk))

3/(T
√
T )
)

.

∞∑

k=0

E
(
χ{k<n̂}t(r1(τk))/T · t(r1(τk))2/

√
T )
)
= o(Eτn̂/T ),

since χ{k<n̂}t(r1(τk)) = O( 6
√
T ) for all k. Thus, the desired result follows from that τn̂ = O(T ).

The same argument can be applied to prove the following extension of Lemma 4.1:

Lemma 4.7. For ε>0, let η = inf{s : XT
s = ε}. Then, for each t > 0 and bounded f ∈ C3([0,+∞))

with bounded derivatives up to order three, we have

E

[
f(XT

σ∧η)− f(XT
0 )−

1

2

∫ σ∧η

0
f ′′(XT

s )ds

]
→ 0,

as T → ∞, uniformly in XT
0 on a compact set K ⊂ [ε,+∞), |r2(0)|≤2 log T , and stopping time σ

(w.r.t. F̃T
· ) bounded by t.
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5 Excursions to small values of r1

5.1 Length of one excursion

Fix α1 = 6/7, α2 = 5/9, and let β in Lemma 4.6 be chosen as 3/2. Note that Lemma 4.6 will
be used in this section with α = α2/α1 < 2/3. Let τ(x) = inf{t : |r1(t)| = x}. In this section, we
obtain the upper bound on time spent by r1(t) near 0. More precisely, we consider the time |r1(t)|
spends on the interval [0, ε

√
T ] before exiting, where ε is a small parameter that will be specified

later. For time spent below | log T |α1 , we use the boundedness of the drift term to get a crude
estimate. Once |r1(t)| gets large enough, we can apply the result in Lemma 4.6.

Lemma 5.1. As T → ∞, Eτ(| log T |α1) = o( 10
√
T ), uniformly in |r1(0)| ≤ | log T |α1 and r2(0) ∈ R.

Proof. Since the drift term in the equation for r1(t) in (1.1) is bounded by 1 in absolute value,
E(τ(| log T |α1)) ≤ u(0), where u(x) = −1

2e
2x + x+ 1

2e
2| log T |α1 − | log T |α1 is the solution to

{
1
2u

′′ − u′ = −1

u′(0) = u(| log T |α1) = 0
.

It remains to see that u(0) = −1

2
+

1

2
e2| log T |α1 − | log T |α1 = o(

10
√
T ).

Proposition 5.2. Let ζ = inf{t : |r2(t)| = | log T |α2}. For each ε > 0 small enough, if |r1(0)| ≤
ε
√
T , |r2(0)| ≤ | log T |α2 , then E(τ(ε

√
T ) ∧ ζ) . ε2T , as T → ∞.

Proof. For all k ∈ N such that ⌊β log2(| log T |α1)⌋ − 1 ≤ k ≤ ⌊β log2(ε
√
T )⌋, let

tk = E(time spent by |r1(t)| in [2k/β, 2(k+1)/β ] before τ(ε
√
T ) ∧ ζ).

Be aware that, in the steps below, we use the same notation P and E in the formulas, however
with different initial conditions, specified before the formulas. Lemma 4.6 and the strong Markov
property imply that, if |r1(0)| ∈ [2k/β, 2(k+1)/β ] and |r2(0)| ≤ | log T |α2 , then

Eτ(2(k−1)/β) ∧ τ(2(k+2)/β) ∧ ζ ≤ 10 · 22k/β . (5.1)

Let K > 0 be specified later, τ̃1 = inf{t > K · 22k/β : |r1(t)| ∈ [2k/β, 2(k+1)/β ]}, and τ̃j+1 =
inf{t > K · 22k/β + τ̃j : |r1(t)| ∈ [2k/β , 2(k+1)/β ]}. Here the idea is that the process |r1(t)| starting
on [2k/β, 2(k+1)/β ] can make an attempt to reach 2(k+2)/β within time K · 22k/β , and then reaches
ε
√
T before coming back to the interval [2k/β, 2(k+1)/β ]. The stopping times τ̃j , j ≥ 1, are used to

describe the “failed” attempts. Take K = 100. Then uniformly in |r1(0)| ∈ [2k/β, 2(k+1)/β ],

P(τ(2(k+2)/β) ∧ ζ < K · 22k/β)
≥ P(τ(2(k−1)/β) ∧ τ(2(k+2)/β) ∧ ζ < K · 22k/β, τ(2(k+2)/β) ∧ ζ < τ(2(k−1)/β))

≥ P(τ(2(k+2)/β) ∧ ζ < τ(2(k−1)/β))−P(τ(2(k−1)/β) ∧ τ(2(k+2)/β) ∧ ζ ≥ K · 22k/β)

≥ 1

9
− 1

10
≥ 1

100
,

(5.2)

by Lemma 4.6 and (5.1). Note that, by (4.20), for |r1(0)| = 2(k+2)/β and |r2(0)| ≤ | log T |α2 ,
P(τ(ε

√
T ) ∧ ζ < τ(2(k+1)/β)) has a lower bound. Namely,

P(τ(ε
√
T ) ∧ ζ < τ(2(k+1)/β)) ≥ 2− 1

2⌊β log2(ε
√
T )⌋−(k+1) − 1

· 1
3
≥ 2k+1

(ε
√
T )β

· 1
3
. (5.3)
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Then, for each |r1(0)| ∈ [2k/β , 2(k+1)/β ],

P(τ̃1 > τ(ε
√
T ) ∧ ζ) ≥ P(τ(2(k+2)/β) < ζ, τ(2(k+2)/β) < K · 22k/β , τ(ε

√
T ) ∧ ζ < τ̃1)

+P(ζ ≤ τ(2(k+2)/β), ζ < K · 22k/β)
≥ P(τ(2(k+2)/β) ∧ ζ < K · 22k/β) · inf

|r1(0)|=2(k+2)/β

|r2(0)|≤| log T |α2

P(τ(ε
√
T ) ∧ ζ < τ(2(k+1)/β))

≥ 1

100
· 2k+1

(ε
√
T )β

· 1
3
,

by the strong Markov property applied at τ(2(k+2)/β) ∧ ζ, (4.20), and (5.2). To see the first
inequality, note that the events on the right-hand side are disjoint subsets of the event on the
left-hand side. Thus,

tk ≤ K · 22k/β
∞∑

j=1

P(τ̃j < τ(ε
√
T ) ∧ ζ)

. 22k/β
∞∑

j=1

sup
|r1(0)|∈[2k/β ,2(k+1)/β ]

|r2(0)|≤log Tα2

P(τ̃1 < τ(ε
√
T ) ∧ ζ)j . 22k/β−k(ε

√
T )β.

Denote k̂ = ⌊β log2(| log T |α1)⌋ − 1. Then it follows that

⌊β log2(ε
√
T )⌋∑

k=k̂

tk . ε2T.

It remains to consider t̂ = E(time spent by |r1(t)| in [0, 2k̂/β ] before τ(ε
√
T ) ∧ ζ).

Similarly to the way it was done before, we define following stopping times:

τ̂1 = inf{t > 9
√
T : |r1(t)| ∈ [0, 2k̂/β]}, and τ̂j+1 = inf{t > 9

√
T + τ̂j : |r1(t)| ∈ [0, 2k̂/β]}.

By Lemma 5.1 for each |r1(0)| ∈ [0, 2k̂/β] we have

P(τ(2(k̂+1)/β) <
9
√
T ) ≥ 1

2
. (5.4)

As in (5.3), by (4.20), for |r1(0)| = 2(k̂+1)/β and |r2(0)| ≤ | log T |α2 ,

P(τ(ε
√
T ) ∧ ζ < τ(2k̂/β)) ≥ 2− 1

2⌊β log2(ε
√
T )⌋−k̂ − 1

· 1
3
≥ 2k̂

(ε
√
T )β

· 1
3
. (5.5)

By (5.4), (5.5), and the strong Markov property applied at τ(2(k̂+1)/β)∧ζ, for each |r1(0)| ∈ [0, 2k̂/β],

P(τ̂1 > τ(ε
√
T ) ∧ ζ)

≥ P
(
ζ ≤ τ(2(k̂+1)/β) <

9
√
T
)
+P

(
τ(2(k̂+1)/β) <

9
√
T , τ(2(k̂+1)/β) < ζ, τ(ε

√
T ) ∧ ζ < τ̂1

)

≥ P(τ(2(k̂+1)/β) ∧ ζ <
9
√
T ) · inf

|r1(0)|=2(k̂+1)/β

|r2(0)|≤| log T |α2

P(τ(ε
√
T ) ∧ ζ < τ(2k̂/β))
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≥ 1

2
· 2k̂

(ε
√
T )β

· 1
3
.

Thus, by the strong Markov property, t̂ ≤ 9
√
T

∞∑

j=1

(1− 1

6

2k̂

(ε
√
T )β

)j .
9
√
T (ε

√
T )β = o(T ).

5.2 Number of excursions

Recall that XT
t = r1(t · T )/

√
T . Our next task is to prove a result (Corollary 5.4) that will

eventually be helpful in showing that the number of excursions from 2ε to ε of this process is not
too large (see (6.7)).

Lemma 5.3. Assume that XT
0 = 2ε and |r2(0)| < log T . Let η = inf{t : XT

t = ε}. Then for all ε
sufficiently small and T sufficiently large, P(η ≥ 1/2) ≥ ε/5.

Proof. We first prove two useful claims that will be used with the strong Markov property later.
Claim 1. Suppose that r1(0) =

√
T and |r2(0)| ≤ 2 log T . Let σ = inf{s : XT

s = ε or 2}. Then
P(σ > 1/2) > 1/4.
Proof of the claim. Let f(x) = −x2 + (2 + ε)x − 2ε on [ε, 2]. Note that f(ε) = f(2) = 0 and
f ′′ = −2. Hence Lemma 4.7 gives that

E

[
f(XT

σ∧ 1
2

)− f(1)− 1

2

∫ σ∧ 1
2

0
f ′′(XT

s )ds

]
→ 0, (5.6)

as T → ∞. Then it follows that, for T sufficiently large so that the left-hand side of (5.6) is less
than 1/8 in absolute value, and ε < 1/8,

Ef(XT
σ∧ 1

2

) ≥ f(1)−E

(
σ ∧ 1

2

)
− 1

8
≥ 1

4
,

Hence P(η ≥ 1

2
) ≥ P(σ ≥ 1

2
) > Ef(XT

σ∧ 1
2
)/ sup

[ε,2]
f ≥ 1

(2− ε)2
≥ 1

4
.

Claim 2. Suppose that XT
0 = 2ε and |r2(0)| < log T . Let ζT = inf{s : |r2(s · T )| = 2 log T}

and σ′ = inf{t : XT
t = 1} ∧ ζT ∧ 1

2 . Then, for sufficiently large T , P(σ′ < η) ≥ ε.

Proof of the claim. Let g(x) =
x− ε

1− ε
on [ε, 1]. By Lemma 4.7, E

[
g(XT

σ′∧η)− g(XT
0 )
]
→ 0, as

T → ∞. So, for T sufficiently large, Eg(XT
σ′∧η) ≥ g(2ε) − ε2/(1 − ε) = ε. Since g(ε) = 0 it follows

that P(σ′ < η) ≥ Eg(XT
σ′∧η)/ sup

[ε,1]
g ≥ ε.

We can identify two disjoint subsets of {η ≥ 1
2}: (i). σ′ = 1/2 < η; (ii). XT

t reaches 1 before
η ∧ ζT ∧ 1/2, and then spends more time than 1/2 before reaching ε. We obtain by the strong
Markov property

P

(
η ≥ 1

2

)
≥ P(σ′ =

1

2
, σ′ < η) +P(σ′ < ζT , σ

′ <
1

2
, η ≥ 1

2
)

≥ P(σ′ =
1

2
, σ′ < η) +P(σ′ < ζT , σ

′ <
1

2
, σ′ < η) · inf

r1(0)=
√
T ,|r2(0)|<2 log T

P(η ≥ 1

2
)

≥ 1

4
(P(σ′ < η)−P(σ′ = ζT )) ≥ ε/5,

by Claim 1 and Claim 2, and the fact that P(σ′ = ζT ) is small due to Proposition 3.1.
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From Lemma 5.3 we see that the following corollary holds with κ = (1− 1/
√
e)/5.

Corollary 5.4. Assume that XT
0 = 2ε and |r2(0)| < log T . Let η = inf{t : XT

t = ε}. Then there
exists κ > 0 such that, for each ε sufficiently small,

Ee−η ≤ 1− κε,

for all T sufficiently large.

6 Proof of the main result

The main idea of the proof is to show that |XT
t | asymptotically solves the martingale problem

for the generator of a Brownian motion reflected at the origin. The times where XT
t is far from

the origin are handled by Lemma 4.7, while the times where XT
t is small are controlled using the

results of Section 5, namely, Proposition 5.2 and Corollary 5.4.
Lemma 4.7 and Corollary 5.4 deal with the case where r1 > 0. However, following the same

steps, we can obtain similar results in the case where r1 is negative. Therefore, we have

Lemma 6.1. For ε>0, let η=inf{s : |XT
s | = ε}. Then, for each t>0 and bounded f ∈ C3([0,+∞))

with bounded derivatives up to order three, we have

E

[
f(|XT

σ∧η |)− f(|XT
0 |)−

1

2

∫ σ∧η

0
f ′′(|XT

s |)ds
]
→ 0, (6.1)

as T → ∞, uniformly in |XT
0 | on a compact set K⊂ [ε,+∞), |r2(0)|≤2 log T , and stopping time σ

(w.r.t. F̃T
· ) bounded by t.

Lemma 6.2. Assume that |XT
0 | = 2ε and |r2(0)| ≤ log T . Let η = inf{t : |XT

t | = ε}. Then there
exists κ > 0 such that, for all ε sufficiently small,

Ee−η ≤ 1− κε, (6.2)

for all T sufficiently large.

Let us again fix α2 = 5/9. The key step in the proof of Theorem 1.1 is the following estimate.

Lemma 6.3. For each t > 0 and bounded f ∈ C3([0,+∞)) with bounded derivatives up to order
three, such that f ′

+(0) = 0,

E[f(|XT
t |)− f(|XT

0 |)−
1

2

∫ t

0
f ′′(|XT

s |)ds] → 0, as T → ∞, (6.3)

uniformly in XT
0 on a compact set and |r2(0)| ≤ 1

2 log T
α2.

Proof. Fix δ > 0. Define ζT = inf{s : |r2(s · T )| = log Tα2}, and a sequence of stopping times:
η0 ≤ σ1 ≤ η1 ≤ · · · , by η0 = 0, σk = inf{s ≥ ηk−1 : |XT

s | = 2ε}, ηk = inf{s ≥ σk : |XT
s | = ε},

k ≥ 1. Since f is bounded together with its derivatives and P(ζT < t) → 0 as T → ∞, it is enough
to prove

E[f(|XT
t∧ζT |)− f(|XT

0 |)−
1

2

∫ t∧ζT

0
f ′′(|XT

s |)ds] → 0. (6.4)
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Then

E[f(|XT
t∧ζT |)− f(|XT

0 |)−
1

2

∫ t∧ζT

0
f ′′(|XT

s |)ds]

= E

∞∑

k=0

χ{ηk<t∧ζT }

[
f(|XT

σk+1∧t∧ζT |)− f(|XT
ηk
|)− 1

2

∫ σk+1∧t∧ζT

ηk

f ′′(|XT
s |)ds

]
(6.5)

+E

∞∑

k=1

χ{σk<t∧ζT }

[
f(|XT

ηk∧t∧ζT |)− f(|XT
σk
|)− 1

2

∫ ηk∧t∧ζT

σk

f ′′(|XT
s |)ds

]
. (6.6)

By Lemma 6.2, we have that for each k ≥ 0, by the strong Markov property,

P(ηk < t ∧ ζT ) ≤ etE(χ{ηk<ζT }e
−ηk) ≤ et(1− κε)k,

P(σk < t ∧ ζT ) ≤ P(σk−1 < t ∧ ζT ) ≤ et(1− κε)k−1.
(6.7)

It follows that
∞∑

k=0

P(ηk < t ∧ ζT ) ≤
et

κε
, (6.8)

∞∑

k=1

P(σk < t ∧ ζT ) ≤
et

κε
. (6.9)

Then we can estimate the first term (6.5) using the strong Markov property:
∣∣∣∣∣E

∞∑

k=0

χ{ηk<t∧ζT }[f(|XT
σk+1∧t∧ζT |)− f(|XT

ηk
|)− 1

2

∫ σk+1∧t∧ζT

ηk

f ′′(|XT
s |)ds]

∣∣∣∣∣

≤ |E[f(|XT
σ1∧t∧ζT |)− f(|XT

0 |)−
1

2

∫ σ1∧t∧ζT

ηk

f ′′(|XT
s |)ds]| +

∞∑

k=1

P(ηk < t ∧ ζT ) · S, (6.10)

where

S = sup
|r1(0)|=ε

√
T

|r2(0)|≤log Tα2

E

∣∣∣∣[f(|XT
σ1∧t∧ζT |)− f(|XT

0 |)−
1

2

∫ σ1∧t∧ζT

0
f ′′(|XT

s |)ds]
∣∣∣∣ .

If |XT
0 | ≥ 2ε, then, by Lemma 6.1, for each ε > 0, we can choose T large enough such that the

first term in (6.10) is small. On the other hand, if |XT
0 | < 2ε, we can choose ε small enough such

that |f(|XT
σ1∧t∧ζT |)− f(|XT

0 |)| is small enough due to the boundedness of f ′ and the integral is also
small due to the boundedness of f ′′ and Proposition 5.2 when T is sufficiently large. Thus, the first
term in (6.10) can be bounded by δ/3 for small ε and all large T . Similarly, we can choose ε small
enough and then T large enough such that S/ε is small since f ′

+(0) = 0, ||XT
σ1∧t∧ζT | − |XT

0 || ≤ ε,

and Eσ1 ∧ t ∧ ζT = O(ε2), as T → ∞. Therefore, the second term in (6.10) can be made smaller
than δ/3 for small ε and all large T , by (6.8).

We can estimate the second term (6.6) similarly:
∣∣∣∣∣E

∞∑

k=1

χ{σk<t∧ζT }[f(|XT
ηk∧t∧ζT |)− f(|XT

σk
|)− 1

2

∫ ηk∧t∧ζT

σk

f ′′(|XT
s |)ds]

∣∣∣∣∣

≤
∞∑

k=1

∣∣∣∣E
(
χ{σk<t∧ζT }[f(|XT

ηk∧t∧ζT |)− f(|XT
σk
|)− 1

2

∫ ηk∧t∧ζT

σk

f ′′(|XT
s |)ds]

)∣∣∣∣ ≤ δ/3,

for all T sufficiently large, similarly by the strong Markov property, (6.9), and Lemma 6.1.
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Lemma 6.4. The family of measures on C([0,+∞)) induced by the processes |XT
t |, T ≥ 1, with

initial distribution µ of (r1, r2, θ1, θ2), is tight.

Proof. We verify the conditions of Theorem 7.3 (see also the Corollary after Theorem 7.4) in [1]:

(i) For each ε > 0 and t > 0, there exist M > 0 and T0 > 0 such that

P(|XT
0 | > M) < ε, for all T > T0;

(ii) For each ε > 0, t > 0, and κ > 0, there exist 0 < δ < 1 and T0 > 0 such that

1

δ
P( sup

s≤u≤s+δ

∣∣|XT
u | − |XT

s |
∣∣ > κ) < ε, for all 0 ≤ s ≤ t− δ, T > T0.

Part (i) is trivial since we have a fixed initial distribution of r1. To prove part (ii), we fix ε > 0,
t > 0, and κ > 0, and notice that for each δ and each 0 ≤ s ≤ t− δ, we have

P( sup
s≤u≤s+δ

∣∣|XT
u | − |XT

s |
∣∣ > κ) < P(τ < s+ δ, σ < s+ δ), (6.11)

where τ = inf{u ≥ s : |XT
u | ≥ 2κ/3} and σ = inf{u ≥ τ : |XT

u −XT
τ | ≥ κ/3}. (Here we introduce the

stopping times to start the processXT away from the origin in order to apply our previous estimates.
The definition of the stopping time τ also implies the last inequality in the proof.) Moreover, by (1.1)
and Proposition 3.1, we see that P(sup0≤s≤t·T |r1(s)| > T 2) +P(sup0≤s≤t·T |r2(s)| > log T ) < 1/T
for all T large enough. Thus, by the strong Markov property, it suffices to prove that for any given
2κ/3 ≤ |Xε

0 | ≤ T 3/2 (or equivalently 2κ
√
T/3 ≤ |r1(0)| ≤ T 2) and |r2(0)| ≤ log T ,

P(σ̃ < δT ) < εδ/2, (6.12)

where σ̃ = inf{u : |r1(σ̃) − r1(0)| ≥ κ
√
T/3}. Recall the definition of the process Z(·) in (2.4).

Then
P(σ̃ < δT ) < P({ sup

0≤s≤δT
|W1(s)| > κ

√
T/6} ∪ { sup

0≤s≤δT
|Z(s)| > κ

√
T/6}), (6.13)

Let us define σ̂ = inf{s : |W1(s)| ≥ κ
√
T/6} ∧ inf{s : |Z(s)| ≥ κ

√
T/6} ∧ inf{s : |r2(s)| ≥

log T} ∧ δT . Then P(σ̃ < δT ) < P(σ̂ < δT ). Since P(|W1(σ̂)| ≥ κ
√
T/6) and P(|r2(σ̂)| ≥ log T )

are exponentially small as δ ↓ 0 or T → ∞, it remains to consider P(|Z(σ̂)| ≥ κ
√
T/6). We define

η0 = 0, ηk+1 = ηk+t(r1(ηk)), where the function t(x) can be chosen as x1/6, and k̂ = inf{k : ηk ≥ σ̂}.
Then, by Proposition 4.2 and noting that t(ηk̂−1) <

3
√
T , we have for all T sufficiently large,

‖Z(σ̂)‖2 ≤ ‖Z(ηk̂))‖2 +
3
√
T .

2δT

6

√
|r1(0)| − κ

√
T/3

·
6

√
|r1(0)| + κ

√
T/3

|r1(0)| − κ
√
T/3

+
3
√
T .

δ

κ

√
T .

Hence, by Chebyshev’s inequality, P(|Z(σ̂)| ≥ κ
√
T/6) . δ2/κ4 < εδ/4 if we choose δ sufficiently

small and then T sufficiently large.

Proof of Theorem 1.1. By the tightness of the family of processes |XT
t | established in Lemma 6.4,

for every sequence T̂n → ∞, there is a subsequence Tn → ∞ such that XTn
t converges weakly to

a continuous process Yt. The desired weak convergence follows if we prove that, no matter which
sequence {T̂n} and {Tn} we choose, Yt always coincides in distribution with the Brownian motion
starting and reflected at the origin. Let S = [0,+∞), C0(S) be the set of continuous functions that
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converge to 0 at +∞, A = 1
2∆ with the domain D(A) = {f ∈ C0(S) : f

′
+(0) = 0, f ′′ ∈ C0(S)}, and

D is the set of all functions in D(A) that have bounded derivatives up to order three. We will show
that Yt is a solution to the martingale problem for (A|D, 0), i.e., for each f ∈ D and 0 ≤ t1 ≤ t2,

E[f(Yt2)− f(Yt1)−
1

2

∫ t2

t1

f ′′(Yt)dt
∣∣FY·

t1 ] = 0, Y0 = 0. (6.14)

It is easy to see that the pair (C0(S),D) satisfies the following conditions:

(i) D is dense in C0(S);

(ii) There exists λ > 0 such that Range(λ−A|D) is dense in C0(S);

(iii) For each pair of measures ν1, ν2 on S, the equality
∫
S fdν1 =

∫
S fdν2 for all f ∈ C0(S) implies

ν1 = ν2.

Therefore, Theorem 4.1 in Chapter 4 of [8] implies that the solution to the martingale problem
(6.14) is unique.

It remains to prove every limiting process satisfies (6.14). It is easy to see that |XT
0 | → 0 as

T → ∞. Therefore, it is sufficient to prove that, for each f ∈ D, 0 ≤ s1 < ... < sk ≤ t1, and
g1, ..., gk ∈ C0(S),

E

[
k∏

i=1

gi(Ysi)(f(Yt2)− f(Yt1)−
1

2

∫ t2

t1

f ′′(Yt)dt)

]
= 0.

Since XTn
t converges to Yt weakly, it is enough to prove

E

[
k∏

i=1

gi(|XTn
si |)(f(|X

Tn
t2 |)− f(|XTn

t1 |)− 1

2

∫ t2

t1

f ′′(|XTn
t |)dt)

]
→ 0,

which follows from Lemma 6.4, Proposition 3.1, Lemma 6.3, and the strong Markov property.
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