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1. INTRODUCTION
Let
(1.1) H(p,r) = {wo,7) + O(r?)

be a C? function defined for p € T? = R?/Z% and r ~ 0 € R%.
The Hamiltonian system associated to H is given by

> = 0. H(p,r
() { f: —8¢I(-IS0(<,0,>7’).

Clearly the torus T? x {0} is invariant under the Hamiltonian flow and
the induced dynamics is the translation

(t, ) — © + twp.

Moreover this torus is Lagrangian with respect to the canonical sym-
plectic form dp A dr on T¢ x R,
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The objective of this paper is to investigate the "KAM stability” of
the torus 7o := T x {0} under different hypothesis on H and wy. We
first explain what we understand by "KAM stability”. In its stronger
form, we use this terminology to refer to the classical KAM (after
Kolmogorov Arnol’d Moser) phenomenon of accumulation of 7y by in-
variant KAM tori whose Lebesgue density in the phase space tend to
one in the neighborhood of 75 and whose frequencies cover a set of
positive measure. More precisely, a vector w is said to be Diophantine
if there exist kK > 0, 7 > d — 1 such that
(1.2) (k,w)| > —— Yk € Z*~ {0}

k|7

We then use the notation w € DC(k, 7). We say that a C” (or smooth,
or analytic) invariant Lagrangian torus with an induced flow that is C”
(or smoothly, or analytically) conjugated to a Diophantine translation

(t, ) — @+ tw

is a C" (smooth, analytic) KAM-torus of (x)y with translation vector
w.
We say that 7y is "KAM stable” in a weak sense if the set of KAM tori
that accumulates it has positive Lebesgue measure but not necessarily
density one. We also drop the requirement that the frequencies cover
a set of positive measure.

When we prove the accumulation of 7y by invariant KAM tori but
we do not know if their measure is positive we simply say that 7 is
accumulated by KAM tori and do not speak of stability.

In this paper we deal essentially with the following situations and
results. Unless otherwise mentioned the Hamiltonian H is assumed to
be analytic as well as 7 and the KAM tori that are obtained. The
exact statements and notations will be deferred to the next section.

(i) If wp is Diophantine then 7g is accumulated by KAM tori.

(ii) If wp is Diophantine and if the Birkhoff normal form (BNF) of
H satisfies a Riissmann transversality condition at 7y, then 7
is KAM stable.

(iii) In two degrees of freedom (d = 2), if wy is rationally independent
and if H satisfies a Kolmogorov non degeneracy condition of its
Hessian matrix at 7y, 7o is KAM stable. For d > 3, we get
KAM stability for a class of wy that includes all vectors except
a meagre set of zero Hausdorff dimension.

(iv) For d > 4, for any wy € R?, there exists a C> (Gevrey) H as
in (1.1) such that 75 is not KAM stable (no positive measure
of accumulating tori).
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(v) For d = 2, if wy is Diophantine and H is smooth 7Ty is KAM
stable.

It was conjectured by M. Herman in his ICM98-lecture [H] that in
the neighborhood of an analytic KAM-torus, the set of KAM-tori is
of positive measure, i.e. KAM stability in a weak sense holds. (i)
falls short from proving Herman’s conjecture. In the case where we
cannot prove that 7y is KAM stable we actually show that there exists
a subvariety of dimension at least d+1 that is foliated by analytic KAM
tori with frequency wy. The proof of (i) is based on a counter term
KAM theorem inspired by Herman. For every value ¢ ~ 0 of the action
variable there exists a unique frequency €(c) that cancels the counter
term, and if this frequency is Diophantine this yields an invariant KAM
torus with frequency §2(c). One can show that the jets of the function
Q(c) are given by those of the gradient of the Birkhoff normal form
when the latter is well defined (which is the case if wy is Diophantine).
The following alternative then holds : either the BNF is non degenerate
and the function 2 takes Diophantine values on a positive measure set
which yields KAM stability (this is (iii)), or the BNF is degenerate and
we can use the analytic dependance of the counter term on the action
variable to show the existence of a direction (after a coordinate change
in the action variable) that spans a subvariety of invariant KAM tori
of frequency wy.

Point (ii) is a more classical KAM result. Its proof is obtained
from the counter term KAM theorem as explained above and it can
be adapted to smooth Hamiltonians. The hypothesis wy Diophantine
is necessary to guarantee the existence of a BNF.

In (iii) KAM stability is studied in the neighborhood of a Liouville
torus. The difficulty is that the BNF may not be defined. This dif-
ficulty can be overcome if the Kolmogorov non degeneracy condition
is satisfied by H at 7y, and if the rationally independent frequency wy
satisfies an arithmetic condition that contains all rationally indepen-
dent vectors if d = 2 and all but a meagre set of Hausdorff dimension
0 if d > 3. The condition is that the uniform Diophantine exponent
of wy denoted by W(wy) be finite. We recall that in the case of flows,
we define W(wp) as the supremum of all real numbers ~ such that for
any sufficiently large N, there exists k € Z? such that ||k|| < N and
|(k,w)] < N=7. We do not know whether invariant tori with frequen-
cies wp such that @W(wy) = +oo are KAM stable if the Kolmogorov non
degeneracy condition is satisfied.

The construction of (iv) is based on the successive conjugation method
(Anosov Katok construction) starting from an ”infinitely degenerate
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twist map” of the form (p,r) — (¢ + f(r),r) with the frequency map
f such that f(0) = wy and f(r) having a fixed Liouville coordinate in
small neighborhoods of any r such that r4 # 0. The construction only
applies to the case d > 4. In case d = 2 a smooth version of our KAM
counter term theorem yields KAM stability of Diophantine tori just as
in Herman’s last geometric theorem any Diophantine KAM circle of
a smooth diffeomorphism of the annulus is shown to be KAM stable

2. STATEMENTS

2.1. Analytic KAM tori are never isolated. Let H be a real an-
alytic function of the form (1.1).

Theorem A. If wy is Diophantine, the torus T x {0} is accumulated
by analytic KAM tori of (x)g with Diophantine translation vector.

In fact, we shall prove a more precise result. Let Ny be the Birkhoff
Normal Form of H, that is a uniquely defined power series in the r
variable as soon as wp is Diophantine (see Section 3.1). We say that
Ny is j-degenerate if there exist j orthonormal vectors vy, ..., 7, such
that for every r ~ 0 € R?

(OrNu(r),v) =0 V1<i<y,

but no j + 1 orthonormal vectors with this property. Since wy # 0
clearly 5 < d—1. A 0-degenerate Ny is also said to be non-degenerate.

Theorem B. If wy is Diophantine and Ny is j-degenerate, then there
exists an analytic (co-isotropic) subvariety of dimension d+ j contain-
ing T x {0} and foliated by analytic KAM-tori of (*)y with translation
vector wy.

A stronger result is known when Ny is (d — 1)-degenerate. Indeed
Riissmann [R] (in a different setting) proved

Theorem (Riissmann). If wy is Diophantine and Ny is (d — 1)-
degenerate, then a full neighborhood of T x {0} is foliated by analytic
KAM-tori of (x)g with translation vector € Ruwy.

Our proof of Theorem B in Section 6 will also yield Riissmann’s
result. Theorem A follows from Theorem B in the degenerate case and
from a more classical KAM theorem in the non-degenerate theorem
that we discuss in the next section.
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2.2. KAM stability under non degeneracy conditions of the
BNF.

Let H be a real analytic function of the form (1.1). We say that H
has a normal form Ny if there exists a formal power series Ny and a
formal symplectic mapping Z of the form

Z(p,r) = (p + O(r),r + O*(r))
such that
Ho Z(g,r) = Ny (r) + 07 (r) € C*(T" x {0}).

Remark. This is in particular the case when wqy ts Diophantine — Ny
is the classical Birkhoff normal form. Moreover if a normal form is
exists and w is rationally independent, then it is unique.

Only assuming existence and non-degeneracy of the normal form Ny,
we shall prove the following.

Theorem C. If Ny exists, is unique and is non-degenerate, then in
any neighborhood of T x {0} the set of analytic KAM-tori of () is
of positive Lebesque measure with density one at the torus T¢ x {0}.
In particular, if wy is Diophantine and if Ny is non degenerate at Ty,

then Ty is KAM stable.

The condition that Ny is non-degenerate is essentially equivalent
to Riissmann’s non-degeneracy condition (see [R2, XYQ)]). It is here
shown to be sufficient in this singular perturbation situation.

Point (ii) of our introduction corresponds to the second statement of
Theorem C.

Hence, the conjecture of M. Herman has an affirmative answer when
Ny is non-degenerate (theorem C) or (d — 1)-degenerate (Riissmann’s
theorem). Our theorems do not provide an answer to the conjecture in
the intermediates cases.

2.3. KAM stability in the absence of BNF : Liouville torus
with non-degeneracy of Kolmogorov type. Let H be a real an-
alytic function of the form (1.1). and let
0*H
My= | ——(¢,0)dep.
0= | e (¢, 0)dy
We recall the notation @W(wp) as the supremum of all real numbers ~
such that for any sufficiently large N

min |[(k,wo)| < N7,
0<|k|<N
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Theorem D. If &(wy) < 400 and if My is non-singular then in
any neighborhood of T¢ x {0} the set of analytic KAM-tori of (x)y is
of positive Lebesque measure with density one at the torus T¢ x {0}.
Moreover, the set of frequencies of the KAM tori has positive Lebesque
measure in R,

Since for any rationally independent vector wy € R? we have that
W(wg) = 1 we see that KAM stability holds at 7o without any other
arithmetic condition when d = 2. This is a precise formulation of (iii).

Remark. We could relax the condition ©(wg) < +0o to the existence
of sequences Q,, — oo and €, — 0 such that |(k,wo)| > e~"%" for any
ke Zh0< [k < Q.

2.4. Smooth counterexamples to KAM stability. In the C*-cate-
gory the situation is different from that of Theorem A. For d = 2, we
show in section 7.1 that the same 1 dimensional phenomenon of the
frequency map pointed out by Herman (see [FK] for the discrete case)
gives a set of positive measure of C>** KAM-tori in any neighborhood of
T? x {0}. For d = 3, we have no results, but for d > 4 we shall prove

Theorem E. Let d > 4. For any € > 0,s € N there exists a function
h in C*(T* x RY), satisfying h(p,r) = O>(ry) and

1]l s paxmay < €
such that the flow ®%; of H(p,r) = (wo,r) + h(p,r) satisfies

limsup | (i2,7)]| = oo
t—+oo

for any (p,r) satisfying ry # 0.

Remark. We will see in Section 7 that the construction of Theorem E
can actually be carried out in any Gevrey class G with o > 1.

Notice that in the examples of Theorem E the hyperplane ry, = 0 is
foliated by KAM tori with translation vector wy, so the torus T? x {0}
is not isolated. Theorem E gives however counter-examples for d > 4
to the positive measure accumulation by KAM-tori. Indeed, each point
that lies outside this hyperplane diffuses to infinity along a sequence
of time. As we shall see in Proposition 4.3, its positive and negative
semi-orbits actually oscillate between —oco and +o0 in projection to at
least two action coordinates.

It would be interesting to construct smooth examples with an iso-
lated KAM-torus, thus showing that the phenomenon of Theorem A is
purely analytic. On the other hand if Herman’s conjecture is correct,
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then the phenomenon of Theorem E cannot be carried to the analytic
setting.

It is worth noting that Herman did also announce the existence of
counter-examples in the C*° category to the positive measure conjec-
ture, provided d > 4. However, he did not provide any clue to these
examples and we are not aware whether the examples he had in mind
had any invariant tori accumulating the KAM-torus.

2.5. Plan of the paper. The paper is organized in the following way.
In section 3 we discuss the Birkhoff normal form and we give a different
(from the usual) characterization of it. In section 4

we formulate a KAM counter term theorem which we use to give still
another characterization of the Birkhoff normal form. Using this result
we derive Theorem B and C and Riissmann’s theorem in sections 5 and
6. In section 7 we prove Theorem E, and in section 8 we give a proof
of the KAM counter term theorem used in section 4.

2.6. Notations. We denote by D? the polydisk in C? with radius 4.
More generally if d = (dy,...,d,) and § = (d1,...,0,), then
Df = D§* x -+ x Djr.
Let ']TZ be the complex neighbourhood of width p of of T¢:
({z € C:|3z| < p}/7)".

A holomorphich function f : Tz xD§ — Cis real if it gives real values
to real arguments. We denote by

C*(T4 x Df)
the space of such real holomorphic functions which we provide with the
norm

[flos = sup  [f(e,2)].

(,2)€T XD
We let
4% {0}) = Ucw x D).

We denote by 93 f and 07 f the partlal derivates of f with respect to ¢
and z respectively, with the usual multi-index notations. If z = (2/, 2”)
we say that

fe0(¥)
if and only if 9% f(,0, 2”) = 0 for all |o/| < j. We denote by 9, f and
0. f the gradient of f with respect to ¢ and z, respectively, and by 837 f
and 92 f the corresponding Hessian.
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For a function f € C*(T¢ x {0}), M(f) is the mean value

| 102106

We shall also use the same notations for C"-valued functions f =
(fi,-.., fn) with the absolute value replaced by |f| = max;|f;| (or
some other norm on C").

Formal power series. Let z = (z1,...,2,). An element
fec ()]
is a formal power series
F=1(0.2) =) aalp)z®
aeN”?
whose coefficients a,, € C“’(']I‘g) (possibly vector valued). We denote by
[f1i(p;2) = Z aq ()27,
|al=j
the homogenous component of degre j, and
=21
i<j
The partial derivate 93 f and 07 f are well-defined and if z = (2/,2")
we define that f € O7(Z’) in the same way as for functions. The mean

value M(f) is the power series obtained by taking the mean values of
the coefficients.

Parameters. Let B be an open subset of some euclidean space. De-
fine

C(T4 x DS, B)
to be the set of C* functions (possibly vector valued)
fiTexDsx B3 (p,z,w) = fp,2,w)
such that for all w € B!
fu: Ty x D§ 3 (p,w) = f(p,2,0)
is real holomorphic. We define

Hf“p,é,s = sup |63fw’p,5'
|| <s

1 we appologize for the double use of w
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3. THE BIRKHOFF NORMAL ForM (BNF)

Let
H(p,r) = (wo,r) + O*(r) € C¥(T4 x Dj)
and
wo € DC (Ko, To)-

3.1. The Birkhoff normal form (BNF). Let us recall a well-known

result.

Proposition. There exist

{ (@, r) € Co(T))|[r]] N O*(r)
N(r) € R[[r]

such that

H(p,r+ 0y f(1h,7)) = N(r).
Moreover, N(r) is unique and f is uniquely determined by fixing arbi-
trarily the mean value M(f).

Remark. The unique series N s the Birkhoff normal form of H, de-
noted Ny . It is clear that

Ng(r) = (wo,r) + O*(r).

We say that the unique f for which M(f) = 0 is the generating function
of the BNF, denoted fp.

We know that the generating function fy is convergent if, and only
if, H is integrable [I] (see also [V, NJ). It was known to Poincaré that
for “typical” (in a sense we would call today generic) H, fy will be
divergent. (Siegel [S55] proved the same thing in a neigbourhood of an
elliptic equilibrium with another, and stronger, notion of “typical”.)

However, essentially nothing is known about the BNF itself when wy
is Diophantien. For example, it is not known:

(i) can Ny be divergent?

(ii) if H is non integrable, can Ny be convergent?
We only have a result of Perez-Marco [P-M] saying that if the BNF Ny
is divergent for some H, then Ny is divergent for “typical” (i.e. except
for a pluri-polar set) H. More generally, nothing is known about the
set of all BNF’s

B(wy) = {Nyg : H(p,7) = (wo, ) + O*(1)}.2

2 apart from the fact that Ny has some Gevrey-growth [S05] and that B(wo)
contains all convergent series
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Is it a “large” set or a “small” set in the space of all power series? It
has been shown [B] that if Ny fulfills a certain condition G, which is
prevalent in the space of power series, then the invariant torus T¢ x {0}
is doubly exponentially stable. However, it is not known if Ny can
belong to G when H is non-integrable.

3.2. Exact symplectic mappings and generating functions. Con-
sider the equations

=1 +p(,r)

with
p,q € C*(T? x {0})

and

det(! + Oyp(¥,7)) # 0
for all (¢,r) € T? x {r ~ 0}.
These equations can be solved uniquely for (1, s) as
v=p+0(p,r)
(3.4) { s=r+ R(p,r)
with
®, R € Cc¥(T¢ x {0})
and
det(! + 0,P(p,7)) #0

for all (¢,7) € T¢ x {r ~ 0}. Conversely, the equations (3.4), under
the two supplementary conditions on ®, R, can be solved uniquely for
(p,s) as (3.3), with the two supplementary conditions on p, g.

Remark. It is easy to verify that
p€O) and qe O%r)
if and only iof
® € O(r) and R O*(r).
The mapping
Z (o) = (¥, 8)

is a real analytic local diffeomeorphism on T¢x {r ~ 0}. It is symplectic
if and only if the one-form

Z*(rdp) — (rdyp)

is closed, and it is ezact if and only if this one-form is exact.
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Proposition 3.1. 7 is symplectic if and only if the one-form pdr-+qdy
1s closed. Z is exact if and only if the one-form pdr + qdi is exact

If
®cOr) and Re O r),
then Z is exact if and only if it is symplectic.
Hence, if Z is exact there is a unique (modulo an additive constant)
function f such that df = pdr + qdi). The function f is said to be a

generating function for Z.
Proof. ~ We have

sdip —rdp = (r+q(u,r))dip — rdip — Dy(rp)dip — Y r;0,,p; (), r)dr;
i)j
and
d(rp) = Oy(rp)dip + pdr + Y _ 150, pjdr;.
1,7
Hence
sdp — rdp = qdip + pdr — d(rp)

which proves the first two statements.
Finally, if

®cO(r) and R <€ O*r),
then

peO(r) and g€ O*r).
Now, pdr + qdv is closed if and only if for all 7, 5

8Tlpj - a’/‘jpi
Oy, 45 = Oy, i
awzpj = arj qi

By the symmetry condition on 0,p this implies that there exists a
unique function f(1,r) such that for all j

o, f=pj, [f(¥,0)=0.
Then, for all 4, j,
O, Oy, f = Oy,0j = Or; s
and, hence,
Oy, f (U, 1) = @i(¥,7) + hi(¥).
Since f,q € O(r), this implies that h; = 0. O
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Corollary 3.2. If
Z: Tdx {r~0})—Tx {r~0}
(p,7) = (9 + @(p,7),m + Rlp, 1))
is a symplectic real analytic local diffeomorphism such that
®cO(r) and Rec O*r),
then
Nuoz = Ny.

Proof.  Applying the BNF proposition of section 3.1 to H and H =
H o Z we find two generating functions

f, e c(To)[[r]) n O*(r).

By truncating these function at degre n and applying Proposition 3.1
we find two exact symplectic mappings W,, and W,, such that

H oW, (p,r) = Nij +O""(r)
and 3

HoZoWy(p,1) = Nijoy + 0" (r)
By Proposition 3.1 again Z o W,, has a generating function
Jn € Cw(Tﬁu X Dd//) N OQ(T).
Letting n — oo, the result now follows from the uniqueness of the BNF
proposition of section 3.1. O
3.3. Another characterization of the BNF. Let P(r,c) be a power
series in 7, c. We say that
P(r,c) =0 mod O*(r —c) or P(r,c) € O*r—c)

if

P(Ta C) = <T -G, Q(h C)(’I" - C))
for some matrix valued power series (r,c). Using this notation any
P(r,c) can be written

P(c,c) +(0,P(c,c),r —c)) + O*(r — ¢).

Proposition 3.3. Let ¢ = (c1,...,¢q). There exist

flp.ryc) € CU(Tp)[r,cl] N O%(r,c)
Q(c) € R[]
I'(c) € R[[c]]

such that
(3.5) H(,r+ 0pf(,r,¢)) =T(c)+
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(Qc),r =)+ {(r—c), F(¢ + 0.f(¥b,7,¢),r,¢)(r — ¢))+0"(c)
for all q.
Moreover, if (3.5) holds for a specific q, then I'(c) and Q(c) are
unique mod O(c) and

['(c) = Ny(c) + O (c)

and

Q(c) = d.Ng(c) + O%e).

Proof. ~ We must show not only that there exists at least one solution
f, ', Q of this problem, but we must also show that ', {2 are the same
for all such solutions. Let

Hj(gp, T) = [H((p, T)]j
be the homogenous component of degre j of H (¢, r) and define f;(¢, , ¢),
[';(c), Q;(c) and F;(¢p,r, c) similarly.
For j =1, the equation becomes

[y(c) + (Qo,7 — ¢) = (wo,7)

which gives Qy = wy and Ty = (wy, ¢).
For j = 2, the equation becomes

<w07 a¢f2<¢7 r, C>> + HZWJ”) - F2(0>+
+{(c),r —c) + (r —c, Fp()(r —c))

Write Ha (1), 1)
= Hy(,6) + (0, Halt,¢),7 — &) + (r — ¢, Q) (r — ).

Then we must have
Fa(c) + (Su(c),r — ) = M(Ha(+, ¢) + (0, Ha(:, ¢), 7 — ¢))

which determines I's and §2; uniquely.
If we take Fjy = @, then we get the equation for fs:

(w0, Dy i,y 0)) = — v(mw, &)+ {0, Halth, )1~ c>)

where V = id — M. Clearly this equation defines f; uniquely modulo a
mean value g. But we can also add any term of degre two in O?(r —c)
to fy and still get a solution simply by changing the definition of Fy.
Hence f, is unique modulo a mean value g, and modulo O?(r —¢). (In
the sequel we must show, in particular, that the higher order terms of
v and € remain the same for these different choices of fs.)

We now proceed by induction on j > 3: assume that we have con-
structed for 2 < m < j — 1, the homogenous components f,,(¢,r,c),
L), Qp_1(c) and F,,_o(p, 7, ¢) and assume that f,,(1, 7, ¢) is unique
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modulo a meanvalue g,,(r, ¢) and modulo O%(r — ¢) — we have seen that
this induction assumption is true for j = 2.
For 57 > 3, the equation becomes

(wo, Oy fi(,1,0)) + Gi(¥,1,¢) = Tj(c) +(Q-1(c),r — )+
+(r — ¢, (Kj—2 + Fj2) (¢, 1,¢)(r — ¢))

where G;(¢, 7, c)
= [(Ha+ -+ Hj) (b, 7+ Op fo(¥0,r,¢) + - 4+ Oy fi1 (¥, 7, ), €)
and K;_o(¢,r,c)
=[Fo+ -+ F3) (W + 0 fo(¥,r. )+ 4+ 0r fi1 (b, 1, ¢), 0] 2.
We write G,(¢,r, c)
=G, c,¢) +(0:G; (¥, ¢ ¢), 7 — ¢) + ((r — ¢), Q(¥, 7, ¢)(r — ¢))

and notice that G; (¢, ¢, ¢)+(0,G;(¢, ¢, c), r—c) only depend on fo, ..., fi_1
modulo their meanvalues and modulo O?(r — ¢) — hence this term is
uniquely determined by Hy + ---+ H;. Then

Fj(c) + <Qj—1(c)7T - C> = M(Gj('ac7 C) + <8TGJ'("07 C)7T - C>)

which determines I'; and €,_; uniquely.
If we take F;_5 = ) — K;_5, then we get for f; the equation

(3:6) (w0, Oy f(¥,7,¢)) = — V<Gj(¢, ¢,¢) +(0:G; (v, ¢, c), 1 = C>>

which has a unique solution modulo a mean value g;(r, c). But we can
also add any term of degre j in O%*(r — ¢) to f; and still get a solution
simply by changing the definition of Fj_s.

This shows the existence of f,I" and €2 verifying (3.5) up to any order
q, as well as the uniqueness.

By Propositions 3.1 there exists

fec (T[] nO*(r)
such that
H(,r+ 0y f(p,r)) = Nu(r).
Now
Ny (r) = Ng(c) + (0.Ny(c),r —c) + O*(r — ¢)

and the uniqueness of Q(c), mod O9(c), gives the final statement. [
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4. A KAM COUNTER TERM THEOREM AND THE BNF

Let B be the unit ball centered at wy or, more generally, the inter-
section of this unit ball with an affine subspace of R? through wj.

Let K > 0 and 7 > d — 1 be given numbers.

Let [ : R — R denote a fixed non-negative C'™° function such that
] <1,and l(z) =0if |z| > 1/2 and I(x) =1 if |z| < 1/4.

4.1. A cut-off operator and flat functions. For f € C“”OO(’]I'z X
DS, B), let

P(Hlpzw)= D flnzw)e™ " i((n,w)
neZi~{0}

Remark. Notice that P(f) depend on the choice of |, 7 and k. We shall

not care about the dependence on the first two factors — all constants will

depend on | and T — but we shall keep careful track on the dependence
on K.

n|”

H).

Notice also that g = P(f) is a flat function on DC(k, 1), i.e.
0207009(p, 2,w) = 0

for all multi-indices «, 3, whenever w € DC(k, ) — a function g with
this property is said to be (k,7)-flat. In particular, if f = P(f) the f
is (k, 7)-flat.

Lemma 4.1. We have

1, 1
Pl s < Cs(;)S(m)(sﬂ)”dHfllp,&s

for any p' < p and any s € N. The constant Cy only depends, besides
s, on T and L.

Proof.  The Fourier coefficients (with respect to ) verify

Hf(n, 5 ‘0,6,3 = ”pr@S em2minie.

The functions
In|”

In(w) = 1({n,w)——)

K
verify

T S 1
lallons < Pl il
Hence for |a] < s and (¢, z,w) € TS x D x B
05P(f)(e, 2,w)| <
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s p 1
€. 3 (1 Mogs + 170 losolnl ™)

n#0
which gives the estimate. (Here we have used Proposition 10.1.) O

4.2. A counter term theorem.

Proposition 4.2. Given 0 < k < 1 and 7 > d — 1. Then, for all
s € N, there exist non-negative constants (only depending on s and T)
a(s) > (s—t)+a(t), s>t>0,

such that if
H(p,r) = N(r) + O (r) € C*(T" x {0}), ¢ >a(l)+1,
with
N4(r) = {wo,r) + O(r),

then there exist p,d > 0 and

f=flprecw)e C“”OO('IFZI x D¢ x D¢, B) N O%(r, c)

A = A(c,w) € C>=(DY, B)
such that

(4.7) H(W,r +0pf(¥,r,c,w)) + (w+ Alc,w), 7+ Oy f (¢, 7, ¢, w))
= (w,r=+0(r—c)+¢g
(modulo an additive constant that depends on c,w) with g (k,7)-flat
and g € O*(r,c) N O(c).
Moreover,

(i) there exist constants Cs, only depending on s, H,l, T such that

1
1A +0-N¥lg s + 11 fll 6 < Can(ﬁ—n)a(s)

PyNyS —
for anyn <o
(i) there exists a constant C, only depending on H,l, T, such that
1 e
) > —kga—ad
- C
(iii) of

wo € DC (2K, T)
then the mapping

DI 3 (e, A) = Ale, (1 + Nwp) € C
is real holomorphic for some §'.

Remark. Notice that this proposition (except part (iii)) does not re-
quire that wg 1s Diophantine.
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We shall prove this proposition in section 5, but here we shall derive
its consequences.

Corollary 4.3. Given 0 < Kk < 1 and 7 > d — 1 and non-negative
constants a(s) as in Proposition 3.3.
If
H(p,r) = Nir) + 0" (r) € C¥(T? x {0}), ¢q>a(l)+1,
with
N(r) = (wo, ) + O%(r),
then there exists a unique real C* function €2, defined for

1 )
|C| <M= aﬁ;q*a(l),

where C" only depends on H, 7,1, such that
Q) + Ale, Q2(e)) = 0.
Moreover,
(i) for any s € N there exists a constant C’ such that

192 = 0:NY|ls

c|<n

1
< O'pd(— )
) — sl (Kvn>

Jor any n <o

(i) the Taylor series of Q up to degree ¢ — 1 at ¢ = 0 is given by
0, N(c).

(iii) If wo € DC(k,T), the Taylor series of Q at ¢ = 0 is given by
&NH(C).

Remark. This corollary gives a third characterization of the BNF.

Proof.  We have that wy + A(0,wp) = 0 (because f,g € O*(r,c)) and
by (i) of Proposition 4.2

1 1
DA (c,w)| < Crnd(—)*W < =
.M ew)] < Cunf( =) < 5
for |¢| < nmo and w € B. The local existence of € follows now by the
implicit function theorem. By a Cauchy estimate and (i) of Proposition
4.2
<C

H077]070 ~

1
10:A(c,w)| S Comt ™ (—)@ + |92 Ne
RTo

where C' only depends on H,7,l, which implies that € is defined for
le| < no, provided C” is sufficiently large depending only on H, T, 1.
Now since g = O9(c), (4.7) yields

H(,r+05f(¥,7,¢,9Q(c))) = T(c,w) +(Qc),r — ) + O*(r —c) + O%(c)
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and we get (ii) from the uniqueness up to O971(c) of Q a seen in Propo-
sition 3.3.
If wyg € DC(k, T), then (k, 7)-flatness of g in (4.7) implies

H(p,m + 0pf(1b,7,¢,Q(c))) = T(e,w) + (Qc),r — ) + O*(r — ¢)

which by Taylor expansion at ¢ = 0 and the uniqueness of €2 in Propo-
sition 3.3 implies (iii).
It remains to prove the estimates (i). If we define

F(e,w) = A(c,0+ 0,N(c)) + 0, N%(c)
and Q(c) = Q(c) — 0,N%(c), then
Q

(¢) + F(e,Q(c)) = 0.

Now
1
|a@F(C,(:)>| 5 57
and
~ 1
Fl.. <Cinf(—)™®),
Pl < G (=)

where the C*-norm is taken over all |¢| <17, |@] < 3.
Then, by an induction,

lo|.. scipi..
Cs

O

It follows immediately under the same hypothesis as in Corollarys
4.3

Corollary 4.4. If Q(c) € DC(k,T), then
Ho Z(p,r) =T(c) + (2c),r — ¢) + O*(r —¢)

where Z. is the exact symplectic mapping generated by f(p,r,c,Q(c)).
Moreover

(¢, ¢) = Ze(p, c)

s a local diffeomorphism.

5. NONDEGENERATE BNF AND KAM STABILITY

This section is devoted to the proof of Theorem C.
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5.1. Transversality.

Lemma 5.1. If Ny (r) is non-degenerate, then there exist p,o > 0 such
that for any k € Z4~\. 0 there exists a unit vector uj, € R? such that the
series

k
felr) = (w,&NH(r»

is (p, o)-transverse in direction uy, i.e.
I F(tug ) i—o| > 0.
ax |0} fi(tur)—o| 2 0

Proof. Indeed, if this were not true, there would exist a sequence
k, € Z% ~. {0} such that for any u € R4

. 1
max 0] fr,, (t)je=0] < e

Extracting a subsequence for which k,,/|k,,| — v € R? clearly gives

that (v,0,Ng(r)) =0, i.e. Ny would be degenerate. O
Consider now these p,o. Let Q € C?({|c| < n}) and assume
o
||Q - [87”NH]p||CP({|c|<77}) < 5

Lemma 5.2. If Ny is (p,o)-transverse (in some direction), then

Lebf{lel <n: (1, Qe)] < £} < (S

K|
for any n,k,e.
Proof. ~ We have, for some 0 < 7 <p,
ik o
O (==, Qc+tu))| > =
for all |c¢ + tu| < n. The estimate is now an easy calculation. O

5.2. Proof of theorem C. By Lemma 5.1 we are given p and o that
correspond to the transversality of the formal series Ny.  We can
assume without restriction that ¢ < 1. Fix ¢ = (1 + 2p)a(p) + 1.
Performing a conjugacy, we can assume without restriction that

H(p,r) = Ni(r) + OT(r)
We shall apply Proposition 4.2 and Corollaries 4.3-4.4 with
T=dp+1 and kK <o?7<1.
Now let



20 L. H. ELIASSON, B. FAYAD, R. KRIKORIAN

Since ¢ > (14 2p)a(1) + 1 we have n < 1o for all C” > C’, with 1y and
(" defined in Corollary 4.3. Then € is defined in {|¢| < n} and
(5.8)

1
192 = [0 Nulleo (g1 <np) < O;,n‘J(H—nW) + [0, NP — 8, N,

||CP({ICI<77})

c|<n}
which is )
<Cn
since ¢ > (1 + 2p)a(p) + 1 — notice that C' is independent of C” > C".
Finally if C" is sufficiently large (depending on p, 7,l,H, thus on g) we
have that Cn < o /2.
By Lemma 5.2

Leb{le| <7 |<%,Q<c>>\ <oy < (Db,

Q

hence
Leb{|c| <n:Q(c) ¢ DC(k,7)} < (H)%ndfl

o
< nleb{lc| < n}
provided k is sufficiently small. Hence, the set
{le] <n:Q(c) € DC(k,T)}

is of positive measure and density 1 as kK — 0. Theorem C now follows
from Corollary 4.4.

6. ANALYTIC KAM TORI ARE NEVER ISOLATED. DEGENERATE
BNF AND INVARIANT CO-ISOTROPIC SUBMANIFOLDS.

This section is devoted to the proof of theorem B and of Riissmann’s
theorem.
Let ¢ = a(1) + 1 and assume, after a conjugacy, that
H(p,r) = Ni(r) + OT(r)
We shall apply Proposition 4.2 and Corollaries 4.3+4.4 with

g=a(l)+1, T7=17 and =
Then
Qc) + A, Q) =0
and
Q(c) = 0,Nu(c) + O%(c).

Since Ny is j-degenerate we have

O"Ny(0) =0  V¥n>0
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for any v € Lin(y = (y1,...,7;)), where 0, is the directional derivative
in direction v. From this we derive that

a;l((.x.)o -+ A(',Wo))|czo =0 Vn Z 0.

Since s — A((s,7),wp) is an analytic function in s € R7, s ~ 0, it must
be identically 0, hence Q((s,~)) is identically wy, i.e.

Q((s,v)) € DC(k, )

for all sufficiently small s.

From Corollary 4.4 it follows that for any ¢ € Lin(v) sufficiently
small H has a KAM-torus with frequency wy and that the set of all
these tori,

U Z(1%0),

c€Lin(vy)

is a (d + j)-dimensional subvariety. This completes the proof of Theo-
rem B.

When Ny is (d — 1)-degenerate, then

0rNi () = p({c, wo))wo

where u(t) =1+ O(t) is a formal power series in one variable.
Since

u(<c, w0>)w0 =+ A(Ca u((c, w0>)w0) = OOO<C)7
taking ¢ = twp, we have (assuming wy is a unit vector)
(6.9) p(t)wo + Atwo, p(t)we) =0

modulo a term in O>(t). Since, by Proposition 4.2 (iii), the lefthand
side is analytic in twy and g we obtain from anyone of the equations
(6.9) that u(t) is a convergent power series. Then

t = p(t)wo + A(two, pu(t)wo)
is analytic for ¢ ~ 0, hence identically zero. We derive from this that
Q(c) = p({c, wo) Jwo,
lLe.
Q(c) € DC(k, 1)

for all sufficiently small c¢. Riissmann’s theorem now follows from Corol-
lary 4.4 as in the proof of Theorem B.
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7. SMOOTH NON KAM STABLE DIOPHANTINE TORI

7.1. The smooth case in d = 2 degrees of freedom. We let H
be as in the introduction but we only assume that H is of class C*°.
The results of sections 3 and 5 remain valid but we will only have C*°
instead of analytic functions. For example we will not be able to use
the analyticity dependance of A on the first varaible, that is crucial in
the degenerate situation as shown in section 6.

But let us examine the frequency function Q(c) given by Corollary
4.3. Tt is a smooth function from a neighborhood of 0 in R? to R2
such that Q(0) = wy € DC(ko, 7). We restrict to a neighborhood
where wp;/2 < Qi(c) < 2wp,;. A vector Q(c) = (wy,w2) € R? then
satisfies a Diophantine condition for flows as in (1.2) as soon as a(c) =
wy /wy satisfies a Diophantine condition for diffeomorphisms, of the form
|k + 1| > Cro/|k|™, with C' some constant that only depends on wy.

If we restrict «(-) to any segment I that goes through 0 we get a
smooth real function such that «(0) satisfies the latter Diophantine
condition for diffeomorphisms. As explained in Proposition 3 of [FK],
the one dimensional phenomenon here is that, provided k¢ and 7y are
relaxed to kK < Kko/2 and 7 = 75 + 1, then for a positive measure set
of points in I, « satisfies a Diophantine condition for diffeomorphisms.
Indeed a(0) is a density point in DC(Ck, 7) and the two alternative for
a are (i) : ais locally constant o ~ oy € DC(Ck,T) on a neighborhood
of 0 in I, or (ii) : « is not locally constant and it takes a positive
measure set of values in DC(Ck,T) on a positive measure set of points
mn 1.

We conclude that for a positive measure set of ¢ in any neighborhood
of 0, Q(c) € DC(k,T), so that Corollary 4.4 yields the following result,
that can be coined Herman’s last geometric theorem since it is just the
flow version of the disc diffeomorphisms theorem treated in [FK].

Theorem. Let H € C*(T? x R?) and assume that T? x {0} is a KAM
torus. Then T?x {0} is accumulated by a positive measure set of smooth
KAM tori with Diophantine translation vectors.

7.2. A smooth counter-example in d > 4 degrees of freedom.
A vector a = (aq,a9) € R? is said to be Liouville if (k,a) =0 =
k = (0,0) and if for any N > 0 there exists k € Z* — {0,0} such that
|(, o) < [I[I7Y

We call a sequence of intervals (open or closed or halfopen) I,, =
(an, by) CJO, 00[ an increasing cover of the half line if :

(1) lim,_wa, =0
(2) limy, 400 @y = +00
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(3) an < bp_1 < apy1 < by

Proposition 7.1. Let (wi,wq,ws) € R3 be fived. For every e > 0
and every s € N, there ezists an increasing cover (I,,) of 10, 00[ and

functions f; € C*(R,(0,1)), : = 1,2,3, such that || f;||s < € and

e For each n € Z, the functions f1 and fy are constant on I3, :

f1|13n = fin, f2\13n = f2,n

e For each n € Z, the functions f1 and f3 are constant on I3,4q :

f1‘13n+1 = fLTH f3‘[3n+1 = f3,n

e For each n € Z, the functions fy and f3 are constant on I3, 1 :

Pty s = foms f3y,,, = Joma

o The vectors (fin+wi, font+ws), (fl,n+w1>f3,n+w3> and (f?,n+
wa, f3n +ws) are Liouville.

Remark. It follows that fi, fa, f3 are C*°-flat at zero.

Proof. We want to construct fi(-) such that f; is constant equal
to flm on [asn, bsni1] for every n € Z. The crucial observation in the
construction of f is that the segments [ag,, bs,+1] are mutually disjoint.

We will then construct similarly f; and f3 and explain why the Li-
ouville conditions can also be required in addition.

Fix ¢ € C=(R, [0, 1]) be such that {(z) =0if + < —1 and ((z) =1
if x > 0. Define a sequence wu,, > 0 such that as, — u,, > bs,_2 and
bsnt1 + U < agpis. Observe that

9n(@) = ¢, (z = azn)) = C(u, (& = bany1 — un))

satisfies g,(z) = 1 if € [az,, b3ny1] and g,(x) = 0 for x > ag,,3 >
bsns1 + u, and for x < bg,_o < as, — u,. Hence the function

fl = Zfl,ngn

neL

solves our problem and by just requiring the bound (B,)(n) : |fi.| <
nu" for every n and supposing that »_ |u,| < oo we get that for any
s and any € one can choose 1 to guarantee that the resulting function
Il fills < €/3. We define the other functions similarly and then add the
Liouville constraints without any problem since the condition (B,)(n)
is open. U

Given a cover (I,) as in Proposition 7.1, we can define a define
another cover (I') such that I is strictly contained in (I), for every
n.
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7.3. Proof of theorem E. Define

Hy(p, ) = (wo,m) + fi(ra)ri + fa(ra)ra + f3(ra)rs

where f1, fo, f3 are as in Proposition 7.1 and wy = (w1, wa, w3, wy).

Notice that as a consequence of Proposition 7.1 we have that on each
I,, two of the coordinates of (f; + w1, fo + ws, f3 + ws) are constant and
form a Liouville vector. We denote fn =T*x R3 x I,,. Let H be the
set of H € C°°(T* x R*) such that H does not depend on ¢,. For
H € H the flow ®%; leaves ry invariant. We will show how to make
arbitrarily small perturbations inside H of Hy on any I, that create
huge oscillations of the corresponding flow in two of the three directions
r1,T2,73. These perturbations will actually be compositions inside H,
by exact symplectic maps obtained from suitably chosen generating
functions. Iterating the argument gives a construction by successive
conjugations scheme similar to [AK]. The difference here is that the
conjugations will be applied in a ”diagonal” procedure to include more
and more intervals [, into the scheme. Rather than following this
diagonal scheme which would allow to define the conjugations explicitly
at each step, we will actually adopt a G°-type construction @ la Herman
(see [FH]) that makes the proof much shorter and gives slightly more
general results.

Let U be the set of exact symplectic diffeomorphisms U of T4 x R*
such that U(p,r) = (¢, s) satisfies s, = ry. In particular if U € U
implies that U(fn) = I, for any n € Z.

Proposition 7.2. Let I = I, for somen. For any e > 0,s € NJA >
0,A>0 and any V € U, there exist U € U and T > 0 such that there
exist (iy,19) € {1,2,3}, distinct, such that for i =iy and i = iy we have

(1) U=1d on I°

(2) |HyoUoV —Hpo V||, <€

(3) sup [ Phgorror ())asis] > A, for any p € I' such that [lp] < A
<t<

(4)

4) sup (@;Ionov(p))HiQ\ > A, for any p € 1’ such that Il < A
0<t<T

Proof.  Since V preserves I and since ¢2100U0V is conjugate to <I)§{OoU
it is sufficient to prove the proposition for V' = Id. Indeed, given V
such that VI =1 , and applying the Proposition with V' = Id and with
constants € < € and A’ > A yields 2 and 3 including V.

Assume hereafter that I = I3, the other cases being exactly similar.
Let a € C*°(R) be such that a(§) =0if £ ¢ [ and a(§) =1if { € I
(remember that I’ is strictly included in I).
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Let fi = f1|1>f2 = fo; and Fy = fi+w, Fy = fo +wy. Let
(¢1,q2) € Z* — {0,0} such that |¢1| > A+ A and |g] > A+ A and
a1 P + q2F3| < pmin(g; ™, ¢;**) where n = ¢/((27)*[|al|,).

Define the following generating function k € H

k(Y,r) = a(ry) sin(2m (@191 + g2t2))

and let U = (®, R) € U be the symplectic diffeomorphism associated
to k. Then R(p,r) equals

(m+2mqua(rs) cos(2m(qup1+aa2)), r2F2mgaa(rs) cos(2m(qro1+a292)), 3, 74)
so that U = Id on I¢ and Hy o U(p,7) equals

Ho(r)+2ma(ry) (q1(fi(rs) + wi) + q2(fa(rs) + w2)) s cos(2m(q11+q292))-

Hence HyoU(p,r) — Ho(r) = h(r,o) with h =0ifry ¢ [ and if ry € I
we have that h(r, ) = 2ma(ry) (1 Fi + ¢2F3) cos(2m(q101 + qaip2)) thus
the required ||h]|s < €.

On the other hand we have that on I the flow ®f;, is completely inte-
grable with tori 7, = {r}xT* carrying the frequencies (F}, Iy, F3(ry), ws).
Recall that F; and F, are independent over Z, that is, the dynamics of
the translation flow T};h R I8 minimal. But under the change of vari-
able U the torus 7, for ry € I’ becomes T, = {(r1 — 2mq; cos(2m(q11 +

G2p2)); T2 —2mq cos(2m (11 + q202)) . 73, 74) = (01, - - -, pa) € T} Also,
the change of variable is such that (®(p,7)); = ¢; for j = 1,2,3. All
this implies the third claim of Proposition 7.2 since we took |¢;| > A+A
and |g| > A+ A. O

It is easy now to deduce Theorem E and in fact a stronger version of
it. Define for this purpose Uy the subset of U € U such that U — Id =
O>(ry) and Hy to be the set of hamiltonians of the form HyoU, U € Up.
Finally we denote H, the closure in the O topology of H,.

Proposition 7.3. Let D be the set of hamiltonians H € Hy such that
(7.10) lim sup || @ (p)|| = oo

for any p = (p,r) satisfying r4 # 0. More precisely, for each p such
that ps # 0 we have that there exist (i1,i2) € {1,2,3},distinct, such
that for i =11 and i = iy it holds that

(7.11) lim sup(¢y (p))ati, = +oo,  liminf(¢%y(p))ari, = —00
t—=+oo t—3doco

Then D is a dense (in the C™ topology) G° subset of Hy
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Proof.  Forn,AJA,T € N*and 1 < iy < ip) €< 3let D(n, A, A, T,i1,12)
be the set

HcHy: sup  min __min (5 (p))agi| > A p .
0<t<T t=ini23i=L=1 peTrngp| <A}
It is clear that D(n, A, A, T,4y,i5) are open subsets of Hg in any C*
topology. On the other hand we have that

=V N NU U D(n, A, AT, iy, iz)

AEN* neN* AeN* TEN* (i1,i5)e{(1,2),(1,3),(2,3)}

but Proposition 7.2 precisely states that

U U D(TL,A,/L T,il,ig)

TeN* (41,i2)€{(1,2),(1,3),(2,3)}

is dense in H, in any C* topology, which ends the proof of the theorem.
O

The same result of Proposition 7.3 holds in any Gevrey class G, for
any o > 1. The proof of the latter fact follows exactly the same line as
the C'*° case with the following simple modifications.

- The compactly supported function ¢ of Proposition 7.1 is taken
to be in GG7, as well as the function a in the proof of Proposition
7.2, and C* norms are replaced with Gevrey norms.

- The conditions (B,)(n) : |fin| < nu? are replaced by |f;.| <
U

- The Liouville condition on the vectors (F}, Fy) = (fi.n+wi, font
ws) (as well as on (f1, 4w, fa, +ws) and (fa, +we, f3n+ws))
is replaced by a ”super-Liouville” condition of the type |q Fy +
@ F| < e 7% for infinitely many (g1, g2).

8. PrROOF OF THE KAM COUNTER TERM THEOREM

The proof of the counter term theorem (Proposition 4.2) is based on
an inductive procedure and will occupy this whole section.

Let P = P, . be the cut-off operator defined in section 4.1. We take
7>d—1and 0 < k < 1. The operator P depends on a cut-off function
[ and constants in this section will, in general without saying, depend
on [. Recall that a function g is (k, 7)-flat if

9507009(p, 2,w) =0

for all multi-indices «, 3,7 whenever w € DC(k, 7).
Let B be a ball centered at wy or, more generally, the intersection of
this unit ball with an affine subspace of R? through wy.
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8.1. A linear operator. Define now

L(f)=wu
through
(w, dpu) = f = P(f) — M(f)
(8.12) { M(u) = P(u) = 0.

Lemma 8.1.
1 1
L Y < Cs TN\s+l o~
12 lae < O™

_p/

)(T-l-l)(s-i-l) Hf”p 5s

for any p' < p. The constant Cy only depends, besides s, on T and .

Proof. ~ We give a proof with the exponent (7 + 1)s + 7 4+ d — the
improved exponent (7 + 1)s+ 7 + 1 requires some more subtle consid-

erations originally due to Riissmann — see for example [E]. Equation
(8.12) is equivalent to @(0, z,w) = 0 and, for n € Z* — {0},

N

w(n, z,w) = f(n, z,w)l,(w)

where ) In]
,,,L T
{ =—(1-1 .
Since
Pl —27|n|
[Fon- ], < 1l e
and

1 1
[tallo s < Colnl ™7 Wl 00 + 107~ o0

we get (by Proposition 10.1), for || < s and (¢, z,w) € T} x D§ x B,
0, 2, w0)| < €, el

n#0
A T 1 ¢ (t+1)s+1 1
< IF G- llosslnl™— + 1, )llosoln] TSy
which gives the estimates by standard arguments. 0

8.2. The counter term theorem. Let 0 < p,d < 1. Denote by C,5*
the set of functions f € C“>(T% x D§ x D¢, B) such that

flo,r c,w) € O (r,c).
Any function f € C;’7 can be written uniquely as
1
CL((,O, 07("}) + <B(Qpa C,W), r—= C) + §<T -G F((,D,’I“, ¢, W)(T' - C)>3

3 we applogize for the double use of B
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modulo O3*(r — ¢) with a = O?*(c) and B = O(c).
We say that f is of order q if a € O(c) and B € O%(c).
We define the pseudo-norm
[flps.s = max([lall 5. 1Bl 5 - 10.Lall, 5., 5 10,LBI], 5.,)

and the vector

Mf :M(B—F&pﬁa),
where, we recall, that M(g) is the mean value [, g(p, z)dp. We denote
by €5 the set of exact symplectic local diffeomorphisms defined on a
neighborhood of T? x {0} of the form

0+ ®(p, c,w)
ch<§07 ) ( T+R1(QP’C w) —f‘RQ(‘PyC w)(T - C) >

with CI), Rl, Ry € Cw,oo(Tg X Dg X Dg, B) and Ry = 02( ) CI), Ry = O(C)
If 7' is another mapping in &5 then we define

7~ 7,5, =

0,0,8
max([|® — 55 (1R = Rill 5.4 10,L(2 = D] 5.0 [0 L(R: = Bi) . 5.,)

and
(Zo Zl)qw(@ar) = chw(Zé’w(QD,T)).

The goal of this section is to prove the following

Proposition 8.2. For all s € N, there exist constcmts e > 0 and
a(s) > 0, only depending on T, such that if H € C 15 independent
of w and satisfies, for some h < min(p/2,/2) and some o <€),
1
(L+102H]] ,50)"
then there exist A € Csuéooh and W € 5;’ O,f(; b H’ € Cp ho_ns With
[H']p—hs-n0 =0, and a (/—{ 7)-flat function g € C;5 5, such that

(813) [H]p7(570 S o 11h10(7’+d)+11’

(8.14)
(HA-(w+A(c,w),))oWeu(w, 1) = (w,r—c) +H'(r, , c,w)+g(p, 7, c,w)

(modulo an additive constant that depends on c,w) with, for all s,

(8.15)
max (1Al sps s = i), s 19—

83([—[’ B H)Hp—h,é—h,s’>
(s)
107 H | 50 + 1
o (K—Ph‘” (|02H]| 50 + [H]pso + 1)
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Moreover, if H is of order q, then g € O%(c).
Furthermore, if

Wy € DC(QHJ, 7')

and H is analytic on the segment Is = Bs(wy) N Rwy, then A, W and
H' are analytic on Is for some 0 < 6" < and g =0 on Ig.

We shall first prove the main part of this proposition, then we will
explain what modifications are required in order to obtain the final
analyticity statement.

The proof of Proposition 8.2 is based on an inductive KAM scheme.
In each step of the scheme we conjugate a Hamiltonian of the form

<w,r—c>+a(¢,c,w)+<B(gp,c,w),r—c>—{—%(r—c,F(go,r, c,w)(r—c)).

and reduce quadratically the terms a and B. To do so, we look for a con-
jugacy using a generating function of the form (r, ) +uo(¢)) +(u1 (¥)), 7)
and we solve a triangular cohomological system in uy and u; to reduce
a and B. This is only possible up to a (k,7)-flat function g and also
requires that the constant terms in the cohomological equations vanish
and this is why we have to add the counter term (A,-) and a constant.

The inductive step of the scheme is enclosed in Proposition 8.5. To
add clearness to the presentation we split the proof of the latter propo-
sition into two parts : in the first part we suppose the constant terms in
the cohomological equations do vanish and build the conjugacy (this is
the content of Lemma 8.3) and in the second one we show that adding
counter terms allows to zero the constant terms in the cohomological
equations (this is the content of Lemma 8.4). Proposition 8.5 is a direct
consequence of Lemmas 8.3 and 8.4.

We will finally conclude in Sections 8.5 and 8.6 showing that the
iteration scheme based on the inductive step of Proposition 8.5 does
converge if the initial bound (8.13) is satisfied.

8.3. Reduction lemmas. In this section we first fix p,d < 1 and a
number h less than min(p/2,/2) < 3 and we set

58 _ /{1(5+1)h(7+1)(8+1)+d.

We fix H € C;5°, which may depend on w, and let

€ = [H]pﬁ,s and (= H&%HHM’S + 1.
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Lemma 8.3. There exist positive constants ¢ = ¢(1) and Cs = Cs(7),
such that if Mg =0 and

1
(816) € < §—/€4h4T+2d+6

G 7
then there exist Z € 5;’;0,25_h, H' € C;”;O,id_h and a (k,7)-flat function
g’ such that

(H +(w, ) 0 Zew(p,m) = (0,7 — ) + H'(p, c,w) + ¢'(p, 7, ¢, w),
(modulo an additive constant that depends on c,w) with, for all s € N,
[Z —id],-h5-no < h,

[Hl]pfhﬁfh,s < Vs€o
and
max([Z —id], 5 5. |02(H" — H)Hp_h75_h75 NG Mpns—ns) < Vs
for
= Gl GG + G
Moreover, if H is of order q, then H' is of order q and g’ € O9(c).

Proof.  We introduce G(p,r,c,w) € O3(r — ¢) for

H(p,r, c,w)—a(gp,c,w)—(B(cp,c,w),r—c>—%(r—c,F(gp,c,w)(r—cD.

Notice that
107G, 5, < (|07 H]|

p,0,8 ™~ 0,0,8
and |
197G, 5-s S 5 NO7H], 5,

We look for the diffeomorphism Z(p, r, ¢,w) = (¥, s) via a generating
function of the form (¢, r) + U(v, c,w),

U, r,c,w) = ug(¥, c,w) + (u1 (¢, c,w),r —¢) € C;ff,f’(;_hﬁ,
i.e.
s =1+ Oyug + (Opur, T — C)
{ o =P +u ().
All our functions depend, besides 1, on ¢,w and we shall in the sequel
suppress this dependence in the notations.
We have, modulo an additive constant,

(8.17) (H + {w, ")) o Z(p, 1) — {w,r —c)
=)+ II)+ (LII)+ G, r + U2, 1)),
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where
1
([) = <w, 8¢U0> +a+ <B, 8¢u0> + §<F8¢UO, &puo) — M(CL)
(I1) = ((w, Opur), T —¢) + (B, 1 — c + Oypus (1 — ¢))
+ (FOypug, r — ¢+ Opur (r — c))

(IT1) = L{r e, F(r — ) + (F(r — ¢), dyun(r — o)

+ %(F@wul(r —¢), Opus (1 — c))-

The homological equation. To kill as much as possible of a and B in
(H 4 (w,+)) o Z we take

{ up = —L(a)
Uy = —E(B + Faqu)

Observe that if a, B € O%(c), then ug,u; € O%(c). By Lemma 8.1 we
have
1
[U]p—h,é,s + [8TU]p—h,5,5 < Cses = Csh_é.Q(CSEO + COes)-4
(Here and elsewhere we use Proposition 10.1 to estimate products.)
FEstimation of Z. Since, by (8.16),
€1 § h2
Proposition 10.3 implies that the mapping ¢ = f(¥) = ¢ + uy () is

invertible with inverse satisfying

Hf_l _ldH Scsesa
p—2h,0—h,s

and Proposition 10.2 gives

. e
1Z — 1d||p—3h,6—2h,s < Cy7.

h
It follows that Z € £, 5 3, and Lemma 8.1 implies that

1 e,

[Z —1d],_4ps_sns < Csh_gsﬁ'

The function ¢'. Let
h="P(a)+ (P(B — Foyup),r — ¢)
and ¢'(p,r) = h(¢,r). Then, by Lemma 4.1,
1]l =255 < Cses

4 the constant C, will differ from line to line
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and, by Proposition 10.2,
Hgl”p—gh,é—%,s < Cses.
We also note that since a, B, ug € O4(c), then ¢’ € O%c).  Checking

that H' is of order q. If H is of order ¢, we saw that ug,u; = O9(c).
Hence the terms (I) and (II) in the RHS of (8.17) are O%c). Now
H'(p,r) equals

I+ P(p,c),c)+ 1o+ P(p,c),r —c,c) + IT1(p + P(p,c),r — ¢, c)
and since 11 € O%*(r — ¢) we conclude that H' is of order g.
Estimation of H'. We set
Gi(e,r) = (0:G(p,7), 0,U(,7))
and
Galp,r) = G, + U, 7)) = Glp, 1) = (8:G(p, 1), 0uU (9, 7).
Then Gy € O*(r — ¢) and the RHS of (8.17) satsifies
RHS —h=(I)+(II) —h+ Gy + O*(r —¢)
as well as
OX(RHS — H) = 0*((III) + G, + Gy) — F

because G = O3*(r — ¢). Now we have that

(8.18) [(I) 4 (IT) = h],—onss < Osh%[(eseweoes)% + (Qseo+§oes)%°]
(here we use that My = 0) and by Proposition 10.2(ii),

(8.19) Golly o 5-s < Co(Gobo + o) 7o

since eg < h2. The inequality (8.19) implies in particular that

(8.20) (G2l p—3n,5-2n,s < Csh%s(cseo + Coes)%

and

(8.21) [02Gall, oy pans < Coloo + Goes) o

It follows from (8.18) and (8.20) that the right hand side of (8.17)
verifies
1
[RHS — hl,—3n5-2ns < Cs—

€0
hé, ik

1
[(eseo + €0es)+ + Cs(Cseo + Coes) e

h
On the other hand, since

1
(8.22) HafGlup—Qh,é—h,s < Cu(Cseo + Coes)ﬁ
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and
(8.23) |OF(IIT) = | 5.0 < Csl(Goeo + Coes)%-
it follows that
|02(RHS ~ H)|, 5 1., < ColGoco +Goes) 75

~ by (8.2148.22+8.23).
Since H'(¢,r) = RHS(¢,r) — ¢'(¢,7) we get by Proposition 10.2
that

1 1 e
[H/]p_4h75_3h75 S Csh_fs[(eseo + eoes)ﬁ + Os(Cseo + C068>h_g]

and
|02CH" = H)[,_yp 5 g0 < CulGuo + Goea) 5
This completes the proof of the lemma. O
Let W € £ and denote
ns = W —id],s,s-

Lemma 8.4. There exist positive constants ¢ = ¢(7) and Cs = Cs(71),
such that if

1
(8.24) M < s—,
Co

then there exists A € C5"™ such that
H=H+({\)oW

verifies Mg = 0 and 0>H = 0?H.
Also, if H s of order q, then H s of order q.
Moreover, for all s € N,

[All5, < CsCo(Cocons + Coes + Cs€o)
and

[H — Hlps.s < CuGolGoeorts + (Goes + Coeo) (10 + 1)).
Proof.  Write H(p,r, c,w) as

g, e,) + (B, w)or = ) + 5 (r = e, Flpyc,)(r = o)
and H(p,r,c,w) as

iy, ) + (Bl c.0),r = o)+ 3l — e (g, e.)(r — )
modulo O3 (r — ¢).
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Observe that

_ | v+ 2(p,cw)
Wew(p,r) = ( r+ Ri(p,c,w) + Ra(p, c,w)(r —c) ) ,

SO
(8.25) d=a+ (AR, +c)
(8.26) B =B+ (I+'Ry)A

and F' = F. We want to choose A so that Mg =0, ie.
M ([I+'Ry — FOLLR,| A — FO,La+ B) = 0.
If X = -M(Ry — FO,LR;) and Y = M(—B + Fd,La), then this

amounts to

(8.27) A=) XY

Observe that if a, B € O%(c), then Y € O4(c), thus A € O%(c) and
H is of order q.
We have
||X||575 S CS(CsnO + Cons)
and
1Y']|5., < Cs(Cs€o + Coks)-
By assumption (8.24), [|X|[5, < 1/2, which gives the existence and
the estimates on A and H by Proposition 10.1 and (8.25)(8.27). O

8.4. The inductive step. Combining Lemma 8.3 and Lemma 8.4 we
immediately get the following proposition that constitutes the inductive
step of our KAM scheme for the proof of Proposition 8.2. For the needs
of the inductive application, we will consider that at each step we have
a Hamiltonian H € C,7 as well as g € C;5° (k, 7)-flat, and W € £5°.

As in the previous section we assume h < min(p/2,0/2), and we set

gs _ K(s—&-l)h(T—l-l)(s—i-l)—&-d

and

€s = [H] and CSZ ||83H|| +”ng,6,3+1

P:‘Sys p,6,s

and
Ns = [W — Z'd]p’&s.

Proposition 8.5. There exist ¢ = s(7) and Cs = Cy(7) such that, if
1

(8.28) Ny < ga



AROUND THE STABILITY OF KAM-TORI 35

and

1
829 € < §—/€4h47'+2d+6’
&2 G m)

then there exist A € CSJ’;;OO, AR 5;);025%, H' € C;’f,f’afh and a (k,7)-flat
function g' such that
(8.30) (H+g+ (w,-) +{A(c,w),")oW)oZ, (p,r) =

<w7 r—= C) + Hl(@? C, w) + g/(QO, r,C, (,U)

(modulo an additive constant that depends on c,w) with

(831) [Z, — id]p,hﬁ,h’g < h,
(832) [H,]p—h,(s—h,s S Vs€o
and

(8:33)  max([|Allg sy, [|07(H = H)|| )5 0o 119" = 9l hsons
12" —id],_p 5 s W 0 Z" = W]ponsons) < Vs,

where

(8.34) vs = Co(h&s) () (es + (€0 + Mso).

Moreover, if H is of order q and g € O%c), then H' is of order q
and g' € O4(c).

Remark. Notice that the assumption (8.28) follows if

1
m<g a,
and that
Vs€p < Vs€q
and

Vg S Cs(hés)ig)Ci’)(Es + Csel + 77561)~
Proof. By Lemma 8.4 there exists A € C;"™,

[Allg 5.6 < CsCo(Cocons + Coes + Cs€o),

such that
H=H+ A\ )oW

verifies My = 0,

(Hl,55 < €5+ CsCo(Coeons + Coes + (s€0) = €5
and

£,0,8 + 1= CS'

-

| +ligl
0,0,8
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Since

- 1
&1 S §Tl{4h4T+2d+6

1

Lemma 8.3 gives Z' € ;J_’O,z(;_h, H' € C;’f,f’é_h and a (k, 7)-flat function
g” such that

H+ (w, ) oZ'(p,r,c,w) = (w,r—c)+ H (p,c,w) + ¢ (p,7,c,w),
( ¥ ¥ g' (e
(modulo an additive constant that depends on ¢, w) with

1Z" —id],—hs-no < h,

[H/]p—hjfh’s S Dsg(]

and

O (H' — H) gl

p_hﬁ_hﬁ,Hg

max([Z’ - id]p—h,&—h,s7 p—h,5—h,s> S 7757

for
s = Cy(h&s) Co(Cos + (s€0)-

Since ¢’ = go Z' + ¢” we get that ¢’ is flat and Proposition 10.2 implies
that

||g/ o g||p—2h,§—2h,s < Cshilgsﬁs
If we write W =id+f and Z' = id +f’, then

WoZ =W =f+(fo(id+f) - f).
We've already seen that

oo < Vs
and
[f o ((d+F") = £, ans ons < (h&) 17
by Proposition 10.2. Let now vy = Cy(h&,) ™ (os. O

8.5. Convergence of the KAM scheme. We will show in Section
8.6 that the inductive application of Proposition 8.5 yields Proposition
8.2. Before this, we show in the current section two computational
lemmas that will allow, under condition (8.13) of Proposition 8.2, to
apply inductively Proposition 8.5 by checking conditions (8.28) and
(8.29) at each step, and get the required estimates of Proposition 8.2.
The first lemma deals with C! norms relative to w, while the second
one contains the estimates relative to the higher order norms.
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Lemma 8.6. Fiz 0 < h < % and let h, = h2™"'. Let a,b,c and

C > 0 and let there be given four non negative sequences Vy, Cu, M, €n
such that

(8.35) Vo < Ok 2,2 (G + T)en
formn >0 and
(8.36) Cn < Cne1 + Una Go=(C>1
(837) M < N1+ Vp—1 Mo = 0
(838) €n S Vn—1€n—1 €p — €
forn > 1.

Then there exists C" = C'(C, a,b,c) > 0 such that if for ¢ <1
(8.39) ¢ < %ﬁbﬂh%“g**
then
(8.40) en < (kh¢H)? e
(8.41) M < <Gt

Proof.  Assume (, < A =2¢ and 1, <1 for all n. Then
v, < BD"¢,

with B = C'k~2p 2222041 Actl and D = 4°. Hence for n > 1 we have

n— n__ n_n_ n 1 n
€n < BD" ' | < BYTIDT e = BT (BDe)?

which shows (8.40) if C” is sufficiently large.
From (8.40) we get that

zn:VnS ;_C

and the assumptions ¢, < A = 2¢ and 7, < 1 — actually (8.41), now
follow by induction. O

Lemma 8.7. Fiz 0 < h < % and let h, = h27"". Let a,b,c > 0
and suppose €, is a sequence satisfying (8.40) with € = €y verifying
(8.39) of Lemma 8.6. Assume that Cs > 0, and that four sequences

Vs, Cs,na Nsny €s,n satz'sfy

(8.42) Ve < C'S/i_b(SH)h;“(SH)CC(eSm + Csn€n + Nsn€n)
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for alln >0, and

(8.43) Com < Con—1 + Vsn—1 Go=¢=>1
(8.44) Nsm < Nsm-1 + Vsn—1 M50 =0
(8.45) €sn < Vsn—1€n—1 €s0 =€
foralln > 1. Then
(8.46) D ven <o(wThTIO)M(( + )
n>0
where o = & of (8.39) and a(s) is some increasing function in s

depending on Cs and a,b, c.

Proof. By replacing (s, by (s + s, We see that it is enough to
consider the case Nsn =0 for all n. B

If we let U, = Crbtp=alstce with C(s,a,b,c,C) > 0 suffi-
ciently large, then it is immediate by induction that
(8.47) max(€p, Con — C, Van) < cUMHC +€)
Thus, if n > N(s) > max(log(s + 1),log Cs), (8.45) and (8.47) and
(8.40) imply that

CSI{_b(S+1)h;a(S+1)CC€s,n S O_Ufn—&—l(l{hc—l)Q"*l—le(C + 6) S %(C + 6)

Csﬁ—b(s-&-l)h;a(s-i—l)ccgsﬂnen < O'USQTL+1(I€h<_1)2n_IE(C—|—€) < ;_n(C+€>
hence, for n > N(s) we get that

o
(848) Vsn S F(C + E)
and (8.46) follows, with a(s) = (s + 1)(N(s))?, if we sum (8.47) for n
from 0 to N(s) and (8.48) for n > N(s). O

8.6. Proof of Proposition 8.2. We now prove Proposition 8.2 from
an inductive application of Proposition 8.5.
Let h < min(p,d)/2, h,, = h27"! and define

pn=p=> hi, Gn=06-=) h
<n <n
and
fs,n _ K(s+1)hs’+l)(s+1)+d.
We start by setting Hy = H, Ag = 0, go = 0 and W, = id, and we
shall define inductively H,, A,, Z, and W,, = Zyo Zy0---0Z,. In
light of (8.34), let

€sn = [Hn]anén:S’ Cs,n = ||83H"Hpn,5n,s + HgnHPn:‘sms + 1
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Nsn = [Wn - id}pn,ﬁn,w Vs = Cs(hngs,n)i‘gggm(es,n + Cs,nEO,n + ns,nEO,n)

where Cj is given by Proposition 8.5. We fix hereafter a = 5(7 + 1 +
d),b =5,c =5 and we will apply Lemmas 8.6 and 8.7 with these values
and with Cy as in Proposition 8.5, while C' of Lemma 8.6 is just Cf.
As for ¢, we will take it as ¢(7) of Proposition 8.5.

Note also that for s = 0, the fact that Hy = H does not depend on
w, hence (50 = (oo = ¢, €50 = €00 = € as required by Lemma 8.7. By
assumption also we have 7,9 = 0. To finish with the initial conditions,
it follows from (8.13) that e verifies conditions (8.39), provided €(7) of
Proposition 8.2 is taken sufficiently small.

Based on (8.32-8.34), we assume by induction that, for j =0,...,n,
Vs js Cs.jr Ms.j» €5, verify (8.35-8.38) for s = 1, and (8.42-8.45) for s > 1.

Then, by (8.40) and (8.41) of Lemma 8.6 we verify that, at each
step n, conditions (8.28) and (8.29) of Proposition 8.5 are satisfied
SO that we can apply the latter proposition and get A,,; € Co 5

w,00
};’H‘l S gp 41,0041 Hn+1 € C,On+1 On+1
that

n+1"

and g, C° 7)-flat such

Pr+1,0n41 ( Ry

(Hn + <w7 > + <An+17 > © Wn + gn) o ZnJrl(gO? T, G (.U) =
<w7 r—= C> + Hppa (90’ G w) + g?’H-l(SO? r,C, w)
(modulo an additive constant). Moreover, by (8.32-8.34) we have that

(849) max([[Anll,, 5,5 107 (Hy = Hom)]], 5
Hgn - gn-lHPn,(Sn,S Y [ZTL - id]pn,én,s’ [Wn_l o Zn - Wn_l]pnvénvs) S VS?”

and that v, 41, Csnt1s Msnt1, €snt1 satisfy (8.35-8.38) for s = 1, and
(8.42-8.45) for s > 1. Finally, (8.46) gives that

D ven <o(wTRTN)I(C+ 6

n>0
which together with (8.49) show that >~ A; = A € C5*%, W, converges
to W € 5;’;0575_,1, and H, converges to H' € Cp_hﬁ_h, and g, converges
to a (k,7)-flat function g € C;”% 5, such that : [H'], 5 = 0 and
A, W, H', g satisfy (8.14) and (8.15) of Proposition 8.2.

This completes the proof of Proposition 8.2 — except for the last

analyticity statement. However, if

Wy € DC(QHJ, 7')

and H is analytic on the segment Is = Bjs(wg) N Rwy, then the same
proof, for s = 0, applied to functions in CJ;5, i.e. functions f €
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C¥(T% x D§ x D§ x Ds) such that f(p,r,c,w) € O*(r,c) yields the
analyticity of A, W and H' on Is for some 0 < §' < 6.

8.7. Proposition 8.2 implies Proposition 4.2. Denote by a(s) the
sequence of constants in Proposition 8.2 — we can assume without
restriction that
a(s) > (s—t)+a(t), s>t,

—and let

a(s)=a(s)+1+~, v=10(r +d)+11.
Let

H(p,r) = NU(r) + 07 (r), > 1+a(l)
with N%(r) = (wp,r) + O*(r). Then

H(p,r,c) = H(p,7) — N%c) — (0,N%c),”r — ¢)
= a(p,¢) + (B(p,¢),r —¢) + O*(r — ¢)

with a € Q%1 (c) and B € O%c) (which means in particular that H
is of order q) Now there exist 3p > 36 > 0 such that
[H]3p3n0 < C1?
for all n < § — the constants p,d and C only depend on H.
Let
1 11

. kon?
(1+ ‘ 02 7
3p,3n,0

— this defines 0 = o(n). Now there is a constant ¢’ = C'(H, T) such
that if

Cnl=o

n< Clkas,
then o < e(7). )
By Proposition 8.2 there exist now A € Cgy,y and W € &5, and a

2p,2m
x,7)-flat function g € Cs,3, such that g € O%(c)

(
(I:I—l— (w+/~\(c, W), )) o Weu(p,7) = (w, 7 —c) + O*r —c) + g, 7, c,w)
(

modulo an additive constant that depends on ¢,w). Moreover, for all
s € N, (8.15) implies

7[W - 1d]

) < C
0,2n,s

(8.50) maX(H]\‘

2p.2n.s K1 R
Hence if we set A(c,w) = A(c,w) — 8,N(r) we get that

(H 4+ {w+Ae,w), ) o Weu(p,7) = (w,r—c) + O*(r — ) + g(p, 7, ¢, w)

5 the value of C, will change from line too line
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and, for all s € N,

< O, _a(s)<CS a(_—
HO,Zn,s — 511 (’%77> — n (577

(8.51) A+ 0.N? yeds).

The generating function. By Proposition 3.1, the diffeomorphism
W(SD7 r,c, w) = (SD + (b(907 C, W), T+ Rl(% ¢, W) + RQ(QO, c, (,d)(T' - C))
has a generating function f(¢,r, c,w) = fo(v,c,w) + (f1(¢¥, c,w), T —¢)

{ s=1r+0uf
p=1%+0,f =0+ fi.

If

11+a(1)

n < C’”(H’ 7')/{(1—(1+w+&(1)) ,
then (8.50) implies

1 G
H(I)Hzp,2n,1 <Ci SE! </f_77) NY/L
and, by Proposition 10.3,
N1 G
Hlep,n,s S CSF(K_H) .
Moreover, by Proposition 10.2,
PRI
||f0||p,7],s S CSF(K/_T])& B Y
SO
1 e
<852) Hf“p,n,s S CSF</€_77) .

To conclude we observe that

1
K1

77q_7 1 al(s
(—)%) <

= )a(s)
kI Nk

Y

and that

o) Lo g
ra—a@ < mln(lﬁ =7 K a—A+r+a(1)) )

Finally, point (iii) of Proposition 4.2 is implied by the last statement
of Proposition 8.2. 0
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9. KAM STABILITY FOR LIOUVILLE TORI

In this section we give a sketch of the proof of Theorem D which
claims KAM stability of a Liouville torus with a non-degeneracy con-
dition of Kolmogorov type. Notice that since the frequency vector is
Liouville we don’t have any Birkhoff normal form in general.

By assumption there exist a v > 0 and an increasing sequence (),
such that

|<k7w0>| Vk € Zd ~ {0}7 ’k| < Qn

1
Z -
Qul”

Lemma 9.1. Let H € C*(TY x D§) be of the form (1.1) and let q be
fized.

For any n sufficiently large (depending on H and q) , there exists an
exact symplectic local diffeomorphism

Z(g.r) = (¢ +O(r),r + O*(r))
defined in T4 x DS, where
p>p/4d and 8 >Q Y

such that
HoZ(p,r)=Ni(r)+ F(p,r) + R
with NU(r) = (wo,7) + O*(r) and F € O (r) and

(9.53) |Flpa + Ny < Q7
(9.54) |R| 5 < e Ven
PN
V@
(9.55) ‘WJM—Mbge

Proof.  Truncate the Fourier coefficients of H at order |k| < @), = %
to get H and H = H + R. Then

|-E”p/2,5 S C
and

1R p2.6 < Ce@ne/?

which is < e”V 9 if n is large enough. }
Apply now Birkhoff reduction up to order g to H, for example as in
Proposition 3.3 with ¢ = r:
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e notice that
|Hj|p/2,5 < OJ/‘
and

in |(k,wo)| > Qo
0<I|§cl|1§nQn|( 7(")0)’ —Qn )

e it follows by a finite induction that
Tilo/2.6, [Qlpr26: 1Gjlpr2s < C}'Qq(zj_m
and for j < ¢
| filpr2s < CJ,'/ 7
e then Z, implicitly defined by

{ =1+ Ly,

S:T—f-%(lﬁ,T) f:f2+"'+fq7

is defined in Tj/ 4 X D5, where
0> CQ,";
e moreover NJ(r) = M(H,(-,r)) which implies (9.55).
U
9.1. Proof of theorem D. Fix ¢ = 60(2d+«a(1)+5) — a(l) being the

exponent that appears in (8.15) of Proposition 8.2 — and apply Lemma
9.1 to find

H(p,r)=Ho Z(p,r) = Nr)+ F(p,r) + R.
Write

H((P, T, C) =tHo (@77“) - NQ(C) - <a”‘Nq(C)7 r—= C>
= a(g@, C) + <B(¢7C)7T - C> + OQ(T - C)

with a € O%(c) and B € O(c), i.e. H is of order 1.

Observe that, with 9, = Q;WQ, we have

[H]y 500 < C(83Q7H) 4 e VOn)

which is < Qﬁwgm =647 if n is large enough.

If k, = 62 and 7 is = d, say, then
1

azﬁH 7
" p/76n70)

(9.56) [ﬁ]ph&n,o < 52/3K;15n10(7+d)+11

(1+]

provided n is sufficiently large. That is, (8.13) is satisfied by H with
o <6, < ¢e(r) when n is large enough.
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Hence Proposition 8.2 applies with our choice of k,,, 0, and h = 6,,/2,
yielding A € ngio/z and W € SZJ/’;OSH/W and a (k,, 7)-flat function g €
C;J/’;f 5,2 Such that

(9.57)
(H+ (w+Ale,w),)) o Weu(p,7) = (w,r —c) + O*(r —c) + g, 7, ¢, w)

(modulo an additive constant that depends on ¢, w), where we have set

Ae,w) = Ae,w) — 0, N¥(c).

Notice that A(0,w) = w and that, from (8.15) and the fact that o <

593 we get

(9.58) [A+ 0N 5y, < 05

/271

Let U(w,c) = w+ A(c,w). Then ¥(wy,0) = 0 and from (9.58) we
have that

v
(9.59) Hg—w(wo, 0) — IH <6
(9.60) %—‘I’<w0, 0) — My|| < 26,
C

By the implicit function theorem, there exists a constant C'(My) (that
only depends on Mj) and a function S : B(wy, C(My)d,) — B(0,0,/2),
such that
U(w,S(w)) =0

Moreover S is of class C' and dS ~ M,"'. A simple computation
shows that the set of frequencies in B(wg, C'(My)d,) that are (k,,7)-
Diophantine has measure larger than (1 —0,,)Leb(B(wo, C(My)dy,,)) (re-
call that we took k,, = 62).

This concludes the proof of Theorem D because (9.57) and the (&, 7)-
flatness of ¢ imply that for any w € B(wg, C(My)d,) N CD(ky, ),
T x {S(w)} is an invariant KAM torus for H o W(y) ..

10. APPENDIX. COMPOSITION AND INVERSION ESTIMATES.
In this Appendix we give the useful estimates for our KAM scheme.
10.1. Convexity estimates.
Proposition 10.1. Let f,g € C*°(T¢ x DY, B). Then
(1)

||f||p,5,s < 081,52||f||z,1§,31||f| 2726,32
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for all non-negative numbers ay, as, s1, S2 such that
ar+ay =1, s1a1+ ssas = s.
(i)
1Falloss < Cslllfllposllglloso + 11fllosollgllpe.s)
for all non-negative numbers s.
Proof. A classical result — see the appendix of [Ho] O
Corollary. Let f,g € C*>(T¢ x DY, B). Then
® +1 +1
A Dol fllpss—n < Csll fII550llf o551
for all non-negative numbers s,n
(i)
1" lpss < CEDNfllpssll Fll550

for all non-negative numbers s,n.
Proof. A computation. O
10.2. Composition.
Proposition 10.2. Let f,g € C*>(T¢ x DY, B) and assume that

Then
r = flo+g(e,w),w)

belongs to C*>°(T4_, x DY, B) and

() hie,w) = f(x o)) = ) s

1llp-ns-ns < Cor (HfH,oangszSs [ fllpssllgllp.50)-
(ii) k(ff,w):f(fﬁJrg(LW)M)—f( z,w) = (Ouf(z,w), g(x)) verifies
1
kllp-no-ns < Cszz ([ fllpsollgllpss + 1 fllosslglloso)lglloso-

Proof. ~ We will prove the statements when x and g(z,w) are scalars.
Notice

g9"(z,w)
S+ (o) Zaxn T
By Cauchy estimates we have for n >0
o f
; < o [l !
‘ Ox p—h,0—h,s h
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and, by the Hadamard estimates we have that

19" 5.5 < CENgln50 09l
Hence, for j > 1,

T, w
|| (z,w) g )||ph5hs§
8” n!

loloso.. lollss  ostrser Jalloso
Colfllss S (LLIEY | flp 5o L0200 57 clontrsa (A0,

n>j n>j—1

10.3. Inversion.

Proposition 10.3. Let f € C* (T4 x DY, B) and assume that
h 1

1fllps1 S 5 < 5 min(p,9).

Then 3
T x Df 52— flz,w) =z + f(z,w)
15 wnvertible for all w € B with an inverse Tth X ]Dg:h Sy g(y,w) =
y+ g(y,w) satisfying
Hng—h,é—h,s S CSHfHP@S
for all s € N.
Proof. 1t is clear by the implicit function theorem that g exists and
that
Since g(y,w) + f(y + g(y,w),w) = 0, it follows that
awg+<axf)ogawg+(awf>0§:0
and, hence,

H9Hp7h,57h71 S ||f“p,5,1 .
Moreover, for n > 1

g+ 0%((0:f) 0 G- 0ug)) + 02((0uf) 0 §) =0,
from which we derive

19, M pns—nnir S N0ef) 0 G Ougll,—ns—pn (0 f) 0 Gll -t 5-pn -
and, by Proposition 10.1,

l9(y, W)||p_h,5—h,n+1 < Cn[[(0:f) o g”p—h,&—h,n ||f||p,5,1
10 f) 0l s nm -
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By Proposition 10.2(i)

1
19l s-nne1 < Caly 1 fllp 60 1]

p,0,n + Hpr,é,n+1

W1 psa 911, 5-nn)-

By assumption [|f]| 5, < b, so

191l p-n5-nmir < Cnlllfllpsnir T 191l ns-nn)

and the result follows by a finite induction. 0
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