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1. Introduction

Let

(1.1) H(ϕ, r) = 〈ω0, r〉+O(r2)

be a C2 function defined for ϕ ∈ Td = Rd/Zd and r ∼ 0 ∈ Rd.
The Hamiltonian system associated to H is given by

(∗)H
{
ϕ̇ = ∂rH(ϕ, r)
ṙ = −∂ϕH(ϕ, r).

Clearly the torus Td×{0} is invariant under the Hamiltonian flow and
the induced dynamics is the translation

(t, ϕ) 7→ ϕ+ tω0.

Moreover this torus is Lagrangian with respect to the canonical sym-
plectic form dϕ ∧ dr on Td × Rd.
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The objective of this paper is to investigate the ”KAM stability” of
the torus T0 := Td × {0} under different hypothesis on H and ω0. We
first explain what we understand by ”KAM stability”. In its stronger
form, we use this terminology to refer to the classical KAM (after
Kolmogorov Arnol’d Moser) phenomenon of accumulation of T0 by in-
variant KAM tori whose Lebesgue density in the phase space tend to
one in the neighborhood of T0 and whose frequencies cover a set of
positive measure. More precisely, a vector ω is said to be Diophantine
if there exist κ > 0, τ > d− 1 such that

(1.2) |〈k, ω〉| ≥ κ

|k|τ
∀k ∈ Zd r {0}

We then use the notation ω ∈ DC(κ, τ). We say that a Cr (or smooth,
or analytic) invariant Lagrangian torus with an induced flow that is Cr

(or smoothly, or analytically) conjugated to a Diophantine translation

(t, ϕ) 7→ ϕ+ tω

is a Cr (smooth, analytic) KAM-torus of (∗)H with translation vector
ω.

We say that T0 is ”KAM stable” in a weak sense if the set of KAM tori
that accumulates it has positive Lebesgue measure but not necessarily
density one. We also drop the requirement that the frequencies cover
a set of positive measure.

When we prove the accumulation of T0 by invariant KAM tori but
we do not know if their measure is positive we simply say that T0 is
accumulated by KAM tori and do not speak of stability.

In this paper we deal essentially with the following situations and
results. Unless otherwise mentioned the Hamiltonian H is assumed to
be analytic as well as T0 and the KAM tori that are obtained. The
exact statements and notations will be deferred to the next section.

(i) If ω0 is Diophantine then T0 is accumulated by KAM tori.
(ii) If ω0 is Diophantine and if the Birkhoff normal form (BNF) of

H satisfies a Rüssmann transversality condition at T0, then T0

is KAM stable.
(iii) In two degrees of freedom (d = 2), if ω0 is rationally independent

and if H satisfies a Kolmogorov non degeneracy condition of its
Hessian matrix at T0, T0 is KAM stable. For d ≥ 3, we get
KAM stability for a class of ω0 that includes all vectors except
a meagre set of zero Hausdorff dimension.

(iv) For d ≥ 4, for any ω0 ∈ Rd, there exists a C∞ (Gevrey) H as
in (1.1) such that T0 is not KAM stable (no positive measure
of accumulating tori).
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(v) For d = 2, if ω0 is Diophantine and H is smooth T0 is KAM
stable.

It was conjectured by M. Herman in his ICM98-lecture [H] that in
the neighborhood of an analytic KAM-torus, the set of KAM-tori is
of positive measure, i.e. KAM stability in a weak sense holds. (i)
falls short from proving Herman’s conjecture. In the case where we
cannot prove that T0 is KAM stable we actually show that there exists
a subvariety of dimension at least d+1 that is foliated by analytic KAM
tori with frequency ω0. The proof of (i) is based on a counter term
KAM theorem inspired by Herman. For every value c ∼ 0 of the action
variable there exists a unique frequency Ω(c) that cancels the counter
term, and if this frequency is Diophantine this yields an invariant KAM
torus with frequency Ω(c). One can show that the jets of the function
Ω(c) are given by those of the gradient of the Birkhoff normal form
when the latter is well defined (which is the case if ω0 is Diophantine).
The following alternative then holds : either the BNF is non degenerate
and the function Ω takes Diophantine values on a positive measure set
which yields KAM stability (this is (iii)), or the BNF is degenerate and
we can use the analytic dependance of the counter term on the action
variable to show the existence of a direction (after a coordinate change
in the action variable) that spans a subvariety of invariant KAM tori
of frequency ω0.

Point (ii) is a more classical KAM result. Its proof is obtained
from the counter term KAM theorem as explained above and it can
be adapted to smooth Hamiltonians. The hypothesis ω0 Diophantine
is necessary to guarantee the existence of a BNF.

In (iii) KAM stability is studied in the neighborhood of a Liouville
torus. The difficulty is that the BNF may not be defined. This dif-
ficulty can be overcome if the Kolmogorov non degeneracy condition
is satisfied by H at T0, and if the rationally independent frequency ω0

satisfies an arithmetic condition that contains all rationally indepen-
dent vectors if d = 2 and all but a meagre set of Hausdorff dimension
0 if d ≥ 3. The condition is that the uniform Diophantine exponent
of ω0 denoted by ω̂(ω0) be finite. We recall that in the case of flows,
we define ω̂(ω0) as the supremum of all real numbers γ such that for
any sufficiently large N , there exists k ∈ Zd such that ‖k‖ ≤ N and
|(k, ω)| ≤ N−γ. We do not know whether invariant tori with frequen-
cies ω0 such that ω̂(ω0) = +∞ are KAM stable if the Kolmogorov non
degeneracy condition is satisfied.

The construction of (iv) is based on the successive conjugation method
(Anosov Katok construction) starting from an ”infinitely degenerate
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twist map” of the form (ϕ, r) 7→ (ϕ+ f(r), r) with the frequency map
f such that f(0) = ω0 and f(r) having a fixed Liouville coordinate in
small neighborhoods of any r such that rd 6= 0. The construction only
applies to the case d ≥ 4. In case d = 2 a smooth version of our KAM
counter term theorem yields KAM stability of Diophantine tori just as
in Herman’s last geometric theorem any Diophantine KAM circle of
a smooth diffeomorphism of the annulus is shown to be KAM stable
[FK].

2. Statements

2.1. Analytic KAM tori are never isolated. Let H be a real an-
alytic function of the form (1.1).

Theorem A. If ω0 is Diophantine, the torus Td × {0} is accumulated
by analytic KAM tori of (∗)H with Diophantine translation vector.

In fact, we shall prove a more precise result. Let NH be the Birkhoff
Normal Form of H, that is a uniquely defined power series in the r
variable as soon as ω0 is Diophantine (see Section 3.1). We say that
NH is j-degenerate if there exist j orthonormal vectors γ1, . . . , γj such
that for every r ∼ 0 ∈ Rd

〈∂rNH(r), γi〉 = 0 ∀ 1 ≤ i ≤ j,

but no j + 1 orthonormal vectors with this property. Since ω0 6= 0
clearly j ≤ d−1. A 0-degenerate NH is also said to be non-degenerate.

Theorem B. If ω0 is Diophantine and NH is j-degenerate, then there
exists an analytic (co-isotropic) subvariety of dimension d+ j contain-
ing Td×{0} and foliated by analytic KAM-tori of (∗)H with translation
vector ω0.

A stronger result is known when NH is (d − 1)-degenerate. Indeed
Rüssmann [R] (in a different setting) proved

Theorem (Rüssmann). If ω0 is Diophantine and NH is (d − 1)-
degenerate, then a full neighborhood of Td × {0} is foliated by analytic
KAM-tori of (∗)H with translation vector ∈ Rω0.

Our proof of Theorem B in Section 6 will also yield Rüssmann’s
result. Theorem A follows from Theorem B in the degenerate case and
from a more classical KAM theorem in the non-degenerate theorem
that we discuss in the next section.
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2.2. KAM stability under non degeneracy conditions of the
BNF.

Let H be a real analytic function of the form (1.1). We say that H
has a normal form NH if there exists a formal power series NH and a
formal symplectic mapping Z of the form

Z(ϕ, r) = (ϕ+O(r), r +O2(r))

such that

H ◦ Z(ϕ, r) = N q
H(r) +Oq+1(r) ∈ Cω(Td × {0}).

Remark. This is in particular the case when ω0 is Diophantine – NH

is the classical Birkhoff normal form. Moreover if a normal form is
exists and ω is rationally independent, then it is unique.

Only assuming existence and non-degeneracy of the normal form NH ,
we shall prove the following.

Theorem C. If NH exists, is unique and is non-degenerate, then in
any neighborhood of Td × {0} the set of analytic KAM-tori of (∗)H is
of positive Lebesgue measure with density one at the torus Td × {0}.
In particular, if ω0 is Diophantine and if NH is non degenerate at T0,
then T0 is KAM stable.

The condition that NH is non-degenerate is essentially equivalent
to Rüssmann’s non-degeneracy condition (see [R2, XYQ]). It is here
shown to be sufficient in this singular perturbation situation.

Point (ii) of our introduction corresponds to the second statement of
Theorem C.

Hence, the conjecture of M. Herman has an affirmative answer when
NH is non-degenerate (theorem C) or (d− 1)-degenerate (Rüssmann’s
theorem). Our theorems do not provide an answer to the conjecture in
the intermediates cases.

2.3. KAM stability in the absence of BNF : Liouville torus
with non-degeneracy of Kolmogorov type. Let H be a real an-
alytic function of the form (1.1). and let

M0 =

∫
Td

∂2H

∂r2
(ϕ, 0)dϕ.

We recall the notation ω̂(ω0) as the supremum of all real numbers γ
such that for any sufficiently large N

min
0<|k|≤N

|〈k, ω0〉| ≤ N−γ.
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Theorem D. If ω̂(ω0) < +∞ and if M0 is non-singular then in
any neighborhood of Td × {0} the set of analytic KAM-tori of (∗)H is
of positive Lebesgue measure with density one at the torus Td × {0}.
Moreover, the set of frequencies of the KAM tori has positive Lebesgue
measure in Rd.

Since for any rationally independent vector ω0 ∈ R2 we have that
ω̂(ω0) = 1 we see that KAM stability holds at T0 without any other
arithmetic condition when d = 2. This is a precise formulation of (iii).

Remark. We could relax the condition ω̂(ω0) < +∞ to the existence
of sequences Qn →∞ and εn → 0 such that |(k, ω0)| ≥ e−εnQn for any
k ∈ Zd, 0 < |k| ≤ Qn.

2.4. Smooth counterexamples to KAM stability. In the C∞-cate-
gory the situation is different from that of Theorem A. For d = 2, we
show in section 7.1 that the same 1 dimensional phenomenon of the
frequency map pointed out by Herman (see [FK] for the discrete case)
gives a set of positive measure of C∞ KAM-tori in any neighborhood of
T2 × {0}. For d = 3, we have no results, but for d ≥ 4 we shall prove

Theorem E. Let d ≥ 4. For any ε > 0, s ∈ N there exists a function
h in C∞(T4 × R4), satisfying h(ϕ, r) = O∞(r4) and

‖h‖Cs(T4×R4) < ε,

such that the flow Φt
H of H(ϕ, r) = (ω0, r) + h(ϕ, r) satisfies

lim sup
t→±∞

‖Φt
H(ϕ, r)‖ =∞

for any (ϕ, r) satisfying r4 6= 0.

Remark. We will see in Section 7 that the construction of Theorem E
can actually be carried out in any Gevrey class Gσ with σ > 1.

Notice that in the examples of Theorem E the hyperplane r4 = 0 is
foliated by KAM tori with translation vector ω0, so the torus Td×{0}
is not isolated. Theorem E gives however counter-examples for d ≥ 4
to the positive measure accumulation by KAM-tori. Indeed, each point
that lies outside this hyperplane diffuses to infinity along a sequence
of time. As we shall see in Proposition 4.3, its positive and negative
semi-orbits actually oscillate between −∞ and +∞ in projection to at
least two action coordinates.

It would be interesting to construct smooth examples with an iso-
lated KAM-torus, thus showing that the phenomenon of Theorem A is
purely analytic. On the other hand if Herman’s conjecture is correct,
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then the phenomenon of Theorem E cannot be carried to the analytic
setting.

It is worth noting that Herman did also announce the existence of
counter-examples in the C∞ category to the positive measure conjec-
ture, provided d ≥ 4. However, he did not provide any clue to these
examples and we are not aware whether the examples he had in mind
had any invariant tori accumulating the KAM-torus.

2.5. Plan of the paper. The paper is organized in the following way.
In section 3 we discuss the Birkhoff normal form and we give a different
(from the usual) characterization of it. In section 4

we formulate a KAM counter term theorem which we use to give still
another characterization of the Birkhoff normal form. Using this result
we derive Theorem B and C and Rüssmann’s theorem in sections 5 and
6. In section 7 we prove Theorem E, and in section 8 we give a proof
of the KAM counter term theorem used in section 4.

2.6. Notations. We denote by Dd
δ the polydisk in Cd with radius δ.

More generally if d = (d1, . . . , dn) and δ = (δ1, . . . , δn), then

Dd
δ = Dd1

δ1
× · · · × Ddn

δn
.

Let Tdρ be the complex neighbourhood of width ρ of of Td:

({z ∈ C : |=z| < ρ}/Z)d.

A holomorphich function f : Tdρ×De
δ → C is real if it gives real values

to real arguments. We denote by

Cω(Tdρ × De
δ)

the space of such real holomorphic functions which we provide with the
norm

|f |ρ,δ = sup
(ϕ,z)∈Tdρ×Deδ

|f(ϕ, z)|.

We let
Cω(Td × {0}) =

⋃
ρ,δ

Cω(Tdρ × De
δ).

We denote by ∂αϕf and ∂αz f the partial derivates of f with respect to ϕ
and z respectively, with the usual multi-index notations. If z = (z′, z′′)
we say that

f ∈ Oj(z′)
if and only if ∂α

′

z′ f(ϕ, 0, z′′) = 0 for all |α′| < j. We denote by ∂ϕf and
∂zf the gradient of f with respect to ϕ and z, respectively, and by ∂2

ϕf

and ∂2
zf the corresponding Hessian.
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For a function f ∈ Cω(Tdρ × {0}), M(f) is the mean value∫
Td
f(ϕ, z)dϕ.

We shall also use the same notations for Cn-valued functions f =
(f1, . . . , fn) with the absolute value replaced by |f | = maxi |fi| (or
some other norm on Cn).

Formal power series. Let z = (z1, . . . , zn). An element

f ∈ Cω(Tdρ)[[z]]

is a formal power series

f = f(ϕ, z) =
∑
α∈Nn

aα(ϕ)zα

whose coefficients aα ∈ Cω(Tdρ) (possibly vector valued). We denote by

[f ]j(ϕ, z) =
∑
|α|=j

aα(ϕ)zα,

the homogenous component of degre j, and

[f ]j =
∑
i≤j

[f ]i.

The partial derivate ∂αϕf and ∂αz f are well-defined and if z = (z′, z′′)

we define that f ∈ Oj(z′) in the same way as for functions. The mean
value M(f) is the power series obtained by taking the mean values of
the coefficients.

Parameters. Let B be an open subset of some euclidean space. De-
fine

Cω,∞(Tdρ × De
δ, B)

to be the set of C∞ functions (possibly vector valued)

f : Tdρ × De
δ ×B 3 (ϕ, z, ω) 7→ f(ϕ, z, ω)

such that for all ω ∈ B 1

fω : Tdρ × De
δ 3 (ϕ, ω) 7→ f(ϕ, z, ω)

is real holomorphic. We define

||f ||ρ,δ,s = sup
|α|≤s
|∂αωfω|ρ,δ.

1 we appologize for the double use of ω
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3. The Birkhoff Normal Form (BNF)

Let

H(ϕ, r) = 〈ω0, r〉+O2(r) ∈ Cω(Tdρ × Dd
δ)

and

ω0 ∈ DC(κ0, τ0).

3.1. The Birkhoff normal form (BNF). Let us recall a well-known
result.

Proposition. There exist{
f(ϕ, r) ∈ Cω(Tdρ)[[r]] ∩ O2(r)
N(r) ∈ R[[r]]

such that

H(ψ, r + ∂ψf(ψ, r)) = N(r).

Moreover, N(r) is unique and f is uniquely determined by fixing arbi-
trarily the mean value M(f).

Remark. The unique series N is the Birkhoff normal form of H, de-
noted NH . It is clear that

NH(r) = 〈ω0, r〉+O2(r).

We say that the unique f for whichM(f) = 0 is the generating function
of the BNF, denoted fH .

We know that the generating function fH is convergent if, and only
if, H is integrable [I] (see also [V, N]). It was known to Poincaré that
for “typical” (in a sense we would call today generic) H, fH will be
divergent. (Siegel [S55] proved the same thing in a neigbourhood of an
elliptic equilibrium with another, and stronger, notion of “typical”.)

However, essentially nothing is known about the BNF itself when ω0

is Diophantien. For example, it is not known:

(i) can NH be divergent?
(ii) if H is non integrable, can NH be convergent?

We only have a result of Perez-Marco [P-M] saying that if the BNF NH

is divergent for some H, then NH is divergent for “typical” (i.e. except
for a pluri-polar set) H. More generally, nothing is known about the
set of all BNF’s

B(ω0) = {NH : H(ϕ, r) = 〈ω0, r〉+O2(r)}.2

2 apart from the fact that NH has some Gevrey-growth [S05] and that B(ω0)
contains all convergent series
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Is it a “large” set or a “small” set in the space of all power series? It
has been shown [B] that if NH fulfills a certain condition G, which is
prevalent in the space of power series, then the invariant torus Td×{0}
is doubly exponentially stable. However, it is not known if NH can
belong to G when H is non-integrable.

3.2. Exact symplectic mappings and generating functions. Con-
sider the equations

(3.3)

{
ϕ = ψ + p(ψ, r)
s = r + q(ψ, r)

with

p, q ∈ Cω(Td × {0})
and

det(I + ∂ψp(ψ, r)) 6= 0

for all (ψ, r) ∈ Td × {r ∼ 0}.
These equations can be solved uniquely for (ψ, s) as

(3.4)

{
ψ = ϕ+ Φ(ϕ, r)
s = r +R(ϕ, r)

with

Φ, R ∈ Cω(Td × {0})
and

det(I + ∂ϕΦ(ϕ, r)) 6= 0

for all (ϕ, r) ∈ Td × {r ∼ 0}. Conversely, the equations (3.4), under
the two supplementary conditions on Φ, R, can be solved uniquely for
(ϕ, s) as (3.3), with the two supplementary conditions on p, q.

Remark. It is easy to verify that

p ∈ O(r) and q ∈ O2(r)

if and only if

Φ ∈ O(r) and R ∈ O2(r).

The mapping

Z : (ϕ, r) 7→ (ψ, s)

is a real analytic local diffeomeorphism on Td×{r ∼ 0}. It is symplectic
if and only if the one-form

Z∗(rdϕ)− (rdϕ)

is closed, and it is exact if and only if this one-form is exact.
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Proposition 3.1. Z is symplectic if and only if the one-form pdr+qdψ
is closed. Z is exact if and only if the one-form pdr + qdψ is exact

If

Φ ∈ O(r) and R ∈ O2(r),

then Z is exact if and only if it is symplectic.

Hence, if Z is exact there is a unique (modulo an additive constant)
function f such that df = pdr + qdψ. The function f is said to be a
generating function for Z.
Proof. We have

sdψ − rdϕ = (r + q(ψ, r))dψ − rdψ − ∂ψ(rp)dψ −
∑
i,j

rj∂ripj(ψ, r)dri

and

d(rp) = ∂ψ(rp)dψ + pdr +
∑
i,j

rj∂ripjdri.

Hence

sdψ − rdϕ = qdψ + pdr − d(rp)

which proves the first two statements.
Finally, if

Φ ∈ O(r) and R ∈ O2(r),

then

p ∈ O(r) and q ∈ O2(r).

Now, pdr + qdψ is closed if and only if for all i, j ∂ripj = ∂rjpi
∂ψiqj = ∂ψjqi
∂ψipj = ∂rjqi

By the symmetry condition on ∂rp this implies that there exists a
unique function f(ψ, r) such that for all j

∂rjf = pj, f(ψ, 0) = 0.

Then, for all i, j,

∂rj∂ψif = ∂ψipj = ∂rjqi

and, hence,

∂ψif(ψ, r) = qi(ψ, r) + hi(ψ).

Since f, q ∈ O(r), this implies that hi = 0. �
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Corollary 3.2. If

Z : Td × {r ∼ 0} → Td × {r ∼ 0}
(ϕ, r) 7→ (ϕ+ Φ(ϕ, r), r +R(ϕ, r))

is a symplectic real analytic local diffeomorphism such that

Φ ∈ O(r) and R ∈ O2(r),

then
NH◦Z = NH .

Proof. Applying the BNF proposition of section 3.1 to H and H̃ =
H ◦ Z we find two generating functions

f, f̃ ∈ Cω(Tdρ)[[r]] ∩ O2(r).

By truncating these function at degre n and applying Proposition 3.1
we find two exact symplectic mappings Wn and W̃n such that

H ◦Wn(ϕ, r) = Nn
H +On+1(r)

and
H ◦ Z ◦ W̃n(ϕ, r) = Nn

H◦Z +On+1(r)

By Proposition 3.1 again Z ◦ W̃n has a generating function

gn ∈ Cω(Tdρ′′ × Dd
δ′′) ∩ O2(r).

Letting n→∞, the result now follows from the uniqueness of the BNF
proposition of section 3.1. �

3.3. Another characterization of the BNF. Let P (r, c) be a power
series in r, c. We say that

P (r, c) = 0 mod O2(r − c) or P (r, c) ∈ O2(r − c)
if

P (r, c) = 〈r − c,Q(r, c)(r − c)〉
for some matrix valued power series Q(r, c). Using this notation any
P (r, c) can be written

P (c, c) + 〈∂rP (c, c), r − c)〉+O2(r − c).

Proposition 3.3. Let c = (c1, . . . , cd). There exist f(ϕ, r, c) ∈ Cω(Tdρ)[[r, c]] ∩ O2(r, c)
Ω(c) ∈ Rd[[c]]
Γ(c) ∈ R[[c]]

such that

(3.5) H(ψ, r + ∂ψf(ψ, r, c)) = Γ(c)+
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〈Ω(c), r − c〉+ 〈(r − c), F (ψ + ∂rf(ψ, r, c), r, c)(r − c)〉+Oq+1(c)

for all q.
Moreover, if (3.5) holds for a specific q, then Γ(c) and Ω(c) are

unique mod Oq(c) and

Γ(c) = NH(c) +Oq+1(c)

and
Ω(c) = ∂cNH(c) +Oq(c).

Proof. We must show not only that there exists at least one solution
f,Γ,Ω of this problem, but we must also show that Γ,Ω are the same
for all such solutions. Let

Hj(ϕ, r) = [H(ϕ, r)]j

be the homogenous component of degre j ofH(ϕ, r) and define fj(ψ, r, c),
Γj(c), Ωj(c) and Fj(ϕ, r, c) similarly.

For j = 1, the equation becomes

Γ1(c) + 〈Ω0, r − c〉 = 〈ω0, r〉
which gives Ω0 = ω0 and Γ1 = 〈ω0, c〉.

For j = 2, the equation becomes

〈ω0, ∂ψf2(ψ, r, c)〉+H2(ψ, r) = Γ2(c)+
+〈Ω1(c), r − c〉+ 〈r − c, F0(ψ)(r − c)〉 .

Write H2(ψ, r)

= H2(ψ, c) + 〈∂rH2(ψ, c), r − c〉+ 〈r − c,Q(ψ)(r − c)〉.
Then we must have

Γ2(c) + 〈Ω1(c), r − c〉 =M(H2(·, c) + 〈∂rH2(·, c), r − c〉)
which determines Γ2 and Ω1 uniquely.

If we take F0 = Q, then we get the equation for f2:

〈ω0, ∂ψf2(ψ, r, c)〉 = − V
(
H2(ψ, c) + 〈∂rH2(ψ, c), r − c〉

)
where V = id−M. Clearly this equation defines f2 uniquely modulo a
mean value g2. But we can also add any term of degre two in O2(r− c)
to f2 and still get a solution simply by changing the definition of F0.
Hence f2 is unique modulo a mean value g2 and modulo O2(r− c). (In
the sequel we must show, in particular, that the higher order terms of
γ and Ω remain the same for these different choices of f2.)

We now proceed by induction on j ≥ 3: assume that we have con-
structed for 2 ≤ m ≤ j − 1, the homogenous components fm(ψ, r, c),
Γm(c), Ωm−1(c) and Fm−2(ϕ, r, c) and assume that fm(ψ, r, c) is unique
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modulo a meanvalue gm(r, c) and modulo O2(r−c) – we have seen that
this induction assumption is true for j = 2.

For j ≥ 3, the equation becomes

〈ω0, ∂ψfj(ψ, r, c)〉+Gj(ψ, r, c) = Γj(c) + 〈Ωj−1(c), r − c〉+
+〈r − c, (Kj−2 + Fj−2)(ψ, r, c)(r − c)〉

where Gj(ψ, r, c)

= [(H2 + · · ·+Hj)(ψ, r + ∂ψf2(ψ, r, c) + · · ·+ ∂ψfj−1(ψ, r, c), c)]j

and Kj−2(ψ, r, c)

= [(F0 + · · ·+ Fj−3)(ψ + ∂rf2(ψ, r, c) + · · ·+ ∂rfj−1(ψ, r, c), c)]j−2.

We write Gj(ψ, r, c)

= Gj(ψ, c, c) + 〈∂rGj(ψ, c, c), r − c〉+ 〈(r − c), Q(ψ, r, c)(r − c)〉

and notice thatGj(ψ, c, c)+〈∂rGj(ψ, c, c), r−c〉 only depend on f2, . . . , fj−1

modulo their meanvalues and modulo O2(r − c) – hence this term is
uniquely determined by H2 + · · ·+Hj. Then

Γj(c) + 〈Ωj−1(c), r − c〉 =M(Gj(·, c, c) + 〈∂rGj(·, c, c), r − c〉)

which determines Γj and Ωj−1 uniquely.
If we take Fj−2 = Q−Kj−2, then we get for fj the equation

(3.6) 〈ω0, ∂ψfj(ψ, r, c)〉 = − V
(
Gj(ψ, c, c) + 〈∂rGj(ψ, c, c), r − c〉

)
which has a unique solution modulo a mean value gj(r, c). But we can
also add any term of degre j in O2(r − c) to fj and still get a solution
simply by changing the definition of Fj−2.

This shows the existence of f,Γ and Ω verifying (3.5) up to any order
q, as well as the uniqueness.

By Propositions 3.1 there exists

f ∈ Cω(Td)[[r]] ∩ O2(r)

such that

H(ψ, r + ∂ψf(ϕ, r)) = NH(r).

Now

NH(r) = NH(c) + 〈∂rNH(c), r − c〉+O2(r − c)

and the uniqueness of Ω(c), mod Oq(c), gives the final statement. �
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4. A KAM counter term theorem and the BNF

Let B be the unit ball centered at ω0 or, more generally, the inter-
section of this unit ball with an affine subspace of Rd through ω0.

Let κ > 0 and τ > d− 1 be given numbers.
Let l : R → R denote a fixed non-negative C∞ function such that
|l| ≤ 1, and l(x) = 0 if |x| ≥ 1/2 and l(x) = 1 if |x| ≤ 1/4.

4.1. A cut-off operator and flat functions. For f ∈ Cω,∞(Tdρ ×
De
δ, B), let

P(f)(ϕ, z, ω) =
∑

n∈Zdr{0}

f̂(n, z, ω)e2πi〈n,ϕ〉l(〈n, ω〉 |n|
τ

κ
).

Remark. Notice that P(f) depend on the choice of l, τ and κ. We shall
not care about the dependence on the first two factors – all constants will
depend on l and τ – but we shall keep careful track on the dependence
on κ.

Notice also that g = P(f) is a flat function on DC(κ, τ), i.e.

∂αϕ∂
β
z ∂

γ
ωg(ϕ, z, ω) = 0

for all multi-indices α, β, γ whenever ω ∈ DC(κ, τ) – a function g with
this property is said to be (κ, τ)-flat. In particular, if f = P(f) the f
is (κ, τ)-flat.

Lemma 4.1. We have

‖P(f)‖ρ′,δ,s ≤ Cs(
1

κ
)s(

1

ρ− ρ′
)(s+1)τ+d‖f‖ρ,δ,s

for any ρ′ < ρ and any s ∈ N. The constant Cs only depends, besides
s, on τ and l.

Proof. The Fourier coefficients (with respect to ϕ) verify∥∥∥f̂(n, ·, ·)
∥∥∥

0,δ,s
≤ ‖f‖ρ,δ,s e

−2π|n|ρ.

The functions

ln(ω) = l(〈n, ω〉 |n|
τ

κ
)

verify

‖ln‖0,0,s ≤ |n|
(τ+1)s 1

κs
‖l‖0,0,s .

Hence for |α| ≤ s and (ϕ, z, ω) ∈ Tdρ′ × Dd
δ ×B

|∂αωP(f)(ϕ, z, ω)| ≤
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Cs
∑
n6=0

e2π|n|ρ′
(
‖f̂(n, ·, ·)‖0,δ,s + ‖f̂(n, ·, ·)‖0,δ,0|n|(τ+1)s 1

κs

)
which gives the estimate. (Here we have used Proposition 10.1.) �

4.2. A counter term theorem.

Proposition 4.2. Given 0 < κ < 1 and τ > d − 1. Then, for all
s ∈ N, there exist non-negative constants (only depending on s and τ)

α(s) ≥ (s− t) + α(t), s ≥ t ≥ 0,

such that if

H(ϕ, r) = N q(r) +Oq+1(r) ∈ Cω(Td × {0}), q ≥ α(1) + 1,

with
N q(r) = 〈ω0, r〉+O2(r),

then there exist ρ, δ > 0 and{
f = f(ϕ, r, c, ω) ∈ Cω,∞(Tdρ × Dd

δ × Dd
δ , B) ∩ O2(r, c)

Λ = Λ(c, ω) ∈ Cω,∞(Dd
δ , B)

such that

(4.7) H(ψ, r + ∂ψf(ψ, r, c, ω)) + 〈ω + Λ(c, ω), r + ∂ψf(ψ, r, c, ω)〉
= 〈ω, r − c〉+O2(r − c) + g

(modulo an additive constant that depends on c, ω) with g (κ, τ)-flat
and g ∈ O2(r, c) ∩ Oq(c).

Moreover,

(i) there exist constants Cs, only depending on s,H, l, τ such that

‖Λ + ∂rN
q‖0,η,s + ‖f‖ρ,η,s ≤ Csη

q(
1

κη
)α(s)

for any η < δ
(ii) there exists a constant C, only depending on H, l, τ , such that

δ ≥ 1

C
κ

α(1)
q−α(1)

(iii) if
ω0 ∈ DC(2κ, τ)

then the mapping

Dd+1
δ′ 3 (c, λ) 7→ Λ(c, (1 + λ)ω0) ∈ Cd

is real holomorphic for some δ′.

Remark. Notice that this proposition (except part (iii)) does not re-
quire that ω0 is Diophantine.
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We shall prove this proposition in section 5, but here we shall derive
its consequences.

Corollary 4.3. Given 0 < κ < 1 and τ > d − 1 and non-negative
constants α(s) as in Proposition 3.3.

If

H(ϕ, r) = N q(r) +Oq+1(r) ∈ Cω(Td × {0}), q ≥ α(1) + 1,

with
N q(r) = 〈ω0, r〉+O2(r),

then there exists a unique real C∞ function Ω, defined for

|c| < η0 =
1

C ′
κ

α(1)
q−α(1) ,

where C ′ only depends on H, τ, l, such that

Ω(c) + Λ(c,Ω(c)) = 0.

Moreover,

(i) for any s ∈ N there exists a constant C ′s such that

‖Ω− ∂rN q‖Cs(|c|<η) ≤ C ′sη
q(

1

κη
)α(s)

for any η < η0

(ii) the Taylor series of Ω up to degree q − 1 at c = 0 is given by
∂rN

q(c).
(iii) If ω0 ∈ DC(κ, τ), the Taylor series of Ω at c = 0 is given by

∂rNH(c).

Remark. This corollary gives a third characterization of the BNF.

Proof. We have that ω0 + Λ(0, ω0) = 0 (because f, g ∈ O2(r, c)) and
by (i) of Proposition 4.2

|∂ωΛ(c, ω)| ≤ C1η
q
0(

1

κη0

)α(1) .
1

2

for |c| < η0 and ω ∈ B. The local existence of Ω follows now by the
implicit function theorem. By a Cauchy estimate and (i) of Proposition
4.2

|∂cΛ(c, ω)| . C0η
q−1
0 (

1

κη0

)α(0) +
∥∥∂2

cN
q
∥∥

0,η0,0
. C̄

where C̄ only depends on H, τ, l, which implies that Ω is defined for
|c| < η0, provided C ′ is sufficiently large depending only on H, τ, l.

Now since g = Oq(c), (4.7) yields

H(ψ, r+∂ψf(ψ, r, c,Ω(c))) = Γ(c, ω)+ 〈Ω(c), r− c〉+O2(r− c)+Oq(c)



18 L. H. ELIASSON, B. FAYAD, R. KRIKORIAN

and we get (ii) from the uniqueness up to Oq−1(c) of Ω a seen in Propo-
sition 3.3.

If ω0 ∈ DC(κ, τ), then (κ, τ)-flatness of g in (4.7) implies

H(ψ, r + ∂ψf(ψ, r, c,Ω(c))) = Γ(c, ω) + 〈Ω(c), r − c〉+O2(r − c)

which by Taylor expansion at c = 0 and the uniqueness of Ω in Propo-
sition 3.3 implies (iii).

It remains to prove the estimates (i). If we define

F (c, ω̃) = Λ(c, ω̃ + ∂rN
q(c)) + ∂rN

q(c)

and Ω̃(c) = Ω(c)− ∂rN q(c), then

Ω̃(c) + F (c, Ω̃(c)) = 0.

Now

|∂ω̃F (c, ω̃)| . 1

2
,

and

‖F‖Cs ≤ C̃sη
q(

1

κη
)α(s),

where the Cs-norm is taken over all |c| < η, |ω̃| < 1
2
.

Then, by an induction,∥∥∥Ω̃
∥∥∥
Cs
. C ′s ‖F‖Cs .

�

It follows immediately under the same hypothesis as in Corollarys
4.3

Corollary 4.4. If Ω(c) ∈ DC(κ, τ), then

H ◦ Zc(ϕ, r) = Γ(c) + 〈Ω(c), r − c〉+O2(r − c)

where Zc is the exact symplectic mapping generated by f(ϕ, r, c,Ω(c)).
Moreover

(ϕ, c) 7→ Zc(ϕ, c)

is a local diffeomorphism.

5. Nondegenerate BNF and KAM stability

This section is devoted to the proof of Theorem C.
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5.1. Transversality.

Lemma 5.1. If NH(r) is non-degenerate, then there exist p, σ > 0 such
that for any k ∈ Zdr 0 there exists a unit vector uk ∈ Rd such that the
series

fk(r) = 〈 k
|k|
, ∂rNH(r)〉

is (p, σ)-transverse in direction uk, i.e.

max
0≤j≤p

|∂jt fk(tuk)|t=0| ≥ σ.

Proof. Indeed, if this were not true, there would exist a sequence
kn ∈ Zd r {0} such that for any u ∈ Rd

max
0≤j≤n

|∂jt fkn(tu)|t=0| <
1

n
.

Extracting a subsequence for which knj/|knj | → v ∈ Rd clearly gives
that 〈v, ∂rNH(r)〉 = 0, i.e. NH would be degenerate. �

Consider now these p, σ. Let Ω ∈ Cp({|c| < η}) and assume

‖Ω− [∂rNH ]p‖Cp({|c|<η}) ≤
σ

2
.

Lemma 5.2. If NH is (p, σ)-transverse (in some direction), then

Leb{|c| < η : |〈 k
|k|
,Ω(c)〉| < ε} ≤ Cp(

ε

σ
)
1
pηd−1

for any η, k, ε.

Proof. We have, for some 0 ≤ j ≤ p,

|∂jt 〈
k

|k|
,Ω(c+ tu)〉| ≥ σ

2

for all |c+ tu| < η. The estimate is now an easy calculation. �

5.2. Proof of theorem C. By Lemma 5.1 we are given p and σ that
correspond to the transversality of the formal series NH . We can
assume without restriction that σ ≤ 1. Fix q = (1 + 2p)α(p) + 1.
Performing a conjugacy, we can assume without restriction that

H(ϕ, r) = N q(r) +Oq+1(r)

We shall apply Proposition 4.2 and Corollaries 4.3–4.4 with

τ = dp+ 1 and κ ≤ σq ≤ 1.

Now let

η =:
1

C ′′
(
κ

σ
)

1
2p .
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Since q ≥ (1 + 2p)α(1) + 1 we have η ≤ η0 for all C ′′ ≥ C ′, with η0 and
C ′ defined in Corollary 4.3. Then Ω is defined in {|c| < η} and
(5.8)

‖Ω− [∂rNH ]p‖Cp({|c|<η}) ≤ C ′pη
q(

1

κη
)α(p) + ‖[∂rNH ]p − ∂rN q

H‖Cp({|c|<η})

which is
≤ C̃η

since q ≥ (1 + 2p)α(p) + 1 – notice that C̃ is independent of C ′′ ≥ C ′.
Finally if C ′′ is sufficiently large (depending on p, τ ,l,H, thus on q) we
have that C̃η ≤ σ/2.

By Lemma 5.2

Leb{|c| < η : |〈 k
|k|
,Ω(c)〉| < ε} . (

ε

σ
)
1
pηd−1,

hence

Leb{|c| < η : Ω(c) /∈ DC(κ, τ)} . (
κ

σ
)
1
pηd−1

. ηLeb{|c| < η}
provided κ is sufficiently small. Hence, the set

{|c| < η : Ω(c) ∈ DC(κ, τ)}
is of positive measure and density 1 as κ→ 0. Theorem C now follows
from Corollary 4.4.

6. Analytic KAM tori are never isolated. Degenerate
BNF and Invariant co-isotropic submanifolds.

This section is devoted to the proof of theorem B and of Rüssmann’s
theorem.

Let q = α(1) + 1 and assume, after a conjugacy, that

H(ϕ, r) = N q(r) +Oq+1(r)

We shall apply Proposition 4.2 and Corollaries 4.3+4.4 with

q = α(1) + 1, τ = τ0 and κ =
κ0

2
.

Then
Ω(c) + Λ(c,Ω(c)) = 0

and
Ω(c) = ∂rNH(c) +O∞(c).

Since NH is j-degenerate we have

∂nvNH(0) = 0 ∀n ≥ 0
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for any v ∈ Lin(γ = (γ1, . . . , γj)), where ∂v is the directional derivative
in direction v. From this we derive that

∂nv (ω0 + Λ(·, ω0))|c=0 = 0 ∀n ≥ 0.

Since s 7→ Λ(〈s, γ〉, ω0) is an analytic function in s ∈ Rj, s ∼ 0, it must
be identically 0, hence Ω(〈s, γ〉) is identically ω0, i.e.

Ω(〈s, γ〉) ∈ DC(κ, τ)

for all sufficiently small s.
From Corollary 4.4 it follows that for any c ∈ Lin(γ) sufficiently

small H has a KAM-torus with frequency ω0 and that the set of all
these tori, ⋃

c∈Lin(γ)

Zc(Td, c),

is a (d+ j)-dimensional subvariety. This completes the proof of Theo-
rem B.

When NH is (d− 1)-degenerate, then

∂rNH(c) = µ(〈c, ω0〉)ω0

where µ(t) = 1 +O(t) is a formal power series in one variable.
Since

µ(〈c, ω0〉)ω0 + Λ(c, µ(〈c, ω0〉)ω0) = O∞(c),

taking c = tω0, we have (assuming ω0 is a unit vector)

(6.9) µ(t)ω0 + Λ(tω0, µ(t)ω0) = 0

modulo a term in O∞(t). Since, by Proposition 4.2 (iii), the lefthand
side is analytic in tω0 and µ we obtain from anyone of the equations
(6.9) that µ(t) is a convergent power series. Then

t 7→ µ(t)ω0 + Λ(tω0, µ(t)ω0)

is analytic for t ∼ 0, hence identically zero. We derive from this that

Ω(c) = µ(〈c, ω0〉)ω0,

i.e.

Ω(c) ∈ DC(κ, τ)

for all sufficiently small c. Rüssmann’s theorem now follows from Corol-
lary 4.4 as in the proof of Theorem B.
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7. Smooth non KAM stable Diophantine tori

7.1. The smooth case in d = 2 degrees of freedom. We let H
be as in the introduction but we only assume that H is of class C∞.
The results of sections 3 and 5 remain valid but we will only have C∞

instead of analytic functions. For example we will not be able to use
the analyticity dependance of Λ on the first varaible, that is crucial in
the degenerate situation as shown in section 6.

But let us examine the frequency function Ω(c) given by Corollary
4.3. It is a smooth function from a neighborhood of 0 in R2 to R2,
such that Ω(0) = ω0 ∈ DC(κ0, τ0). We restrict to a neighborhood
where ω0,i/2 ≤ Ωi(c) ≤ 2ω0,i. A vector Ω(c) = (ω1, ω2) ∈ R2 then
satisfies a Diophantine condition for flows as in (1.2) as soon as α(c) =
ω1/ω2 satisfies a Diophantine condition for diffeomorphisms, of the form
|kα + l| ≥ Cκ0/|k|τ0 , with C some constant that only depends on ω0.

If we restrict α(·) to any segment I that goes through 0 we get a
smooth real function such that α(0) satisfies the latter Diophantine
condition for diffeomorphisms. As explained in Proposition 3 of [FK],
the one dimensional phenomenon here is that, provided κ0 and τ0 are
relaxed to κ < κ0/2 and τ = τ0 + 1, then for a positive measure set
of points in I, α satisfies a Diophantine condition for diffeomorphisms.
Indeed α(0) is a density point in DC(Cκ, τ) and the two alternative for
α are (i) : α is locally constant α ∼ α0 ∈ DC(Cκ, τ) on a neighborhood
of 0 in I, or (ii) : α is not locally constant and it takes a positive
measure set of values in DC(Cκ, τ) on a positive measure set of points
in I.

We conclude that for a positive measure set of c in any neighborhood
of 0, Ω(c) ∈ DC(κ, τ), so that Corollary 4.4 yields the following result,
that can be coined Herman’s last geometric theorem since it is just the
flow version of the disc diffeomorphisms theorem treated in [FK].

Theorem. Let H ∈ C∞(T2×R2) and assume that T2×{0} is a KAM
torus. Then T2×{0} is accumulated by a positive measure set of smooth
KAM tori with Diophantine translation vectors.

7.2. A smooth counter-example in d ≥ 4 degrees of freedom.
A vector α = (α1, α2) ∈ R2 is said to be Liouville if (k, α) = 0 =⇒
k = (0, 0) and if for any N > 0 there exists k ∈ Z2 − {0, 0} such that
|(k, α)| < ‖k‖−N .

We call a sequence of intervals (open or closed or halfopen) In =
(an, bn) ⊂]0,∞[ an increasing cover of the half line if :

(1) limn→−∞ an = 0
(2) limn→+∞ an = +∞
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(3) an < bn−1 < an+1 < bn

Proposition 7.1. Let (ω1, ω2, ω3) ∈ R3 be fixed. For every ε > 0
and every s ∈ N, there exists an increasing cover (In) of ]0,∞[ and
functions fi ∈ C∞(R, (0, 1)), i = 1, 2, 3, such that ‖fi‖s < ε and

• For each n ∈ Z, the functions f1 and f2 are constant on I3n :

f1|I3n ≡ f̄1,n, f2|I3n ≡ f̄2,n

• For each n ∈ Z, the functions f1 and f3 are constant on I3n+1 :

f1|I3n+1
≡ f̄1,n, f3|I3n+1

≡ f̄3,n

• For each n ∈ Z, the functions f2 and f3 are constant on I3n+1 :

f2|I3n−1
≡ f̄2,n, f3|I3n−1

≡ f̄3,n−1

• The vectors (f̄1,n+ω1, f̄2,n+ω2), (f̄1,n+ω1, f̄3,n+ω3) and (f̄2,n+
ω2, f̄3,n + ω3) are Liouville.

Remark. It follows that f1, f2, f3 are C∞-flat at zero.

Proof. We want to construct f1(·) such that f1 is constant equal
to f̄1,n on [a3n, b3n+1] for every n ∈ Z. The crucial observation in the
construction of f1 is that the segments [a3n, b3n+1] are mutually disjoint.

We will then construct similarly f2 and f3 and explain why the Li-
ouville conditions can also be required in addition.

Fix ζ ∈ C∞(R, [0, 1]) be such that ζ(x) = 0 if x ≤ −1 and ζ(x) = 1
if x ≥ 0. Define a sequence un > 0 such that a3n − un > b3n−2 and
b3n+1 + un < a3n+3. Observe that

gn(x) := ζ(u−1
n (x− a3n))− ζ(u−1

n (x− b3n+1 − un))

satisfies gn(x) = 1 if x ∈ [a3n, b3n+1] and gn(x) = 0 for x > a3n+3 >
b3n+1 + un and for x < b3n−2 < a3n − un. Hence the function

f1 =
∑
n∈Z

f̄1,ngn

solves our problem and by just requiring the bound (Bη)(n) : |f̄1,n| ≤
ηunn for every n and supposing that

∑
|un| < ∞ we get that for any

s and any ε one can choose η to guarantee that the resulting function
‖f1‖s < ε/3. We define the other functions similarly and then add the
Liouville constraints without any problem since the condition (Bη)(n)
is open. �

Given a cover (In) as in Proposition 7.1, we can define a define
another cover (I ′n) such that I ′n is strictly contained in (I)n for every
n.
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7.3. Proof of theorem E. Define

H0(ϕ, r) = 〈ω0, r〉+ f1(r4)r1 + f2(r4)r2 + f3(r4)r3

where f1, f2, f3 are as in Proposition 7.1 and ω0 = (ω1, ω2, ω3, ω4).
Notice that as a consequence of Proposition 7.1 we have that on each

In two of the coordinates of (f1 +ω1, f2 +ω2, f3 +ω3) are constant and

form a Liouville vector. We denote În = T4 × R3 × In. Let H be the
set of H ∈ C∞(T4 × R4) such that H does not depend on ϕ4. For
H ∈ H the flow Φt

H leaves r4 invariant. We will show how to make

arbitrarily small perturbations inside H of H0 on any În that create
huge oscillations of the corresponding flow in two of the three directions
r1, r2, r3. These perturbations will actually be compositions inside H0

by exact symplectic maps obtained from suitably chosen generating
functions. Iterating the argument gives a construction by successive
conjugations scheme similar to [AK]. The difference here is that the
conjugations will be applied in a ”diagonal” procedure to include more
and more intervals In into the scheme. Rather than following this
diagonal scheme which would allow to define the conjugations explicitly
at each step, we will actually adopt a Gδ-type construction à la Herman
(see [FH]) that makes the proof much shorter and gives slightly more
general results.

Let U be the set of exact symplectic diffeomorphisms U of T4 × R4

such that U(ϕ, r) = (ψ, s) satisfies s4 = r4. In particular if U ∈ U
implies that U(În) = În for any n ∈ Z.

Proposition 7.2. Let I = In for some n. For any ε > 0, s ∈ N,∆ >
0, A > 0 and any V ∈ U , there exist U ∈ U and T > 0 such that there
exist (i1, i2) ∈ {1, 2, 3}, distinct, such that for i = i1 and i = i2 we have

(1) U = Id on Îc

(2) ‖H0 ◦ U ◦ V −H0 ◦ V ‖s < ε

(3) sup
0<t<T

|(Φt
H0◦U◦V (p))4+i1 | > A, for any p ∈ Î ′ such that ‖p‖ ≤ ∆

(4) sup
0<t<T

|(Φ−tH0◦U◦V (p))4+i2| > A, for any p ∈ Î ′ such that ‖p‖ ≤ ∆

Proof. Since V preserves Î and since φtH0◦U◦V is conjugate to Φt
H0◦U

it is sufficient to prove the proposition for V = Id. Indeed, given V
such that V Î = Î, and applying the Proposition with V = Id and with
constants ε′ � ε and A′ � A yields 2 and 3 including V .

Assume hereafter that I = I3n, the other cases being exactly similar.
Let a ∈ C∞(R) be such that a(ξ) = 0 if ξ /∈ I and a(ξ) = 1 if ξ ∈ I ′
(remember that I ′ is strictly included in I).
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Let f̄1 := f1|I , f̄2 := f2|I and F̄1 = f̄1 + ω1, F̄2 = f̄2 + ω2. Let

(q1, q2) ∈ Z2 − {0, 0} such that |q1| > A + ∆ and |q2| > A + ∆ and
|q1F̄1 + q2F̄2| < ηmin(q−2s

1 , q−2s
2 ) where η = ε/((2π)s+1‖a‖s).

Define the following generating function k ∈ H

k(ψ, r) = a(r4) sin(2π(q1ψ1 + q2ψ2))

and let U = (Φ, R) ∈ U be the symplectic diffeomorphism associated
to k. Then R(ϕ, r) equals

(r1+2πq1a(r4) cos(2π(q1ϕ1+q2ϕ2)), r2+2πq2a(r4) cos(2π(q1ϕ1+q2ϕ2)), r3, r4)

so that U = Id on Îc and H0 ◦ U(ϕ, r) equals

H0(r)+2πa(r4) (q1(f1(r4) + ω1) + q2(f2(r4) + ω2)) s cos(2π(q1ϕ1+q2ϕ2)).

Hence H0 ◦U(ϕ, r)−H0(r) = h(r, ϕ) with h ≡ 0 if r4 /∈ I and if r4 ∈ I
we have that h(r, ϕ) = 2πa(r4)(q1F̄1 + q2F̄2) cos(2π(q1ϕ1 + q2ϕ2)) thus
the required ‖h‖s < ε.

On the other hand we have that on Î the flow Φt
H0

is completely inte-
grable with tori Tr = {r}×T4 carrying the frequencies (F̄1, F̄2, F3(r4), ω4).
Recall that F̄1 and F̄2 are independent over Z, that is, the dynamics of
the translation flow T t

F̄1,F̄2
is minimal. But under the change of vari-

able U the torus Tr for r4 ∈ I ′ becomes T ′r = {(r1− 2πq1 cos(2π(q1ϕ1 +
q2ϕ2)), r2−2πq2 cos(2π(q1ϕ1 +q2ϕ2)), r3, r4) : (ϕ1, . . . , ϕ4) ∈ T4}. Also,
the change of variable is such that (Φ(ϕ, r))j = ϕj for j = 1, 2, 3. All
this implies the third claim of Proposition 7.2 since we took |q1| > A+∆
and |q2| > A+ ∆. �

It is easy now to deduce Theorem E and in fact a stronger version of
it. Define for this purpose U0 the subset of U ∈ U such that U − Id =
O∞(r4) andH0 to be the set of hamiltonians of the form H0◦U,U ∈ U0.
Finally we denote H̄0 the closure in the C∞ topology of H0.

Proposition 7.3. Let D be the set of hamiltonians H ∈ H̄0 such that

(7.10) lim sup ‖Φt
H(p)‖ =∞

for any p = (ϕ, r) satisfying r4 6= 0. More precisely, for each p such
that p8 6= 0 we have that there exist (i1, i2) ∈ {1, 2, 3},distinct, such
that for i = i1 and i = i2 it holds that

(7.11) lim sup
t→±∞

(φtH(p))4+i1 = +∞, lim inf
t→±∞

(φtH(p))4+i2 = −∞

Then D is a dense (in the C∞ topology) Gδ subset of H̄0
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Proof. For n,∆, A, T ∈ N∗ and 1 ≤ i1 < i2) ∈≤ 3 letD(n,∆, A, T, i1, i2)
be the set{

H ∈ H̄0 : sup
0<t<T

min
i=i1,i2;j=1,−1

min
p∈Î′n∩{‖p‖≤∆}

|(φjtH(p))4+i| > A

}
.

It is clear that D(n,∆, A, T, i1, i2) are open subsets of H̄0 in any Cs

topology. On the other hand we have that

D =
⋂
A∈N∗

⋂
n∈N∗

⋂
∆∈N∗

⋃
T∈N∗

⋃
(i1,i2)∈{(1,2),(1,3),(2,3)}

D(n,∆, A, T, i1, i2)

but Proposition 7.2 precisely states that⋃
T∈N∗

⋃
(i1,i2)∈{(1,2),(1,3),(2,3)}

D(n,∆, A, T, i1, i2)

is dense in H̄0 in any Cs topology, which ends the proof of the theorem.
�

The same result of Proposition 7.3 holds in any Gevrey class Gσ, for
any σ > 1. The proof of the latter fact follows exactly the same line as
the C∞ case with the following simple modifications.

- The compactly supported function ζ of Proposition 7.1 is taken
to be in Gσ, as well as the function a in the proof of Proposition
7.2, and Cs norms are replaced with Gevrey norms.

- The conditions (Bη)(n) : |f̄j,n| ≤ ηunn are replaced by |f̄j,n| ≤
ηuu

−n
n
n .

- The Liouville condition on the vectors (F̄1, F̄2) = (f̄1,n+ω1, f̄2,n+
ω2) (as well as on (f̄1,n +ω1, f̄3,n +ω3) and (f̄2,n +ω2, f̄3,n +ω3))
is replaced by a ”super-Liouville” condition of the type |q1F̄1 +
q2F̄2| ≤ e−q1−q2 for infinitely many (q1, q2).

8. Proof of the KAM counter term theorem

The proof of the counter term theorem (Proposition 4.2) is based on
an inductive procedure and will occupy this whole section.

Let P = Pκ,τ be the cut-off operator defined in section 4.1. We take
τ > d−1 and 0 < κ < 1. The operator P depends on a cut-off function
l and constants in this section will, in general without saying, depend
on l. Recall that a function g is (κ, τ)-flat if

∂αϕ∂
β
z ∂

γ
ωg(ϕ, z, ω) = 0

for all multi-indices α, β, γ whenever ω ∈ DC(κ, τ).
Let B be a ball centered at ω0 or, more generally, the intersection of

this unit ball with an affine subspace of Rd through ω0.



AROUND THE STABILITY OF KAM-TORI 27

8.1. A linear operator. Define now

L(f) = u

through

(8.12)

{
〈ω, ∂ϕu〉 = f − P(f)−M(f)
M(u) = P(u) = 0.

Lemma 8.1.

‖L(f)‖ρ′,δ,s ≤ Cs(
1

κ
)s+1(

1

ρ− ρ′
)(τ+1)(s+1)‖f‖ρ,δ,s

for any ρ′ < ρ. The constant Cs only depends, besides s, on τ and l.

Proof. We give a proof with the exponent (τ + 1)s + τ + d – the
improved exponent (τ + 1)s+ τ + 1 requires some more subtle consid-
erations originally due to Rüssmann – see for example [E]. Equation
(8.12) is equivalent to û(0, z, ω) = 0 and, for n ∈ Zd − {0},

û(n, z, ω) = f̂(n, z, ω)ln(ω)

where

ln(ω) =
1

i2π〈n, ω〉
(1− l(〈n, ω〉|n|

τ

κ
)).

Since ∥∥∥f̂(n, ·, ·)
∥∥∥

0,δ,s
≤ ‖f‖ρ,δ,s e

−2π|n|ρ.

and

‖ln‖0,0,s ≤ Cs|n|(τ+1)s+τ 1

κs+1
‖l‖0,0,0 + |n|τ 1

κ
‖l‖0,0,s ,

we get (by Proposition 10.1), for |α| ≤ s and (ϕ, z, ω) ∈ Tdρ′ ×Dd
δ ×B,

|∂αωu(ϕ, z, ω)| ≤ Cs
∑
n 6=0

e2π|n|ρ′×

×
(
‖f̂(n, ·, ·)‖0,δ,s|n|τ

1

κ
+ ‖f̂(n, ·, ·)‖0,δ,0|n|(τ+1)s+τ 1

κs+1

)
which gives the estimates by standard arguments. �

8.2. The counter term theorem. Let 0 < ρ, δ < 1. Denote by Cω,∞ρ,δ
the set of functions f ∈ Cω,∞(Tdρ × Dd

δ × Dd
δ , B) such that

f(ϕ, r, c, ω) ∈ O2(r, c).

Any function f ∈ Cω,∞ρ,δ can be written uniquely as

a(ϕ, c, ω) + 〈B(ϕ, c, ω), r − c〉+
1

2
〈r − c, F (ϕ, r, c, ω)(r − c)〉3

3 we applogize for the double use of B
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modulo O3(r − c) with a = O2(c) and B = O(c).
We say that f is of order q if a ∈ Oq(c) and B ∈ Oq(c).
We define the pseudo-norm

[f ]ρ,δ,s = max(‖a‖ρ,δ,s , ‖B‖ρ,δ,s , ‖∂ϕLa‖ρ,δ,s , ‖∂ϕLB‖ρ,δ,s)
and the vector

Mf =M (B − F∂ϕLa) ,

where, we recall, thatM(g) is the mean value
∫
Td g(ϕ, z)dϕ. We denote

by Eω,∞ρ,δ the set of exact symplectic local diffeomorphisms defined on a

neighborhood of Td × {0} of the form

Zc,ω(ϕ, r) =

(
ϕ+ Φ(ϕ, c, ω)
r +R1(ϕ, c, ω) +R2(ϕ, c, ω)(r − c)

)
with Φ, R1, R2 ∈ Cω,∞(Tdρ×Dd

δ×Dd
δ , B) and R1 = O2(c), Φ, R2 = O(c).

If Z ′ is another mapping in Eω,∞ρ,δ then we define

[Z − Z ′]ρ,δ,s =

max
i

(‖Φ− Φ′‖ρ,δ,s , ‖Ri −R′i‖ρ,δ,s , ‖∂ϕL(Φ− Φ′)‖ρ,δ,s , ‖∂ϕL(Ri −R′i)‖ρ,δ,s)
and

(Z ◦ Z ′)c,ω(ϕ, r) = Zc,ω(Z ′c,ω(ϕ, r)).

The goal of this section is to prove the following

Proposition 8.2. For all s ∈ N, there exist constants ε > 0 and
α(s) ≥ 0, only depending on τ , such that if H ∈ Cω,∞ρ,δ is independent
of ω and satisfies, for some h < min(ρ/2, δ/2) and some σ < ε(τ),

(8.13) [H]ρ,δ,0 ≤ σ
1

(1 + ‖∂2
rH‖ρ,δ,0)7

κ11h10(τ+d)+11,

then there exist Λ ∈ Cω,∞0,δ−h and W ∈ Eω,∞ρ−h,δ−h, H ′ ∈ Cω,∞ρ−h,δ−h, with

[H ′]ρ−h,δ−h,0 = 0, and a (κ, τ)-flat function g ∈ Cω,∞ρ−h,δ−h such that

(8.14)
(H+〈ω+Λ(c, ω), ·〉)◦Wc,ω(ϕ, r) = 〈ω, r−c〉+H ′(r, ϕ, c, ω)+g(ϕ, r, c, ω)

(modulo an additive constant that depends on c, ω) with, for all s,

(8.15)

max
(
‖Λ‖0,δ−h,s , [W − id]ρ−h,δ−h,s, ‖g‖ρ−h,δ−h,s ,

∥∥∂2
r (H

′ −H)
∥∥
ρ−h,δ−h,s,

)
< σ

(
‖∂2

rH‖ρ,δ,0 + 1

κh

)α(s)

(
∥∥∂2

rH
∥∥
ρ,δ,0

+ [H]ρ,δ,0 + 1).
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Moreover, if H is of order q, then g ∈ Oq(c).
Furthermore, if

ω0 ∈ DC(2κ, τ)

and H is analytic on the segment Iδ = Bδ(ω0) ∩ Rω0, then Λ,W and
H ′ are analytic on Iδ′ for some 0 < δ′ ≤ δ and g = 0 on Iδ′.

We shall first prove the main part of this proposition, then we will
explain what modifications are required in order to obtain the final
analyticity statement.

The proof of Proposition 8.2 is based on an inductive KAM scheme.
In each step of the scheme we conjugate a Hamiltonian of the form

〈ω, r− c〉+a(ϕ, c, ω) + 〈B(ϕ, c, ω), r− c〉+ 1

2
〈r− c, F (ϕ, r, c, ω)(r− c)〉.

and reduce quadratically the terms a andB. To do so, we look for a con-
jugacy using a generating function of the form 〈r, ψ〉+u0(ψ)+〈u1(ψ), r〉
and we solve a triangular cohomological system in u0 and u1 to reduce
a and B. This is only possible up to a (κ, τ)-flat function g and also
requires that the constant terms in the cohomological equations vanish
and this is why we have to add the counter term 〈Λ, ·〉 and a constant.

The inductive step of the scheme is enclosed in Proposition 8.5. To
add clearness to the presentation we split the proof of the latter propo-
sition into two parts : in the first part we suppose the constant terms in
the cohomological equations do vanish and build the conjugacy (this is
the content of Lemma 8.3) and in the second one we show that adding
counter terms allows to zero the constant terms in the cohomological
equations (this is the content of Lemma 8.4). Proposition 8.5 is a direct
consequence of Lemmas 8.3 and 8.4.

We will finally conclude in Sections 8.5 and 8.6 showing that the
iteration scheme based on the inductive step of Proposition 8.5 does
converge if the initial bound (8.13) is satisfied.

8.3. Reduction lemmas. In this section we first fix ρ, δ < 1 and a
number h less than min(ρ/2, δ/2) < 1

2
and we set

ξs = κ(s+1)h(τ+1)(s+1)+d.

We fix H ∈ Cω,∞ρ,δ , which may depend on ω, and let

εs = [H]ρ,δ,s and ζs =
∥∥∂2

rH
∥∥
ρ,δ,s

+ 1.
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Lemma 8.3. There exist positive constants ς = ς(τ) and Cs = Cs(τ),
such that if MH = 0 and

(8.16) ε1 < ς
1

ζ1

κ4h4τ+2d+6,

then there exist Z ∈ Eω,∞ρ−h,δ−h, H ′ ∈ Cω,∞ρ−h,δ−h and a (κ, τ)-flat function
g′ such that

(H + 〈ω, ·〉) ◦ Zc,ω(ϕ, r) = 〈ω, r − c〉+H ′(ϕ, c, ω) + g′(ϕ, r, c, ω),

(modulo an additive constant that depends on c, ω) with, for all s ∈ N,

[Z − id]ρ−h,δ−h,0 < h,

[H ′]ρ−h,δ−h,s ≤ νsε0

and

max([Z − id]ρ−h,δ−h,s,
∥∥∂2

r (H
′ −H)

∥∥
ρ−h,δ−h,s , ‖g

′‖ρ−h,δ−h,s) ≤ νs,

for

νs = Cs(
1

hξs
)3ζ0(ζ0εs + ζsε0).

Moreover, if H is of order q, then H ′ is of order q and g′ ∈ Oq(c).

Proof. We introduce G(ϕ, r, c, ω) ∈ O3(r − c) for

H(ϕ, r, c, ω)−a(ϕ, c, ω)−〈B(ϕ, c, ω), r−c〉− 1

2
〈r−c, F (ϕ, c, ω)(r−c)〉.

Notice that ∥∥∂2
rG
∥∥
ρ,δ,s
.
∥∥∂2

rH
∥∥
ρ,δ,s

and ∥∥∂3
rG
∥∥
ρ,δ−h,s .

1

h

∥∥∂2
rH
∥∥
ρ,δ,s

.

We look for the diffeomorphism Z(ϕ, r, c, ω) = (ψ, s) via a generating
function of the form 〈ψ, r〉+ U(ψ, c, ω),

U(ψ, r, c, ω) = u0(ψ, c, ω) + 〈u1(ψ, c, ω), r − c〉 ∈ Cω,∞ρ−h,δ−h,s,
i.e. {

s = r + ∂ψu0 + 〈∂ψu1, r − c〉
ϕ = ψ + u1(ψ).

All our functions depend, besides ψ, on c, ω and we shall in the sequel
suppress this dependence in the notations.

We have, modulo an additive constant,

(8.17) (H + 〈ω, ·〉) ◦ Z(ϕ, r)− 〈ω, r − c〉
= (I) + (II) + (III) +G(ψ, r + ∂ψU(ψ, r)),
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where

(I) = 〈ω, ∂ψu0〉+ a+ 〈B, ∂ψu0〉+
1

2
〈F∂ψu0, ∂ψu0〉 −M(a)

(II) = 〈〈ω, ∂ψu1〉, r − c〉+ 〈B, r − c+ ∂ψu1(r − c)〉
+ 〈F∂ψu0, r − c+ ∂ψu1(r − c)〉

(III) =
1

2
〈r − c, F (r − c)〉+ 〈F (r − c), ∂ψu1(r − c)〉

+
1

2
〈F∂ψu1(r − c), ∂ψu1(r − c)〉.

The homological equation. To kill as much as possible of a and B in
(H + 〈ω, ·〉) ◦ Z we take{

u0 = −L(a)
u1 = −L(B + F∂ψu0)

Observe that if a,B ∈ Oq(c), then u0, u1 ∈ Oq(c). By Lemma 8.1 we
have

[U ]ρ−h,δ,s + [∂rU ]ρ−h,δ,s ≤ Cses = Cs
1

hξ2
s

(ζsε0 + ζ0εs).
4

(Here and elsewhere we use Proposition 10.1 to estimate products.)
Estimation of Z. Since, by (8.16),

e1 . h2

Proposition 10.3 implies that the mapping ϕ = f̃(ψ) = ψ + u1(ψ) is
invertible with inverse satisfying∥∥∥f̃−1 − id

∥∥∥
ρ−2h,δ−h,s

≤ Cses,

and Proposition 10.2 gives

‖Z − id‖ρ−3h,δ−2h,s ≤ Cs
es
h
.

It follows that Z ∈ Eω,∞ρ−4h,δ−3h and Lemma 8.1 implies that

[Z − id]ρ−4h,δ−3h,s ≤ Cs
1

hξs

es
h2
.

The function g′. Let

h = P(a) + 〈P(B − F∂ψu0), r − c〉
and g′(ϕ, r) = h(ψ, r). Then, by Lemma 4.1,

‖h‖ρ−2h,δ,s ≤ Cses

4 the constant Cs will differ from line to line
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and, by Proposition 10.2,

‖g′‖ρ−3h,δ−2h,s ≤ Cses.

We also note that since a,B, u0 ∈ Oq(c), then g′ ∈ Oq(c). Checking

that H ′ is of order q. If H is of order q, we saw that u0, u1 = Oq(c).
Hence the terms (I) and (II) in the RHS of (8.17) are Oq(c). Now
H ′(ϕ, r) equals

I(ϕ+ Φ(ϕ, c), c) + II(ϕ+ Φ(ϕ, c), r − c, c) + III(ϕ+ Φ(ϕ, c), r − c, c)
and since III ∈ O2(r − c) we conclude that H ′ is of order q.

Estimation of H ′. We set

G1(ϕ, r) = 〈∂rG(ϕ, r), ∂ψU(ϕ, r)〉
and

G2(ϕ, r) = G(ψ, r + ∂ψU(ψ, r))−G(ϕ, r)− 〈∂rG(ϕ, r), ∂ψU(ϕ, r)〉.
Then G1 ∈ O2(r − c) and the RHS of (8.17) satsifies

RHS − h = (I) + (II)− h+G2 +O2(r − c)
as well as

∂2
r (RHS −H) = ∂2

r ((III) +G1 +G2)− F
because G = O3(r − c). Now we have that

(8.18) [(I) + (II)−h]ρ−2h,δ,s ≤ Cs
1

hξs
[(εse0 + ε0es)

1

h
+ (ζse0 + ζ0es)

e0

h
]

(here we use that MH = 0) and by Proposition 10.2(ii),

(8.19) ‖G2‖ρ−2h,δ−h,s ≤ Cs(ζse0 + ζ0es)
e0

h4

since e0 . h2. The inequality (8.19) implies in particular that

(8.20) [G2]ρ−3h,δ−2h,s ≤ Cs
1

hξs
(ζse0 + ζ0es)

e0

h5

and

(8.21)
∥∥∂2

rG2

∥∥
ρ−2h,δ−2h,s

≤ Cs(ζse0 + ζ0es)
e0

h6
.

It follows from (8.18) and (8.20) that the right hand side of (8.17)
verifies

[RHS − h]ρ−3h,δ−2h,s ≤ Cs
1

hξs
[(εse0 + ε0es)

1

h
+ Cs(ζse0 + ζ0es)

e0

h5
].

On the other hand, since

(8.22)
∥∥∂2

rG1

∥∥
ρ−2h,δ−h,s ≤ Cs(ζse0 + ζ0es)

1

h2
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and

(8.23)
∥∥∂2

r (III)− F
∥∥
ρ−2h,δ,s

≤ Cs(ζse0 + ζ0es)
1

h
.

it follows that∥∥∂2
r (RHS −H)

∥∥
ρ−2h,δ−2h,s

≤ Cs(ζse0 + ζ0es)
e0

h6

– by (8.21+8.22+8.23).
Since H ′(ϕ, r) = RHS(ψ, r) − g′(ϕ, r) we get by Proposition 10.2

that

[H ′]ρ−4h,δ−3h,s ≤ Cs
1

hξs
[(εse0 + ε0es)

1

h
+ Cs(ζse0 + ζ0es)

e0

h5
]

and ∥∥∂2
r (H

′ −H)
∥∥
ρ−4h,δ−3h,s

≤ Cs(ζse0 + ζ0es)
e0

h6
.

This completes the proof of the lemma. �

Let W ∈ Eω,∞ρ,δ and denote

ηs = [W − id]ρ,δ,s.

Lemma 8.4. There exist positive constants ς = ς(τ) and Cs = Cs(τ),
such that if

(8.24) η0 < ς
1

ζ0

,

then there exists Λ ∈ Cω,∞δ such that

H̃ = H + 〈Λ, ·〉 ◦W

verifies MH̃ = 0 and ∂2
r H̃ = ∂2

rH.

Also, if H is of order q, then H̃ is of order q.
Moreover, for all s ∈ N,

‖Λ‖δ,s ≤ Csζ0(ζ0ε0ηs + ζ0εs + ζsε0)

and
[H̃ −H]ρ,δ,s ≤ Csζ0(ζ0ε0ηs + (ζ0εs + ζsε0)(η0 + 1)).

Proof. Write H(ϕ, r, c, ω) as

a(ϕ, c, ω) + 〈B(ϕ, c, ω), r − c〉+
1

2
〈r − c, F (ϕ, c, ω)(r − c)〉

and H̃(ϕ, r, c, ω) as

ã(ϕ, c, ω) + 〈B̃(ϕ, c, ω), r − c〉+
1

2
〈r − c, F̃ (ϕ, c, ω)(r − c)〉

modulo O3(r − c).
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Observe that

Wc,ω(ϕ, r) =

(
ϕ+ Φ(ϕ, c, ω)
r +R1(ϕ, c, ω) +R2(ϕ, c, ω)(r − c)

)
,

so

ã = a+ 〈Λ, R1 + c〉(8.25)

B̃ = B + (I + tR2)Λ(8.26)

and F̃ = F . We want to choose Λ so that MH̃ = 0, i.e.

M
([
I + tR2 − F∂ϕLR1

]
Λ− F∂ϕLa+B

)
= 0.

If X = −M(tR2 − F∂ϕLR1) and Y = M(−B + F∂ϕLa), then this
amounts to

(8.27) Λ =
∑
n

XnY.

Observe that if a,B ∈ Oq(c), then Y ∈ Oq(c), thus Λ ∈ Oq(c) and
H̃ is of order q.

We have
‖X‖δ,s ≤ Cs(ζsη0 + ζ0ηs)

and
‖Y ‖δ,s ≤ Cs(ζsε0 + ζ0εs).

By assumption (8.24), ‖X‖δ,0 ≤ 1/2, which gives the existence and

the estimates on Λ and H̃ by Proposition 10.1 and (8.25)–(8.27). �

8.4. The inductive step. Combining Lemma 8.3 and Lemma 8.4 we
immediately get the following proposition that constitutes the inductive
step of our KAM scheme for the proof of Proposition 8.2. For the needs
of the inductive application, we will consider that at each step we have
a Hamiltonian H ∈ Cω,∞ρ,δ as well as g ∈ Cω,∞ρ,δ (κ, τ)-flat, and W ∈ Eω,∞ρ,δ .

As in the previous section we assume h < min(ρ/2, δ/2), and we set

ξs = κ(s+1)h(τ+1)(s+1)+d

and
εs = [H]ρ,δ,s and ζs =

∥∥∂2
rH
∥∥
ρ,δ,s

+ ‖g‖ρ,δ,s + 1

and
ηs = [W − id]ρ,δ,s.

Proposition 8.5. There exist ς = ς(τ) and Cs = Cs(τ) such that, if

(8.28) η0 < ς
1

ζ0
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and

(8.29) ε1 < ς
1

ζ2
1 (1 + η1)

κ4h4τ+2d+6,

then there exist Λ ∈ Cω,∞0,δ , Z ′ ∈ Eω,∞ρ−h,δ−h, H ′ ∈ Cω,∞ρ−h,δ−h and a (κ, τ)-flat
function g′ such that

(8.30) (H + g + 〈ω, ·〉+ 〈Λ(c, ω), ·〉 ◦W ) ◦ Z ′c,ω(ϕ, r) =

〈ω, r − c〉+H ′(ϕ, c, ω) + g′(ϕ, r, c, ω)

(modulo an additive constant that depends on c, ω) with

(8.31) [Z ′ − id]ρ−h,δ−h,0 < h,

(8.32) [H ′]ρ−h,δ−h,s ≤ νsε0

and

(8.33) max(‖Λ‖0,δ−h,s ,
∥∥∂2

r (H
′ −H)

∥∥
ρ−h,δ−h,s , ‖g

′ − g‖ρ−h,δ−h,s ,
[Z ′ − id]ρ−h,δ−h,s, [W ◦ Z

′ −W ]ρ−h,δ−h,s) ≤ νs,

where

(8.34) νs = Cs(hξs)
−5ζ5

0 (εs + ζsε0 + ηsε0).

Moreover, if H is of order q and g ∈ Oq(c), then H ′ is of order q
and g′ ∈ Oq(c).

Remark. Notice that the assumption (8.28) follows if

η1 < ς
1

ζ1

,

and that
νsε0 ≤ νsε1

and
νs ≤ Cs(hξs)

−5ζ5
1 (εs + ζsε1 + ηsε1).

Proof. By Lemma 8.4 there exists Λ ∈ Cω,∞δ ,

‖Λ‖0,δ,s ≤ Csζ0(ζ0ε0ηs + ζ0εs + ζsε0),

such that
H̃ = H + 〈Λ, ·〉 ◦W

verifies MH̃ = 0,

[H̃]ρ,δ,s ≤ εs + Csζ0(ζ0ε0ηs + ζ0εs + ζsε0) = ε̃s

and

ζ̃s =
∥∥∥∂2

r H̃
∥∥∥
ρ,δ,s

+ ‖g‖ρ,δ,s + 1 = ζs.
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Since

ε̃1 ≤ ς
1

ζ̃1

κ4h4τ+2d+6,

Lemma 8.3 gives Z ′ ∈ Eω,∞ρ−h,δ−h, H ′ ∈ C
ω,∞
ρ−h,δ−h and a (κ, τ)-flat function

g′′ such that

(H̃ + 〈ω, ·〉) ◦ Z ′(ϕ, r, c, ω) = 〈ω, r − c〉+H ′(ϕ, c, ω) + g′′(ϕ, r, c, ω),

(modulo an additive constant that depends on c, ω) with

[Z ′ − id]ρ−h,δ−h,0 < h,

[H ′]ρ−h,δ−h,s ≤ ν̃sε̃0

and

max([Z ′ − id]ρ−h,δ−h,s,
∥∥∥∂2

r (H
′ − H̃)

∥∥∥
ρ−h,δ−h,s

, ‖g′′‖ρ−h,δ−h,s) ≤ ν̃s,

for

ν̃s = Cs(hξs)
−3ζ0(ζ0ε̃s + ζsε̃0).

Since g′ = g ◦Z ′+ g′′ we get that g′ is flat and Proposition 10.2 implies
that

‖g′ − g‖ρ−2h,δ−2h,s ≤ Csh
−1ζsν̃s

If we write W = id +f and Z ′ = id +f ′, then

W ◦ Z ′ −W = f ′ + (f ◦ (id +f ′)− f).

We’ve already seen that

[f ′]ρ−h,δ−h,s ≤ ν̃s

and

[f ◦ (id +f ′)− f ]ρ−2h,δ−2h,s ≤ (hξs)
−1ν̃s

by Proposition 10.2. Let now νs = Cs(hξs)
−1ζ0ν̃s. �

8.5. Convergence of the KAM scheme. We will show in Section
8.6 that the inductive application of Proposition 8.5 yields Proposition
8.2. Before this, we show in the current section two computational
lemmas that will allow, under condition (8.13) of Proposition 8.2, to
apply inductively Proposition 8.5 by checking conditions (8.28) and
(8.29) at each step, and get the required estimates of Proposition 8.2.
The first lemma deals with C1 norms relative to ω, while the second
one contains the estimates relative to the higher order norms.
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Lemma 8.6. Fix 0 < h < 1
2

and let hn = h2−n−1. Let a, b, c and
C ≥ 0 and let there be given four non negative sequences νn, ζn, ηn, εn
such that

(8.35) νn ≤ Cκ−2bh−2a
n ζcn(ζn + ηn)εn

for n ≥ 0 and

ζn ≤ ζn−1 + νn−1 ζ0 = ζ ≥ 1(8.36)

ηn ≤ ηn−1 + νn−1 η0 = 0(8.37)

εn ≤ νn−1εn−1 ε0 = ε(8.38)

for n ≥ 1.
Then there exists C ′ = C ′(C, a, b, c) > 0 such that if for ς ≤ 1

(8.39) ε <
ς

C ′
κ2b+1h2a+1ζ−c−2

then

εn ≤ (κhζ−1)2n−1ε(8.40)

ηn < ςζ−1
n .(8.41)

Proof. Assume ζn ≤ A = 2ζ and ηn ≤ 1 for all n. Then

νn ≤ BDnεn

with B = Cκ−2bh−2a22a+1Ac+1 and D = 4a. Hence for n ≥ 1 we have

εn ≤ BDn−1ε2n−1 ≤ B2n−1D2n−n−1ε2
n

=
1

BDn+1
(BDε)2n

which shows (8.40) if C ′ is sufficiently large.
From (8.40) we get that ∑

n

νn ≤
ς

2ζ
,

and the assumptions ζn ≤ A = 2ζ and ηn ≤ 1 — actually (8.41), now
follow by induction. �

Lemma 8.7. Fix 0 < h < 1
2

and let hn = h2−n−1. Let a, b, c ≥ 0
and suppose εn is a sequence satisfying (8.40) with ε = ε0 verifying
(8.39) of Lemma 8.6. Assume that Cs ≥ 0, and that four sequences
νs,n, ζs,n, ηs,n, εs,n satisfy

(8.42) νs,n ≤ Csκ
−b(s+1)h−a(s+1)

n ζc(εs,n + ζs,nεn + ηs,nεn)



38 L. H. ELIASSON, B. FAYAD, R. KRIKORIAN

for all n ≥ 0, and

ζs,n ≤ ζs,n−1 + νs,n−1 ζs,0 = ζ ≥ 1(8.43)

ηs,n ≤ ηs,n−1 + νs,n−1 ηs,0 = 0(8.44)

εs,n ≤ νs,n−1εn−1 εs,0 = ε(8.45)

for all n ≥ 1. Then

(8.46)
∑
n≥0

νs,n ≤ σ(κ−1h−1ζ)α(s)(ζ + ε)

where σ := ς
C′

of (8.39) and α(s) is some increasing function in s
depending on Cs and a, b, c.

Proof. By replacing ζs,n by ζs,n + ηs,n we see that it is enough to
consider the case ηs,n = 0 for all n.

If we let Us = C̄κ−b(s+1)h−a(s+1)ζc, with C̄(s, a, b, c, C) > 0 suffi-
ciently large, then it is immediate by induction that

(8.47) max(εs,n, ζs,n − ζ, νs,n) ≤ σUn+1
s (ζ + ε)

Thus, if n ≥ N(s) � max(log(s + 1), logCs), (8.45) and (8.47) and
(8.40) imply that

Csκ
−b(s+1)h−a(s+1)

n ζcεs,n ≤ σU2n+1
s (κhζ−1)2n−1−1ε(ζ + ε) ≤ σ

2n
(ζ + ε)

Csκ
−b(s+1)h−a(s+1)

n ζcζs,nεn ≤ σU2n+1
s (κhζ−1)2n−1ε(ζ + ε) ≤ σ

2n
(ζ + ε)

hence, for n ≥ N(s) we get that

(8.48) νs,n ≤
σ

2n−1
(ζ + ε)

and (8.46) follows, with α(s) = (s + 1)(N(s))2, if we sum (8.47) for n
from 0 to N(s) and (8.48) for n ≥ N(s). �

8.6. Proof of Proposition 8.2. We now prove Proposition 8.2 from
an inductive application of Proposition 8.5.

Let h < min(ρ, δ)/2, hn = h2−n−1 and define

ρn = ρ−
∑
i<n

hi, δn = δ −
∑
i<n

hi

and
ξs,n = κ(s+1)h(τ+1)(s+1)+d

n .

We start by setting H0 = H, Λ0 = 0, g0 = 0 and W0 = id, and we
shall define inductively Hn, Λn, Zn and Wn = Z0 ◦ Z1 ◦ · · · ◦ Zn. In
light of (8.34), let

εs,n = [Hn]ρn,δn,s, ζs,n =
∥∥∂2

rHn

∥∥
ρn,δn,s

+ ‖gn‖ρn,δn,s + 1
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ηs,n = [Wn − id]ρn,δn,s, νs,n = Cs(hnξs,n)−5ζ5
0,n(εs,n + ζs,nε0,n + ηs,nε0,n)

where Cs is given by Proposition 8.5. We fix hereafter a = 5(τ + 1 +
d), b = 5, c = 5 and we will apply Lemmas 8.6 and 8.7 with these values
and with Cs as in Proposition 8.5, while C of Lemma 8.6 is just C1.
As for ς, we will take it as ς(τ) of Proposition 8.5.

Note also that for s = 0, the fact that H0 = H does not depend on
ω, hence ζs,0 = ζ0,0 = ζ, εs,0 = ε0,0 = ε as required by Lemma 8.7. By
assumption also we have ηs,0 = 0. To finish with the initial conditions,
it follows from (8.13) that ε verifies conditions (8.39), provided ε(τ) of
Proposition 8.2 is taken sufficiently small.

Based on (8.32–8.34), we assume by induction that, for j = 0, . . . , n,
νs,j, ζs,j, ηs,j, εs,j verify (8.35–8.38) for s = 1, and (8.42–8.45) for s ≥ 1.

Then, by (8.40) and (8.41) of Lemma 8.6 we verify that, at each
step n, conditions (8.28) and (8.29) of Proposition 8.5 are satisfied
so that we can apply the latter proposition and get Λn+1 ∈ Cω,∞0,δn+1

,

Zn+1 ∈ Eω,∞ρn+1,δn+1
, Hn+1 ∈ Cω,∞ρn+1,δn+1

and gn+1Cω,∞ρn+1,δn+1
(κ, τ)-flat such

that

(Hn + 〈ω, ·〉+ 〈Λn+1, ·〉 ◦Wn + gn) ◦ Zn+1(ϕ, r, c, ω) =

〈ω, r − c〉+Hn+1(ϕ, c, ω) + gn+1(ϕ, r, c, ω)

(modulo an additive constant). Moreover, by (8.32–8.34) we have that

(8.49) max(‖Λn‖ρn,δn,s ,
∥∥∂2

r (Hn −Hn−1)
∥∥
ρn,δn,s

,

‖gn − gn−1‖ρn,δn,s , [Zn − id]ρn,δn,s, [Wn−1 ◦ Zn −Wn−1]ρn,δn,s) ≤ νs,n

and that νs,n+1, ζs,n+1, ηs,n+1, εs,n+1 satisfy (8.35–8.38) for s = 1, and
(8.42–8.45) for s ≥ 1. Finally, (8.46) gives that∑

n≥0

νs,n ≤ σ(κ−1h−1ζ)α(s)(ζ + ε)

which together with (8.49) show that
∑

Λl = Λ ∈ Cω,∞δ−h , Wn converges
to W ∈ Eω,∞ρ−h,δ−h, and Hn converges to H ′ ∈ Cω,∞ρ−h,δ−h, and gn converges

to a (κ, τ)-flat function g ∈ Cω,∞ρ−h,δ−h such that : [H ′]ρ−h,δ−h = 0 and
Λ,W,H ′, g satisfy (8.14) and (8.15) of Proposition 8.2.

This completes the proof of Proposition 8.2 – except for the last
analyticity statement. However, if

ω0 ∈ DC(2κ, τ)

and H is analytic on the segment Iδ = Bδ(ω0) ∩ Rω0, then the same
proof, for s = 0, applied to functions in Cωρ,δ,δ, i.e. functions f ∈
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Cω(Tdρ × Dd
δ × Dd

δ × Dδ) such that f(ϕ, r, c, ω) ∈ O2(r, c) yields the
analyticity of Λ, W and H ′ on Iδ′ for some 0 < δ′ ≤ δ.

8.7. Proposition 8.2 implies Proposition 4.2. Denote by α̃(s) the
sequence of constants in Proposition 8.2 – we can assume without
restriction that

α̃(s) ≥ (s− t) + α̃(t), s ≥ t,

– and let
α(s) = α̃(s) + 1 + γ, γ = 10(τ + d) + 11.

Let
H(ϕ, r) = N q(r) +Oq+1(r), q ≥ 1 + α(1)

with N q(r) = 〈ω0, r〉+O2(r). Then

H̃(ϕ, r, c) =: H(ϕ, r)−N q(c)− 〈∂rN q(c), r − c〉
= a(ϕ, c) + 〈B(ϕ, c), r − c〉+O2(r − c)

with a ∈ Oq+1(c) and B ∈ Oq(c) (which means in particular that H
is of order q) Now there exist 3ρ ≥ 3δ > 0 such that

[H̃]3ρ,3η,0 < Cηq

for all η ≤ δ — the constants ρ, δ and C only depend on H.
Let

Cηq = σ
1

(1 +
∥∥∥∂2

r H̃
∥∥∥

3ρ,3η,0
)7
κ11ηγ

— this defines σ = σ(η). Now there is a constant C ′ = C ′(H, τ) such
that if

η ≤ C ′κ
11
q−γ ,

then σ ≤ ε(τ).
By Proposition 8.2 there exist now Λ̃ ∈ Cω,∞0,2η and W ∈ Eω,∞2ρ,2η, and a

(κ, τ)-flat function g ∈ Cω,∞2ρ,2η such that g ∈ Oq(c)

(H̃ + 〈ω+ Λ̃(c, ω), ·〉) ◦Wc,ω(ϕ, r) = 〈ω, r− c〉+O2(r− c) + g(ϕ, r, c, ω)

(modulo an additive constant that depends on c, ω). Moreover, for all
s ∈ N, (8.15) implies

(8.50) max(
∥∥∥Λ̃
∥∥∥

0,2η,s
, [W − id]2ρ,2η,s) < Cs

ηq−γ

κ11
(

1

κη
)α̃(s).5

Hence if we set Λ(c, ω) = Λ̃(c, ω)− ∂rN q(r) we get that

(H + 〈ω+ Λ(c, ω), ·〉) ◦Wc,ω(ϕ, r) = 〈ω, r− c〉+O2(r− c) + g(ϕ, r, c, ω)

5 the value of Cs will change from line too line
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and, for all s ∈ N,

(8.51) ‖Λ + ∂rN
q‖0,2η,s ≤ Cs

ηq−γ

κ11
(

1

κη
)α̃(s) ≤ Csη

q(
1

κη
)α(s).

The generating function. By Proposition 3.1, the diffeomorphism

W (ϕ, r, c, ω) = (ϕ+ Φ(ϕ, c, ω), r +R1(ϕ, c, ω) +R2(ϕ, c, ω)(r − c))

has a generating function f(ψ, r, c, ω) = f0(ψ, c, ω) + 〈f1(ψ, c, ω), r− c〉{
s = r + ∂ψf
ϕ = ψ + ∂rf = ψ + f1.

If

η ≤ C ′′(H, τ)κ
11+α̃(1)

q−(1+γ+α̃(1)) ,

then (8.50) implies

‖Φ‖2ρ,2η,1 ≤ C1
ηq−γ

κ11
(

1

κη
)α̃(1) . η,

and, by Proposition 10.3,

‖f1‖ρ,η,s ≤ Cs
ηq−γ

κ11
(

1

κη
)α̃(s).

Moreover, by Proposition 10.2,

‖f0‖ρ,η,s ≤ Cs
ηq−γ

κ11
(

1

κη
)α̃(s),

so

(8.52) ‖f‖ρ,η,s ≤ Cs
ηq−γ

κ11
(

1

κη
)α̃(s).

To conclude we observe that

ηq−γ

κ11
(

1

κη
)α̃(s) ≤ ηq(

1

κη
)α(s),

and that

κ
α(1)
q−α(1) ≤ min(κ

11
q−γ , κ

11+α̃(1)
q−(1+γ+α̃(1)) ).

Finally, point (iii) of Proposition 4.2 is implied by the last statement
of Proposition 8.2. �
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9. KAM stability for Liouville tori

In this section we give a sketch of the proof of Theorem D which
claims KAM stability of a Liouville torus with a non-degeneracy con-
dition of Kolmogorov type. Notice that since the frequency vector is
Liouville we don’t have any Birkhoff normal form in general.

By assumption there exist a γ > 0 and an increasing sequence Qn

such that

|〈k, ω0〉| ≥
1

|Qn|τ
∀k ∈ Zd r {0}, |k| ≤ Qn.

Lemma 9.1. Let H ∈ Cω(Tdρ × De
δ) be of the form (1.1) and let q be

fixed.
For any n sufficiently large (depending on H and q) , there exists an

exact symplectic local diffeomorphism

Z(ϕ, r) = (ϕ+O(r), r +O2(r))

defined in T dρ′ × De
δ′ where

ρ′ ≥ ρ/4 and δ′ ≥ Q−2γ
n

such that

H ◦ Z(ϕ, r) = N q(r) + F (ϕ, r) +R

with N q(r) = 〈ω0, r〉+O2(r) and F ∈ Oq+1(r) and

|F |ρ′,δ′ + |N q|δ′ ≤ Q2γq
n(9.53)

|R|ρ′,δ′ ≤ e−
√
Qn(9.54) ∥∥∥∥∂2N

∂r2
(0)−M0

∥∥∥∥ ≤ e−
√
Qn(9.55)

Proof. Truncate the Fourier coefficients of H at order |k| ≤ Q′n = Qn
q

to get H̃ and H = H̃ +R. Then

|H̃|ρ/2,δ ≤ C

and

|R|ρ/2,δ ≤ Ce−Q
′
nρ/2

which is ≤ e−
√
Q′n if n is large enough.

Apply now Birkhoff reduction up to order q to H̃, for example as in
Proposition 3.3 with c = r:
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• notice that

|H̃j|ρ/2,δ ≤ C ′j
and

min
0<|k|≤Qn

|(k, ω0)| ≥ Q−γn ;

• it follows by a finite induction that

|Γj|ρ/2,δ, |Ωj|ρ/2,δ, |Gj|ρ/2,δ ≤ C ′′jQ
(j−1)γ
n

and for j ≤ q

|fj|ρ/2,δ ≤ C ′′jQ
jγ
n ;

• then Z, implicitly defined by{
ϕ = ψ + ∂f

∂r
(ψ, r)

s = r + ∂f
∂ψ

(ψ, r)
f = f2 + · · ·+ fq,

is defined in T dρ/4 × De
δ′ where

δ′ ≥ CQ−γn ;

• moreover N q
2 (r) =M(H̃2(·, r)) which implies (9.55).

�

9.1. Proof of theorem D. Fix q = 60(2d+α(1)+5) – α(1) being the
exponent that appears in (8.15) of Proposition 8.2 – and apply Lemma
9.1 to find

H̄(ϕ, r) = H ◦ Z(ϕ, r) = N q(r) + F (ϕ, r) +R.

Write

H̃(ϕ, r, c) =: H ◦ (ϕ, r)−N q(c)− 〈∂rN q(c), r − c〉
= a(ϕ, c) + 〈B(ϕ, c), r − c〉+O2(r − c)

with a ∈ O2(c) and B ∈ O(c), i.e. H̃ is of order 1.

Observe that, with δn = Q−γq
2

n , we have

[H̃]ρ′,δn,0 ≤ C(δqnQ
2γ(q+1)
n + e−

√
Qn)

which is ≤ Q
−γq3/2
n = δ

q/2
n if n is large enough.

If κn = δ2
n and τ is = d, say, then

(9.56) [H̃]ρ′,δn,0 ≤ δq/3n κ11
n δn

10(τ+d)+11 1

(1 +
∥∥∥∂2

r H̃
∥∥∥
ρ′,δn,0

)7

provided n is sufficiently large. That is, (8.13) is satisfied by H̃ with
σ ≤ δn ≤ ε(τ) when n is large enough.
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Hence Proposition 8.2 applies with our choice of κn, δn and h = δn/2,
yielding Λ ∈ Cω,∞0,δn/2

and W ∈ Eω,∞ρ/2,δn/2, and a (κn, τ)-flat function g ∈
Cω,∞ρ/2,δ2/2 such that

(9.57)
(H̄ + 〈ω+ Λ̄(c, ω), ·〉) ◦Wc,ω(ϕ, r) = 〈ω, r− c〉+O2(r− c) + g(ϕ, r, c, ω)

(modulo an additive constant that depends on c, ω), where we have set

Λ̄(c, ω) = Λ(c, ω)− ∂rN q(c).

Notice that Λ(0, ω) = ω and that, from (8.15) and the fact that σ ≤
δ
q/3
n , we get

(9.58)
∥∥Λ̄ + ∂rN

q
∥∥

0,δn/2,1
≤ δ2

n.

Let Ψ(ω, c) = ω + Λ̄(c, ω). Then Ψ(ω0, 0) = 0 and from (9.58) we
have that ∥∥∥∥∂Ψ

∂ω
(ω0, 0)− I

∥∥∥∥ ≤ δ2
n(9.59) ∥∥∥∥∂Ψ

∂c
(ω0, 0)−M0

∥∥∥∥ ≤ 2δn(9.60)

By the implicit function theorem, there exists a constant C(M0) (that
only depends on M0) and a function S : B(ω0, C(M0)δn)→ B(0, δn/2),
such that

Ψ(ω, S(ω)) = 0

Moreover S is of class C1 and dS ∼ M−1
0 . A simple computation

shows that the set of frequencies in B(ω0, C(M0)δn) that are (κn, τ)-
Diophantine has measure larger than (1−δn)Leb(B(ω0, C(M0)δn)) (re-
call that we took κn = δ2

n).
This concludes the proof of Theorem D because (9.57) and the (κn, τ)-

flatness of g imply that for any ω ∈ B(ω0, C(M0)δn) ∩ CD(κn, τ),
Td × {S(ω)} is an invariant KAM torus for H̄ ◦WS(ω),ω.

10. Appendix. Composition and inversion estimates.

In this Appendix we give the useful estimates for our KAM scheme.

10.1. Convexity estimates.

Proposition 10.1. Let f, g ∈ Cω,∞(Tdρ × Dd′

δ , B). Then

(i)

||f ||ρ,δ,s ≤ Cs1,s2||f ||a1ρ,δ,s1||f ||
a2
ρ,δ,s2
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for all non-negative numbers a1, a2, s1, s2 such that

a1 + a2 = 1, s1a1 + s2a2 = s.

(ii)

||fg||ρ,δ,s ≤ Cs(||f ||ρ,δ,s||g||ρ,δ,0 + ||f ||ρ,δ,0||g||ρ,δ,s)
for all non-negative numbers s.

Proof. A classical result – see the appendix of [Ho] �

Corollary. Let f, g ∈ Cω,∞(Tdρ × Dd′

δ , B). Then

(i)
||f ||n+1

ρ,δ,1||f ||ρ,δ,s−n ≤ Cs||f ||n+1
ρ,δ,0||f ||ρ,δ,s+1

for all non-negative numbers s, n
(ii)

||fn||ρ,δ,s ≤ C log(n)
s ||f ||ρ,δ,s||f ||n−1

ρ,δ,0

for all non-negative numbers s, n.

Proof. A computation. �

10.2. Composition.

Proposition 10.2. Let f, g ∈ Cω,∞(Tdρ × Dd′

δ , B) and assume that

‖g‖ρ,δ,0 ≤
h

2
≤ 1

2
min(ρ, δ).

Then
x 7→ f(x+ g(x, ω), ω)

belongs to Cω,∞(Tdρ−h × Dd′

δ−h, B) and

(i) h(x, ω) = f(x+ g(x, ω), ω)− f(x, ω) verifies

‖h‖ρ−h,δ−h,s ≤ Cs
1

h
(‖f‖ρ,δ,0‖g‖ρ,δ,s + ‖f‖ρ,δ,s‖g‖ρ,δ,0).

(ii) k(x, ω) = f(x+ g(x, ω), ω)− f(x, ω)−〈∂xf(x, ω), g(x)〉 verifies

‖k‖ρ−h,δ−h,s ≤ Cs
1

h2
(‖f‖ρ,δ,0‖g‖ρ,δ,s + ‖f‖ρ,δ,s‖g‖ρ,δ,0)‖g‖ρ,δ,0.

Proof. We will prove the statements when x and g(x, ω) are scalars.
Notice

f(x+ g(x, ω), ω) =
∞∑
n=0

∂nf

∂xn
(x, ω)

gn(x, ω)

n!
.

By Cauchy estimates we have for n ≥ 0∥∥∥∥∂nf∂xn

∥∥∥∥
ρ−h,δ−h,s

≤ 1

hn
‖f‖δ,s n!
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and, by the Hadamard estimates we have that

‖gn‖ρ,δ,s ≤ C log(n)
s ‖g‖n−1

ρ,δ,0‖g‖ρ,δ,s.
Hence, for j ≥ 1,

‖
∞∑
n=j

∂nf

∂xn
(x, ω)

gn(x, ω)

n!
‖ρ−h,δ−h,s ≤

Cs‖f‖ρ,δ,s
∑
n≥j

(
‖g‖ρ,δ,0
h

)n + ‖f‖ρ,δ,0
‖g‖ρ,δ,s
h

∑
n≥j−1

C log(n+2)
s (

‖g‖ρ,δ,0
h

)n.

�

10.3. Inversion.

Proposition 10.3. Let f ∈ Cω,∞(Tdρ × Dd′

δ , B) and assume that

‖f‖ρ,δ,1 .
h

2
≤ 1

2
min(ρ, δ).

Then
Tdρ × Dd′

δ 3 x 7→ f̃(x, ω) = x+ f(x, ω)

is invertible for all ω ∈ B with an inverse Tdρ−h×Dd′

δ−h 3 y 7→ g̃(y, ω) =
y + g(y, ω) satisfying

‖g‖ρ−h,δ−h,s . Cs‖f‖ρ,δ,s
for all s ∈ N.

Proof. It is clear by the implicit function theorem that g exists and
that

‖g‖ρ−h,δ−h,0 . ‖f‖ρ,δ,0 ≤ h.

Since g(y, ω) + f(y + g(y, ω), ω) = 0, it follows that

∂ωg + (∂xf) ◦ g̃ · ∂ωg + (∂ωf) ◦ g̃ = 0

and, hence,
‖g‖ρ−h,δ−h,1 . ‖f‖ρ,δ,1 .

Moreover, for n ≥ 1

∂n+1
ω g + ∂nω((∂xf) ◦ g̃ · ∂ωg)) + ∂nω((∂ωf) ◦ g̃) = 0,

from which we derive

‖g(y, ω)‖ρ−h,δ−h,n+1 . ‖(∂xf) ◦ g̃ · ∂ωg‖ρ−h,δ−h,n+‖(∂ωf) ◦ g̃‖ρ−h,δ−h,n ,
and, by Proposition 10.1,

‖g(y, ω)‖ρ−h,δ−h,n+1 ≤ Cn ‖(∂xf) ◦ g̃‖ρ−h,δ−h,n ‖f‖ρ,δ,1
+ ‖(∂ωf) ◦ g̃‖ρ−h,δ−h,n .
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By Proposition 10.2(i)

‖g‖ρ−h,δ−h,n+1 ≤ Cn(
1

h
‖f‖ρ,δ,1 ‖f‖ρ,δ,n + ‖f‖ρ,δ,n+1

+ ‖f‖ρ,δ,1 ‖g‖ρ−h,δ−h,n).

By assumption ‖f‖ρ,δ,1 . h, so

‖g‖ρ−h,δ−h,n+1 ≤ Cn(‖f‖ρ,δ,n+1 + ‖g‖ρ−h,δ−h,n)

and the result follows by a finite induction. �
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