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ABSTRACT. We give an example of a smooth volume preserving
mixing flow on the three torus such that any discrete Schrödinger
operator on the line with a potential generated by this flow and
a Hölder sampling function has almost surely a continuous spec-
trum.

1. INTRODUCTION

Given a dynamical system (Ω, T, µ), a sample function V : Ω→ R

and x ∈ Ω, we define the 1d Schrödinger operator generated by
(Ω, T, µ), V and x as the operator on `2(Z)

(∗) (HT,V,xu)n = un+1 + un−1 + V(Tnx)un.

A general fact in spectral theory of 1d Schrödinger operators is
that randomness of the potential is a source of localization of the
spectrum. Thus an ergodic dynamical system with randomness fea-
tures has in general a localized pure point spectrum. The most fa-
mous example is Anderson’s model: the dynamical system is the
Bernoulli shift (XZ, σ, µZ), where X is a subset of R and µ is a prob-
ability supported on X; the sample function V : XZ → R is defined
by V(x) = x0, where x = · · · x−1x0x1 · · · . It is well-known that un-
der suitable assumption on X and µ, for µZ a.e. x ∈ XZ, the oper-
ator Hσ,V,x has pure point spectrum and the related eigenfunctions
are localized, see for example [7, 6, 14]. Another kind of example is
given by Bourgain and Schlag [5]. In their example, the dynamical
system is (T2, A, Leb), where A : T2 → T2 is a hyperbolic toral au-
tomorphism; the sample function V(x) = λF(x) with F ∈ C1(T2)
non-constant and

∫
F = 0. For λ 6= 0 small, they established Ander-

son localization on the spectrum up to edges and the center. We note
that (A, T2, Leb) is mixing by the assumption of A.
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An interesting question is to understand to which extent random-
ness is needed to insure localization.

For example, recently much interest in Schrödinger operators gen-
erated by the skew-shift was in part motivated by the study of the
transition from complete localization to continuous spectra as ran-
domness of the potential decreases. It is a know fact indeed that
quasi-periodic potentials may display absolutely continuous spec-
tra. The skew-shift dynamics are on one hand related to the quasi-
periodic dynamics, but present on the other hand parabolic features.
1 ???

Consider the skew-shift Tα defined on T2 by Tα(x, y) = (x + α, y+
x), where α ∈ R is irrational. For Diophantine α, Bourgain, Gold-
stein, and Schlag [4] proved a localization result for analytic and suf-
ficiently large sample function and other localization results were
subsequently obtained. 2 ??? We note that the system (T2, Tα, Leb)
is strictly ergodic, but not weakly mixing.

In the opposite direction, Boshernitzan and Damanik showed that
for a typical skew-shift and a generic continuous sampling function,
the associated Schrödinger operators have no eigenvalues for almost
all base points [2]. In [3], they generalized the result to skew-shift
defined in higher-dimendional torus Tk.

The approach of [2, 3] is to prove a repetition property (MRP) (see
Definition 2) for the dynamical system, that implies a Gordon prop-
erty on the potential, that in turn yields absence of pure point in the
spectrum. 3??? The result in [2, 3] is in some sense on the contrary
of [4].

A natural rising question is that what is the borderline of random-
ness for the dynamical system to produce continuous spectrum. Still
in [2], they showed that almost every interval exchange transforma-
tion has (MRP) relative to Lebesgue measure. As a consequence, for
generic continuous sampling function, the associated Schrödinger
operators have no eigenvalues for almost all base points. It is well-
known that almost every interval exchange transformation is weakly
mixing [1], but it is never mixing [12]. In [10], Huang et. al. con-
structed a positive entropy minimal dynamical system with (TRP)
(see Definition 2). As a consequence, for generic continuous sam-
pling function, the associated Schrödinger operators have no eigen-
values for points in a residual subset.

1improve, extend and give references...
2improve, extend and give references...
3improve, extend and give references
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We are interested here in the same problem of the relation between
randomness of the driving dynamical system and continuous spec-
trum of the associated Schrödinger operators. Using reparametriza-
tions of linear flows, we construct examples on the three torus of
mixing uniquely ergodic volume preserving flows for which the as-
sociated Schrödinger operators with a Hölder sample function have
no point part in the spectrum for almost all base points. Our ex-
amples will be reparametrization of a minimal translation flow on
the three torus by a smooth function Φ. We will see in Section 3 that
such flows are uniquely ergodic for a measure equivalent to the Haar
measure with density 1

φ . We denote by µ the Haar measure on the
torus.

THEOREM 1. There exists (α, α′) ∈ R2 and a smooth reparametrization
of the translation flow Tt(α,α′,1) such that the resulting flow is mixing, for
its unique ergodic invariant probability measure µ, and µ a.e. x ∈ T3 is
super-recurrent for its time one map T.

As a consequence, (T3, T, µ) satisfies (MRP). Moreover for every Hölder
continuous potential V : T3 → R, the operator HT,V,x has purely contin-
uous spectrum for µ a.e. x ∈ T3.

Remark 1. (i) See Definition 1 for the definition of super-recurrence
on a topological dynamical system (Ω, T, d). When T has Hölder
property, it induces strongly recurrent property like (MRP).

(ii) By [2], for generic continuous function V and µ-a.e. x, the op-
erator HT,V,x has continuous spectrum, however for a concrete V, it
is hard to see whether it is in that residual set. On the other hand, if
V is more regular, say Hölder continuous, we can directly show that
{V(Tnx)} is a Gordon potential for µ-a.e. x, as a consequence, the
operator HT,V,x has continuous spectrum.

(iii) We note that the system (T3, T, µ) is strictly ergodic, mixing. It
has zero topological entropy, nevertheless, it is topologically mixing.

To prove the super-recurrence we follow the same strategy as [2, 3]
based on recurrence. Indeed, our mixing flows are reparametriza-
tions of linear flows with a super Liouville translation vector. Nat-
urally, the very strong periodic approximations of the flow are lost
after time change, otherwise mixing would not be possible. How-
ever, one can choose the reparametrization in such a way that along
a sequence of times tn → ∞, the very strong almost periodic behav-
ior of the translation flow still appears on a set of small measure εn.
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If now εn decreases, but not too rapidly, say εn ∼ 1
n , then by a Borel-

Cantelli argument, most of the points on the torus will be strongly
recurrent along a subsequence of the sequence tn.

The construction of the reparametrized flow follows very closely
the construction in [9] of a reparametrization of a linear flow on T3

that is mixing but has a purely singular maximal spectral type. In-
deed, the singularity of the maximal spectral type in [9] was due to
the existence of very strong periodic approximations on parts of the
phase space that have a slowly decaying measure.

2. SUPER-RECURRENCE, REPETITION AND GORDON POTENTIALS

Let (Ω, T) be a topological dynamical system with Ω a compact
metric space and T a homeomorphism.

DEFINITION 1. Assume x ∈ Ω. If there exist α > 1 and an integer
sequence kn ↑ ∞ such that

d(Tkn x, x) ≤ exp(−kα
n),

then we say that x is super-recurrent with recurrent exponent α.
If µ is an invariant ergodic measure of T, we say that the system

(Ω, T, µ) is super-recurrent if µ-a.e. x ∈ Ω is super-recurrent.

By take a further subsequence if necessary, we may and will as-
sume kn ≥ n from now on.

A bounded function V : Z → R is called a Gordon potential if
there are positive integers qk → ∞ such that

max
1≤n≤qk

|V(n)−V(n± qk)| ≤ k−qk

for any k ≥ 1. The Gordon condition insures that the 1d Schrödinger
operator on `2(Z) with potential V has no eigenvalues [11].

Assume V : Ω→ R is continuous. Define

Vx(n) = V(Tnx), x ∈ Ω, n ∈ Z.

We now assume that M is a smooth compact manifold and T is a
C1 diffeomorphism of M. Let d be the Riemann metric on M. Then
we have the following simple consequence of super-recurrence.

PROPOSITION 1. If x ∈ M is super-recurrent and V : M→ R is Hölder,
then Vx is a Gordon potential.

Proof. Since T is C1, T is Lipschitz. Let L > 1 be the Lipschitz con-
stant. Assume V is β-Hölder with Hölder constant C1. Let α > 1 be
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the recurrent exponent of x. Let {kn : n ≥ 0} be the sequence related
to x. Since kn ≥ n, for 1 ≤ l ≤ kn we have

|Vx(l)−Vx(l ± kn)| = |V(Tlx)−V(Tl±kn x)|
≤ C1d(Tlx, Tl±kn x)β

≤ C1[Lld(x, T±kn x)]β

≤ C1[L2kn e−kα
n ]β

= C1 exp (−β(kα
n − 2kn ln L))

≤ n−kn

as soon as n is big enough. By the definition, Vx is a Gordon poten-
tial. �

The following definition was introduced in [2]. Denote the for-
ward orbit of x by O+(x) := {Tnx : n ≥ 0}.
DEFINITION 2. A sequence {ωk : k ≥ 0} ⊂ Ω has the repetition
property if for any ε > 0 and r ∈ N, there exists q ∈ N such that
d(ωk, ωk+q) ≤ ε for k = 0, 1, · · · , rq. Let

PRP(Ω, T) := {x ∈ Ω : O+(x) has the repetition property }.
We say that (Ω, T) satisfies the topological repetition property (TRP) if
PRP(Ω, T) 6= ∅. Fix a T-ergodic measure µ. We say that (Ω, T, µ)
satisfies the metric repetition property (MRP) if µ(PRP(Ω, T)) > 0.

PROPOSITION 2. If x ∈ M is super recurrent, then x ∈ PRP(M, T).
Consequently, if (M, T, µ) is super-recurrent, then it satisfies (MRP).

Proof. Let α > 1 be the recurrent exponent of x. Since T is at least C1,
T is Lipschitz. Let L > 1 be the Lipschitz constant. Write q = kn, for
any s ∈N and 0 ≤ t < q, by the Lipschitz property we get

d(T(s+1)q+tx, Tsq+tx) ≤ Lsq+td(Tqx, x) ≤ Lsq+te−qα ≤ L(s+1)qe−qα
.

Now fix ε > 0 and r ∈ N. Since kn can be sufficient large, we can
choose some q = kn such that

d(T(s+1)q+tx, Tsq+tx) ≤ ε

for any 0 ≤ s ≤ r. By the definition, O+(x) has the repetition prop-
erty and consequently x ∈ PRP(M, T).

The last result follows from the definition. �
The second part of Theorem 1 follows from the first part of Theo-

rem 1, Proposition 1, Proposition 2 and the above mentioned spectral
consequence of the Gordon potentials.

We now proceed to the construction of the reparametrized flow.
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3. SUPER-RECURRENT MIXING FLOWS

We start with some notations and reminders on reparametriza-
tions and special flows.

3.1. The translation flow on Tn of vector α ∈ Rn is the flow aris-
ing from the constant vector field X(x) = α. We denote this flow
by {Rtα}. When the numbers α1, ..., αn are rationally independent,
i.e. none of them is a rational combination of the others, {Rtα} is
uniquely ergodic for the Haar measure µ on the torus. In this case
we say it is an irrational flow.

3.2. Reparametrized flows. If φ is a strictly positive smooth real
function on Tn, we define the reparametrization of {Rtα} with ve-
locity φ as the flow given by the vector field φ(x)α, that is, by the
system

dx
dt

= φ(x)α.

The new flow has the same orbits as {Rtα} and preserves a measure
equivalent to the Haar measure given by the density 1

φ . Moreover,
if {Rtα} is uniquely ergodic then so is the reparametrized flow (see
[?]).

3.3. Special flows. The reparametrizations of linear flows can be viewed
as special flows above toral translations. We give the formal defini-
tion.

DEFINITION 3. Given a Lebesgue space L, a measure preserving trans-
formation T on L and an integrable strictly positive real function de-
fined on L we define the special flow over T and under the ceiling
function ϕ by inducing on L×R/ ∼, where ∼ is the identification
(x, s + ϕ(x)) ∼ (T(x), s),the action of

L×R → L×R

(x, s) → (x, s + t).

If T preserves a unique probability measure λ then the special flow
will preserve a unique probability measure that is the normalized
product measure of λ on the base and the Lebesgue measure on the
fibers.

We will be interested in special flows above minimal translations
Rα,α′ of the two torus and under smooth functions ϕ(x, y) ∈ C∞(T2, R∗+)
that we will denote by Tt

α,α′,ϕ. We denote Mϕ = {(z, s) : z ∈ T2, s ∈
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[0, ϕ(z)}. We will still denote by µ the product of the Haar measure
of T2 with the normalized Lebesgue measure on the line.

In all the sequel we will use the following notation, for m ∈N,

Sm ϕ(z) =
m−1

∑
l=0

ϕ(z + l(α, α′))

With this notation, given t ∈ R+ we have for ξ ∈ Mϕ, ξ = (z, s)

(3.1) Ttξ =
(

RN(t,s,z)
α,α′ (z), t + s− ϕN(t,s,z)(z)

)
where N(t, s, z) is the largest integer m such that t + s− ϕm(x) ≥ 0,
that is the number of fibers covered by (z, s) during its motion under
the action of the flow until time t.

3.4. Mixing. We also recall the definition of mixing for a measure
preserving flow: a flow {Tt} preserving a measure ν on M is said to
be mixing if, for any measurable subsets A and B of M, one has

lim
t→∞

ν(Tt A
⋂

B) = ν(A)ν(B).

By standard equivalence between special flows and reparametriza-
tions (see for example [8]), Theorem 1 follows form

THEOREM 2. There exists a vector (α, α′) ∈ R2 and a smooth strictly
positive function ϕ defined over T2 such that the special flow Tt

α,α′,ϕ is
mixing and µ-a.e. ξ ∈ Mϕ is super-recurrent for T1

α,α′,ϕ.

We will now undertake the construction of the special flow Tt
α,α′,ϕ,

following the same steps as [9]. We will first choose a special transla-
tion vector on T2, then we will give two criteria on the Birkhoff sums
of the special function ϕ above Rα,α′ that will guarantee mixing and
super-recurrence respectively. Finally we build a smooth function ϕ
satisfying these criteria.

3.5. Choice of the translation on T2. Reminder on continued frac-
tions. Let α be an irrational real number: There exists a sequence of
rationals { pn

qn
}

n∈N
, called the convergents of α, such that:

‖ qn−1α ‖<‖ kα ‖ ∀k < qn(3.2)

and for any n

1
qn(qn + qn+1)

≤ (−1)n(α− pn

qn
) ≤ 1

qnqn+1
.(3.3)
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We recall also that any irrational number α ∈ R−Q has a writing
in continued fraction

α = [a0, a1, a2, ...] = a0 + 1/(a1 + 1/(a2 + ...)),

where {ai}i≥1 is a sequence of integers ≥ 1, a0 = [α]. Conversely
any sequence {ai}i∈N corresponds to a unique number α. The con-
vergents of α are given by the ai in the following way:

pn = an pn−1 + pn−2 for n ≥ 2, p0 = a0, p1 = a0a1 + 1,
qn = anqn−1 + qn−2 for n ≥ 2, q0 = 1, q1 = a1.

Following [15] and as in [8], we take α and α′ satisfying

q′n ≥ e(qn)5
,(3.4)

qn+1 ≥ e(q
′
n)

5
.(3.5)

Vectors (α, α′) ∈ R2 satisfying (3.4) and (3.5) are obtained by an
adequate choice of the sequences an(α) and an(α′). Moreover, it is
easy to see that the set of vectors satisfying (3.4) and (3.5) is a contin-
uum (Cf. [15], Appendix 1).

3.6. Mixing criterion. We will use the criterion on mixing for a spe-
cial flow Tt

α,α′,ϕ studied in [8]. It is based on the uniform stretch of
the Birkhoff sums Sm ϕ of the ceiling function above the x or the y
direction alternatively depending on whether m is far from the qn or
from q′n. From [8], Propositions 3.3, 3.4 and 3.5 we have the following
sufficient mixing criterion. We denote by {x} ∈ [0, 1) the fractional
part of a real number x.

PROPOSITION 3 (Mixing Criterion ). Let (α, α′) be as in (3.5) and ϕ ∈
C2(T2, R∗+). If for every n ∈ N sufficiently large, we have a set In equal
to [0, 1] minus two intervals whose lengths converge to zero such that:

• m ∈
[

e2(qn)4

2
, 2e2(q′n)4

]
=⇒ |DxSm ϕ(x, y)| ≥ m

e(qn)4

qn

n
, for any y ∈

T and {qnx} ∈ In;

• m ∈
[

e2(q′n)4

2
, 2e2(qn+1)

4

]
=⇒

∣∣DySm ϕ(x, y)
∣∣ ≥ m

e(q′n)4

q′n
n

, for any

x ∈ T and {q′ny} ∈ In;

Then the special flow Tt
α,α′,ϕ is mixing.



CONTINUOUS SPECTRUM FOR MIXING SCHRÖDINGER OPERATORS 9

3.7. Super-recurrence Criterion. We give now a condition on the
Birkhoff sums of ϕ above Rα,α′ that is sufficient to insure super-recurrence
for T1

α,α′,ϕ.

PROPOSITION 4 (Super-recurrecne criterion). If for n sufficiently large,
we have for any x such that 1/n2 ≤ {qnx} ≤ 1/n − 1/n2 and for any
y ∈ T ∣∣∣Sqnq′n ϕ(x, y)− qnq′n

∣∣∣ ≤ 1
e(qnq′n)2 ,(3.6)

then µ-almost every z = (x, y, s) ∈ Mϕ is super recurrent for the special
flow Tt

α,α′,ϕ as in Definition 1.

Proof. Denote by Tt the flow Tt
α,α′,ϕ and let tn = qnq′n. From (3.1) we

have that

Ttn(x, y, s) = (x + tnα, y + tnα′, s + tn − Stn ϕ(x, y)).

From (3.3), (3.4) and (3.5) we get that ‖tnα‖ ≤ 1
et3n

. Now, for x such

that 1/n2 ≤ {qnx} ≤ 1/n − 1/n2, for any y ∈ T and for s ∈
[0, ϕ(x, y)) we have from (3.6) that z = (x, y, s) satisfies (for the Eu-
clidean distance) d(z, Ttn z) ≤ 2

et2n
.

Now, the set Cn = {x ∈ T : 1/n2 ≤ {qnx} ≤ 1/n − 1/n2}
has Lebesgue measure larger than 1/n. As qn increases very fast,
we have that the sets Cn are almost independent, from which it fol-
lows by Borel Cantelli type lemmas that Lebsgue a.e. x ∈ T belongs
to infinitely many of the Cn. Thus almost every z ∈ Mϕ is super-
recurrent. �

3.8. Choice of the ceiling function ϕ. Let (α, α′) be as above and
define

f (x, y) = 1 + ∑
n≥2

Xn(x) + Yn(y)

where

Xn(x) =
1

e(qn)4 cos(2πqnx)(3.7)

Yn(y) =
1

e(q′n)4 cos(2πq′ny).(3.8)

Using Criterion 3 we proved in [8] that the flow Tt
α,α′, f is mixing.

In order to keep this criterion valid but have in addition the condi-
tions of Criterion 4 satisfied we modify the ceiling function in the
following way:
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•We keep Yn(y) unchanged.
• We replace Xn(x) by a trigonometric polynomial X̃n with inte-

gral zero, that is essentially equal to 0 for {qnx} < 1/n and whose
derivative has its absolute value bounded from below by qn/e(qn)4

for {qnx} ∈ [2/n, 1/2− 1/n] ∪ [1/2 + 2/n, 1− 1/n]. The first two
properties of X̃n will yield Criterion 4 while the lower bound on the
absolute value of its derivative will insure Criterion 3.

More precisely, the following Proposition enumerates some prop-
erties that we will require on X̃n and its Birkhoff sums, and that will
be sufficient for our purposes

PROPOSITION 5. Let (α, α′) be as in Section (3.5). There exists a sequence
of trigonometric polynomials X̃n(x) satisfying

(1)
∫

T
X̃n(x)dx = 0;

(2) For any r ∈N, for every n ≥ N(r), ‖ X̃n ‖Cr ≤
1

e
(qn)4

2

;

(3) For {qnx} ≤ 1
n

, |X̃n(x)| ≤ 1
e(qnq′n)4 ;

(4) For
2
n
≤ {qnx} ≤ 1

2
− 1

n
, it holds X̃′n(x) ≥ qn

e(qn)4 , as well as

for
1
2
+

2
n
≤ {qnx} ≤ 1− 1

n
, it holds X̃′n(x) ≤ − qn

e(qn)4 ;

(5) ‖ Sqn ∑
l≤n−1

X̃l ‖≤
1

e(qnq′n)4 ;

(6) For any m ∈N, ‖ Sm ∑
l≤n−1

X̃′l ‖≤ qn.

Before we prove this Proposition let us show how it allows to pro-
duce the example of Theorem 2. Define for some n0 ∈N

ϕ(x, y) = 1 +
∞

∑
n=3

X̃n(x) + Yn(y)(3.9)

that is of class C∞ from Property (2) of X̃n and from the definition of
Yn in (3.8). From (2) again, we can choose n0 sufficiently large so that
ϕ is strictly positive. Furthermore, we have

THEOREM 3. Let (α, α′) ∈ R2 be as in Section 3.5 and ϕ be given by (3.9).
Then the special flow Tt

α,α′,ϕ satisfies the conditions of Propositions 3 and 4
and hence the conclusion of Theorem 2
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Proof. The second part of Proposition 3 is valid exactly as in [8] since
Yn has not been modified.

Let m ∈ [e2(qn)4
/2, 2e2(q′n)4

] and x be such that 3/n ≤ {qnx} ≤
1/2 − 2/n. From (3.5) we get for any l ≤ m that 2/n ≤ {qn(x +
mα)} ≤ 1/2− 1/n hence by Property (4) of X̃n

SmX̃′n(x) ≥ mqn

e(qn)4 .

On the other hand, Properties (2) and (6) imply that

‖ Sm ϕ′ − SmX̃′n ‖ ≤ qn + m ∑
l≥n+1

1

e
(ql )

4
2

≤ qn +
2m

e
(qn+1)

4

2

= o(
mqn

e(qn)4 )

for the current range of m. With a similar computation for 1/2 +
2/n ≤ {qn(x + mα)} ≤ 1− 1/n, the criterion of Proposition 3 thus
holds true.

Let now x be as in Proposition 4, that is 1/n2 ≤ {qnx} ≤ 1/n−
1/n2. From (3.5) we have for any l ≤ qnq′n that 0 ≤ {qn(x + lα)} ≤
1/n, hence Property (3) implies

|Sqnq′n X̃n(x)| ≤ qnq′n
e(qnq′n)4 ≤

1
e(qnq′n)3 .(3.10)

From Properties (2) and (5) we get for n sufficently large

‖ Sqnq′n ∑
l 6=n

X̃l ‖ ≤
qnq′n

e(qnq′n)4 + qnq′n ∑
l≥n+1

1

e
(ql )

4
2

≤ 1
e(qnq′n)3 .(3.11)

On the other hand, it follows from thew definition of convergents
in Section 3.5 and (3.3) that for any y ∈ T, for any |j| < q′n, we have

|Sq′n ei2π jy| =

∣∣∣∣sin(π jq′nα′)

sin(π jα′)

∣∣∣∣
≤ π jq′n

q′n+1
,(3.12)
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which, using (3.4) and (3.5), yields for Yl as in (3.8)

‖Sq′n ∑
l<n

Yl‖ ≤
1

e(qnq′n)3(3.13)

while clearly

‖Sq′n ∑
l>n

Yl‖ ≤ e−
(q′n+1)

4

2 ≤ 1
e(qnq′n)3(3.14)

and

‖Sq′nYn‖ ≤
q′n

e(q′n)4 ≤
1

e(qnq′n)3(3.15)

Putting together (3.13)–(3.15) yields

‖Sqnq′n

∞

∑
l=3

Yl‖ ≤
1

2e(qnq′n)2(3.16)

In conclusion, (3.6) follows from (3.10), (3.11), and (3.16). �
It remains to construct X̃n satisfying (1)-(6).

3.9. Proof of Proposition 5. Consider on R a C∞ function, 0 ≤ θ ≤ 1
such that

θ(x) = 0 for x ∈ (−∞, 2]
θ(x) = 1 for x ∈ [3,+∞).

Then we define on the circle the function

θn(x) :=
(

θ(nx)− θ(n(x− 1 +
3
n
))

)
,

and let

Un(x) :=
(

θn(4qnx)− θn(4qn(x− 1
4qn

)

)
Vn(x) :=

∫ x

−∞
Un(s)ds

Wn(x) := Vn(x)−Vn(x− 1
2qn

)

and finally

X̃n(x) :=
1

e(qn)4

qn−1

∑
k=0

Wn(x +
k
qn

)

that we view as a function on T = R/Z. It is easy to check (1),(2),(3)
and (4) of Proposition 5 for X̂n.
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Now we consider the Fourier series of X̂n(x) = ∑k∈Z X̂n,kei2πkx

and let

X̃n :=
qn+1−1

∑
k=−qn+1+1

X̂n,kei2πkx.

From the order of the truncation and the Cr norms of X̂n it is easy
to deduce that for any r ∈N

‖X̃n − X̂n‖Cr ≤
1

e(qnq′n)5

which allows to check (1), (2), (3) and (4) for X̃n.

Proof of Property (5). As for (3.12), using the definition of conver-
gents in Section 3.5, we obtain for any x ∈ T, and for any |k| < qn

|Sqn ei2πkx| ≤ πkqn

qn+1
,

hence for X̃l := ∑
ql+1−1
k=−ql+1+1 X̂l,kei2πkx and l ≤ n− 1 we have

‖Sqn X̃l‖ ≤
πq2

n
qn+1

ql+1−1

∑
k=−ql+1+1

|X̂l,k|

≤ 2πq3
n

qn+1
‖X̂l‖

from which Property (5) follows.

Proof of Property (6). For any |k| < qn we have

|Smei2πkx| =

∣∣∣∣sin(πmkα)

sin(πkα)

∣∣∣∣
≤ 1
| sin(πkα)

≤ qn.

Thus, for l ≤ n− 1, we use that |X̂l,k| ≤ 1
(2π|k|)3‖D3

xX̂l‖ and get that

‖SmX̃′l‖ ≤
ql+1−1

∑
k=−ql+1+1

1

(2πk)2 ql+1‖D3
xX̂l‖

≤ 1
12

ql+1‖D3
xX̂l‖

from which Property (6) follows. �
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