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WEAK MIXING DISC AND ANNULUS DIFFEOMORPHISMS WITH

ARBITRARY LIOUVILLE ROTATION NUMBER ON THE BOUNDARY.

B. FAYAD, M. SAPRYKINA

Abstract. Let M be an m-dimensional differentiable manifold with a nontrivial circle action S =
{St}t∈R

, St+1 = St, preserving a smooth volume µ. For any Liouville number α we construct a

sequence of area-preserving diffeomorphisms Hn such that the sequence Hn ◦ Sα ◦ H−1
n converges to a

smooth weak mixing diffeomorphism of M . The method is a quantitative version of the approximation
by conjugations construction introduced in [1].

For m = 2 and M equal to the unit disc D2 = {x2 + y2 ≤ 1} or the closed annulus A = T ×
[0, 1] this result proves the following dichotomy: α ∈ R \ Q is Diophantine if and only if there is no
ergodic diffeomorphism of M whose rotation number on the boundary equals α (on at least one of the
boundaries in the case of A). One part of the dichotomy follows from our constructions, the other is
an unpublished result of Michael Herman asserting that if α is Diophantine, then any area preserving
diffeomorphism with rotation number α on the boundary (on at least one of the boundaries in the
case of A) displays smooth invariant curves arbitrarily close to the boundary which clearly precludes
ergodicity or even topological transitivity.

1. Introduction

We present a construction method providing analytic weak mixing diffeomorphisms on the torus
Td = Rd/Zd, d ≥ 2, and smooth weak mixing diffeomorphisms on any smooth manifold with a
nontrivial circle action preserving a smooth volume µ. The diffeomorphisms obtained are homotopic
to the Identity and can be made arbitrarily close to it.

We will effectively work either on the two torus for the analytic constructions or on the closed
annulus A = T × [0, 1] for the smooth constructions. In the case of the torus the construction is
exactly the same in higher dimensions and we explain in §2.4 how the smooth construction can be
transfered from the annulus to general manifolds with a nontrivial circle action.

By smooth diffeomorphisms on a manifold with boundary we mean infinitely smooth in the interior
and such that all the derivatives can be continuously extended to the boundary.

We recall that a dynamical system (M,T, µ) is said to be ergodic if and only if there is no nonconstant
invariant measurable complex function h on (M,µ), i.e. such that h(Tx) = h(x). It is said to be
weak mixing if it enjoys the stronger property of not having eigenfunctions at all, i.e. if there is no
nonconstant measurable complex function h on (M,µ) such that h(Tx) = λh(x) for some constant
λ ∈ C.

The construction, on any smooth manifold with a nontrivial circle action (in particular D2), of
volume preserving diffeomorphisms enjoying different ergodic properties (among others, weak mixing)
was first undertaken in [1]. For t ∈ R denote by St the elements of the circle action on M with the
normalization St+1 = St.

Let A(M) be the closure in the C∞ topology of the set of diffeomorphisms of the form h ◦St ◦h−1,
with t ∈ R and h area preserving C∞-diffeomorphism of M .
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For a given α ∈ R we denote by Aα(M) the restricted space of conjugacies of the fixed rotation Sα,
namely the closure of the set of C∞-diffeomorphisms of the form h ◦ Sα ◦ h−1.

It is easy to see that the sets Aα(M) are disjoint for different α and in [4, section 2.3.1], it was
proved for a particular manifold M that ∪α∈RAα(M)  A(M). We do not know if the inclusion
remains strict on any manifold.

Anosov and Katok proved in [1] that in A(M) the set of weak mixing diffeomorphisms is generic
(contains a Gδ dense set) in the C∞ topology. Actually, it also follows from the same paper that the
same is true in Aα(M) for a Gδ dense set of α ∈ R although the construction, properly speaking, is
achieved in the space A(M). However, [1] does not give a full description of the set of α for which the
result holds in Aα(M). Indeed, the flexibility of the constructions in [1] comes from the fact that α is
constructed inductively at the same time as the conjugations are built, that is: at step n, αn = pn/qn
is given, and hn is constructed that commutes with Sαn ; then αn+1 is chosen so close to αn that
fn = HnSαn+1

H−1
n (where Hn = h1 ◦ · · · ◦ hn and each hn commutes with Sαn) is sufficiently close

to fn−1 to guarantee the convergence of the sequence {fn}n∈N
. Then step n + 1 gets started by the

choice of hn+1 etc... The final α is the limit of αn. By this procedure, there is no need to put any
restrictions on the growth of the Cr norms of Hn since αn+1 can always be chosen close enough to αn

to force convergence. The counterpart is that the limit diffeomorphism obtained in this way will lie
in Aα(M) with α having rational approximations at a speed that is not controlled.

Since we want to do the construction inside Aα(M) for an arbitrary Liouville number α, we are
only allowed to make use of the fact that the decay of |αn+1 − αn| is faster than any polynomial in
qn. So we have to construct hn with a polynomial (in qn) control on the growth of its derivatives to
make sure that the above procedure converges.

Recall that an irrational number α is said to be Diophantine if it is not too well approximated by
rationals, namely if there exist strictly positive constants γ and τ such that for any couple of integers
(p, q) we have:

|qα− p| ≥ γ

qτ
.

In this paper we work in the restricted spaces Aα(M) and prove the following for any Liouville, i.e.
not Diophantine and not rational, frequency α:

Theorem 1.1. Let M be an m-dimensional (m ≥ 2) differentiable manifold with a nontrivial circle
action S = {St}t∈R

, St+1 = St preserving a smooth volume µ. If α ∈ R is Liouville, then the set of
weak mixing diffeomorphisms is generic in the C∞ topology in Aα(M).

On M = D2 or A, the weak mixing diffeomorphisms we will construct in Aα(M) will have Sα as
their restriction to the boundary. This clarifies the relation between the ergodic properties of the
area preserving diffeomorphisms of D2 and their rotation number on the boundary, complementing
the striking result of M. Herman stating that if f is a smooth diffeomorphism of the disc with a
Diophantine rotation number on the boundary, then there exists a set of positive measure of smooth
invariant curves in the neighborhood of the boundary, thus f is not ergodic. By KAM theory, this
phenomenon was known to happen for Diophantine α as soon as the map f displays some twist features
near the boundary. Herman’s tour de force was to get rid of the twist condition in the area preserving
context. To be more precise, we introduce the following

Definition 1.2. Let M denote either D2 or A. Given α ∈ R, we denote by Bα(M) the set of
area preserving C∞-diffeomorphisms of M whose restriction to the boundary (to at least one of the
boundary circles in the case of the annulus) has a rotation number α.
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Theorem 1.3 (Herman). Let M denote either D2 or A. For a Diophantine α, let F ∈ Bα(M). Then
the boundary of M (on which the rotation number is α) is accumulated by a set of positive measure of
invariant curves of F .

In the case of the disc and the annulus, as a corollary of Theorems 1.1 and 1.3, we have the following
characterization of Diophantine numbers:

Corollary 1.4. Let M denote either D2 or A. A number α ∈ R \ Q is Diophantine if and only if
there is no ergodic diffeomorphism f ∈ Bα(M).

On M = T2 and under a more restrictive condition on α, the method of approximation by conju-
gations can be undertaken in the real analytic topology and with very explicit conjugations. For an
arbitrary fixed σ > 0, for any n ∈ N, we set:

φn(θ, r) = (θ, r + q2n cos(2πqnθ)),

gn(θ, r) = (θ + [nqσ
n]r, r),

hn = gn ◦ φn, Hn = h1 ◦ · · · ◦ hn,

fn = Hn ◦Rαn+1
◦H−1

n .

(1.1)

Here [ · ] denotes the integer part of the number and Rt denote the action (θ, r) → (θ + t, r). The
convergence of the diffeomorphisms fn is in the sense of a usual metric dρ(·, ·), based on the supremum
norm of analytic functions over the complex strip of width ρ; see Section 2.2 for the definition. We
will prove the following

Theorem 1.5. Let α ∈ R be such that, for some δ > 0, equation

|α− pn/qn| < exp(−q1+δ
n )

has an infinite number of integer solutions pn, qn (where pn and qn are relatively prime for each n).
Take 0 < σ < min{δ/3, 1}. Then, for all ρ > 0, there exists a sequence αn = pn/qn (which is a
subsequence of the solutions of the equation above) such that the corresponding diffeomorphisms fn,
constructed in (1.1), converge in the sense of the dρ(·, ·)-metric, and f = limn→∞ fn is weak mixing.

Weak mixing diffeomorphisms, given by this theorem, are uniquely ergodic. This can be shown by
the same method as in [9].

Remark 1.6. The result in Theorem 1.5 is actually weaker than what can be obtained by time change,
e.g. the existence on T2 of real analytic weak mixing reparametrizations of Rt(1,α) for any irrational

α such that lim sup
p∈Z,q∈N∗

− ln |α−p/q|
q 6= 0 [2, 6, 7, 10]. Indeed, such reparametrizations belong a priori to

Aα(T2) (Cf. [4]). However, we included the constructions on T2 with explicit successive conjugations
as in (1.1) because the proof of weak mixing follows almost immediately from the general criteria we
established to treat the general smooth case, and also because these constructions might be generalized
to other manifolds where the techniques of reparametrizations are not available.

Acknowledgments. It is a pleasure to thank H̊akan Eliasson for useful comments all along the work.
We are grateful to Raphaël Krikorian for his help in the main construction of Section 5 and to Anatole
Katok, Jean-Paul Thouvenot and Alistair Windsor for many useful conversations. We also thank the
referee for many useful recommendations.
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2. Preliminaries

2.1. General scheme of the constructions. Here we give a general scheme of the construction
of the diffeomorphisms as a limit of conjugacies of a given Liouvillean action while §3 outlines the
particular choices that will yield the weak mixing property for the limit diffeomorphism. Henceforth,
M denotes either the torus T2 or the annulus A and we consider polar coordinates (θ, r) on M that
denotes either the torus T2 or the annulus A. By λ and µ we denote the usual Lebesgue measures on
R and on R2, respectively. The term “measure-preserving” will refer to the measure µ.

For α ∈ R, we consider the map Sα : M → M , (θ, r) 7→ (θ + α, r). The diffeomorphisms that we
shall construct, are obtained as limits of measure preserving transformations

f = lim
n→∞

fn, where fn = Hn ◦ Sαn+1
◦H−1

n . (2.1)

Here αn = pn/qn is a convergent sequence of rational numbers, such that |α−αn| → 0 monotonically;
Hn is a sequence of measure preserving diffeomorphisms of M . In different constructions, the conver-
gence of fn will be meant in the C∞ or real analytic category; the topology in each case is standard,
and will be recalled in Sections 2.2 and 2.3.

Each Hn is obtained as a composition

Hn = h1 ◦ · · · ◦ hn, (2.2)

where every hn is a measure preserving diffeomorphism of M satisfying

hn ◦ Sαn = Sαn ◦ hn. (2.3)

At step n, hn must display enough stretching to insure an increasing distribution of the orbits of
Hn ◦ Sαn+1

◦H−1
n . However, this stretching must be appropriately controlled with respect to |α−αn|

to guarantee convergence of the construction.

2.1.1. Decomposition of hn. In the subsequent constructions, each hn will be obtained as a composition

hn = gn ◦ φn, (2.4)

where φn is constructed in such a way that S1/qn
◦ φn = φn ◦ S1/qn

; the diffeomorphism gn is a twist
map of the form

gn(θ, r) = (θ + [nqσ
n]r, r), (2.5)

for some 0 < σ < 1 that will be fixed later. The role of gn is to introduce shear in the ”horizontal”
direction (the direction of the circle action), while φn is responsible for the ”vertical” motion, i.e.
transversal to the circle action. The choice of the shear factor nqσ

n will be explained in §3.1.
In the real analytic case, φn will be given by an explicit formula and convergence will follow from

an assumption on the rational approximations of α. In the smooth case, φn will be constructed in
Section 5.2 in such a way that its derivatives satisfy estimates of the type:

‖Daφn‖0 ≤ c(n, a)q|a|n , ‖Daφ
−1
n ‖0 ≤ c(n, a)q|a|n ,

where c(n, a) is independent of qn (Cf. §2.3 and §5.2.3 about the notations we adopt). This polynomial
growth of the norms of φn is crucial to insure the convergence of the construction above and is the
reason why it can be carried out for an arbitrary Liouville number.
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2.2. Analytic topology. Let us discuss the topology on the space of real-analytic diffeomorphisms
of T2, homotopic to the identity. All of them have a lift of type F (θ, r) = (θ + f1(θ, r), r + f2(θ, r)),
where fi : R2 → R are real-analytic and Z2-periodic.

For any ρ > 0, consider the set of real analytic Z2-periodic functions on R2, that can be extended
to holomorphic functions on Aρ = {|Im θ|, |Im r| < ρ}. For a function f in this set, let ‖f‖ρ =
supAρ |f(θ, r)|. We define Cω

ρ (T2) as a subset of the above set, defined by the condition: ‖f‖ρ <∞.

Consider the space Diffω
ρ of those diffeomorphisms, for whose lift it holds: fi ∈ Cω

ρ (T2), i = 1, 2.
For any two diffeomorphisms F and G in this space we can define the distance

dρ(F,G) = max
i=1,2

{ inf
p∈Z

‖fi − gi + p‖ρ}.

For a diffeomorphism T with a lift T (θ, r) = (T1(θ, r), T2(θ, r)) denote

‖DT‖ρ = max

{

∥

∥

∥

∥

∂T1

∂θ

∥

∥

∥

∥

ρ

,

∥

∥

∥

∥

∂T1

∂r

∥

∥

∥

∥

ρ

,

∥

∥

∥

∥

∂T2

∂θ

∥

∥

∥

∥

ρ

,

∥

∥

∥

∥

∂T2

∂r

∥

∥

∥

∥

ρ

}

.

2.3. C∞-topology. Here we discuss the (standard) topology on the space of smooth diffeomorphisms
of M = T2, which we shall use later. The annulus is endowed with the topology in the similar way.

We are interested in convergence in the space of smooth diffeomorphisms of M , homotopic to the
identity, and hence having lift of type F̃ (θ, r) = (θ + f1(θ, r), r + f2(θ, r)), where fi : R2 → R are
Z2-periodic. For a continuous function f : (0, 1) × (0, 1) → R, denote

‖f‖0 := sup
z∈(0,1)×(0,1)

|f(z)|.

For conciseness we introduce the following notation for partial derivatives of a function: for a =
(a1, a2) ∈ N2 we denote |a| := a1 + a2 and

Da :=
∂a

∂ra1∂θa2
.

For F , G in the space Diffk(T2) of k-smooth diffeomorphisms of the torus, let F̃ and G̃ be their
lifts. For mappings F : R2 → R2 denote by Fi the i-th coordinate function. Define the distances
between two diffeomorphisms F and G as

d̃0(F,G) = max
i=1,2

{inf
p∈Z

‖(F̃ − G̃)i + p‖0},

d̃k(F,G) = max{d̃0(F,G), ‖Da(F̃i − G̃i)‖0 | i = 1, 2, 1 ≤ |a| ≤ k}.
We shall use the metric, measuring the distance both between diffeomorphisms and their inverses:

dk(F,G) = max{d̃k(F,G), d̃k(F−1, G−1)}.
For M = D2, the Diffk(M) topologies are defined in the natural way with the help of the supremum

norm of continuous functions over the disc.
For the smooth topology on M , a sequence of Diff∞(M) diffeomorphisms is said to be convergent

in Diff∞(M), if it converges in Diffk(M) for all k. The space Diff∞(M), endowed with the metric

d∞(F,G) =

∞
∑

k=1

dk(F,G)

2k(1 + dk(F,G))
,

is a compact metric space, hence for any of its closed subspaces, Baire theorem holds.
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2.4. Reduction to the case of the annulus. Let (M,S, µ) denote a system of an m-dimensional
smooth manifold with a nontrivial circle action preserving a smooth volume µ.

We denote by F the set of fixed points of the action S. For q ≥ 1 we denote by Fq the set of fixed
points of the map S1/q. And by ∂M we denote the boundary of M . Finally we let B := ∂M∪F∪q≥1Fq.

Let λ be the product of Lebeasgue measures on S1×Dm−1. Denote by R the standard ”horizontal”
action of S1 on S1 ×Dm−1. We quote the following proposition of [4] that is similar to corresponding
statements in [1, 11]

Proposition 2.1. [4, proposition 5.2] Let M be an m-dimensional differentiable manifold with a non-
trivial circle action S = {St}t∈R

, St+1 = St preserving a smooth volume µ. Let B := ∂M ∪F ∪ (
⋃

q
Fq).

There exists a continuous surjective map G : S1 × Dm−1 →M with the following properties:

(1) The restriction of G to the interior S1 × Dm−1 is a C∞ diffeomorphic embedding;
(2) µ(G(∂(S1 × Dm−1))) = 0;
(3) G(∂(S1 × Dm−1)) ⊃ B;
(4) G∗(λ) = µ;
(5) S ◦G = G ◦ R.

We show now how this proposition allows to carry a construction as in the preceding section from
(S1 × Dm−1,R, λ) to the general case (M,S, µ).

Suppose f : S1×Dm−1 → S1×Dm−1 is a weak mixing diffeomorphism given, as above, by f = lim fn,
fn = Hn ◦ Rα ◦ H−1

n where, moreover, the maps Hn are equal to identity in a neighborhood of
the boundary, the size of which can be chosen to decay arbitrarily slowly. Then if we define the
diffeomorphisms H̃n : M →M

H̃n(x) = G ◦Hn ◦G−1(x) for x ∈ G(S1 × Dm−1), and

H̃n(x) = x for x ∈ G(S1 × ∂(Dm−1)),

we will have that H̃n ◦Sα ◦ H̃−1
n is convergent in the C∞ topology to the weak mixing diffeomorphism

f̃ : M →M defined by

g(x) = G(f(G−1(x)) for x ∈ G(S1 × Dm−1), and

g(x) = Sα(x) for x ∈ G(S1 × ∂(Dm−1)).

In the sequel, to alleviate the notations, we will assume that m = 2 and will do the constructions
on the annulus A = S1 × [0, 1] or on the two torus T2.

3. Criterion for weak mixing

The goal of this section is to give a simple geometrical criterion involving only the diffeomorphisms
φn ◦Rαn+1

◦φ−1
n and insuring the weak mixing property for the diffeomorphism f given by (2.1)–(2.5)

in case of convergence. The criterion will be stated in Proposition 3.9 of §3.6.
The following characterization of weak mixing will be used (see, for example, [10]): f is weak mixing

if there exists a sequence mn ∈ N such that for any Borel sets A and B we have:

|µ(B ∩ f−mn(A)) − µ(B)µ(A)| → 0. (3.1)
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3.1. We will now give an overview of the criterion assuming that M is the annulus T × [0, 1] and
denoting by horizontal intervals the sets I = [θ1, θ2] × {r}. We say that a sequence νn, consisting
for each n of a collection of disjoint sets on M (for example horizontal intervals), converges to the
decomposition into points if any measurable set B can be approximated as n→ ∞ by a union of atoms
in νn (Cf. §3.2). We denote this by νn −→

n→∞
ǫ.

The first reduction is given by a Fubini Lemma 3.3. Here we decompose B at each step n into a
union of small codimension one sets for which a precise version of (3.1) is assumed to hold, see (3.2).
For each n these sets are images by a smooth map Fn of a collection ηn of horizontal intervals such
that Fn(ηn) → ǫ. Lemma 3.3 shows that (3.2) guarantees weak mixing.

The second step is Lemma 3.4 asserting that under an additional condition of proximity (3.3)
between fmn

n and fmn , it is enough to check (3.2) for fn.
Now, we take Fn in the Fubini Lemma equal to Hn−1 ◦ gn. Since Hn−1 in the construction only

depends on qn−1, qn can be chosen so that ‖DHn−1‖0 < ln qn. With our choice of gn (σ < 1 in (2.5))
this implies that Hn−1 ◦ gn(ηn) → ǫ if ηn → ǫ is a partial partition with horizontal inetrvals of length
less than 1/qn (Cf. Lemma 3.5). With the above observations, we are reduced to finding a collection
ηn and a sequence mn with the property that Hn−1 ◦ gn ◦ φn ◦ Rmn

αn+1
◦ φ−1

n (I) is almost uniformly
distributed in M for I ∈ ηn.

The geometrical ingredient of the criterion appears in §3.5 and merely states that if a set (in
particular φn ◦Rmn

αn+1
◦φ−1

n (I)) is almost a vertical line going from one boundary of the annulus to the

other, then the image of this set by gn defined in (2.5) is almost uniformly distributed in M . ”Almost
vertical” is made precise and quantified in Definition 3.6. Actually, the choice of gn (σ > 0 in 2.5)
gives in addition that Hn−1 ◦ gn of a an almost vertical segment will be almost uniformly distributed
in M , since we impose that ‖DHn−1‖0 < ln qn.

In conclusion, the criterion for weak mixing (Proposition 3.9) roughly states as follows: Let f be
given by (2.1)–(2.5). If for some sequence mn satisfying the proximity condition (3.3) between fmn

n

and fmn , there exists a sequence ηn → ǫ consisting of horizontal intervals of length less than 1/qn
such that the image of I ∈ ηn by φn ◦ Rαn+1

◦ φ−1
n is increasingly almost vertical as n → ∞ then the

limit diffeomorphism f is weak mixing.

3.2. A Fubini Lemma.

Definition 3.1. A collection of disjoint sets on M will be called partial decomposition of M . We say
that a sequence of partial decompositions νn converges to the decomposition into points (notation:
νn → ǫ) if, given a measurable set A, for any n there exists a measurable set An, which is a union of
elements of νn, such that limn→∞ µ(A△An) = 0 (here △ denotes the symmetric difference).

In this section we work with M = T2 or M = A. For these manifolds we formulate the following
definition.

Definition 3.2. Let η̂ be a partial decomposition of T into intervals, and consider on M the decom-
position η consisting of intervals in η̂ times some r ∈ [0, 1]. Decompositions of the above type will
be called standard partial decompositions. We shall say that ν is the image under a diffeomorphism
F : M →M of a standard decomposition η (notation: ν = F (η)), if

ν = {Γ = F (I) | I ∈ η}.

Here we formulate a standard criterion for weak mixing. The proof is based on the application of
Fubini Lemma.
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Lemma 3.3 (Fubini Lemma). Let f be a measure µ preserving diffeomorphism of M . Suppose that there
exists an increasing sequence mn of natural numbers, and a sequence of partial decompositions νn → ǫ
of M , where, for each n, νn is the image under a measure-preserving diffeomorphism Fn : M → M
of a standard partial decomposition, with the following property: for any fixed square A ⊂M and any
ε > 0, for any n large enough we have: for any atom Γn ∈ νn

∣

∣

∣
λn(Γn

⋂

f−mn(A)) − λn(Γn)µ(A)
∣

∣

∣
≤ ελn(Γn)µ(A), (3.2)

where λn = F ∗
n(λ).

Then the diffeomorphism f is weak mixing.

Proof. To prove that f is weak mixing, it is enough to show that for any square A and a Borel set B

|µ(B ∩ f−mn(A)) − µ(B)µ(A)| → 0

when n→ ∞. In the case of the annulus, is even enough to show this for any square A that is strictly
contained in the interior of A. By assumption, for any n we have: λn(Γn) = λn(Fn(In)) = λ(In).
Then

λn(Γn ∩ f−mn(A)) = λn(Fn(In ∩ F−1
n ◦ f−mn(A))) = λ(In ∩ F−1

n ◦ f−mn(A)).

By (3.2), this implies:

|λ(In ∩ F−1
n ◦ f−mn(A)) − λ(In)µ(A)| ≤ ελ(In)µ(A).

Take any Borel set B ⊂ T2. Since νn → ǫ, for any ε, for fixed A and B, there exists n and a
measurable set B̂ = ∪i∈σΓi

n (Γi
n are elements of νn, and σ is an appropriate index set) such that

|µ(B̂△B)| < εµ(B)µ(A).

Consider B̃ = F−1
n (B̂) (it is also measurable since Fn is continuous). Then

B̃ =
⋃

i∈σ

F−1
n (Γi

n) =
⋃

i∈σ

Ii
n :=

⋃

0≤y≤1

⋃

i∈σ(y)

Ii
n(y) × {y}.

We estimate:
|µ(B ∩ f−mn(A)) − µ(B)µ(A)|
= |µ(F−1

n (B) ∩ F−1
n ◦ f−mn(A)) − µ(B)µ(A)|

≤ |µ(B̃ ∩ F−1
n ◦ f−mn(A)) − µ(B̃)µ(A)| + 2εµ(B)µ(A)

=

∫ 1

0

∑

i∈σ(y)

|λ(Ii
n(y) × {y} ∩ F−1

n ◦ f−mn
n (A)) − λ(Ii

n)µ(A)|dy

+ 2εµ(B)µ(A) ≤ 3εµ(B)µ(A).

�

3.3. Reduction from f to fn.

Lemma 3.4 (Reduction to fn). If f is the limit diffeomorphism from (2.1), and the sequence mn in
the latter lemma satisfies

d0(f
mn , fmn

n ) <
1

2n
, (3.3)

then we can replace the diffeomorphism f in the criterion (3.2) by fn:
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∣

∣

∣
λn(Γn

⋂

f−mn
n (A)) − λn(Γn)µ(A)

∣

∣

∣
≤ ελn(Γn)µ(A), (3.4)

and the result of Lemma 3.3 still holds.

Proof. Let us show that the assumptions of this lemma imply (3.2). Fix an arbitrary square A ⊂ M
and ε > 0.

Consider two squares, A1 and A2, such that

A1 ⊂ A ⊂ A2, µ(A△Ai) ≤
ε

3
µ(A).

Moreover, if n is sufficiently large, we can guarantee that

dist (∂A, ∂Ai) >
1

2n
,

(where dist (A,B) = infx∈A, y∈B |x− y|, and ∂A denotes the boundary of A), and
∣

∣

∣
λn(Γn

⋂

f−mn
n (Ai)) − λn(Γn)µ(Ai)

∣

∣

∣
≤ ε

3
λn(Γn)µ(Ai).

By (3.3), for any x the following holds: fmn
n (x) ∈ A1 implies fmn(x) ∈ A, and fmn(x) ∈ A implies

fmn
n (x) ∈ A2. Therefore,

λn(Γn ∩ f−mn
n (A1)) ≤ λn(Γn ∩ f−mn(A)) ≤ λn(Γn ∩ f−mn

n (A2)),

which gives the estimate:
(

1 − ε

3

)

λn(Γn)µ(A1) ≤ λn(Γn ∩ f−mn(A)) ≤
(

1 +
ε

3

)

λn(Γn)µ(A2),

implying (3.2). �

3.4. Reduction from fn to hn ◦Rαn+1
◦ h−1

n . The following is a technical lemma that will allow us

to focus in the sequel only on the action of hn ◦Rmn
αn+1

◦h−1
n (more specifically on gn ◦φn ◦Rmn

αn+1
◦φ−1

n )

in order to get (3.4):

Lemma 3.5. Let ηn be a sequence of standard partial decompositions of M into horizontal intervals of
length less or equal to 1/qn, let gn be defined by (2.5) with some 0 < σ < 1, and let Hn be a sequence
of area-preserving diffeomorphisms of M such that for all n

‖DHn−1‖0 < ln qn. (3.5)

Consider partitions νn = {Γn = Hn−1gn(In) | In ∈ ηn}.
Then ηn → ǫ implies νn → ǫ.

Proof. Let σ < σ′ < 1, and consider a partition of the annulus into squares Sn,i of side length

between q−σ′

n and 2q−σ′

n . Since ηn → ǫ, we have for ε > 0 arbitrarilly small, if n is large enough,
µ(∪I∈ηnI) ≥ 1− ε, so that for a collection of atoms S with total measure greater than 1−√

ε we have
µ(∪I∈ηnI ∩ S) ≥ (1−√

ε)µ(S). Since σ′ < 1 and any I ∈ ηn has length at most 1/qn, we have for the
same atoms S as above µ(∪I∈ηn,I⊂S) ≥ (1 − 2

√
ε)µ(S) if n is sufficiently large.

Consider now the sets Cn,i = Hn−1gn(Sn,i). In the same way as the squares Sn,i, a large proportion
of these sets can be well approximated by unions of elements of νn. But by (3.5), we have:

diam (Cn,i) ≤ ‖DHn−1‖0 ‖Dgn‖0 diam (Sn,i),
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which goes to 0 as n → ∞. Therefore, any Borel set B can be approximated by a union of such sets
Cn,i with any ahead given accuracy, if n is sufficiently large, hence B gets well approximated by unions
of elements of νn. �

3.5. Horizontal stretch under gn. We shall call by horizontal interval any line segment of the form
I × {r}, where I is an interval on the θ-axis. Vertical intervals have the form {θ} × J where J is an
interval on the r-axis. Let πr and πθ denote the projection operators onto r and θ coordinate axes,
respectively.

The following definition formalizes the notion of “almost uniform distribution” of a horizontal
interval in the vertical direction.

Definition 3.6 ((γ, δ, ε)-distribution). We say that a diffeomorphism Φ : M →M (γ, δ, ε)-distributes
a horizontal interval I (or Φ(I) is (γ, δ, ε)-distributed), if

• πr(Φ(I)) is an interval J with 1 − δ ≤ λ(J) ≤ 1;
• Φ(I) is contained in a “vertical strip” of type [c, c + γ] × J for some c;

• for any interval J̃ ⊂ J we have:
∣

∣

∣

∣

∣

λ(I ∩ Φ−1(T× J̃))

λ(I)
− λ(J̃)

λ(J)

∣

∣

∣

∣

∣

≤ ε
λ(J̃)

λ(J)
. (3.6)

We shall more often write the latter relation in the form

|λ(I ∩ Φ−1(T× J̃))λ(J) − λ(I)λ(J̃)| ≤ ελ(I)λ(J̃).

Lemma 3.7. Let gn be a diffeomorphism of the form (2.5) with some fixed 0 < σ < 1. Suppose that a
diffeomorphism Φ : M → M (γ, δ, ε)-distributes a horizontal interval I with γ = 1/(nqσ

n), δ = 1/n,
ε = 1/n. Denote πr(Φ(I)) by J .

Then for any square S of side length q−σ
n , lying in T× J it holds:

|λ(I ∩ Φ−1 ◦ g−1
n (S))λ(J) − λ(I)µ(S)| ≤ 8/nλ(I)µ(S). (3.7)

Lemma 3.7 asserts that, if a diffeomorphism Φ “almost uniformly” distributes I in the vertical
direction, then the composition of Φ and the affine map gn “almost uniformly” distributes I on the
whole of M .

To prove Lemma 3.7, we shall need the following preliminary statement: it says that gn “almost
uniformly” distributes on M any sufficiently thin vertical strip.

Lemma 3.8. Suppose that g : M →M has a lift

g(θ, r) = (θ + br, r) for some b ∈ Z, |b| ≥ 2.

For an interval K on the r-axes, λ(K) ≤ 1, denote by Kc,γ a strip

Kc,γ := [c, c+ γ] ×K.

Let L = [l1, l2] be an interval on the θ-axes. If bλ(K) > 2, then for

Q := πr(Kc,γ ∩ g−1(L×K)),

it holds:

|λ(Q) − λ(K)λ(L)| ≤ γλ(K) +
2λ(L)

b
+

2γ

b
.
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Proof. By definition, Q = {r ∈ K | ∃θ ∈ [c, c + γ] : θ + br ∈ [l1, l2]}. Then

Q = {r ∈ K | br ∈ [l1 − γ, l2] − c}.
To estimate λ(Q), note that the interval bK (seen as an interval on the real line) intersects not more
than bλ(K)+2 intervals of type [i, i+1], i ∈ Z, on the line, and not less than bλ(K)−2 such intervals.
Hence,

λ(Q) ≤ (bλ(K) + 2)
(l2 − l1) + γ

b
= λ(K)λ(L) + γλ(K) +

2λ(L)

b
+

2γ

b
.

The lower bound is obtained in the same way. �

Proof of Lemma 3.7. Let S be a square in T× J of size q−σ
n × q−σ

n . Denote πθ(S) by Sθ, πr(S) by Sr.
In these notations, λ(Sr) = λ(Sθ) = q−σ

n , and λ(Sθ)λ(Sr) = µ(S) = q−2σ
n .

Let us study what part of Φ(I) is sent by gn into S. Since Φ(I) is contained in a strip [c, c+γ]×J for
some c, by assumption, and gn preserves horizontals, this part lies in Kc,γ := [c, c+ γ]×Sr. Denoting
Sθ by [s1, s2], define a “smaller” rectangle S1 ⊂ S: S1 = [s1 + γ, s2 − γ] × Sr (in our assumptions, 2γ
is much less than λ(Sθ), so this rectangle is non-empty). Consider two sets:

Q := πr(Kc,γ ∩ g−1
n (S)), Q1 := πr(Kc,γ ∩ g−1

n (S1)).

Then we have:

Φ(I) ∩ (T×Q1) ⊂ Φ(I) ∩ g−1
n (S) ⊂ Φ(I) ∩ (T×Q). (3.8)

The second inclusion is evident, the first one comes from the fact that gn preserves lengths of horizontal
intervals.

Lemma 3.8 permits us to estimate λ(Q) and λ(Q1). Indeed, to estimate the former one, apply
Lemma 3.8 with b = [nqσ

n], γ = (nqσ
n)−1, K = Sr, and L = Sθ. We get:

|λ(Q) − µ(S)| ≤ λ(Sr)

nqσ
n

+
2λ(Sθ)

[nqσ
n]

+
2

nqσ
n[nqσ

n]
≤ 4

n
µ(S).

In the same way, applying Lemma 3.8 with the same b, γ, K as above and L = πθS1 = [s1 + γ, s2− γ],
we get the same estimate (for large n):

|λ(Q1) − µ(S1)| ≤
4

n
µ(S).

In particular, this implies λ(Q) ≤ 2µ(S), and λ(Q1) ≤ 2µ(S).
Both Q and Q1 are finite unions of disjoint intervals. Then, using (3.6) with ε = 1

n (which was the
assumption of the present lemma), we have:

|λ(I ∩ Φ−1(T×Q))λ(J) − λ(I)λ(Q)| ≤ 1

n
λ(I)λ(Q) ≤ 2

n
λ(I)µ(S),

and the same estimate holds for Q1 instead of Q. The last preliminary estimates are:

|λ(I ∩ Φ−1(T ×Q))λ(J) − λ(I)µ(S)| ≤
|λ(I ∩ Φ−1(T ×Q))λ(J) − λ(I)λ(Q)| + λ(I)|λ(Q) − µ(S)|

≤ 2

n
λ(I)µ(S) +

4

n
λ(I)µ(S) =

6

n
λ(I)µ(S);

and, in the same way, (noting that µ(S) − µ(S1) = 2
nµ(S)), one estimates

|λ(I ∩ Φ−1(T ×Q1))λ(J) − λ(I)µ(S)| ≤ 8

n
λ(I)µ(S).
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Now relation (3.8), together with the preliminary estimates above, gives the desired conclusion:

|λ(I ∩ Φ−1 ◦ g−1
n (S))λ(J) − λ(I)µ(S)|

≤ max{|λ(I ∩ Φ−1(T×Q))λ(J) − λ(I)µ(S)|,

|λ(I ∩ Φ−1(T×Q1))λ(J) − λ(I)µ(S)|} ≤ 8

n
λ(I)µ(S).

�

3.6. Criterion for weak mixing. We can now state the following

Proposition 3.9 (Criterion for weak mixing). Assume that fn = Hn ◦ Rαn+1
◦H−1

n is a sequence of
diffeomorphisms constructed following (2.2), (2.3), (2.4) and (2.5) with some 0 < σ < 1/2, and that
for all n (3.5) holds.

Suppose that the limit lim
n→∞

fn = f exists. If there exist a sequence mn satisfying (3.3) and a

sequence of standard partial decompositions ηn of M into horizontal intervals of length less than 1/qn
such that

(1) ηn → ǫ,
(2) for any interval In ∈ ηn, the diffeomorphism

Φn := φn ◦Rmn
αn+1

◦ φ−1
n

( 1
nqσ

n
, 1

n ,
1
n)-distributes the interval In,

then the limit diffeomorphism f is weak mixing.

Proof. We use Lemma 3.4 to prove weak mixing. Consider partitions νn = {Γn = Hn−1 ◦ gn(In) | In ∈
ηn}, and let λn = (Hn−1 ◦ gn)∗λ. By Lemma 3.5, νn converges to the decomposition into points.

Let an arbitrary square A and ε > 0 be fixed. In order to be able to apply Lemma 3.4, it is left to
check condition (3.4) for any Γn ∈ νn, with fmn

n = Hn ◦ Smn
αn+1

◦H−1
n = Hn−1 ◦ gn ◦ Φn ◦ g−1

n ◦H−1
n−1.

By assumption (2) of the present lemma, for all In ∈ ηn, πr(Φn(In)) ⊃ [−1/n, 1 − 1/n]. Let Sn be a
square of side length q−σ

n , Sn ⊂ T× [−1/n, 1 − 1/n]. Consider

Cn := Hn−1(Sn).

Assumption (2) permits to apply Lemma 3.7. Then we have (estimating 1
λ(J) ≤ 2):

|λn(Γn ∩ f−mn
n (Cn)) − λn(Γn)µ(Cn)|

= |λ(In ∩ Φ−1
n ◦ g−1

n (Sn)) − λ(In)µ(Sn)|

≤ 1

λ(J)
|λ(In ∩ Φ−1

n ◦ g−1
n (Sn))λ(J) − λ(In)µ(Sn)| + (1 − λ(J))

λ(J)
λ(In)µ(Sn)

≤ 2
8

n
λ(In)µ(Sn) +

2

n
λ(In)µ(Sn) =

18

n
λn(Γn)µ(Cn).

By (3.5), we have for n sufficiently large diam (Cn) ≤ ‖D(Hn−1)‖0 diam (Sn) ≤ 1
2n . Hence, for n

large enough, one can approximate A by such sets Cn lying in T× [1/n, 1 + 1/n]. More precisely, for
n large enough, there exist two sets, which are unions of sets Cn: A1 = ∪σ1

Cn, A2 = ∪σ2
Cn such that

Ai ⊂ T× [1/n, 1 − 1/n], A1 ⊂ A ∩ T× [1/n, 1 − 1/n] ⊂ A2,

|µ(A) − µ(Ai)| ≤
ε

3
µ(A).
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Take n so that 18
n < ε

3 . Then we can estimate:

λn(Γn ∩ f−mn
n (A)) − λn(Γn)µ(A) ≤ λn(Γn ∩ f−mn

n (A2)) − λn(Γn)µ(A2)+
ε

3
λn(Γn)µ(A) ≤ ε

3
λn(Γn)µ(A2) +

ε

3
λn(Γn)µ(A) ≤ ελn(Γn)µ(A).

The lower estimate for this difference is obtained in the same way (using A1). We have shown that, if
n is sufficiently large, for an arbitrary Γn ∈ νn (3.4) holds. Then, by Lemma 3.4, f is weak mixing. �

4. Analytic case on the torus T2.

This section is devoted to the analytic construction on the torus T2. We recall the notations of the
Theorem 1.5 that we want to prove. For an arbitrary fixed σ > 0, for any n ∈ N:

φn(θ, r) = (θ, r + q2n cos(2πqnθ)),

gn(θ, r) = (θ + [nqσ
n]r, r),

hn = gn ◦ φn, Hn = h1 ◦ · · · ◦ hn,

fn = Hn ◦Rαn+1
◦H−1

n .

(4.1)

4.1. Proof of convergence. Let α, δ and σ be as in the statement of Theorem 1.5, and let ρ > 0 be
fixed. Let αn = pn/qn be a sequence such that |α− αn| is decreasing and

(P1) For all n ∈ N,

|α− αn| < exp(−q1+3σ
n ).

By eventually extracting from αn we can assume that this sequence also has the following properties:

(P2) Denote the lift of the inverse of the diffeomorphism Hn from (4.1) by ((H−1
n )1, (H−1

n )2), and
set

ρn := max
i=1,2

inf
p∈Z

‖(H−1
n )i + p‖ρ, ρ0 := ρ.

Then for all n ∈ N,

qσ
n ≥ 4πnρn−1 + ln(8πnqσ+4

n ).

(P3) With the definition of ‖DH‖ρ of Section 2.2, we have for all n ∈ N, and for all t such that
|t− α| ≤ |αn − α|,

qn ≥ ‖D(Hn−1)Rt ◦H−1
n−1‖ρ.

(P4) For all n ∈ N
‖D(Hn−1)‖0 ≤ ln qn.

Properties (P2)–(P4) are possible to guarantee by choosing qn sufficiently large because Hn−1 does
not depend on qn.

The first three properties are used to prove the convergence, and the latter one is estimate (3.5),
needed for the proof of weak mixing of the limit diffeomorphism, which will be done with the help of
Proposition 3.9.

The following statement implies the convergence of the sequence fn.

Lemma 4.1. Suppose αn = pn

qn
satisfies (P1)–(P3) for some fixed σ > 0 and ρ > 0. Then, for any n

large enough, we have:
(a) the diffeomorphisms defined by (4.1) satisfy:

dρ(fn, fn−1) ≤ exp(−qn);
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(b) for any m ≤ qn+1 it holds:

d0(f
m
n , f

m) ≤ 1

2n
.

Proof. With the notations above, using the Mean value theorem and (P3), we have (for some t between
αn and αn+1):

dρ(fn, fn−1) ≤ ‖(DHn−1)Rt ◦H−1
n−1‖ρ‖(hn ◦Rαn+1

◦ h−1
n −Rαn) ◦H−1

n−1‖ρ

≤ qn‖hn ◦Rαn+1
◦ h−1

n −Rαn‖ρn−1
.

(4.2)

Denote (cos 2πqn(z + αn+1) − cos 2πqnz) by R(z). For an arbitrary s ≥ 0, we can write:

‖R‖s ≤‖e2πiqnz‖s|1 − e2πiqnαn+1 | ≤ 2πqn‖e2πiqnz‖s|αn+1 − αn|
≤ 4πqn‖e2πiqnz‖s|α− αn|,

(4.3)

(we used the estimate |αn+1 − αn| ≤ 2|α − αn|). By the definition of hn,

hn ◦Rαn+1
◦ h−1

n −Rαn = ([nqσ
n]q2nR(θ − [nqσ

n]r) + (αn+1 − αn) , q2nR(θ − [nqσ
n]r)).

Then

‖hn ◦Rαn+1
◦ h−1

n −Rαn‖s ≤ 2nq2+σ
n ‖R(θ − [nqσ

n]r)‖s.

By (4.3), it is less than

8πnq3+σ
n ‖ exp(2πiqn(θ − [nqσ

n]r))‖s|α− αn|. (4.4)

Applying (4.2), (4.4), (P2) and (P1) in sequence, we get:

dρ(fn, fn−1) ≤qn‖hn ◦Rαn+1
◦ h−1

n −Rαn‖ρn−1

≤8πnq4+σ
n exp(4πnq1+σ

n ρn−1)|α − αn| ≤ exp(q1+2σ
n )|α− αn|

≤ exp(q1+2σ
n (1 − qσ

n)) ≤ exp(−q1+2σ
n ) < exp(−qn).

The second part of the claim is proved in the same way. One has to note that fm
n = hn◦Sm

αn+1
◦h−1

n =

hn ◦Rmαn+1
◦ h−1

n , and

d0(f
m, fm

n ) =

∞
∑

j=n

d0(f
m
j , f

m
j+1).

�

4.2. Proof of weak mixing. For the proof of weak mixing, we shall use Proposition 3.9 that was
proved in the previous section. In order to apply the lemma, we choose a sequence (mn), mn ≤ qn+1

(in this case, by Lemma 4.1 (b), (3.3) holds), and a sequence of standard partial decompositions (ηn)
consisting of horizontal intervals with length less than 1/qn, ηn → ǫ, such that the diffeomorphism

Φn := φn ◦Rmn
αn+1

◦ φ−1
n (4.5)

( 1
nqn

, 0, 1
n)-distributes any interval In ∈ ηn.
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4.2.1. Choice of the mixing sequence mn. We shall assume that

qn+1 ≥ q7n.

Define

mn = min

{

m ≤ qn+1 | inf
k∈Z

∣

∣

∣

∣

m
qnpn+1

qn+1
− 1/2 + k

∣

∣

∣

∣

<
qn
qn+1

}

.

Note that the set of numbers m above is non-empty. Indeed, since pn+1 and qn+1 are relatively prime,
the set {j qnpn+1

qn+1
| j = 0, . . . qn+1} on the circle contains qn+1

GCD(qn,qn+1)
, which is at least qn+1

qn
, different

equally distributed points.
We shall use the following estimate, which follows from the above assumption on the growth of qn:

|mnqnαn+1 − 1/2|(mod 1) ≤ qn
qn+1

≤ q−6
n . (4.6)

4.2.2. Stretching of the diffeomorphisms Φn. Consider the set

Bn =

2qn
⋃

k=0

[

k

2qn
− 1

2q
3/2
n

,
k

2qn
+

1

2q
3/2
n

]

. (4.7)

We shall see that Φn displays strong stretching in the vertical direction on small horizontal intervals,
lying outside Bn. To do this, we shall use the notion of uniform stretch from [3], which we recall here.

Definition 4.2 (Uniform stretch). Given ε > 0 and k > 0, we say that a real function f on an interval
I is (ε, k)-uniformly stretching on I if for J = [infI f, supI f ]

λ(J) ≥ k,

and for any interval J̃ ⊂ J we have:
∣

∣

∣

∣

∣

λ(I ∩ f−1J̃)

λ(I)
− λ(J̃)

λ(J)

∣

∣

∣

∣

∣

≤ ε
λ(J̃)

λ(J)
.

The following criterion, that is easy to verify, gives a necessary and sufficient condition for a real
function (of class at least C2) to be uniformly stretching. The proof can be found in [3].

Lemma 4.3 (Criterion for uniform stretch). If f satisfies:

inf
x∈I

|f ′(x)|λ(I) ≥ k,

sup
x∈I

|f ′′(x)|λ(I) ≤ ε inf
I
|f ′(x)|,

then f is (ε, k)-uniformly stretching on I.

Lemma 4.4. Under the conditions of Theorem 1.5, the transformation Φn has a lift of the form:

Φn(θ, r) = (θ +mnαn+1, r + ψn(θ)),

where ψn satisfies:

inf
T\Bn

|ψ′
n| ≥ q5/2

n , sup
T\Bn

|ψ′′
n| ≤ 9π2qn

4. (4.8)
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Proof. By definition, Φn has the desired form with

ψn = q2n(cos(2π(qnθ +mnqnαn+1)) − cos(2πqnθ)) = −2q2n cos(2πqnθ) + σn,

where
σn = q2n(cos(2π(qnθ +mnqnαn+1)) − cos(2π(qnθ + 1/2))).

With the help of the Mean value theorem and estimate (4.6), one easily verifies that |σ′n| < 1, and
|σ′′n| < 1.

Note that Bn are chosen in such a way that

inf
T\Bn

| sin(2πqnθ)| ≥ q−1/2
n .

The statement follows by calculation. �

4.2.3. Choice of the decompositions ηn. Let us define a standard partial decompositions ηn of T2,
meeting the conditions of Proposition 3.9.

Let η̂n = {In} be the partial decomposition of T \Bn, containing all the intervals In such that

ψn(In) = [0, 1) mod 1.

We define ηn = {I × {r} | I ∈ η̂n, r ∈ T}. Note that, for any In ∈ ηn, we have: πr(Φ(In)) = T.

Lemma 4.5. Let ηn be defined as above. Then, for any In ∈ ηn,

λ(In) ≤ q−5/2
n ,

and ηn → ǫ.

Proof. By Lemma 4.4, infT\Bn
|ψ′

n| ≥ q
5/2
n . Therefore, λ(In) ≤ q

−5/2
n for any In ∈ ηn.

Since the diameter of the atoms of ηn goes to zero when n grows, it is enough to show that the
total measure of the decompositions goes to 1 when n grows. The total measure of ηn equals:

∑

In∈η̂n

λ(In) ≤ 1 − λ(Bn) − 4qn max
In∈η̂n

λ(In)

≤ 1 − 2qn(q−3/2
n + 2q−5/2

n ) < 1 − 3q−1/2
n → 1.

�

4.2.4. Proof of weak mixing. To prove weak mixing of f , we shall apply Proposition 3.9. Since (3.3)
holds by Lemma 4.1, estimate (3.5) holds by Property (P4), the sequence of decompositions ηn → ǫ
by the lemma above, it is left to verify condition (2) of Proposition 3.9, which we pass to.

Lemma 4.6. Let In ∈ ηn, Φn be as in (4.5). Then Φn(In) is ( 1
nqn

, 0, 1
n)-distributed.

Proof. By the choice of ηn, πr(Φn(In)) = T, and hence, δ in the definition of (γ, δ, ε)-distribution can
be taken equal to 0.

We have seen that Φn has a lift Φn(r, θ) = (θ +mnα, r+ ψn(θ)). Hence, Φn(In) is contained in the
vertical strip (In +mnα) × T. By the lemma above, λ(In) ≤ 1

q
5/2
n

< 1
nqn

for any In ∈ ηn. Hence, we

can take γ = 1
nqn

.

Our fixed In has the form I × {r} for some r ∈ T and I ∈ η̂n. For any J ⊂ T, the fact that
Φn(θ, r) ∈ T× J is equivalent to ψn(θ) ∈ J − r. Lemma 4.4 implies the estimate:

supIn∈ηn
|ψ′′

n|
infIn∈ηn |ψ′

n|
λ(In) ≤ 9π2

qn
<

1

n
.
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Then, by Lemma 4.3 (Criterion for uniform stretch), ψn is ( 1
n , 1)-uniformly stretching. Hence, for any

interval J ⊂ T, the following holds:

|λ(In ∩ Φ−1
n (T× J)) − λ(In)λ(J)| =|λ(I ∩ ψ−1

n (J − r)) − λ(In)λ(J)|

≤ 1

n
λ(In)λ(J),

and we take ε = 1
n in the definition of (γ, δ, ε)-distribution. �

We have shown that Φn and ηn verify the conditions of Proposition 3.9. It implies that f is weak
mixing.

5. C∞-case on the torus, annulus and disc

Sections 5.1–5.4 are devoted to M = A and M = T2. The case of the disc D2 is studied in Section
5.5.

5.1. Statement of the result. Take any 0 < σ < 1. On M = A, consider the following transforma-
tions:

gn(x, y) = (x+ [nqσ
n]y, y),

hn = gn ◦ φn, Hn = h1 ◦ . . . ◦ hn,

fn = Hn ◦Rαn+1
◦H−1

n ;

(5.1)

where the sequence αn = pn/qn, converging to α, and the diffeomorphisms φn, satisfying

R 1

qn
◦ φn = φn ◦R 1

qn
, (5.2)

will be constructed in Section 5.2 below so that

Theorem 5.1. For any Liouville number α, there exists a sequence αn of rationals and a sequence φn

of measure preserving diffeomorphisms satisfying (5.2) such that the diffeomorphisms fn, constructed
as in (5.1), converge in the sense of the Diff∞(M) topology, the limit diffeomorphism f = lim

n→∞
fn

being weak mixing and f ∈ Aα(M). Moreover, for any ε > 0, the parameters can be chosen so that

d∞(f,Rα) < ε.

Remark 5.2. This result implies Theorem 1.1. Indeed, it follows directly from Theorem 5.1, that
weak mixing diffeomorphisms are dense in Aα(M). It is a general fact (see [5]) that, in this case, weak
mixing diffeomorphisms are generic in Aα(M) with our topology.

5.2. Construction of φn. We begin by constructing a “standard diffeomorphism” on the square
[−1, 1] × [−1, 1] = [−1, 1]2, from which φn will be obtained by a rescaling of the domain of definition.

5.2.1. Preliminary construction. For a fixed ε < 1/2, consider the squares ∆ = [−1, 1]2, ∆(ε) =
[−1 + ε, 1 − ε]2 and ∆(2ε).

Lemma 5.3. For any ε < 1/2 there exists a smooth measure-preserving diffeomorphism ϕ = ϕ(ε) of
R2, equal to the identity outside ∆(ε) and rotating the square ∆(2ε) by π/2.

Proof. Let ψ = ψ(ε) be a smooth transformation satisfying

ψ(θ, r) =

{

(θ, r) on R2 − ∆(ε),

(θ/5, r/5) on ∆(2ε),
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and η be a smooth transformation, such that

η(θ, r) =

{

(r,−θ) on {θ2 + r2 ≤ 1/3},
(θ, r) on {θ2 + r2 ≥ 2/3}.

Then the composition

ϕ̃ := ψ−1ηψ

provides the desired geometry. Moreover, it preserves the Lebesgue measure on the set

U = (R2 − ∆(ε)) ∪ ∆(2ε).

However, it does not have to preserve the area on the whole of ∆. We describe now a deformation
argument following Moser [8] that provides an area-preserving diffeomorphism ϕ on ∆, coinciding with
ϕ̃ on U .

Let Ω0 denote the usual volume form on R2, and consider Ω1 := ϕ̃∗Ω0. We shall find a diffeomor-
phism ν equal to the identity on the set U , and such that ν∗Ω1 = Ω0.

Let Ω′ = Ω1 −Ω0, and note that Ω′ = d(ω0 − ϕ̃∗ω0), where ω0 is the standard 1-form 1
2 (θdr− rdθ).

Consider the volume form

Ωt = Ω0 + tΩ′.

Since it is non-degenerate, there exists a unique vector field Xt such that

Ωt(Xt, ·) = (ω0 − ϕ̃∗ω0)(·). (5.3)

One can integrate the obtained vector field to get the one-parameter family of diffeomorphisms
{νt}t∈[0,1], ν̇t = Xt(νt), ν0 = id. Then ν = ν1 is the desired coordinate change. Indeed, one verifies by
calculation that

d

dt
ν∗t Ωt = 0.

Hence, ν∗1Ω1 = ν∗0Ω0 = Ω0.
By an explicit verification, one obtained that ϕ̃∗ preserves the form ω0 on U (for this note that ϕ̃

on U is an explicit linear transformation). Then on U equation (5.3) writes as Ωt(Xt, ·) = 0. Since Ωt

is non-degenerate, this implies that Xt = 0 on U , hence ν = ν0 = id on U , as claimed. The desired
area-preserving diffeomorphism is

ϕ = νϕ̃.

�

5.2.2. Construction of φn. Let us first define φn on the fundamental domain Dn = [0, 1/qn] × [0, 1].
The line θ = 1/2qn divides Dn into halves: D1

n = [0, 1/(2qn)]× [0, 1] and D2
n = (1/(2qn), 1/qn)× [0, 1].

On D1
n, consider the affine transformation Cn(θ, r) = (4qnθ − 1, 2r − 1), sending D1

n onto the square
∆ = [−1, 1]2. Let ϕn be the diffeomorphism given by Lemma 5.3 with ε = 1/(3n), and set

φn := C−1
n ◦ ϕn ◦ Cn. (5.4)

We define φn = Id on D2
n. Note that φn is smooth and area-preserving on Dn, and equals identity on

the boundary of D. We extend it periodically to the whole R2 by the formula:

φn ◦R 1

qn
= R 1

qn
◦ φn, φn(θ, r + 1) = φn(θ, r) + (0, 1).

The transformation φn, defined in this way, becomes a diffeomorphism both on T2 and on A in a
natural way.
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D1
n,j D2

n,j

I

φn(I)

φn = Id

Figure 1. Action of φn

For a fixed n, let us denote by Dn,j and Di
n,j (for i = 1, 2, j ∈ Z) the shifts of the fundamental

domain Dn of φn:

Dn,j+qn = Dn,j = R j
qn

(Dn), and Di
n,j+qn

= Di
n,j = R j

qn

(Di
n).

5.2.3. Notation. For a diffeomorphism F of M (not necessarily homotopic to the identity), we shall
denote by the same letter its lift of the form:

F (x, y) = (ax+ by + f1(x, y), cx+ dy + f2(x, y)),

where fi : R2 → R are, in the case of the torus, Z2-periodic with the property ‖fi‖0 = infp∈Z ‖fi +p‖0;
and for the case of the annulus, fi are Z-periodic in the first component, and such that ‖f1‖0 =
infp∈Z ‖f1+p‖0. Note that the diffeomorphisms in our constructions are defined by their lifts, satisfying
this property. For k-smooth diffeomorphisms F : R2 → R2 we define by Fi the i-th coordinate function,
and denote

|||F |||k := max{‖DaFi‖0, ‖Da(F
−1)i‖C0 | i = 1, 2, 0 ≤ |a| ≤ k}.

5.2.4. Discussion of the properties of φn. We have constructed φn so that φn equals identity on D2
n,j,

j ∈ Z, and on D1
n,j the image of any interval In,j × {r}, where r ∈ [1/(3n), 1 − 1/(3n)], and

In,j =

[

j

qn
+

1

6nqn
,
j

qn
+

1

2qn
− 1

6nqn

]

, (5.5)

with j = 0, . . . qn −1, both under φn and φ−1
n , is an interval of type {θ}× [1/(3n), 1−1/(3n)] for some

θ ∈ In,j (see Figure 1).
Moreover, the following holds:

Lemma 5.4. For all k ∈ N the diffeomorphisms φn constructed above satisfy:

|||φn|||k ≤ c(n, k)qk
n,

where c(n, k) is independent of qn.

Proof. The desired estimate follows from (5.4) by the product rule (it is important that ϕn is inde-
pendent of qn). �

Remark 5.5. For any n, the construction implies that φn(θ, r) = Id in the domains 0 ≤ r < 1/(6n)
and 1 − 1/(6n) < r ≤ 1. It is easy to verify that in the same domains diffeomorphisms fn from (5.1)
equal Rαn+1

.
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5.3. Proof of convergence. In the proof we shall use the following lemma:

Lemma 5.6. Let k ∈ N, and h be a diffeomorphism of M . Then for all α, β ∈ R we obtain

dk(hRαh
−1, hRβh

−1) ≤ Ck|||h|||k+1
k+1|α− β|, (5.6)

where Ck only depends on k, and C0 = 1.

Proof. We give the proof for the case M = T2; for the annulus, the proof is obtained by minor
modifications. Note that Dahi for |a| ≥ 1 is Z2-periodic. Hence, for any g : R2 → R2, we have:
sup0<x,y<1 |(Dahi)(g(x, y))| ≤ |||h||||a|.

For k = 0, the statement of the lemma follows directly from the Mean value theorem.
We claim that for j with |j| = k the partial derivative Dj(hiRαh

−1 − hiRβh
−1) will consist of a

sum of terms with each term being the product of a single partial derivative
(

Dahi

)

(Rαh
−1) −

(

Dahi

)

(Rβh
−1) (5.7)

with |a| ≤ k, and at most k partial derivatives of the form

Dbh
−1
j (5.8)

with |b| ≤ k. This clearly holds for k = 1. We proceed by induction.
By the product rule we need only consider the effect of differentiating (5.7) and (5.8). Applying Dc

with |c| = 1 to (5.7) we get:
∑

|b|=1

(

(

DbDahi

)

(Rαh
−1) −

(

DbDahi

)

(Rβh
−1)

)

Dch
−1
b ,

which increases the number of terms of the form (5.8) in the product by 1. Differentiating (5.8) we
get another term of the form (5.8) but with |b| ≤ k + 1.

Now we estimate:

‖
(

Dahi

)

(Rαh
−1) −

(

Dahi

)

(Rβh
−1)‖0 ≤ |||h||||a|+1|α− β|,

‖Dch
−1
j ‖0 ≤ |||h||||c|.

Taking the inverse maps and applying the result we just proved gives (5.6). �

Lemma 5.7. For an arbitrary ε > 0, let kn be a growing sequence of natural numbers, such that
∑∞

n=1 1/kn < ε. Suppose that, in construction (5.1), we have: |α− α1| < ε and for any n

|α− αn| <
1

2knCkn |||Hn|||kn+1
kn+1

, (5.9)

where Ckn are the constants from Lemma 5.6. Then the diffeomorphisms fn = Hn ◦ Rαn+1
◦ H−1

n

converge in the Diff∞ topology to a measure preserving diffeomorphism f , and

d∞(f,Rα) < 3ε.

Moreover, the sequence of diffeomorphisms

f̂n := Hn ◦Rα ◦H−1
n ∈ Aα (5.10)

also converges to f in the Diff∞ topology, hence f ∈ Aα.
Furthermore, if for a sequence of positive integers mn we have for all n:

|α− αn| <
1

2n+1mn−1|||Hn|||1
, (5.11)
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then for any m ≤ mn we have

d0(f
m, fm

n ) ≤ 1

2n
. (5.12)

Proof. By construction we have: hn ◦Rαn = Rαn ◦ hn. Hence,

fn−1 = Hn−1 ◦Rαn ◦H−1
n−1 = Hn ◦Rαn ◦H−1

n .

By Lemma 5.6, for all k and n,

dk(fn, fn−1) =dk(Hn ◦Rαn+1
◦H−1

n ,Hn ◦Rαn ◦H−1
n )

≤Ck|||Hn|||k+1
k+1|αn+1 − αn|.

Estimating |αn+1 − αn| ≤ 2|α − αn|, and using assumption (5.9), we get for any k ≤ kn:

dk(fn, fn−1) ≤ dkn(fn, fn−1) ≤
2Ckn |||Hn|||kn+1

kn+1

2knCkn |||Hn|||kn+1
kn+1

≤ 1

kn
.

Hence, for any fixed k, the sequence (fn) converges in Diffk, and therefore, in Diff∞. Moreover, one
easily computes (using the definition of the d∞-metric) that

d∞(f,Rα) ≤ |α− α1| +
∞

∑

n=1

d∞(fn, fn−1) < 3ε;

(here we denoted f0 = Rα1
).

To prove that f ∈ Aα, we show that the sequence of functions f̂n ∈ Aα converge to f . For this it
is enough to note that, for any n and k ≤ kn, Lemma 5.6 and assumption (5.9) imply:

dk(fn, f̂n) =dk(Hn ◦Rαn+1
◦H−1

n ,Hn ◦Rα ◦H−1
n )

≤Ckn |||Hn|||kn+1
kn+1|αn+1 − α| ≤ 1

kn
.

To prove the third statement of the lemma, note that for any m ≤ mn−1,

d0(f
m
n , f

m
n−1) =d0(Hn ◦Rmαn+1

◦H−1
n ,Hn ◦Rmαn ◦H−1

n )

≤|||Hn|||12m|α− αn| ≤
1

2n
.

Then d0(f
m, fm

n−1) ≤
∞
∑

i=n
d0(f

m
i , f

m
i−1) = 1

2n−1 . �

Let a Liouville number α be fixed. Here we show that, for any given sequence kn, the sequence of
convergents αn of α can be chosen so that (5.9) holds, and for any mn−1 ≤ qn, (5.11) holds.

Lemma 5.8. Fix an increasing sequence kn of natural numbers, satisfying
∑∞

n=1 1/kn <∞, and let the
constants Cn be as in Lemma 5.6. For any Liouville number α, there exists a sequence of convergents
αn = pn/qn, such that the diffeomorphisms Hn, constructed as in (5.1) with these αn and with φn

given by (5.4), satisfy (5.9) and (5.11) with any mn−1 ≤ qn. Further, we can choose αn so that in
addition (3.5)) holds.
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Proof. By Lemma 5.4, we have: |||φn|||k ≤ c1(n, k)q
k
n. Then for hn as in (5.1), we get:

|||hn|||k ≤ c2(n, k)q
2k
n .

With the help of the Faa di Bruno’s formula (that gives an explicit equation for the n-th derivative of
the composition), we estimate:

|||Hn|||k ≤ |||Hn−1 ◦ hn|||k ≤ c3(n, k)q
2k2

n ,

where c3(n, k) depends on the derivatives of Hn−1 up to order k, which do not depend on qn. Suppose
that, for each n, qn is chosen so that

qn ≥ c3(n, n+ 1).

Then |||Hn|||kn+1 ≤ q
2(kn+1)2+1
n ≤ q

3(kn+1)2
n . We choose the sequence of convergents of α satisfying

|α− αn| = |α− pn/qn| <
1

2n+1knCknq
3(kn+1)3+1
n

;

the latter is possible since α is Liouville. Then

|α− αn| <
1

2n+1qnknCkn |||Hn|||kn+1
kn+1

,

which implies both (5.9) and (5.11). As for (3.5), i.e. ‖DHn−1‖0 ≤ ln qn, it is possible to have it just
by choosing qn large enough. �

5.4. Proof of weak mixing.

5.4.1. Choice of the mixing sequence mn. We shall assume that for all n we have:

qn+1 ≥ 10n2qn. (5.13)

Define, as in the analytic case,

mn = min

{

m ≤ qn+1 | inf
k∈Z

∣

∣

∣

∣

m
qnpn+1

qn+1
− 1/2 + k

∣

∣

∣

∣

≤ qn
qn+1

}

.

Let an = (mnαn+1 − 1
2qn

) mod 1
qn

. Then the choice of mn and the growth condition (5.13) imply:

|an| ≤
1

qn+1
≤ 1

10n2qn
. (5.14)

Hence, if we use the notation

D
1
n,j = In,j × [0, 1] ⊂ D1

n,j ,

we have

Rmn
αn+1

(D
1
n,j) ⊂ D2

n,j′ (5.15)

for some j′ ∈ Z.
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D1
n,j D2

n,j D2
n,j

D1
n,j+1

I IΦn(I)

Φn(I)

Figure 2. Action of Φn

5.4.2. Choice of the decompositions ηn. We define ηn to be the partial decomposition of M consisting
of the horizontal intervals In,j × {r} ⊂ D1

n,j , where r ∈ [1/(3n), 1 − 1/(3n)], defined by (5.5) and of

the intervals In,j × {r} with r ∈ [1/(3n), 1 − 1/(3n)] and

In,j =

[

j

qn
+

1

2qn
+

1

6nqn
− an,

j + 1

qn
− 1

6nqn
− an

]

.

It follows form (5.14) that the intervals In,j × {r} are in D2
n,j.

Lemma 5.9. The mapping Φn = φn ◦Rmn
αn+1

◦ φ−1
n transforms the atoms of the decomposition ηn into

vertical intervals of the form {θ} × [1/(3n), 1 − 1/(3n)] for some θ.

The proof is illustrated on Figure 2.

Proof. Consider first an interval In of the type In = In,j×{r}, r ∈ [1/(3n), 1−1/(3n)]. By construction
of φn (see §5.2.4), we have that φ−1

n (In) is a vertical segment of the form {θ} × [1/(3n), 1 − 1/(3n)]
for some θ ∈ In,j. From (5.15) we deduce that Rαmn

n+1
◦ φ−1

n (In) = {θ′} × [1/(3n), 1 − 1/(3n)] ⊂ D2
n,j′,

for some θ′ ∈ T and j′ ∈ Z and we conclude using that φn acts as the identity on D2
n,j′ .

Similarly, for r ∈ [1/(3n), 1 − 1/(3n)] and an interval In = In,j × {r} ∈ D2
n,j, we have that

φn ◦Rmn
αn+1

◦ φ−1
n (In) = φn ◦Rmn

αn+1
(In) = φn(In,j′ × {r}) = {θ} × [1/(3n), 1 − 1/(3n)],

for some j′ ∈ Z and θ ∈ T. �

5.4.3. Proof of Theorem 5.1. Let the diffeomorphisms fn be constructed as in (5.1), following Lemma
5.7 and Lemma 5.8, so that convergence of fn, closeness to Identity of their limit f , as well as (3.3) and
(3.5), hold. We want to apply Proposition 3.9 to get weak mixing. Since the sequence of decompositions
ηn → ǫ by construction, and since it consists of intervals with length less than 1/qn, to finish it is enough
to show that for any interval In of the decomposition ηn, and for Φn = φn◦Rmn

αn+1
◦φ−1

n , we have: Φn(In)

is (0, 2/(3n), 0)-distributed. The conditions of the definition follow immediately from the construction
and Lemma 5.9. Indeed, the projection of Φn(In) to the r-axis is the interval [1/(3n), 1 − 1/(3n)],
hence, in the definition of (γ, δ, ε)-distribution (Definition 3.6) we can take δ = 2/(3n). Furthermore,
since the image of any interval In is vertical, γ can be taken equal to 0. Finally, the restriction of Φn

to In being affine, one verifies that for any interval J̃n ⊂ Jn:

λ(I ∩ Φ−1
n (J̃))λ(J) = λ(I)λ(J̃).

Hence, we take ε = 0.
We have verified the conditions of Proposition 3.9. This implies weak mixing of the limit diffeomor-

phism f . �
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