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Abstract

When a Gevrey smooth perturbation is applied to a quasi-convex integrable Hamil-

tonian, it is known that the KAM invariant tori that survive are “sticky”, i.e. doubly

exponentially stable. We show by examples the optimality of this effective stability.
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1 Introduction

We are interested in effective stability around invariant quasi-periodic tori of nearly in-

tegrable analytic or Gevrey regular Hamiltonian systems. Under generic non degeneracy

assumptions on the integrable Hamiltonian, KAM theory (after Kolmogorv Arnold Moser)

guarantees the existence of a large measure set of invariant quasi-periodic tori for the per-

turbed systems. The invariant tori given by KAM theory have Diophantine frequency

vectors. To study the diffusion rate of orbits that start near these invariant tori, an im-

portant tool is the Birkhoff Normal Forms (or BNF) at an invariant torus, that introduce

action-angle coordinates in which the system in small neighborhoods of an invariant Dio-

phantine torus becomes integrable up to arbitrary high degrees in the Taylor series of the

Hamiltonian (see for example [Bi66] or [SM71]).
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Exploiting the Diophantine property of the frequency vector of the invariant torus, it

is possible to collect estimates in the successive BNFs and establish exponential stability

of the torus, in the sense that nearby solutions remain close to the invariant torus for an

interval of time which is exponentially large with respect to some power of the inverse of the

distance r to the torus, a power that depends only on the Diophantine exponent τ of the

torus in the case of real analytic Hamiltonians, and that involves additionally the degree of

Gevrey smoothness in the case of Gevrey smooth Hamiltonians ([PW94], [Po00]).

Combining BNF estimates with Nekhoroshev theory, Giorgilli and Morbidelli proved in

[MG95] that for integrable Hamiltonians with a quasi-convex Hessian, the KAM tori of an

analytic perturbation of the Hamiltonian are doubly exponentially stable: the exponential

stability time exp
`

r´1{pτ`1q
˘

is promoted to exp
`

exp
`

r´1{pτ`1q
˘˘

. Invariant quasi-periodic

tori with this strong form of effective stability are termed sticky.

Stickiness of the invariant tori was later extended in [BFN17] to a residual and preva-

lent set of integrable Hamiltonians and to the Gevrey category. It was proved there that

generically, both in a topological and measure-theoretical sense, an invariant Lagrangian

Diophantine torus of a Hamiltonian system is doubly exponentially stable. Also, for a resid-

ual and prevalent set of integrable Hamiltonians, for any small perturbation in Gevrey class,

there is a set of almost full Lebesgue measure of KAM tori which are doubly exponentially

stable.

Our aim here, is to give examples showing that doubly exponential stability cannot in

general be strengthened. Loosely stated our main result is the following

Theorem. For arbitrary N ě 3, there exist quasi-convex Hamiltonian systems in N degrees

of freedom that can be perturbed in the Gevrey smooth category so that most of the invariant

tori of the perturbed system are no more than doubly exponentially stable.

The exact statements will be given in Section 3. The diffusion mechanism we will use

in our constructions is the so called Herman synchronized diffusion, that first appeared in

[MS03] where the speed in Arnol’d diffusion is estimated for a class of nearly integrable

system. In [MS03], completely integrable systems with twist are considered and it is shown

that it is possible to construct perturbations of size ε in Gevrey class, that have orbits

diffusing in action at an exponential rate in inverse powers of ε. The diffusion rate is shown

to be almost optimal due to the Nekhoroshev effective stability theory.

Our setting here is quite different, in this that the perturbative parameter is not an extra

parameter ε but the action variable itself when viewed as the distance r of the diffusive

orbit from the invariant torus. In this “singular perturbative setting”, the nature of the

construction is in fact expected to be different from [MS03] since the diffusion rate is at

best doubly exponential in an inverse power of r, compared to the simple exponential one

can achieve in the Arnol’d diffusion problem treated in [MS03].

The new difficulties that arise in the singular perturbative setting, as well as the novel
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constructions to overcome them will be commented in the next section where the heuristics

of our construction are described in detail.

2 Description of the construction

The construction of the diffusive flows is obtained by suspension from a perturbative con-

struction in the discrete setting of symplectic maps on M “ pTˆRqn » Tn ˆRn, where T
denotes the torus R{Z and n ě 2.

We now explain the main ideas in the discrete construction in the case n “ 2. We

concentrate on the diffusion rate from the neighborhood of a single invariant torus. We will

be dealing with perturbation of a product of two twist maps of the annulus Tˆ R, denote

them by F0 and G0, F0pθ1, r1q “ pθ1 ` ω1 ` r1 ` Z, r1q, G0pθ2, r2q :“ pθ2 ` ω2 ` r2 ` Z, r2q.

Set T0 “ F0 ˆ G0 : M ý. Observe that T0 has an invariant torus T0 “ T2 ˆ tp0, 0qu, on

which the restricted dynamics is the translation of vector ω “ pω1, ω2q.

Let us explain how to perturb T0 into a map T that is tangent to T0 at T0 and that has

pieces of orbits that diffuse away from a neighborhood of T0 at a doubly exponentially small

speed. More precisely, we obtain a sequence ρn Ñ 0, points zn such that distpzn, T0q ă ρn

and times Θn that are doubly exponentially large in 1{ρn, such that distpTΘnpznq, T0q and

distpT´Θnpznq, T0q are both doubly exponentially large in 1{ρn. It will appear clearly from

our diffusion mechanism that drifting away from T0 by an amount ρn, or by an amount

that is doubly exponentially large in 1{ρn, both require a doubly exponentially large time.

Herman synchronized diffusion

The diffusion mechanism we will use is the Herman synchronized diffusion, that first ap-

peared in [MS03]. Let us explain in some words what is the synchronized diffusion. It is

based on the following mechanism of coupling of two twist maps of the annulus (the second

one being integrable with linear twist): at exactly one point p of a well chosen periodic

orbit of period q of the first twist map in M1 “ TˆR, the coupling consists of pushing the

orbits in the second annulus up in M2 “ TˆR on some fixed vertical ∆ by an amount 1{q

that sends an invariant curve whose rotation number is a multiple of 1{q exactly to another

one having the same property (due to the linear twist property).

The dynamics of the qth iterate of the coupled map on the line tpuˆ∆ ĂM1ˆM2 will

thus drift at a linear speed : after q2 iterates the point will have moved by 1 in the second

action coordinate r2, and after q3 it will have moved by q. The diffusing orbits obtained this

way are bi-asymptotic to infinity: their r2-coordinates travel from ´8 to `8 at average

speed 1{q2.

For this mechanism to be implemented with a Gevrey regular small coupling of the two

twist maps, it is necessary that the periodic point p be isolated from the rest of the points

on its orbit by a distance σ that is greater than the inverse of some power of ln q, since
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1{q is the translation amount required from the coupling that must be exclusively localized

around p. We call such periodic points “logarithmically” isolated.

Optimal rates in Arnol’d diffusion of [MS03]

In [MS03], only one periodic point is sufficient to have estimates on the Arnol’d diffusion

rate in the nearly integrable system. In fact, in [MS03], a completely integrable twist map of

the annulus such as F0 is first perturbed to create a hyperbolic saddle point with a saddle

connection (a pendulum). Near the separatrix of the pendulum, one can find periodic

orbits of arbitrary high period q and isolation σ that is determined by the hyperbolicity

of the saddle point. More precisely, with an ε perturbation of the integrable twist, the

periodic orbits near the separatrix will then have an isolation of order ε1{2 and choosing q

exponentially large in the inverse of ε allows to use the coupling mechanism with a second

completely integrable linear twist to obtain diffusive orbits at exponential rate in the inverse

of ε.

Doubly exponential diffusion rates in the singular perturbative setting

In our singular perturbative setting, the main obstacles when one attempts to apply the

synchronized diffusion mechanism are threefold : 1) the diffusion rate must be calculated

from arbitrary small neighborhoods of the invariant torus T0, hence many perturbations

and many diffusive orbits may enter into play as opposed to the single orbit of [MS03];

2) each perturbation must not affect T0 and must allow for further perturbations; 3) the

Diophantine property on the frequency of T0 imposes, due to averaging, strong restrictions

on the period and the isolation properties of the periodic points that come near the invariant

torus.

The main step to prepare for the coupling construction is to be able to perturb F0 in

order to get an annulus map F on the first factor M1 “ T ˆ R that is tangent to F0 at

the circle r “ 0 (we omit the subscript 1 for r1 in this paragraph) and that has a sequence

of periodic points pn at distance rn from the circle r “ 0 and that are σn isolated from

their orbits. Since we will work with perturbations of F0 that are compactly supported

away from r “ 0, we cannot expect larger isolation σn than an exponentially small quantity

in the inverse of rn, and the precise exponent involved in this exponential is dictated by

the Gevrey regularity α only. According to the above description of how the synchronized

diffusion mechanism functions, the period qn of the point pn, that will also determine the

order of the diffusion rate, should not be taken smaller than an exponential in the inverse

of σn. Hence, the double exponential in 1
rn

!!

Let us now suppose that a map F is constructed with such a sequence pn P M1, and

let us show how to obtain the coupling with the map G0 which lives on the other factor

M2 “ Tˆ R. The main idea is to couple F and G0 separately at each periodic orbit with
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compactly supported Gevrey regular coupling functions. Indeed, while performing locally

the couplings around the product of the orbit of pn with M2, we keep the direct product

structure of F with G0 in the products of smaller neighborhoods of the circle Tˆt0u ĂM1

with M2. Thus, the couplings that yield diffusive orbits involving the successive points pn

are done inductively without affecting each other.

How to perturb the first factor to get a sequence of isolated periodic points

We turn now to the perturbative techniques that allow to obtain F . We put together two

tools. The first one allows us to perturb a periodic circular rotation of period P {Q while

fine-tuning the rotation number so as to create circle diffeomorphisms with a σ-isolated

periodic point p of arbitrary large period q, where σ is exponentially small in Q for large Q

but otherwise independent of q. In particular, we can choose q exponentially large in 1{σ

(doubly exponentially large in Q). The second tool is a trick due to M. Herman that allows

us to embed the circle dynamics thus obtained inside the phase portrait of a perturbation

of a linear twist map of the annulus M1. In fact, the periodic map will appear in the

neighborhood of the circle of period P {Q of the linear twist. The coupling mechanism will

then yield orbits that diffuse at speed 1{q2 in M1 ˆM2. Of course, to conclude we have to

require that 1{Q be larger than the distance rQ “ |ω1 ´ P {Q| from the circle T ˆ t0u to

the periodic orbit of the linear twist near which the isolated periodic point p is embedded.

At that stage, we could assume ω1 irrational or Diophantine and then impose that 1{Q be

of order
?
rQ or larger, depending on the Diophantine exponent of ω1, with the hope to

refine the estimates on σ and thus on the diffusing time. But, since we want to embed,

using Herman’s trick, the isolated periodic point in M1 at distance r without affecting

the circle T ˆ t0u, we must accept the exponential smallness of the isolation parameter

in M1 to be dictated in the first place by the Gevrey regularity of our compactly supported

perturbations, thus absorbing the potential gain stemming from arithmetics. This means

that by our technique we cannot tackle the problem of matching the diffusion rate with the

doubly exponential stability lower bounds obtained in [MG95, BFN17], that are of the form

exp
`

exp
`

r
´ 1
αpτ`1q

˘˘

, where α refers to the Gevrey regularity class and τ is the Diophantine

exponent of the translation vector.

To emphasize the role that arithmetics should play in optimizing the diffusion speed we

may ask the following question that is similar to the one raised in [FK18, Question 24] for

elliptic fixed points.

Question 1. Give an example of an analytic or Gevrey smooth Hamiltonian that has a

non-resonant invariant torus with positive definite twist that is not more than exponentially

stable in time.

It follows from [MG95, BFN17, BFN15], that a super Liouville property must be required

on the frequency vector of the invariant torus.
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Questions on the optimality of the bounds, on analytic perturbations and

on the genericity of doubly exponential diffusion

An interesting way to address the question of optimizing the bounds, as well as to aim at

analytic constructions, is to look for a single analytic (or Gevrey smooth) perturbation of F0

that yields a map F̃ that is tangent to F0 at 0 to some fixed degree, and that has a sequence

of periodic orbits pn with isolation properties related to the arithmetics of ω1 (for instance,

with σn of order er
´1{pτ 1`1q
n , where τ 1 is such that ω1 is not τ 1-Diophantine). But even if

such a perturbation of F0 is possible, it would still be a delicate task to perform an analytic

coupling with G0 since a single analytic intervention to couple the neighborhood of the orbit

of any periodic point pn with the second factor will affect the whole map everywhere and

we cannot rely on the nice direct product structure of F with G0 for further perturbations

as we do in the Gevrey category. One should probably resort to the theory of normally

hyperbolic invariant manifolds to say that some kind of product structure remains valid at

the periodic orbits of the points pn. Even then however, the linear character of the twist

of the second factor will definitely disappear, which will also bring extra difficulties.

Let us make a last remark concerning the analytic category. In fact, obtaining examples

of analytic Hamiltonians having a topologically unstable invariant torus with positive defi-

nite twist at the torus is a hard task by itself, let alone the control of the diffusion time that

is the object of our investigation here. Real analytic Hamiltonians with unstable invariant

tori and elliptic fixed points (with arbitrary frequencies in the case of 4 degrees of freedom)

were obtained in [Fa18, FF19], but these examples do not have positive definite twist.

Finally, besides the analytic question and the question of optimizing the bounds, one

can ask whether the upper bounds on the diffusion rates that we obtain in our examples

are generic for KAM tori, or for invariant quasi-periodic Diophantine tori in general.

Plan of the paper

Section 3 contains the main statements for symplectomorphisms and for flows. In Section 4,

we state the main inductive step of the construction, that yields a diffusive segment of orbit

for a perturbation of F0 ˆG0 linked to one isolated periodic point that will be created on

the first factor. In Section 4.1 we explain how the main inductive step is used to result in a

diffusive invariant torus. In Section 4.2 we elaborate on this to get simultaneously a large

measure set of invariant tori that are diffusive.

Sections 5 and 6 contain the proof of the main inductive step. Section 5 is devoted

to the perturbation of F0 in order to get the map F with isolated periodic points. In

Section 5.1, we show how to perturb circular rotations to obtain a periodic orbit with the

required isolation estimate and with arbitrary large period. In Section 5.2 we show how this

periodic orbit can be imbedded in a perturbation of F0. Section 6 introduces the coupling

lemma of F with G0 and shows how to use it to get diffusion using the isolated periodic

6



point of F .

In Section 7 we provide the suspension trick that allows to transfer the results from the

discrete case of symplectomorphisms to the continuous time context of Hamiltonian flows.

In the Appendix we collect and prove some necessary Gevrey estimates for maps and

for flows that are used all along the paper.

3 Statements

3.1 Notations on diffusive dynamics and Gevrey functions

We use the notation

Epνq “ EC,γpνq :“ eeCν
´γ

for ν ą 0, (3.1)

for some choice of C, γ ą 0 that we will explicit later. We will say informally that “Epνq is

doubly exponentially large for small ν”. Notice that

Epνq " Epλνqµ as ν Ñ 0, for every λ ą 1 and µ ą 0. (3.2)

Definition 3.1. Given a transformation T (or a flow) on a metric space pM,dq and ν ą 0,

we say that:

• A point z of M is ν-diffusive if there exist an initial condition ẑ P M and a positive

integer (or real) t such that dpẑ, zq ď ν, t ď Epνq and dpT tẑ, zq ě Ep2νq.

• A subset X of M is ν-diffusive if all points in X are ν-diffusive.

• A subset X of M is diffusive if there exists a sequence νn Ñ 0 such that X is νn-

diffusive for each n.

In the latter cases, we also say that T is ν-diffusive on X, resp. diffusive on X.

Our goal is to construct examples of diffusive dynamics in the context of near-integrable

Hamiltonian systems and exact-symplectic maps. The requirement dpT tẑ, zq ě Ep2νqmight

seem exaggerated at first look, but, as mentioned earlier, there will be no essential difference

in the order of magnitude of the time needed to diffuse by an amount ν or by an amount

as large as Ep2νq.

We will also use a variant of the above definition: we say that a point or a set is ν-

diffusive-˚ or diffusive-˚ if the corresponding property holds with the function E replaced

by

E˚pνq :“ E
`

ν{|ln ν|
˘

“ exp
`

νγCν
´γ˘

for ν P p0, 1q. (3.3)

Notice that, as ν Ñ 0, Epνq ! E˚pνq ! eeC
1ν´γ

1

for any γ1 ą γ and C 1 ą 0.
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We will deal with Gevrey smooth functions and maps in several real variables. Period-

icity may be required with respect to some of these variables, in which case we will consider

that each of the corresponding variables is an angle, which lives in

T :“ R{Z.

Recall that, given a real α ě 1, Gevrey-α regularity is defined by the requirement that the

partial derivatives exist at all (multi)orders ` and are bounded by CM |`||`|!α for some C

and M ; when α “ 1 this simply means analyticity, but we shall take α ą 1 throughout the

article. Upon fixing a real L ą 0 which essentially stands for the inverse of the previous M ,

one can define a Banach algebra Gα,LpKq Ă C8pKq when K is a Cartesian product of

closed Euclidean balls and tori; the elements of Gα,LpKq are the “uniformly Gevrey-pα,Lq”

functions on K. In the non-compact case of a Cartesian product RN ˆK with K as above,

we define

Gα,LpRN ˆKq Ă Gα,LpRN ˆKq Ă C8pRN ˆKq,

where the smaller space is a Banach algebra, with norm ‖ . ‖α,L, consisting of uniformly

Gevrey-pα,Lq functions on RN ˆK, while Gα,LpRN ˆKq is a complete metric space, with

translation-invariant distance dα,L, obtained by covering RN by an increasing sequence of

closed balls and considering the Fréchet space structure accordingly. Details are given in

Appendix A.1.

3.2 Hamiltonian flows

Let n ě 2. We work in TnˆRn, with coordinates pθ1, . . . , θn, r1, . . . , rnq, or in Tn`1ˆRn`1,

with coordinates pθ1, . . . , θn, τ, r1, . . . , rn, sq. We use the standard symplectic structures
řn
j“1 dθj ^ drj or

řn
j“1 dθj ^ drj ` dτ ^ ds, so that it is equivalent to consider a non-

autonomous Hamiltonian hpθ, r, tq on Tn ˆ Rn which depends 1-periodically on the time t

or a Hamiltonian of the form Hpθ, τ, r, sq “ s`hpθ, r, τq on Tn`1ˆRn`1. Given an arbitrary

ω P Rn, we will be interested in non-autonomous 1-periodic perturbations of

h0prq :“ pω, rq ` 1
2pr, rq (3.4)

or, equivalently, in certain autonomous perturbations of the integrable Hamiltonian

H0pr, sq :“ s` h0prq (3.5)

for which we denote by Tpr,sq the invariant torus Tn`1ˆtpr, squ associated with any r P Rn

and s P R (it carries the quasi-periodic motion 9θ “ ω ` r, 9τ “ 1).

Theorem 3.1. Let α ą 1 and L ą 0 be real. For any ε ą 0 there is h P Gα,LpTnˆRnˆTq
such that

(1) dα,Lph0, hq ă ε,
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(2) the Hamiltonian vector field generated by H :“ s ` hpθ, r, τq is complete and, for

every s P R, the torus Tp0,sq Ă Tn`1 ˆ Rn`1 is invariant and diffusive for H. Here

the exponent implied in (3.1) is γ “ 1
α´1 .

Note that if ω is Diophantine then, for any h satisfying (1) of Theorem 3.1, we know

from [MG95, BFN17] that Tp0,sq is doubly exponentially stable (because H0 is quasi-convex).

More precisely, it holds that for any initial condition that is at distance ρ from Tp0,sq, the

orbit will stay within distance 2ρ from Tp0,sq during time exp
`

exp
`

r
´ 1
αpτ`1q

˘˘

, where τ is

the Diophantine exponent. Theorem 3.1 shows that we cannot expect in general a stability

better than doubly exponential. Observe that we do not recover however the factor 1{p1`τq

in the exponent governing our lower bound on the diffusion time.

Note also that we know from [MG95] and [BFN17] that, forH such that dα,LpH0, Hq ă ε,

we have a set of invariant tori that are doubly exponentially stable and fill a set whose

complement has measure going to 0 as εÑ 0 (for r in the unit ball for example). Our next

result gives an example where most of these tori are no more than doubly exponentially

stable.

Theorem 3.2. Let α ą 1 and L ą 0 be real. For any ε ą 0, there exist h P Gα,LpTnˆRnˆTq
and a closed set Xε Ă r0, 1s with LebpXεq ě 1´ ε, such that

(1) dα,Lph0, hq ă ε,

(2) the Hamiltonian vector field generated by H :“ s`hpθ, r, τq is complete and, for each

r P pXε ` Zq ˆ Rn´1 and s P R, the torus Tpr,sq Ă Tn`1 ˆ Rn`1 is invariant and

diffusive-˚ for H. Here the exponent implied in (3.3) is γ “ 1
α´1 .

Both theorems will be proved in Section 7 by suspension of analogous results which

deal with exact-symplectic map and which we state in the next section. In fact, the union

Tn`1 ˆ pXε ` Zq ˆ Rn of all the tori mentioned in Theorem 3.2 will be shown to be itself

diffusive-˚ with exponent γ “ 1
α´1 .

As mentioned in Section 2, the unstable orbits which we will construct to prove our

diffusiveness statements are in fact bi-asymptotic to infinity: we will see that their r2-

coordinates travel from ´8 to `8.

3.3 Exact-symplectic maps

Let ω “ pω1, ω2q P R2. Recall that T “ R{Z. We set M1 :“ T ˆ R and M2 :“ T ˆ R and

define F0 : M1 ý and G0 : M2 ý by

F0pθ1, r1q :“ pθ1 ` ω1 ` r1 ` Z, r1q, G0pθ2, r2q :“ pθ2 ` ω2 ` r2 ` Z, r2q, (3.6)

and we set

T0 :“ F0 ˆG0 : M1 ˆM2 ý (3.7)
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Using the identification M1 ˆM2 » T2 ˆR2, we call T0 the torus T2 ˆ tp0, 0qu. This torus

is invariant by T0 and the restricted dynamics on it is the translation of vector ω. More

generally we set

Tpr1,r2q :“ T2 ˆ tpr1, r2qu for any pr1, r2q P R2.

We say that a function is flat at a point or on a subset, if it vanishes together with all

its partial derivatives of all orders there. Our first result for the discrete case is that one

can find a Gevrey perturbation of the integrable twist map T0 that is flat at the torus T0

(which thus stays invariant) and for which this invariant torus is diffusive.

From now on, when a function H on a symplectic manifold generates a complete Hamil-

tonian vector field, we denote by ΦH the time-1 map of the flow (note that t ÞÑ ΦtH is then

the continuous time flow generated by H). Thus, endowing M1 ˆM2 » T2 ˆ R2 with the

symplectic form dθ1 ^ dr1 ` dθ2 ^ dr2, we can write

T0 “ Φω1r1`ω2r2`
1
2
pr21`r

2
2q. (3.8)

Theorem 3.3. Let α ą 1 and L ą 0 be real. For any ε ą 0 there exist u P Gα,LpM1q and

v P Gα,LpM1 ˆM2q such that

(1) u and v are flat for r1 “ 0,

(2) ‖u‖α,L ` ‖v‖α,L ă ε,

(3) T0 is invariant and diffusive for T :“ Φv ˝ Φu ˝ T0, with exponent γ “ 1
α´1 in (3.1).

Here, when we write Φu with a function u : M1 Ñ R, we view u as defined on M1ˆM2

(and independent of the variables θ2 and r2) and thus mean Φu : M1 ˆM2 ý.

Our next result is a strengthening of Theorem 3.3, in which we find a perturbation that

keeps invariant most of the tori of T0 while insuring that they do become diffusive.

We will see that, since the construction of u and v is completely local, one can insure

that in addition they are 1-periodic in r1. If now X Ă r0, 1s is a closed set and if u and v

are flat for r1 P X, then all the tori of the form Tpr1,r2q, r1 P X`Z, that are invariant by T0,

are also invariant by T “ Φv ˝ Φu ˝ T0 and carry the same translation dynamics of vector

ω`pr1, r2q. If moreover u and v are such that there are diffusive orbits for T on sufficiently

dense scales in the neighborhood of the tori Tpr1,r2q, r1 P X ` Z, then all these tori will be

diffusive. This is the content of the next result, in which we also control the measure of the

complement of the invariant tori (in bounded regions).

Theorem 3.4. Let α ą 1 and L ą 0 be real. For any ε ą 0 there exist u P Gα,LpM1q and

v P Gα,LpM1 ˆM2q that are 1-periodic in r1, and a closed set Xε Ă r0, 1s with LebpXεq ě

1´ ε, so that

(1) u and v are flat for r1 P Xε ` Z.
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(2) ‖u‖α,L ` ‖v‖α,L ă ε,

(3) for each pr1, r2q P pXε ` Zq ˆ R, the torus Tpr1,r2q is invariant and diffusive-˚ for

T :“ Φv ˝ Φu ˝ T0, with exponent γ “ 1
α´1 in (3.3).

In fact, in (3), the union Tˆ pXε ` Zq ˆM2 of all these tori will be shown to be itself

diffusive-˚ for T with exponent γ “ 1
α´1 .

Remark 3.1. As immediate corollaries, we get multidimensional versions of Theorems 3.3

and 3.4, in TnˆRn with any n ě 3, simply by taking direct product of the previous discrete

systems with factors of the form Φωiri`
1
2
r2i , i ě 3: identifying TnˆRn with M1ˆ ¨ ¨ ¨ ˆMn,

where Mi :“ Tˆ R for each i, and setting

T0 :“ Φh0 : Tn ˆ Rn ý

(with the same h0 as in (3.4)—this is thus a generalization of (3.8)), the statements of

Theorems 3.3 and 3.4 hold verbatim with this new interpretation of T0 except that, in

condition (3) of Theorem 3.4, Tpr1,r2q is to be replaced with Tn ˆ tru for arbitrary r P

pXε ` Zq ˆ Rn and the functions u and v are to be viewed as functions on Tn ˆ Rn.

Remark 3.2. To prove the above discrete-time diffusiveness statements, we will exhibit

orbits pT kẑqkPZ which satisfy the first requirement of Definition 3.1, dpT tẑ, zq ě Ep2νq

with a certain positive integer t ď Epνq, for smaller and smaller positive values of ν. We

will see that, in fact, they even satisfy dpT jtẑ, zq ě |j|EC,γp2νq for all j P Z and are thus

bi-asymptotic to infinity, and more precisely their r2-coordinates grow linearly by an exact

amount 1{q after q iterates, where q “ t1{3 is integer.

4 The main building brick : localized diffusive orbits

We now fix real numbers α ą 1 and L ą 0 once for all. We also fix ω P R2 and work with

T0 “ Φω1r1`ω2r2`
1
2
pr21`r

2
2q : M1 ˆM2 ý as in Section 3.3.

To prove Theorems 3.3 and 3.4, and then the continuous time versions of these, we will

use the following building brick, where we use the notation

Vpr, νq :“ Tˆ pr ´ ν, r ` νq Ă Tˆ R for any r P R and ν ą 0.

Proposition 4.1. Let γ :“ 1
α´1 and b :“ 1

4 . There exists c “ cpα,Lq such that, for any

ν ą 0 small enough and r̄ P R, there exist u P Gα,LpM1q and v P Gα,LpM1 ˆM2q such that

(1) u ” 0 on Vpr̄, νqc and v ” 0 on Vpr̄, νqc ˆM2,

(2) ‖u‖α,L ` ‖v‖α,Lď e´cν
´γ

,

(3) the set Vpr̄, νq ˆM2 is invariant and
`

3ν, τ, τ b
˘

-diffusive for T :“ Φv ˝ Φu ˝ T0, where

τ :“ E3cγ,γpνq.
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In Condition (3) of the statement, we have used a refinement of Definition 3.1: we say

that a subset X of M is pν̃, τ, Aq-diffusive for T if, for every point z of X, there exist ẑ PM

and t integer such that dpẑ, zq ď ν̃, t ď τ and dpT tẑ, zq ě A.

The proof of Proposition 4.1 is in Sections 5 and 6. (The reader will see that our choice

of b “ 1
4 is quite arbitrary: any positive number less than 1

3 would do.)

4.1 Proof that Proposition 4.1 implies Theorem 3.3

We are given ε ą 0 and, without loss of generality, we can assume that ε is small enough

so that we can apply Proposition 4.1 for every n ě 1 with the following values of ν and r̄:

νn :“ pcγq1{γ10´nε, r̄pnq :“ 2νn.

We thus obtain un P G
α,LpM1q, supported in Vpr̄pnq, νnq, and vn P G

α,LpM1 ˆM2q, sup-

ported in Vpr̄pnq, νnq ˆM2, which also satisfy Conditions (2) and (3) of Proposition 4.1.

Observe that for any two different values of n the supports are disjoint (because r̄pnq´νn ą

r̄pn`1q ` νn`1).

Since

ex ą x and e´x ă x´1 for all x ą 0, (4.1)

we have

e´cν
´γ
n “

`

e´cγν
´γ
n
˘1{γ

ă
`

cγν´γn
˘´1{γ

“ pcγq´1{γνn, (4.2)

hence the formulas u :“
ř8
n“1 un and v :“

ř8
n“1 vn define functions u P Gα,LpM1q and

v P Gα,LpM1 ˆM2q with ‖u‖α,L ` ‖v‖α,L ď
ř

e´cν
´γ
n ă ε. Moreover, since the un’s, vn’s

and all their partial derivatives vanish for r1 “ 0, the same is true for u and v. The

functions u and v thus satisfy properties (1)–(2) of Theorem 3.3.

We claim that T “ Φv ˝ Φu ˝ T0 also satisfies property (3) of Theorem 3.3. Indeed, the

disjointness of the supports implies that T coincides with Φvn ˝Φun ˝T0 on Vpr̄pnq, νnqˆM2.

Now, for each z P T0 and n ě 1, we can pick z̄ P Vpr̄pnq, νnq ˆM2 such that dpz̄, zq ă 2νn,

and then, by (3) of Proposition 4.1, we can find ẑ P Vpr̄pnq, νnqˆM2 and t ď τn :“ E3cγ,γpνnq

such that dpẑ, z̄q ď 3νn and dpT tẑ, z̄q ě τ bn. We get dpẑ, zq ď 5νn and τn “ EC,γp5νnq if

we use C :“ 3cγ ¨ 5γ in the definition (3.1) of the doubly exponentially large function EC,γ .

Then, dpT tẑ, zq ą τ bn ´ 2νn ą
1
2τ

b
n " EC,γp10νnq by (3.2), hence T is 5νn-diffusive on T0 for

every n large enough.

4.2 Proof that Proposition 4.1 implies Theorem 3.4

We are given ε ą 0 and, without loss of generality, we can assume ε ď 1. Let γ :“ 1
α´1 and

let c be as in Proposition 4.1.

Here is a definition that we will use from now on: we say that a subset Y of a metric

space X is ν-dense if, for every z P X, there exists z̄ P Y such that dpz, z̄q ď ν.

12



a) We first define a fast increasing sequence of integers by

N1 :“ rexpp4κ{εqs, Ni :“ Ni´1

Q

exp
`

exp
`

C̃pNi´1 lnNi´1q
γ
˘˘

U

for i ě 2, (4.3)

where κ :“ maxt1, pcγq´1{γu and C̃ :“ maxt6cγ, 1{γu. We also set

ν̃i :“
1

Ni
, νi :“

ν̃i
|ln ν̃i|

“
1

Ni lnNi
, τi :“ E3cγ,γpνiq.

According to Lemma B.1 in the appendix, one has

2νiNi “
2

lnNi
ď 2´2i`1ε{κ ă 1. (4.4)

b) We now construct a sequence pYiqiě1 of mutually disjoint subsets of R{Z such that, for

each i ě 1,

(i) Yi is a disjoint union of at most Ni open arcs Y pi,jq,

(ii) each of these open arcs can be written Y pi,jq “ prpi,jq ´ νi, r
pi,jq ` νiq mod Z, with

rpi,jq P r0, 1q,

(iii) Yi is ν̃i-dense in pR{Zq ´
Ů

1ďi1ďi´1

Yi1 ,

(iv) pR{Zq ´
Ů

1ďi1ďi

Yi1 is a disjoint union of Ni closed arcs of equal length.

To do so, we start with rp1,jq :“ j´1
N1

for j “ 1, . . . , N1 and define the arcs Y p1,jq and

the set Y1 by (i)–(ii) (the disjointness requirement results from 2ν1N1 ă 1). We then go

on by induction and suppose that, for a given i ě 1, (i)–(iv) hold for i1 “ 1, . . . , i. As a

consequence of (i)–(ii) and (4.4), we have

LebpYi1q ď 2νi1Ni1 ď 2´i
1

ε{κ ď 2´i
1

for i1 “ 1, . . . , i. (4.5)

We observe that Mi`1 :“ Ni`1

Ni
is an integer ě 3. Inside each closed arc mentioned in (iv),

we can place Mi`1 ´ 1 disjoint open arcs of length 2νi`1 so that the complement is made

of Mi`1 closed intervals of equal length. Indeed, on the one hand 2νi`1pMi`1 ´ 1q ă

2νi`1Ni`1{Ni ă 2´i´1{Ni, on the other hand, the common length of the closed arcs of (iv)

is

µi “
1
Ni

´

1´
i
ÿ

i1“1

LebpYi1q
¯

ą 2´i´1{Ni

by (4.5). Labelling all the new open arcs as Y pi`1,jq, where j runs through a set ofNipMi`1´

1q ă Ni`1 indices, and calling Yi`1 their union, we get the desired properties (note that

Yi`1 is µi
Mi`1

-dense in each closed arc mentioned in (iv), and µi
Mi`1

ă 1
NiMi`1

“ ν̃i`1).

c) Now, for each i and j, we apply Proposition 4.1 with r̄ “ rpi,jq just constructed and

ν “ νi (assuming ε small enough so that the νi’s are small enough to allow us to do so).
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We obtain Gevrey functions upi,jq and vpi,jq supported in Vprpi,jq, νiq and Vprpi,jq, νiq ˆM2,

with

‖upi,jq‖α,L ` ‖vpi,jq‖α,L ď ξi, where ξi :“ e´cν
´γ
i ă κνi

(incorporating (4.2)), so that Vprpi,jq, νiq ˆ M2 is invariant and
`

3νi, τi, τ
b
i

˘

-diffusive for

Φvpi,jq ˝ Φupi,jq ˝ T0. We set u
pi,jq
per pθ1, r1q :“

ř

kPZ u
pi,jqpθ1, r1 ` kq and v

pi,jq
per pθ1, r1, θ2, r2q :“

ř

kPZ v
pi,jqpθ1, r1 ` k, θ2, r2q so as to get functions which are 1-periodic in r1 and have the

same Gevrey norms.

Consider the finite sums ui :“
ř

j u
pi,jq
per and vi :“

ř

j v
pi,jq
per for each i ě 1: the disjointness

of the supports implies that

Ti :“ Φvi ˝ Φui ˝ T0 is
`

3νi, τi, τ
b
i

˘

-diffusive on Tˆ Ỹi ˆM2, (4.6)

where Ỹi is the lift of Yi in R. Finally, let u :“
ř

i ui and v :“
ř

i vi. These are well-defined

Gevrey functions which are 1-periodic in r1 because

‖ui‖α,L ` ‖vi‖α,L ď Niξi ă Niκνi “
κ

lnNi
ď 2´i´1ε for each i ě 1 (4.7)

(by (4.4)), hence the series over i are convergent in Gevrey norm, with ‖u‖α,L`‖v‖α,L ă ε.

d) We claim that T :“ Φv ˝ Φu ˝ T0 satisfies Theorem 3.4 with

Xε :“
´

R´
ğ

iě1

Ỹi

¯

X p0, 1q.

To prove this claim, firstly we note that Leb
`

r0, 1s ´Xε

˘

“
ř

i LebpYiq ď ε by (4.5), and

Xε is closed because Ỹ1 contains 0 and 1.

Secondly the functions u and v vanish with all their partial derivatives for r1 P Xε

because the functions u
pi,jq
per and v

pi,jq
per and all their partial derivatives do.

Lastly, by virtue of the previous point, for each pr1, r2q P pXε`ZqˆR the torus Tpr1,r2q
is invariant for T , thus it only remains for us to show that the union T ˆ pXε ` Zq ˆM2

of these tori is diffusive-˚ with exponent γ “ 1
α´1 . In view of the definition of Xε, it is

sufficient to show that, for i large enough,

Zi :“M1 ˆM2 ´
ğ

1ďi1ďi´1

Tˆ Ỹi1 ˆM2 is 2ν̃i-diffusive-˚ for T with exponent γ. (4.8)

We will prove this with the constant C :“ 3γ`1cγ in the definitions (3.1) and (3.3) of the

functions E “ EC,γ and E˚ “ E˚C,γ , as a consequence of the fact that, for i large enough,

Zi is p2ν̃i, τi,
1
2τ

b
i q-diffusive for T . (4.9)

Indeed, τi “ E3cγ,γpνiq “ Ep3νiq “ E
`

3ν̃i
|ln ν̃i|

˘

! E
`

2ν̃i
|ln ν̃i|´ln 2

˘

“ E˚p2ν̃iq by (3.2), and
1
2τ

b
i " E

`

4ν̃i
|ln ν̃i|´ln 4

˘

“ E˚p4ν̃iq still by (3.2), hence (4.9) implies (4.8).
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e) To prove (4.9), let z P Zi. We set Wi :“ TˆỸiˆM2. By property (iii) of the construction

of Yi, we can find z̄ PWi such that dpz̄, zq ď ν̃i, and (4.6) then yields ẑ PWi and t ď τi such

that dpẑ, z̄q ď 3νi and dpT ti ẑ, z̄q ě τ bi . We have |ln ν̃i| “ lnNi ą 3 by virtue of (4.4), hence

3νi ă ν̃i and dpẑ, zq ď 2ν̃i. Since u1, . . . , ui´1, v1, . . . , vi´1 and all their partial derivatives

vanish on Wi, the restriction of T to Wi coincides with that of

T̃i :“ Φvi`gi ˝ Φui`fi ˝ T0, where fi :“
ÿ

i1ąi

ui1 , gi :“
ÿ

i1ąi

vi1 . (4.10)

Comparing the definition Ti in (4.6) and that of T̃i in (4.10), we observe that the first t

points on the Ti-orbit of ẑ are close to the first t points on its T -orbit (which is the same

as its T̃i-orbit). More precisely, (4.7) yields

‖ui‖α,L ` ‖fi‖α,L ` ‖vi‖α,L ` ‖gi‖α,L ď
ÿ

i1ěi

Ni1ξi1 ď 2´iε,

hence we can use Corollary A.3 from the appendix for i large enough, obtaining

d
`

T ti pẑq, T̃
t
i pẑq

˘

ď 3τiC1

`

‖fi‖α,L ` ‖gi‖α,L
˘

from (A.11), where C1 “ C1pα,Lq, but

‖fi‖α,L ` ‖gi‖α,L ď
ÿ

i1ěi`1

Ni1ξi1 ď 2Ni`1ξi`1 ď 2 ¨ 3´τi

by the first part of (4.7) and (B.2)–(B.3), whence dpT ti ẑ, T̃
t
i ẑq ď 2C1 ď

1
2τ

b
i ´ dpz̄, zq and

thus dpT tẑ, zq “ dpT̃ ti ẑ, zq ě
1
2τ

b
i for i large enough, and we conclude that z is p2ν̃i, τi,

1
2τ

b
i q-

diffusive for T . The proof of (4.9) is thus complete.

5 Isolated periodic points for twist maps of the annulus

Definition 5.1. Given a real σ ą 0 and a discrete dynamical system in a metric space, we

say that a periodic point is σ-isolated if it lies at a distance ě σ of the rest of its orbit.

The goal of this section is to prove the following statement, which will be instrumental

in the proof of Proposition 4.1, where a perturbation of F0 is obtained that has an isolated

periodic point in M1.

Proposition 5.1. Let γ :“ 1
α´1 . There exists c “ cpα,Lq with the following property: if

we are given real numbers ν and σ with ν ą 0 small enough and 0 ă σ ď expp´2cν´γq,

then, for any integer ` ě 6{ν and for any r̄ P R, there exists u P Gα,LpM1q such that

(1) u ” 0 on Vpr̄, νqc,

(2) ‖u‖α,L ď 1
2 expp´cν´γq,
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(3) F :“ Φu˝F0 : M1 ý has a σ-isolated periodic point z1 P Vpr̄, 3ν{4q of period q P r`, 3`{νs,

(4) the set tF spz1q | s P N, 2{ν ď s ď 6{νu is 2ν-dense in Vpr̄, νq.

The interest of the statement is that, although σ is required to be exponentially small,

it can be kept independent of `, even if we choose `, and thus q, doubly exponentially large.

The proof will start with the construction of a circle map with an isolated periodic

point.

5.1 Circle diffeomorphisms with isolated periodic points

We start by constructing a circle diffeomorphism with an isolated periodic point. For any

Q P N˚ we denote by ∆Q a function in C8pTq satisfying

∆Q is 1
Q -periodic, 0 ď ∆Q ď 1, ∆Qp0q “ 0, ∆Q ” 1 on

“

1
4Q ,

3
4Q

‰

. (5.1)

Since α ą 1, every space Gα,L
1

pTq contains such a function, and one can choose it so that

‖∆Q‖α,L1 ď L1α exppc̃ Qγq (5.2)

with c̃ “ c̃pα,L1q independent of Q according to Lemma A.5 in the appendix (take e.g.

∆Qpθq :“
řQ
j“1 η2Q

`

2j´1
2Q ` θ

˘

and c̃ :“ L1´α ` 1
γ ` 2γc1pα,L

1q with the notation of

Lemma A.5, using the inequalities L1´α ď eL
1´α

and 1 ď Q ď e
1
γ
Qγ

).

Proposition 5.2. Let Q P N˚ and P P Z be coprime and let σ P
`

0, 1
maxp´∆1Qq

˘

. Then, for

every ` P N˚, there exist an integer q “ q`pQ,P q and a real δ “ δ`pσ,Q, P q such that

• ` ď q ď `Q and 0 ă δ ď 1
`Q ,

• the point 1
2Q ` Z is periodic of period q and σ-isolated for the circle map

θ P T ÞÑ fσ,δpθq :“ θ `
P

Q
` δ ` σ∆Qpθq mod Z. (5.3)

If moreover ` ě 2Q, then the set tfsσ,δp
1

2Q ` Zq | s P N, Q ď s ď 2Q´ 1u is 1
Q -dense in T.

Proof. a) We define q “ q`pQ,P q by writing

`P ` 1

`Q
“
p

q
with q P N˚ and p P Z coprime.

Since 1 is the only common divisor of ` and `P ` 1, we must have

`P ` 1 “ pD, Q “ q1D, q “ `q1 (5.4)

with D P N˚ and p^ q1 “ 1, hence ` ď q ď `Q.
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The condition 0 ă σ ă 1
maxp´∆1Qq

ensures that 1 ` σ∆1
Q stays positive hence, for every

δ P R, the formula

Fσ,δpxq :“ x`
P

Q
` δ ` σ∆Qpxq

defines an increasing diffeomorphism of R such that Fσ,δpx`1q “ Fσ,δpxq`1. Formula (5.3)

then defines a diffeomorphism fσ,δ of T, a lift of which is Fσ,δ. We will tune δ so as to get

the rotation number of fσ,δ equal to p{q.

b) To study the dynamics of Fσ,δ and particularly the orbit of x0 :“ 1
2Q , we perform the

change of variable X “ Qx and set X0 :“ 1
2 and

Gσ,δpXq :“ QFσ,δpX{Qq “ X ` P ` δQ` σQ∆QpX{Qq,

G̃σ,δpXq :“ X ` δQ` σQ∆QpX{Qq.

Note that also G̃σ,δ is an increasing diffeomorphism of R for each δ P R. For every ` P N˚

we have

G̃`σ,0pX0q ă X0 ` 1 “ G̃`
0, 1
`Q

pX0q ď G̃`
σ, 1
`Q

pX0q

(the left inequality holds because X0 ă 1 and 1 is a fixed point of G̃σ,0; the right inequality

holds because σQ∆Qpxq ě 0 for all x). Therefore, since δ ÞÑ G̃`σ,δpX0q is continuous and

increasing, we can define δ :“ δ`pσ,Q, P q as the unique solution of the equation

G̃`σ,δpX0q “ X0 ` 1

and we know that 0 ă δ`pσ,Q, P q ď
1
`Q .

c) We now fix δ to be this value δ`pσ,Q, P q and check that it satifies the desired properties.

First, notice that

4σQ ă 1 (5.5)

(because ∆Qp3{4Qq “ 1 and ∆Qp1q “ 0, hence the mean value theorem implies maxp´∆1
Qq ě

4Q). Let us denote the full orbits of X0 “
1
2 under Gσ,δ and G̃σ,δ by

Xj :“ Gjσ,δpX0q, X̃j :“ G̃jσ,δpX0q, j P Z.

We have X0 “ X̃0 ă X̃1 ă ¨ ¨ ¨ ă X̃`´1 ă X̃` “ X0 ` 1. In fact,

X0 ` σQ ă X̃1 ă ¨ ¨ ¨ ă X̃`´1 ă X0 ` 1´ σQ. (5.6)

Indeed, ∆QpX0{Qq “ 1 hence X̃1 “ X0`σQ` δQ, and either X̃`´1 ě X0` 1´ 1
4 , in which

caseX0`1 “ G̃σ,δpX̃`´1q “ X̃`´1`σQ`δQ ą X̃`´1`σQ, or X̃`´1 ă X0`1´ 1
4 ă X0`1´σQ

by (5.5).
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Since ∆Q is 1
Q -periodic, we have G̃σ,δpX`1q “ G̃σ,δpXq`1 and the pattern (5.6) repeats

1-periodically: for every m P Z, X̃`m “ X0 `m and

X0 `m` σQ ă X̃`m`s ă X0 `m` 1´ σQ for s “ 1, . . . , `´ 1.

Since ∆Q is 1
Q -periodic, we have Gjσ,δpXq “ G̃jσ,δpXq ` jP for every j P Z, hence Xj “

X̃j ` jP and, for every m P Z,

X`m “ X0 `mp`P ` 1q “ X0 `mpD (5.7)

X0 `Mm,s ` σQ ă X`m`s ă X0 `Mm,s ` 1´ σQ for s “ 1, . . . , `´ 1, (5.8)

with Mm,s :“ mp`P ` 1q ` sP .

d) Going back to the variable x “ X{Q, we see that the orbit pxjqjPZ of x0 under Fσ,δ

satisfies

x`m “ x0 `
mp

q1
and x0 `

Mm,s

Q
` σ ă x`m`s ă x0 `

Mm,s ` 1

Q
´ σ (5.9)

for m P Z and 1 ď s ă ` (thanks to (5.4) and (5.7)–(5.8)). In particular, xq “ x0` p, hence

it induces a q-periodic orbit of type p{q for fσ,δ. The σ-isolation property amounts to

distpxj , x0 ` Zq ě σ for 1 ď j ă q “ `q1.

This holds because either j “ `m with 1 ď m ă q1 and the first part of (5.9) entails

x`m ´ x0 P Q ´ Z with distpx`m ´ x0,Zq ě 1
q1 ě

1
Q ą 4σ by (5.5), or j “ `m ` s with

1 ď s ă ` and the second part of (5.9) yields xj ´ x0 P p
Mm,s

Q ` σ,
Mm,s`1

Q ´ σq, but

p
Mm,s

Q ,
Mm,s`1

Q q X Z “ H, hence distpxj ´ x0,Zq ą σ.

e) We now suppose ` ě 2Q and prove the 1
Q -density statement.

If P “ 0, then Q “ 1 (because of the assumption P ^ Q “ 1) and there is nothing to

prove. We thus suppose P ‰ 0. Using the second part of (5.9) with 1 ď s ď 2Q ´ 1 ă `

and m “ 0, since M0,s “ sP , we get

x0 `
sP

Q
ă xs ă x0 `

sP

Q
`

1

Q
for s “ Q, . . . , 2Q´ 1. (5.10)

Since P ^ Q “ 1, the Q arcs
“

x0 `
sP
Q , x0 `

sP
Q ` 1

Q

˘

mod Z are mutually disjoint and

cover T; each of them has length 1
Q and, according to (5.10), contains a point of txs ` Z |

s “ Q, . . . , 2Q´ 1u “ tf sσ,δpx0`Zq | s “ Q, . . . , 2Q´ 1u. This set is thus 1
Q -dense in T.

5.2 Herman imbedding trick of circle diffeomorphisms into twist maps

We will have to imbed the circle dynamics of Proposition 5.2 into the annulus via a per-

turbation of the twist map F0. For this we will use the celebrated technique introduced by
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Herman in [He84] to imbed circle dynamics as restricted dynamics on an invariant graph

by a twist map.

Recall that trivial examples of symplectic maps of the annulus are given by

Φhpθ, rq “
`

θ ` h1prq ` Z, r
˘

, Φwpθ, rq “
`

θ, r ´ w1pθq
˘

, (5.11)

where the function h “ hprq does not depend on the angle θ P T, and the function w “ wpθq

does not depend on the action r. In particular,

hprq ” ω1r `
1
2r

2 ñ Φh “ F0. (5.12)

Proposition 5.3. Suppose that we are given a circle diffeomorphism of the form

θ P T ÞÑ fpθq “ θ ` h1
`

r̂ ` εpθq
˘

mod Z,

where h “ hprq and ε “ εpθq are smooth functions and r̂ P R. Then the equation

´ w1 “ ε´ ε ˝ f´1, (5.13)

determines a smooth function w “ wpθq up to an additive constant, and the annulus map

Φw ˝ Φh : pθ, rq ÞÑ
`

θ ` h1prq ` Z, r ´ w1pθ ` h1prqq
˘

(5.14)

leaves invariant the graph
 `

θ, r̂ ` εpθq
˘

| θ P T
(

, with induced dynamics θ ÞÑ fpθq on it.

Proof. Let us check that the right-hand side of (5.13) has zero mean value:

xε ˝ f´1y “

ż

T
ε
`

f´1
`

θ̃
˘˘

dθ̃ “

ż

T
εpθqf 1pθqdθ and f 1pθq “ 1`

d

dθ

“

h1
`

r̂ ` εpθq
˘‰

,

hence xεy ´ xε ˝ f´1y “ ´
ş

T εpθq
d
dθ

“

h1
`

r̂ ` εpθq
˘‰

dθ “
ş

T ε
1pθqh1

`

r̂ ` εpθq
˘

dθ “ 0, since this

is the mean value of the derivative of the periodic function h
`

r̂ ` εpθq
˘

. Consequently, any

primitive of ε´ ε ˝ f´1 induces a smooth function on T.

Now, consider an arbitrary point pθ, rq “
`

θ, r̂ ` εpθq
˘

on the graph mentioned in the

statement. Its image by Φw ˝ Φh is pθ1, r1q :“
`

θ ` h1prq ` Z, r ´ w1pθ1q
˘

. We have

θ1 “ θ ` h1
`

r̂ ` εpθq
˘

` Z “ fpθq

and r1 “ r̂ ` εpθq ´ w1pθ1q “ r̂ ` ε ˝ f´1pθ1q ´ w
1pθ1q “ r̂ ` εpθ1q.

Let us have a look at the solutions of (5.13) in the case of Gevrey data, with h as

in (5.12), i.e. h1prq ” ω1 ` r:

Lemma 5.4. Let L1 ą L. Suppose

fpθq “ θ ` ω1 ` r̂ ` εpθq mod Z for all θ P T, and ε “ δ ` ε˚,

where r̂, δ P R and ε˚ P Gα,L
1

pTq satisfies ‖ε˚‖α,L1 ď εi with εi “ εipα,L, L
1q as in

Lemma A.4. Then f is a circle diffeomorphism and Equation (5.13) has a solution w

such that

‖w‖α,L ď p1` 2Lαq‖ε˚‖α,L1 . (5.15)
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Proof. We can write f “ pId`ωq˝ pId`ε˚q with ω :“ ω1` r̂`δ. By Lemma A.4, we obtain

that Id`ε˚ is a diffeomorphism of R, which (because of periodicity) can be viewed as the

lift of a circle diffeomorphism. Hence f is a circle diffeomorphism and the right-hand side

of (5.13) is

g :“ ε´ ε ˝ f´1 “ ε˚ ´ ε˚ ˝ f
´1 “ ε˚ ´ ε˚ ˝ pId`ε˚q

´1 ˝ pId´ωq.

Lemma A.4 yields ‖ε˚ ˝ pId`ε˚q´1‖α,L ď ‖ε˚‖α,L1 , which easily implies ‖g‖α,L ď 2‖ε˚‖α,L1 .
Now, we already know that g has zero mean value, and a solution to (5.13) can be

defined by the formula

wpθ ` Zq ” ´
ż θ

0
gpθ1qdθ1 for θ P p´1

2 ,
1
2 s.

One has ‖w‖C0pTq ď
1
2‖g‖C0pTq and, for each k ě 0,

Lpk`1qα

pk ` 1q!α
‖wpk`1q‖C0pTq “

Lpk`1qα

pk ` 1q!α
‖gpkq‖C0pTq ď Lα ¨

Lkα

k!α
‖gpkq‖C0pTq,

whence ‖w‖α,L ď p1
2 ` L

αq‖g‖α,L and the conclusion follows.

5.3 Proof of Proposition 5.1

a) We start with an elementary fact.

Lemma 5.5. Suppose x and ν are real, with ν ą 0 small enough. Then there exist Q P N˚

and P P Z coprime such that |x´ P {Q| ă ν{2 and 1 ă 2
ν ă Q ă 3

ν .

Proof. For ν ą 0 small enough, thanks to the Prime Number Theorem, we can pick a prime

number Q in p2ν´1, 3ν´1q (e.g. Q “ pk with k :“
X

5ν´1{2|ln ν|
\

, where pk „ k ln k is the

kth prime number). The interval pQx ´ Qν
2 , Qx `

Qν
2 q has length ą 2, hence it contains

at least two consecutive integers, one of which is not a multiple of Q and can be taken

as P .

We now define

L1 :“ 2L, c :“ maxt3γ`1c̃, 2γ`1c1u

with c̃ “ c̃pα,L1q as in (5.2) and c1 “ c1pα,Lq as in Lemma A.5, and suppose that we are

given ν, σ, `, r̄ as in the statement of Proposition 5.1, with ν small enough so as to be able

to apply Lemma 5.5.

Applying Lemma 5.5 with x “ ω1 ` r̄, we get a rational P {Q such that P ^Q “ 1 and

1 ă 2{ν ă Q ă 3{ν and
P

Q
“ ω1 ` r̂ with |r̂ ´ r̄| ă ν{2.
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b) Let us choose a function ∆ “ ∆Q P G
α,L1pTq satisfying (5.1)–(5.2) and apply Proposi-

tion 5.2. We can do so since 2c ě 3γ c̃, hence 0 ă σ ď e´2cν´γ ă e´c̃Q
γ
ď 1

maxp´∆1q by (5.2).

We get an integer q and a real δ satisfying

q P r`, `Qs Ă r`, 3`{νs, 0 ă δ ď
1

`Q
ă

ν

2`
ď
ν2

12
,

so that 1
2Q ` Z is a σ-isolated periodic point of period q for the circle map f defined by

θ P T ÞÑ fpθq :“ θ `
P

Q
` δ ` ε˚pθq mod Z with ε˚ :“ σ∆.

Moreover, since ` ě 6{ν ě 2Q and 1
Q ă

ν
2 , the set tfsp 1

2Q ` Zq | s P N, 2{ν ď s ď 6{νu is
ν
2 -dense in T.

c) We are in the situation of Lemma 5.4, with

‖ε˚‖α,L1 ď σL1αec̃ Q
γ
ď L1αe´p2c´3γ c̃qν´γ ď L1αe´

5c
3
ν´γ

which is less than εipα,L, L
1q for ν small enough, thus Equation (5.13) with ε :“ δ` ε˚ and

h1 “ Id`ω1 has a solution w P Gα,LpTq such that

‖w‖α,L ď p1` 2Lαq‖ε˚‖α,L1 ď p1` 2LαqL1αe´
5c
3
ν´γ .

Proposition 5.3 now tells us that the annulus map F̃ :“ Φw ˝F0 : M1 ý leaves invariant the

graph G :“
 `

θ, r̂ ` εpθq
˘

| θ P T
(

, with f : T ý as induced dynamics on G. In particular,

z1 :“
`

1
2Q ` Z, r̂ ` εp 1

2Qq
˘

P Tˆ R

is a σ-isolated periodic point of period q for F̃ , with all its orbit contained in G. Notice

that, for ν small enough, ‖ε‖C0pTq ď δ ` ‖ε˚‖C0pTq ď ν2{12 ` L1αe´
5c
3
ν´γ ď ν{4, hence

G Ă Vpr̂, ν{4q Ă Vpr̄, 3ν{4q and tF̃ spz1q | s P N, 2{ν ď s ď 6{νu is 2ν-dense in Vpr̄, νq.

d) The only shortcoming of the perturbation Φw is that it is not supported on the strip

Vpr̄, νq, but this is easy to remedy: we will multiply w by a function which vanishes outside

Vpr̄, νq without modifying the dynamics in Vpr̂, ν{4q. Note that

Vpr̂, ν{4q Ă Vpr̂, ν{2q Ă Vpr̄, νq.

Let us thus pick η P Gα,LpRq such that ηprq “ 1 for all r P rr̂ ´ ν{4, r̂ ` ν{4s and ηprq “ 0

whenever |r ´ r̂| ě ν{2. According to Lemma A.5, we can achieve ‖η‖α,L ď exp
`

2γc1ν
´γ

˘

(using, in fact, a non-periodic version of Lemma A.5, with p “ 2
ν ). We now set

upθ, rq :“ ηprqwpθq for all pθ, rq P Tˆ R.

One can check that u satisfies conditions (1) and (2) of Proposition 5.1 for ν small enough,

because then ‖w‖α,L ď 1
2e´

3c
2
ν´γ , while ‖η‖α,L ď e

c
2
ν´γ . Since F :“ Φu ˝F0 and F̃ coincide

on G (in fact on all of Vpr̂, ν{4q), requirements (3) and (4) are also fulfilled.
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6 Coupling lemma and synchronized diffusion à la Herman

6.1 Coupling lemma

The following “coupling lemma” due to M. Herman was already used in [MS03], [MS04],

[LMS19] to construct examples of unstable near-integrable Hamiltonian flows.

Lemma 6.1. Let M and M 1 be symplectic manifolds. Suppose we are given two maps,

F : M ý and G : M 1 ý, and two Hamiltonian functions f : M Ñ R and g : M 1 Ñ R which

generate complete vector fields and define time-1 maps Φf and Φg. Suppose moreover that

z˚ PM is F -periodic, of period q, and that

fpz˚q “ 1, dfpz˚q “ 0 (6.1)

fpF spz˚qq “ 0, dfpF spz˚qq “ 0 for 1 ď s ď q ´ 1. (6.2)

Then f b g generates a complete Hamiltonian vector field and the maps

T :“ Φfbg ˝ pF ˆGq : M ˆM 1 ý and ψ :“ Φg ˝Gq : M 1 ý

satisfy

Tnq`spz˚, z
1q “

`

F spz˚q, G
s ˝ ψnpz1q

˘

(6.3)

for all z1 PM 1 and n, s P Z such that 0 ď s ď q ´ 1.

We have denoted by f b g the function pz, z1q ÞÑ fpzqgpz1q, and by F ˆ G the map

pz, z1q ÞÑ pF pzq, Gpz1qq.

Proof. See [MS03].

6.2 Proof of Proposition 4.1

a) Given r̄ P R and ν ą 0 small enough, we apply Proposition 5.1 with

σ :“ e´2cν´γ

(where c “ cpα,Lq is provided by Proposition 5.1) and an integer ` ě 6{ν that we will

specify later.

We thus get a function u P Gα,LpM1q and a map F “ Φu ˝ F0 : M1 ý satisfying

properties (1)–(4) of Proposition 5.1. We call z
p0q
1 the σ-isolated periodic point mentioned

in property (4), the period of which is an integer q P r`, 3`{νs.

Let f :“ η
z
p0q
1 ,σ

be defined by Lemma A.6. Observe that f , F and z˚ “ z
p0q
1 satisfy

conditions (6.1)–(6.2) of Lemma 6.1 because z
p0q
1 is a σ-isolated periodic point.
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b) We now define g : M2 Ñ R by the formula gpr2, θ2q “ ´ 1
2πq sinp2πθ2q. According

to (5.11), we have Φgpθ2, r2q “
`

θ2, r2 `
1
q cosp2πθ2q

˘

for all pθ2, r2q PM2. In particular,

Φgp0` Z, r2q “
`

0` Z, r2 `
1
q

˘

for all r2 P R.

On the other hand, (3.6) gives Gs0pθ2, r2q “
`

θ2` spω2` r2q`Z, r2

˘

for all s P Z. Therefore

ψ :“ Φg ˝Gq0

satisfies ψnp0` Z,´ω2q “ p0` Z,´ω2 `
n
q q for all n P Z, whence

Gs0 ˝ ψ
n
`

z
p0,0q
2

˘

“ z
pn,sq
2 with z

pn,sq
2 :“

´sn

q
` Z,´ω2 `

n

q

¯

for all n, s P Z. (6.4)

c) Let v :“ f b g. We now apply Lemma 6.1 with the above functions f and g and the

maps F and G0, taking z˚ “ z
p0q
1 . In view of (6.3)–(6.4), we get

Tnq`s
`

z
p0q
1 , z

p0,0q
2

˘

“
`

F spz
p0q
1 q, z

pn,sq
2

˘

for all n, s P Z such that 0 ď s ď q ´ 1, (6.5)

with T “ Φv ˝ pF ˆG0q “ Φv ˝ Φu ˝ pF0 ˆG0q.

Notice that, for ν small enough, we have σ ă ν{4, hence f ” 0 on Vpr̄, νqc, thus v

satisfies condition (1) of Proposition 4.1, and we already knew that u also did.

We have ‖u‖α,L ď 1
2 expp´cν´γq with c “ cpα,Lq stemming from Proposition 5.1. We

can also achieve ‖v‖α,L ď 1
2 expp´cν´γq by choosing appropriately `. Indeed, calling K

the Gevrey-pα,Lq norm of the function θ ÞÑ 1
2π sinp2πθq and using q ě ` and (A.15), we

get ‖v‖α,L ď K
q ‖ηz,ν‖α,L ď

K
` exppc2σ

´γq, where c2 “ c2pα,Lq stems from Lemma A.6.

Therefore, the condition

q ě ` ě L :“ 2Kecν
´γ

ec2σ
´γ

(6.6)

is sufficient to ensure that u and v satisfy condition (2) of Proposition 4.1. We will fine-

tune our choice of ` later, when considering the “diffusion speed” of the T -orbit described

by (6.5).

d) We note that Vpr̄, νqˆM2 is invariant by T because it is invariant by T0 as well as by Φtu

and Φtv for all t P R in view of the condition on the supports of u and v. Let b :“ 1
4 . To get

condition (3) of Proposition 4.1 and thus complete its proof, we will require the following

Lemma 6.2. The set
 `

F spz
p0q
1 q, z

pn,sq
2

˘

| n, s P Z, 2
ν ď s ď 6

ν

(

is 3ν-dense in Vpr̄, νq ˆM2

if (6.6) holds and ν is small enough.

Taking Lemma 6.2 for granted, we now show how to choose ` so as to make Vpr̄, νqˆM2
`

3ν, τ, τ b
˘

-diffusive for T with τ :“ E3cγ,γpνq.

Given arbitrary z P Vpr̄, νq ˆM2, Lemma 6.2 yields n and s integer such that ẑ :“
`

F spz
p0q
1 q, z

pn,sq
2

˘

“ Tnq`s
`

z
p0q
1 , z

p0,0q
2

˘

is 3ν-close to z. For any m ě 1, comparing the last
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coordinates of ẑ and Tmqpẑq “
`

F spz
p0q
1 q, z

pn`m,sq
2

˘

, namely ´ω2 `
n
q and ´ω2 `

n`m
q , we

see that dpTmqpẑq, ẑq ě m{q, hence

dpT q
3
pẑq, zq ě q ´ 3ν with ` ď q ď

3`

ν
. (6.7)

Let µ :“ ecν
´γ
“ σ´1{2. The number L of (6.6) is 2Kµ ec2µ

2γ
ď µ2ec2µ

2γ
ă e

pc2`
1
γ
qµ2γ

and pc2 `
1
γ qµ

2γ ď bµ3γ provided ν is small enough, and then

L ă eb eCν
´γ

with C :“ 3cγ. (6.8)

Since b ă 1
3 , we can satisfy (6.6) by choosing ` :“ tν3 e

1
3 eCν

´γ

u and we then have q3 ď

p3`{νq3 ď eeCν
´γ

“ EC,γpνq.

On the other hand, q ´ 3ν ě ` ´ 3ν ě eb eCν
´γ

“ EC,γpνq
b for ν small enough. We

thus get property (3) of Proposition 4.1 from (6.7). The proof of that Proposition is thus

complete up to the proof of Lemma 6.2.

6.3 Proof of Lemma 6.2

We keep the notations and assumptions of Section 6.2 and give ourselves an arbitrary z “

pz1, z2q P Vpr̄, νqˆM2. We look for integers n and s such that d
``

F spz
p0q
1 q, z

pn,sq
2

˘

, pz1, z2q
˘

ď

3ν and 2
ν ď s ď 6

ν .

By property (4) of Proposition 5.1, we can choose the integer s so that

d
`

F spz
p0q
1 q, z1

˘

ď 2ν, 2
ν ď s ď 6

ν .

On the other hand, writing z2 “ pθ2 ` Z, r2q with θ2, r2 P Z, we see from (6.4) that the

last coordinate of z
pn,sq
2 will be ν-close to r2 if and only if |n ´ qpω2 ` r2q| ď νq. Let us

denote by n˚ the integer nearest to qpω2 ` r2q, thus |n˚ ´ qpω2 ` r2q| ď 1
2 . To conclude, it

is sufficient to take n of the form n “ n˚ `m with m integer such that

|m| ď νq ´ 1
2 and dist

ˆ

spn˚ `mq

q
, θ2 ` Z

˙

ď ν. (6.9)

Indeed, we will then have d
``

F spz
p0q
1 q, z

pn,sq
2

˘

, pz1, z2q
˘

ď
?

4ν2 ` ν2 ` ν2 ă 3ν.

The second part of (6.9) is equivalent to dist
´

m,
qθ2

s
´ n˚ `

q

s
Z
¯

ď
νq

s
. Let

I :“
”

´ pνq ´ 1
2q, νq ´

1
2

ı

, J :“
”

x2 ´
νq

s
, x2 `

νq

s

ı

with x2 “
qθ2

s
´ n˚.

The whole of (6.9) is thus equivalent to

m P I and m P
kq

s
` J for some k P Z. (6.10)

Now, kq
s ` J Ă I is equivalent to

|I| ě |J | and ´ 1
2

`

|I|´ |J |
˘

ď
kq

s
` x2 ď

1
2

`

|I|´ |J |
˘

. (6.11)
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Since ∆ :“ |I| ´ |J | “ 2νq ´ 1 ´ 2νq{s, (6.11) amounts to ∆ ě 0 and k belonging to the

interval
“

´ sx2
q ´

s∆
2q ,´

sx2
q `

s∆
2q

‰

, which has length s∆{q “ 2νs´2ν´s{q ě 4´2ν´6{pνLq

(using q ě L). That length is ě 1 for ν small enough and the interval then contains at least

one integer k˚. Diminishing ν if necessary, we then have |k˚qs ` J | “ 2νq{s ě ν2L{3 ě 1,

hence we can find m P p
k˚q
s ` Jq X Z Ă I X Z, thus solution to (6.10) or, equivalently,

to (6.9).

7 Continuous time

In Sections 4–6, we have proved Theorems 3.3 and 3.4, providing examples of discrete

systems of the form Φv˝Φu˝Φh0 : TnˆRn ý with diffusive invariant tori (using Remark 3.1).

We will now deduce Theorems 3.1 and 3.2 by a “suspension” device adapted from [MS03].

Definition 7.1. Given an exact symplectic map T : Tn ˆ Rn ý, we call suspension of T

any non-autonomous Hamiltonian which depends 1-periodically on time

h : Tn ˆ Rn ˆ TÑ R,

for which the flow map between the times t “ 0 and t “ 1 exists and coincides with T .

Lemma 7.1. Let h0 : r P Rn ÞÑ pω, rq ` 1
2pr, rq as in Section 3.2. Suppose that u and v

are C8 functions on Tn ˆ Rn which generate complete Hamiltonian vector fields. Let

ψ, χ P C8pr0, 1sq be such that

ż 1

0
ψptq dt “

ż 1

0
χptqdt “ 1, supppψq Ă

“

1
3 ,

2
3

‰

, supppχq Ă
“

2
3 , 1

‰

. (7.1)

Then the formula

hpθ, r, tq :“ h0prq`ψptqu
`

θ`p1´ tqpω`rq`Zn, r
˘

`χptqv
`

θ`p1´ tqpω`rq`Zn, r
˘

(7.2)

defines a function on TnˆRnˆr0, 1s which uniquely extends by periodicity to a C8 function

on Tn ˆ Rn ˆ T and, when viewed as a non-autonomous time-periodic Hamiltonian, is a

suspension of Φv ˝ Φu ˝ Φh0.

Proof. Let ϕ P C8pr0, 1sq have support Ă r0, 1
3 s and

ş1
0 ϕptq dt “ 1. We observe that (7.2)

entails, for all pθ, r, tq P Tn ˆ Rn ˆ r0, 1s,

hpθ, r, tq “ h0prq ` ψptqu
`

θ ` ϕ̃ptqpω ` rq ` Zn, r
˘

` χptqv
`

θ ` ϕ̃ptqpω ` rq ` Zn, r
˘

, (7.3)

where ϕ̃ptq :“
şt
0

`

ϕpt1q ´ 1
˘

dt1 extends to a 1-periodic C8 function. This takes care of the

first statement.
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Let z0 P Tn ˆ Rn and let zptq “
`

θptq, rptq
˘

denote the maximal solution of the initial

value problem dz
dt “ Xhpz, tq, zp0q “ z0. Defining θ˚ptq :“ θptq ` ϕ̃ptq

`

ω ` rptq
˘

and

z˚ptq :“
`

θ˚ptq, rptq
˘

, we compute

dz˚

dt ptq “ ϕptqXh0

`

z˚ptq
˘

for t P
“

0, 1
3

‰

,

dz˚

dt ptq “ ψptqXu

`

z˚ptq
˘

for t P
“

1
3 ,

2
3

‰

,

dz˚

dt ptq “ χptqXv

`

z˚ptq
˘

for t P
“

2
3 , 1

‰

.

The flow map of Xh between the times t “ 0 and t “ 1
3 is thus a reparametrization of

the flow of Xh0 : t P
“

0, 1
3

‰

ñ z˚ptq “ Φh0
` şt

0 ϕpt
1q dt1

˘

, whence z˚
`

1
3

˘

“ Φh0pz0q since
ş1{3
0 ϕpt1qdt1 “ 1. Similarly, z˚

`

2
3

˘

“ Φu
`

z˚
`

1
3

˘˘

since
ş2{3
1{3 ψpt

1q dt1 “ 1, and z˚p1q “

Φv
`

z˚
`

2
3

˘˘

, since
ş1
2{3 χpt

1q dt1 “ 1. We thus get z˚p1q “ Φv ˝Φu ˝Φh0pz0q, which yields the

desired result because z˚p1q “ zp1q.

Notice that, if T “ Φv ˝ Φu ˝ Φh0 satisfies properties (1) and (3) of Theorem 3.3,

resp. Theorem 3.4, then any suspension of T of the form (7.3) satisfies property (2) of

Theorem 3.1, resp. Theorem 3.2. The invariance of the torus Tpr,sq with r “ 0, resp.

r P pXε`Zq ˆRn´1, stems from the vanishing of Bθh and Bth for r1 “ 0, resp. r1 P Xε`Z.

Lemma 7.2. Consider the mapping

Sω : pθ, r, tq P Tn ˆ Rn ˆ T ÞÑ
`

θ ` p1´ tqω ` Zn, r
˘

P Tn ˆ Rn.

Let α ě 1 and Λ ą 0 be real, and Λ1 ě Λ
´

1` max
1ďiďn

|ωi|1{α
¯

. Then

w P Gα,Λ1pTn ˆ Rnq ñ w ˝ Sω P Gα,ΛpTn ˆ Rn ˆ Tq and ‖w ˝ Sω‖α,Λ ď ‖w‖α,Λ1 .

Proof. One can check that, for every pp, q, sq P Nn ˆ Nn ˆ N,

B
p
θB
q
rB
s
t pw ˝ Sωq “ p´1qs

ÿ

mPNn s.t. |m|“s
ωm1

1 ¨ ¨ ¨ωmnn pB
p`m
θ Bqrwq ˝ Sω,

whence, with the notation Ω :“ max
1ďiďn

|ωi|,

‖w ˝ Sω‖α,Λ ď
ÿ

p,q,mPNn

Ω|m|Λ|p`q`m|α

p!αq!α|m|!α
‖Bp`mθ Bqrw‖C0pTnˆRnq

“
ÿ

`,qPNn
A`

Λ|``q|α

q!α
‖B`θBqrw‖C0pTnˆRnq with A` :“

ÿ

p,mPNn s.t. p`m“`

Ω|m|

p!α|m|!α
.

Now, A` ď
ř

p`m“`

Ω|m|

p!αm!α ď

´

ř

p`m“`

Ω|m|{α

p!m!

¯α
“ 1

`!α p1` Ω1{αq|`|α, hence

‖w ˝ Sω‖α,Λ ď
ÿ

`,qPNn

p1` Ω1{αq|`|αΛ|``q|α

`!αq!α
‖B`θBqrw‖C0 ď

Λ
|``q|α
1

`!αq!α
‖B`θBqrw‖C0 “ ‖w‖α,L1 .
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Lemma 7.3. Consider an interval I Ă r0, 1s and the mapping

RI : pθ, r, tq P Tn ˆ Rn ˆ I ÞÑ
`

θ ` p1´ tqr ` Zn, r, t
˘

P Tn ˆ Rn ˆ I.

Let α ě 1 and Λ ą 0 be real, and Λ ě Lmax
 

23{α, 21{αL
(

. Then

w P Gα,ΛpTn ˆ Rn ˆ Iq ñ w ˝RI P Gα,LpTn ˆ Rn ˆ Iq and dα,Lp0, w ˝RIq ď ‖w‖α,Λ.

Proof. Let Lj :“ 2´
j´1
α L and Rj :“ 2j for each j P N˚, as in Appendix A.1. We also set

Kj :“ Tn ˆBRj ˆ I, so Gα,LpTn ˆ Rn ˆ Iq “
Ş

jě1G
α,Lj pKjq.

A simple adaptation of [MS03, Remark A.1] shows that, if φ P Gα,Lj pIq and

Lαj ` pRj ` L
α
j q‖φ‖α,Lj ,I ´Rj‖φ‖C0pIq ď Λα, (7.4)

then the composition with the mapping

R : pθ, r, tq P Tn ˆ Rn ˆ I ÞÑ
`

θ ` φptqr ` Zn, r, t
˘

P Tn ˆ Rn ˆ I

has the property

w P Gα,ΛpKjq ñ w ˝R P Gα,Lj pKjq and ‖w ˝R‖α,Lj ,Kj ď ‖w‖α,Λ. (7.5)

Taking φptq :“ 1´ t, since our interval I is Ă r0, 1s, we have ‖φ‖C0pIq ď 1 and ‖φ‖α,Lj ,I “
‖φ‖C0pIq ` L

α
j , hence the left-hand side of (7.4) equals

Lαj `RjL
α
j ` L

α
j

`

‖φ‖C0pIq ` L
α
j

˘

ď Lαj pL
α
j `Rj ` 2q ď L2α ` 4Lα ď 1

2Λα ` 1
2Λα

and (7.5) allows us to conclude, in view of (A.4).

Proof of Theorems 3.1 and 3.2

In both cases, we are given α ą 1, L ą 0 and ε ą 0. Let

Λ1 :“ Λ
´

1` max
1ďiďn

|ωi|1{α
¯

, Λ :“ Lmax
 

23{α, 21{αL
(

.

Since α ą 1, we can pick ψ, χ P Gα,ΛpTq satisfying (7.1).

Let us apply the multidimensional version of Theorem 3.3 or Theorem 3.4 (cf. Re-

mark 3.1) with parameters Λ1 instead of L and

ε1 :“
ε

max
 

1, ‖ψ‖α,Λ, ‖χ‖α,Λ
(

instead of ε. We thus get u, v P Gα,Λ1pTn ˆ Rnq and, in the second case, Xε1 Ă r0, 1s, such

that ‖u‖α,Λ1 ` ‖v‖α,Λ1 ă ε1 and any suspension of Φv ˝ Φu ˝ Φh0 satisfies property (2) of

Theorem 3.1, resp. Theorem 3.2.
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By Lemma 7.1, we can choose the suspension to be

h :“ h0 ` ũ ˝Rr 1
3
, 2
3
s ` ṽ ˝Rr 2

3
,1s

with

ũpθ, r, tq :“ ψptqpu ˝ Sωqpθ, r, tq, ṽpθ, r, tq :“ χptqpv ˝ Sωqpθ, r, tq.

Lemma 7.2 and (A.2) give

‖ũ‖α,Λ ď ‖ψ‖α,Λ‖u‖α,Λ1 , ‖ṽ‖α,Λ ď ‖χ‖α,Λ‖v‖α,Λ1 ,

whence ‖ũ‖α,Λ ` ‖ṽ‖α,Λ ă ε. Then, since the distance dα,L is translation-invariant,

dα,Lph0, hq ď dα,L
`

0, ũ ˝Rr 1
3
, 2
3
s

˘

` dα,L
`

0, ṽ ˝Rr 2
3
,1s

˘

ď ‖ũ‖α,Λ ` ‖ṽ‖α,Λ

by Lemma 7.3 and we are done.

Appendix A Gevrey estimates

We fix real numbers α ě 1 and L ą 0.

A.1 Gevrey functions and Gevrey maps

Here we adapt definitions and facts taken from [MS03], [MS04] and [FMS20].

The Banach algebra Gα,LpRM ˆKq of uniformly Gevrey-pα,Lq functions

Let N ě 1 be integer. We will deal with real functions of N variables defined on RM ˆK,

where M ě 0 and K Ă RN´M is a Cartesian product of closed Euclidean balls and tori.

We define the uniformly Gevrey-pα,Lq functions on RM ˆK by

Gα,LpRM ˆKq :“ tf P C8pRM ˆKq | ‖f‖α,L ă 8u,

‖f‖α,L :“
ÿ

`PNN

L|`|α

`!α
‖B`f‖C0pRMˆKq. (A.1)

We have used the standard notations |`| “ `1 ` ¨ ¨ ¨ ` `N , `! “ `1! . . . `N !, B` “ B`1x1 . . . B
`N
xN

,

and N :“ t0, 1, 2, . . .u. The space Gα,LpRM ˆKq turns out to be a Banach algebra, with

‖fg‖α,L ď ‖f‖α,L‖g‖α,L (A.2)

for all f and g, and there are “Cauchy-Gevrey inequalities”: if 0 ă L0 ă L, then

ÿ

mPNN ; |m|“p

‖Bmf‖α,L0 ď
p!α

pL´ L0q
pα
‖f‖α,L for all p P N. (A.3)

When necessary, we use the notation ‖ . ‖α,L,RMˆK instead of ‖ . ‖α,L to keep track of

the domain to which the norm relates.

28



The metric space Gα,LpRM ˆKq

When M ě 1, instead of restricting ourselves to uniformly Gevrey-pα,Lq functions on

RMˆK, we may cover the factor RM by an increasing sequence of closed balls and consider

a Fréchet space accordingly. For technical reasons, we choose the sequences

Lj :“ 2´
j´1
α L, Rj :“ 2j for j P N˚,

and set

Gα,LpRM ˆKq :“
č

jě1

Gα,Lj
`

BRj ˆK
˘

, dα,Lpf, gq :“
ÿ

jě1

2´j min
 

1, ‖g ´ f‖α,Lj ,BRjˆK
(

.

(A.4)

Clearly, Gα,LpRM ˆKq Ă Gα,LpRM ˆKq but the inclusion is strict, and the larger space

is a complete metric space for the distance dα,L.

This construction is needed in Section 7 only. In the rest of this appendix, we focus on

uniformly Gevrey functions and maps on RN (with M “ N and no factor K).

Composition with uniformly Gevrey-pα,Lq maps

For N ě 1 integer, we define

Gα,LpRN ,RN q :“ tF P C8pRN ,RN q | ‖F‖α,L ă 8u,

‖F‖α,L :“ ‖Fr1s‖α,L ` ¨ ¨ ¨ ` ‖FrNs‖α,L. (A.5)

This is a Banach space.

We also define

N ˚α,Lpfq :“
ÿ

`PNNrt0u

L|`|α

`!α
‖B`f‖C0pRN q,

so that ‖f‖α,L “ ‖f‖C0pRN q `N ˚α,Lpfq.

Lemma A.0. Let L0 P p0, Lq. There exists εc “ εcpα,L, L0, Nq such that, for any f P

Gα,LpRN q and F “ pFr1s, . . . , FrNsq P G
α,L0pRN ,RN q, if

N ˚α,L0
pFr1sq, . . . ,N ˚α,L0

pFrNsq ď εc,

then f ˝ pId`F q P Gα,L0pRN q and ‖f ˝ pId`F q‖α,L0 ď ‖f‖α,L.

The proof is in Appendix A of [FMS20].

A.2 Comparison estimates for Gevrey flows

In Section 4.2, we use comparison estimates for the flows of two nearby Gevrey Hamiltonian

systems. We prove them here, building upon some facts which are proved in [FMS20] about

the flows of Gevrey vector fields.
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Lemma A.1 (General case). Suppose that 0 ă L0 ă L and N ě 1. Then there exists

εf “ εfpα,L, L0, Nq ą 0 such that, for every vector field X P Gα,LpRN ,RN q with ‖X‖α,L ď
εf , the time-1 map Φ of the flow generated by X satisfies

‖Φ´ Id‖α,L0 ď ‖X‖α,L (A.6)

and, if we are given another vector field X̃ P Gα,LpRN ,RN q with ‖X̃‖α,L ď εf , then its

time-1 map Φ̃ satisfies

‖Φ̃´ Φ‖α,L0 ď 2‖X̃ ´X‖α,L. (A.7)

Proof. The first part of the statement is exactly Part (i) of Lemma A.1 from [FMS20].

There, the flow t P r0, 1s ÞÑ Φptq was obtained by considering the functional ξ ÞÑ Fpξq
defined by

Fpξqptq :“

ż t

0
X ˝

`

Id`ξpτq
˘

dτ.

Using an auxiliary L1 P pL0, Lq and Lemma A.0, it was shown that, if ‖X‖α,L ď εf small

enough, then F maps into itself

B :“ t ξ P C0
`

r0, 1s, Gα,LpRN ,RN q
˘

| ‖ξ‖ ď ‖X‖α,L u

(which is a closed ball in a Banach space) and has a unique fixed point, none other than

ξ˚ptq :“ Φptq ´ Id.

In that proof, F was shown to be K-Lipschitz, with K :“ maxi,j‖BxjXris‖α,L1 . We can

ensure K ď 1
2 by diminishing εf if necessary and using (A.3). Then, for any ξ0 P B, the fixed

point ξ˚ is the limit of the sequence of iterates pFkpξ0qqkPN and ‖ξ˚´ ξ0‖ ď 2‖Fpξ0q ´ ξ0‖.
Now, suppose we also have ‖X̃‖α,L ď εf . The time-t map of X̃ is thus Φ̃ptq “ Id`ξ̃˚ptq,

with ξ̃˚ fixed point of F̃ : B ý. Lemma A.0 yields

‖F̃pξq ´ Fpξq‖ “ ‖
ż t

0
pX̃ ´Xq ˝

`

Id`ξpτq
˘

dτ‖ ď ‖X̃ ´X‖α,L for any ξ P B,

thus we can compare the fixed points ξ˚ and ξ̃˚ by writing the former as the limit of the

sequence pFkpξ0qqkPN with ξ0 :“ ξ̃˚; we get

‖ξ˚ ´ ξ̃˚‖ ď 2‖Fpξ̃˚q ´ ξ̃˚‖ “ 2‖Fpξ̃˚q ´ F̃pξ̃˚q‖ ď 2‖X̃ ´X‖α,L,

which yields the desired result.

Lemma A.2 (Hamiltonian case). Suppose that 0 ă L0 ă L and n ě 1. Then there exist

εH, C0 ą 0 such that, for every u P Gα,LpR2nq with ‖u‖α,L ď εH,

‖Φu ´ Id‖α,L0 ď C0‖u‖α,L, (A.8)

and, given another ũ P Gα,LpR2nq with ‖ũ‖α,L ď εH,

‖Φũ ´ Φu‖α,L0 ď C0‖ũ´ u‖α,L. (A.9)

30



Proof. Let L1 :“ pL0 ` L1q{2. Any u P Gα,LpR2nq generates a Hamiltonian vector field Xu

which, according to (A.3) with p “ 1, satisfies

‖Xu‖α,L1 “
ÿ

mPN2n; |m|“1

‖Bmu‖α,L1 ď pL´ L1q´α‖u‖α,L.

Similarly, ‖Xũ´Xu‖α,L1 ď pL´L1q´α‖ũ´u‖α,L. Thus, with εH :“ pL´L1qαεfpα,L
1, L0, 2nq

and C0 :“ 2pL´ L1q´α, we get

‖u‖α,L, ‖ũ‖α,L ď εH ñ ‖Φu ´ Id‖α,L0 ď
1
2C0‖u‖α,L and ‖Φũ ´ Φu‖α,L0 ď C0‖ũ´ u‖α,L.

Corollary A.3 (Iteration of maps of the form Φv ˝ Φu ˝ T0). Suppose that n ě 1.

Then there exist εd, C1 ą 0 such that, for every u, v, ũ, ṽ P Gα,LpR2nq such that

‖u‖α,L ` ‖v‖α,L ď εd, ‖ũ‖α,L ` ‖ṽ‖α,L ď εd (A.10)

and for every z P R2n, the orbits of z under the maps T :“ Φv ˝Φu ˝T0 and T̃ :“ Φṽ ˝Φũ ˝T0

satisfy

dist
`

T kpzq, T̃ kpzq
˘

ď 3kC1

`

‖ũ´ u‖α,L ` ‖ṽ ´ v‖α,L
˘

for all k P N. (A.11)

Proof. For any u, v, ũ, ṽ P Gα,LpR2nq and z, z̃ P R2n, the maps T :“ Φv ˝ Φu ˝ T0 and

T̃ :“ Φṽ ˝ Φũ ˝ T0 satisfy

dist
`

T pzq, T̃ pzq
˘

ď dist
`

ΦvpΦupT0pzqqq,Φ
vpΦupT0pz̃qqq

˘

` dist
`

ΦvpΦupT0pz̃qqq,Φ
vpΦũpT0pz̃qqq

˘

` dist
`

ΦvpΦũpT0pz̃qqq,Φ
ṽpΦũpT0pz̃qqq

˘

ď pLip ΦvqpLip ΦuqpLipT0q distpz̃, zq ` pLip Φvq‖Φũ ´ Φu‖C0pR2nq ` ‖Φṽ ´ Φv‖C0pR2nq.

On the one hand, LipT0 “ 2. On the other hand, for any L0 ą 0, the Lipschitz constant

of a map Ψ such that Ψ ´ Id P Gα,L0pR2n,R2nq is bounded by 1 ` LippΨ ´ Idq ď 1 `

L´α0 ‖Ψ´ Id‖α,L0 (using the mean value inequality, (A.1) and (A.5)). Applying Lemma A.2

with L0 “ L{2, we can thus choose εd so that assumption (A.10) entails

Lip Φu,Lip Φv ď 1` 2αL´αC0εd ď p3{2q
1{2

and

‖Φũ ´ Φu‖α,L0 ď C0‖ũ´ u‖α,L, ‖Φṽ ´ Φv‖α,L0 ď C0‖ṽ ´ v‖α,L,

whence dist
`

T pzq, T̃ pzq
˘

ď 3 distpz̃, zq ` η with η :“ p3{2q1{2C0

`

‖ũ ´ u‖α,L ` ‖ṽ ´ v‖α,L
˘

.

Iterating this, we get dist
`

T kpzq, T̃ kpzq
˘

ď 3kpdistpz̃, zq ` 1
2ηq ´

1
2η for all k P N, thus we

can conclude by choosing C1 :“ 1
2p3{2q

1{2C0.
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A.3 A Gevrey inversion result

In Section 5.2, we use the following

Lemma A.4. Suppose L ă L1. Then there exists εi “ εipα,L, L1q such that, for every

ε P Gα,L1pRq, if ‖ε‖α,L1 ď εi, then Id`ε is a diffeomorphism of R and

pId`εq´1 “ Id`ε̃ with ‖ε̃‖α,L ď ‖ε‖α,L1 , (A.12)∥∥g ˝ pId`εq´1
∥∥
α,L

ď ‖g‖α,L1 for any g P Gα,L1pRq. (A.13)

Proof. Let L1 :“ pL` L1q{2. We use Lemma A.0 and define

εi :“ min
 

1
2pL1 ´ L

1qα, εcpα,L
1, L, 1q, εcpα,L1, L, 1q

(

.

Given ε P Gα,L1pRq such that ‖ε‖α,L1 ď εi, the functional

F : f P B ÞÑ ´ε ˝ pId`fq, where B :“ tf P Gα,LpRq | ‖f‖α,L ď ‖ε‖α,L1u,

is well defined (because ‖ε‖α,L1 ď εcpα,L
1, L, 1q and ε P Gα,L

1

pRq), maps B into itself (we

even have ‖Fpfq‖ ď ‖ε‖α,L1), and is K-Lipschitz with K :“ ‖ε1‖α,L1 (using also (A.2) and

the mean value inequality). But (A.3) yields ‖ε1‖α,L1 ď pL1 ´ L1q´α‖ε‖α,L1 ď
1
2 , which

implies that F is a contraction, and also that Id`ε is a diffeomorphism of R (since its

derivative stays ě 1{2). The unique fixed point ε̃ of F in B is pId`εq´1 ´ Id, which yields

‖ε̃‖α,L ď ‖ε‖α,L1 ď εcpα,L1, L, 1q and hence (A.13) by another application of Lemma A.0.

A.4 Gevrey functions with small support

From now on we suppose α ą 1. We quote without proof Lemma 3.3 of [MS04]:

Lemma A.5. There exists a real c1 “ c1pα,Lq ą 0 such that, for each real p ą 2, the space

Gα,LpTq contains a function ηp which takes its values in r0, 1s and satisfies

´
1

2p
ď θ ď

1

2p
ñ ηppθ ` Zq “ 1,

1

p
ď θ ď 1´

1

p
ñ ηppθ ` Zq “ 0

and

‖ηp‖α,L ď exp
`

c1 p
1

α´1
˘

. (A.14)

The proof can be found in [MS04, p. 1633]. This easily implies

Lemma A.6. There exists a real c2 “ c2pα,Lq ą 0 such that, for any z P TˆR and ν ą 0,

there is a function ηz,ν P G
α,LpTˆ Rq which takes its values in r0, 1s and satisfies

ηz,ν ” 1 on Bpz, ν{2q, ηz,ν ” 0 on Bpz, νqc

and

‖ηz,ν‖α,L ď exppc2ν
´ 1
α´1 q. (A.15)

Here, for arbitrary ν̃ ą 0, we have denoted by Bpz, ν̃q the closed ball relative to ‖ . ‖8
centred at z with radius ν̃.
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Appendix B Some estimates on doubly exponentially grow-

ing sequences

According to (4.3), the increasing sequence pNiqiě1 is defined by

N1 :“ rexpp4κ{εqs, Ni :“ Ni´1

Q

exp
`

exp
`

C̃pNi´1 lnNi´1q
γ
˘˘

U

for i ě 2,

where 0 ă ε ď 1, κ ě 1 and C̃ :“ maxt6cγ, 1{γu, with c, γ ą 0. Here, we show a few

inequalities which are used in Section 4.2. Recall that νi :“ 1
Ni lnNi

and ξi :“ e´cν
´γ
i .

Lemma B.1. One has

lnNi ě 4iκ{ε for every i ě 1, (B.1)

Ni`1ξi`1 ď
1
2Niξi for i large enough, (B.2)

Ni`1ξi`1 ď 3´E3cγ,γpνiq for i large enough. (B.3)

Proof. We have lnpN1q ě 4κ{ε and, by virtue of (4.1), N1 ě 4κ{ε ě 4. Now, for i ě 2,

since γC̃ ě 1, we have

lnNi ě exp
`

C̃pNi´1 lnNi´1q
γ
˘

“

”

exp
`

γC̃pNi´1 lnNi´1q
γ
˘

ı1{γ
ě

”

exppNi´1 lnNi´1q
γ
ı1{γ

and (4.1) yields lnpNiq ě Ni´1 lnNi´1 ě 4 lnNi´1, whence (B.1) follows.

We have ln 1
Niξi

“ cpNi lnNiq
γ ´ lnNi and, since lnpNiq ! pNi lnNiq

γ ,

cΛγi ě ln
1

Niξi
ě cpΛi{

?
3qγ for i large enough, where Λi :“ Ni lnNi “ 1{νi.

Inequality (B.2), being equivalent to

ln
1

Ni`1ξi`1
ě ln

1

Niξi
` ln 2 for i large enough,

thus results from pΛi`1{
?

3qγ ě Λγi `
ln 2
c (which holds for i large enough because Ni`1 ě

3Ni, hence Λi`1 “ Ni`1 lnNi`1 ą 3Λi).

Let C :“ 3cγ. Inequality (B.3), being equivalent to

ln
1

Ni`1ξi`1
ě pln 3qEC,γp1{Λiq for i large enough,

results from Λγi`1 ě
3γ{2 ln 3

c EC,γp1{Λiq, which holds since EC,γp1{Λiq “
P

exp
`

exppCΛγi q
˘T

and

Λγi`1 “ Nγ
i plnNi`1q

γ
Q

exp
`

γ exppC̃Λγi q
˘

U

, Nγ
i plnNi`1q

γ ě 3γ{2 ln 3
c

and γ exppC̃Λγi q ě exppCΛγi q for i large enough since C̃ ą C.
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