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Abstract

We prove the existence of real analytic Hamiltonians with topologically unstable
quasi-periodic invariant tori. Using various versions of our examples, we solve the
following problems in the stability theory of analytic quasi-periodic motion:

i) Show the existence of topologically unstable tori of arbitrary frequency. More-
over, the Birkhoff Normal Form at the invariant torus can be chosen to be
convergent, equal to a planar or non-planar polynomial.

ii) Show the optimality of the exponential stability for Diophantine tori.

iii) Show the existence of real analytic Hamiltonians that are integrable on half of
the phase space, and such that all orbits on the other half accumulate at infinity.

iv) For sufficiently Liouville vectors, obtain invariant tori that are not accumulated
by a positive measure set of quasi-periodic invariant tori.

Keywords. Hamiltonian systems, quasi-periodic invariant tori, stability, Birkhoff
normal forms, Nekhoroshev theory, KAM theory.

1 Introduction

Let H be a C2 function defined on Td × Rd and consider its Hamiltonian vector field
XH(θ, r) = (∂rH(θ, r),−∂θH(θ, r)). If for some ω ∈ Rd, we have

H(θ, r) = 〈ω, r〉+O(r2), (∗)

then T0 = Td×{0} is invariant under the Hamiltonian flow Φt
H and the induced dynamics

on this torus is the translation of frequency vector ω : θ 7→ θ + tω. Moreover this torus is
Lagrangian with respect to the canonical symplectic form dθ ∧ dr on Td × Rd.
In this work, we will mainly be interested in the non-resonant case, where the coordinates
of ω are rationally independent, in which case the torus T0 can be seen as the closure of
any orbit that starts on T0. We call such an invariant torus a quasi-periodic torus of the
Hamiltonian H , and for short, a QP torus.
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The study of the stability properties of a QP torus is an old problem of classical mechanics,
especially in relation to the N-body problem of celestial mechanics. There exist three
different notions of stability. The usual topological or Lyapunov stability, the stability in
a measure theoretic or probabilistic sense (KAM stability), and the effective stability or
quantitative stability in time.
In this paper, we will use variants of the approximation by conjugation method (AbC or
Anosov-Katok method) to construct several examples with various instability properties
of QP tori of a real analytic Hamiltonian, from all three points of view and in relation with
the main known results and open questions in the field.
We show in particular the existence of real analytic Hamiltonians with topologically un-
stable quasi-periodic invariant tori with arbitrary frequencies. We also show sharpness of
several results in Nekhoroshev and KAM theory.
In the AbC method, diffeomorphisms or flows of a manifold are constructed as limits of
conjugates of diffeomorphisms or periodic flows. Volume preserving maps with various
interesting, sometimes surprising, topological and ergodic properties can be obtained as
limits of volume preserving periodic transformations that are conjugates via wild conjuga-
cies to a simple periodic action on the manifold. For a general overview of the conjugation
by approximation method we refer the reader to [FK04].
In the Hamiltonian setting, by periodic approximations we mean that the flow in some of
the angle variables will be approached by periodic flows, which causes instabilities and
drift in the action coordinates. More precisely, all our examples will be of the following
form (see Section 5 for complete details):

H = lim
n→∞

Hn, Hn(θ, r) = 〈ω(rd), r〉 −
n∑
j=2

φj(rd) sin(2π
d−1∑
i=1

kj,iθi). (1.1)

Here {kj} is a sequence of vectors in Zd−1, ω(·) is a function from R to Rd, and the φj(·)
are positive functions, that will be chosen adequately to guarantee the convergence of the
sequence Hn and the various properties of our examples. Note that rd is constant under
the Hamiltonian flows we are considering and acts as a parameter in the constructions,
in a way that we now explain. Note that the flows are explicitly solvable, for rd near the
origin, and are conjugated to H0 = 〈ω(rd), r〉. Namely, there exists an explicit canonical
transformation Ψn such that Hn = H0 ◦Ψn (see Section 6.2 for the explicit form of Ψn).
The wild behavior of the conjugacies Ψn can be caused by two possible scenarios:

i) The frequency vector ω(rd) ≡ ω̃ is a constant Liouville vector (see Section (2) and
(4.6) for the definitions) and the sequence {kj} is a sequence of almost resonant
vectors with respect to the frequency ω̃.

ii) As rd goes to zero, the frequency vector ω(rd) goes through resonances that corre-
spond to the sequence {kj}.
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The AbC method was first applied in the Hamiltonian context by Katok in [Kat73]. Recent
applications of the AbC method in the Hamiltonian context that inspired this work can be
found in [EFK15, FS17].

2 Notations

Let us introduce some notations that will be useful throughout the paper.

� For any vector v = (v1, . . . , vd) ∈ Rd we will denote ‖v‖ := max1<m≤d |vm|.

� We denote by Tdρ the complex ρ-neighbourhood of a standard real d dimensional
torus

Tdρ =
{
z ∈ Cd/Zd | |Im zi| < ρ, 1 ≤ i ≤ d

}
.

We denote by B∆,ρ the complex ρ-neighbourhood of the closed ball B∆ ⊂ Rd

centered at the origin with radius ∆ > 0,

B∆,ρ =
{
z ∈ Cd | ∃z′ ∈ B∆ s.t |z − z′| < ρ

}
.

We will also denote D∆,ρ = Tdρ ×B∆,ρ.

� A holomorphic function f defined on D∆,ρ is said to be real if it gives real values to
real arguments. We will denote byCω

∆,ρ the real and bounded holomorphic functions
f : D∆,ρ → C, which form a Banach space with the supremum norm

‖f‖∆,ρ = sup
z∈D∆,ρ

|f(z)|.

By Cω
0,ρ we denote the subset of functions of Cω

∆,ρ that depend only on θ. We will
denote by Cω the real holomorphic entire functions and Cω

ρ :=
⋂

∆>0C
ω
∆,ρ. Recall

that with the compact-open topology both are a Fréchet spaces. In particular we
will use that convergence in Cω

∆,ρ ∀∆, ρ > 0 implies convergence in Cω, and that
convergence in Cω

∆,ρ ∀∆ > 0 for a fixed ρ > 0 implies convergence in Cω
ρ .

� Formal power series. Let z = (z1, . . . , zd) ∈ Cd. An element

f ∈ Cω(Tdρ)[[z]]

is a formal power series

f = f(θ, z) =
∑
j∈Nd

aj(θ)z
j

whose coefficients aj ∈ Cω
0,ρ (possibly vector valued).



4 Gerard Farré, Bassam Fayad

� Given a vector v = (v1, . . . , vd) ∈ Rd we denote by ṽ := (v1, . . . , vd−1) ∈ Rd−1

the new vector obtained by omitting the last component. Similarly for a map f :

R → Rd we will denote by f̃ : R → Rd−1 the corresponding map where the last
component is omitted.

� We will usually denote the last component of r = (r1, . . . , rd) ∈ Rd by s := rd to
distinguish it from the rest of the components. We do so to stress the fact that in our
constructive methods s plays the role of a parameter, it does not change with time.
This happens because all the Hamiltonians we consider will not depend on θd, and
thus satisfy ṡ = − ∂H

∂θd
= 0 (see Section 5).

� We call ω a Diophantine vector of exponent τ > 0 and constant γ > 0 if

|〈ω, k〉| ≥ γ

‖k‖τ
, ∀ k ∈ Zd \ {0}.

We denote by Ωd
γ,τ the set of all such vectors. Recall that for any τ > d − 1, the

set of all Diophantine vectors of exponent τ : Ωd
τ :=

⋃
γ Ωd

γ,τ has full Lebesgue
measure. A non-resonant vector that is not Diophantine is called a Liouville vector.

3 A brief reminder on Birkhoff normal forms and KAM
stability.

3.1 Birkhoff normal forms.

We say that H as in (∗) has a normal form NH , if NH is a formal power series in r

(possibly with 0 radius of convergence) and there exists a formal power series

f ∈ Cω(Tdρ)[[r]] ∩ O2(r)

such that
H(θ, r + ∂θf(θ, r)) = NH(r).

If a normal form exists at a QP torus (non-resonant by our definition) it is unique. It is
then called the Birkhoff normal form of H at the QP torus (we refer to [Bir66] or [SM95]
for more details on Birkhoff normal forms). A classical result is that when H is as in (∗)
and ω is Diophantine, the normal form exists and is unique.

3.2 Non-degenerate Birkhoff Normal Forms and KAM stability.

A QP torus of a Hamiltonian system is said to be KAM stable if it is accumulated by a
positive measure of QP tori, and if the set of these tori has Lebesgue density one at the
original torus. We say that a formal power series NH is non-degenerate or non-planar
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if there does not exist any vector γ such that for every r in some neighborhood of T0,
〈∇NH(r), γ〉 = 0. The following was proven in [EFK15].

Theorem A. If NH exists, is unique and is non-degenerate, then T0 is KAM stable. In
particular, this is the case if ω is Diophantine and if NH is non degenerate.

The condition that NH is non-degenerate is essentially equivalent to Rüssmann’s non-
degeneracy condition that guarantees the survival of a QP torus of an integrable system
under small perturbations (see [Rüs01, XYQ97]). In [EFK15], it was shown to be a suffi-
cient condition for KAM stability in the singular perturbation problem that appears in the
study of the stability of a QP torus.

3.3 On the convergence of the BNF

We know that a convergent symplectic coordinate change that yields the BNF exists if and
only ifH is integrable [Ito89] (see also [Vey78, Zun05]). It was known to Poincaré that for
“typical” (in a sense we would call today generic) H , fH will be divergent. Siegel [Sie54]
proved the same thing in a neighborhood of an elliptic equilibrium with another, and
stronger, notion of “typical”. However, this does not solve the question of the convergence
of the BNF itself, that is always defined when ω is Diophantine. When the radius of
convergence of the formal power series NH(·) is 0, we say that the BNF diverges.
For example, the following questions were asked by Eliasson [Eli89, Eli96, EFK15]:

(i) can NH be divergent?

(ii) if H is non integrable, can NH be convergent?

A result of Perez-Marco [PM03] states for any fixed vector ω, that if NH is divergent for
some H as in (∗), then NH is divergent for “typical” (i.e. except for a pluri-polar set) H .
In [Fay18], it was shown that for any ω ∈ Rd, d ≥ 4 such that ω1ω2 < 0 there exists
a real entire Hamiltonian H : R2d → R such that the origin is an elliptic equilibrium
with frequency ω and such that the BNF of H at the origin is divergent. This construction
can readily be extended to the case of QP tori as in (∗). It follows from [PM03] that for
any Diophantine ω ∈ Rd, d ≥ 4, the BNF at a QP torus of frequency ω is generically
divergent.
A contrario, one of the results that will be obtained here is an answer to (ii) with an
example of a real entire Hamiltonian as in (∗), with arbitrary non-resonant frequency
ω ∈ R3, such that the BNF at T0 exists and is convergent but T0 is Lyapunov unstable and
thus H is non integrable.
Extending this result to elliptic fixed points is unfortunately not readily available because
the action angle coordinates are singular at the origin, and the extension of real analytic



6 Gerard Farré, Bassam Fayad

unstable constructions in this direction (from tori to points) is a challenging problem. For
instance, it is not known how to adapt the Approximation by Conjugations construction
method on the disc to the real analytic category (see [FK18] for a discussion on this topic).

4 Statement of the main results

4.1 Lyapunov stability

A closed invariant set of an autonomous Hamiltonian flow is said to be Lyapunov stable or
topologically stable if all nearby orbits remain close to it for all forward time. R. Douady
gave in [Dou88] examples of smooth Hamiltonians having a Lyapunov unstable QP torus.
Douady’s examples can have any chosen Birkhoff Normal Form at the origin provided its
Hessian at the fixed point is non-degenerate. Douady’s examples are modelled on the
Arnold diffusion mechanism through chains of heteroclinic intersections between lower
dimensional partially hyperbolic invariant tori that accumulate towards the origin. The
construction consists of a countable number of compactly supported perturbations of a
completely integrable flow, and as such was carried out only in the C∞ category. Exam-
ples of smooth Hamiltonians having a Lyapunov unstable invariant quasi-periodic torus
with a degenerate Birkhoff normal form were obtained in [EFK15, FS17].
Topological instability of a QP torus is conjectured to hold for generic systems in 3 or
more degrees of freedom. In fact, it was conjectured by Arnol’d that a “general” Hamilto-
nian should have a dense orbit on a “general” energy surface [Arn63]. A great amount of
work has been dedicated to proving this conjecture (giving a precise meaning to the word
“general”), but the picture is not yet completely clear, especially when it comes to real
analytic Hamiltonians (see for example [BKZ16] and references therein). For instance,
not a single example was known up to now of a real analytic Hamiltonian that has a Lya-
punov unstable QP torus. It was shown in [Fay18] that for any ω ∈ Rd, d ≥ 4, such that
not all its coordinates are of the same sign, there exists a real entire Hamiltonian such that
the origin is a Lyapunov unstable elliptic equilibrium with frequency ω. As we discussed
earlier, the construction of [Fay18] can readily be extended to the case of QP tori and the
condition on the sign of the coordinates of ω can be dropped. However, all the examples
that one obtains following the method of [Fay18] would have a divergent BNF.
The constructions in this work are essentially different and their BNF will be convergent.
Furthermore, we can choose the Birkhoff normal form to be either

N̂(r) := 〈ω̂(rd), r〉 with ω̂(s) := (ω1 + s, ω2, . . . , ωd), or (4.1)

N̄(r) := 〈ω̄(rd), r〉 with ω̄(s) := (ω1 + s, ω2 + s2, . . . , ωd−1 + sd−1, ωd). (4.2)

For sufficiently Liouville ω we will have some constructions with NH = N where

N(r) := 〈ω, r〉. (4.3)
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Theorem B. For any ω ∈ Rd, d ≥ 3, there exists a real entire Hamiltonian H as in (∗)
such that the QP torus T0 is Lyapunov unstable.
Moreover, the BNF of H at T0 can be chosen to be N̂(·) or N̄(·). In the latter case, if ω is
Diophantine, then T0 is KAM stable.

While constructing these examples of Lyapunov unstable QP tori, we clarify several ques-
tions regarding the stability of QP motion in the analytic context. Namely,

i) Lyapunov instability of T0 can be obtained for arbitrary frequencies ω ∈ Rd.

ii) The examples of Theorem B have a convergent BNF, thus answering positively the
question of Eliasson mentioned in Section B (ii) (see [Eli89, Eli96, EFK15]). The
same question in the case of elliptic fixed points is still open (see [Fay18, FK18] for
a discussion of this problem).

iii) The BNF can be chosen to be a very simple polynomial as in (4.1). This shows that
Rüssmann’s local integrability result for Diophantine QP tori [Rüs67], that holds
true when the BNF is completely degenerate (equal to a function of 〈ω, r〉), does
not hold for a simple highly degenerate form as N̂ .

iv) The Birkhoff normal form N̄ is non-degenerate in the sense of Rüssmann. Hence,
Theorem A proves in this case the coexistence of diffusion and KAM stability.

Remark 1. Note that Herman conjectured that for Diophantine frequencies T0 is always
KAM stable in the analytic category (see Section 4.4 below). If the conjecture is true then
even the examples with BNF N̂ should also have coexistence of Lyapunov instability and
KAM stability.

4.2 Effective stability

An important question in classical mechanics is to estimate the escape rate of orbits start-
ing in small neighborhoods of invariant objects such as fixed points or invariant tori. In
our context we introduce, for a given H as in (∗) and T0,

T (r) := inf
θ∈Td,|r′|≤r

{
t > 0 | dist(Φt

H(θ, r′), T0) =
1

r

}
. (4.4)

If T (r)2 exists for all r > 0 sufficiently small then we say that T0 is diffusive. Based on the
Diophantine exponent τ , exponential lower bounds for T (r) can be derived from estimates

2We apologize for the double use of the notation r as a scalar in definition (4.4) and previously as a
variable in Rd.
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on the remainder terms in the BNF reductions. It follows from [JV97, MP10, PW94] that
for H as in (∗), ω ∈ Ωd

γ,τ , there exist positive constants C,R such that for r < R

T (r) ≥ r−1exp(Cr−(τ+1)−1

). (4.5)

One aim of this paper is to prove the optimality of the exponent in this bound for a certain
class of Diophantine frequencies (see Corollary A). Many results on optimal Arnold dif-
fusion times in smooth, Gevrey and analytic context exist in the literature, that sometimes
relate the speed of diffusion to arithmetic conditions. We refer to [MS02, LM05, Zha11,
KLS14, FMS17] and references therein.

Remark 2. The usual definition of T in (4.4) requires diffusion up to distance 2r instead of
r−1, and this is the original context in which (4.5) was proved. In our case, the definition
of diffusiveness with r−1 instead of 2r does not change the order of magnitude of the
diffusion time and has the advantage of implying Lyapunov instability of a diffusive torus
T0.

Our main result on diffusion time is stated for vectors ω = (ω̃, ωd), where d ≥ 3 and
ω̃ ∈ Rd−1 does not belong to some Diophantine class.

Theorem C. For any τ > 0, C > 0 and any ω = (ω̃, ωd) ∈ Rd, where d ≥ 3 with
ω̃ /∈ Ωd−1

τ , there is a real analytic Hamiltonian H as in (∗) such that T0 is diffusive and
T (rn) ≤ exp(Cr

−(τ+1)−1

n ) for a sequence rn → 0. Moreover, the BNF at T0 is given by
N̂(·).

The BNF of the Hamiltonians that we construct in Theorem C must be very special. In-
deed, it was proven in [MG95, BFN17] that a QP torus with Diophantine frequency is
generically and prevalently doubly exponentially stable. More precisely, it was shown
that a point that starts at distance r from the torus remains within distance 2r close to it
for an interval of time which is larger than exp(exp(Cr−(τ+1)−1

)). The proof of double
exponential stability is based on a combination of the estimates on the BNF and Nekhoro-
shev stability theory. It is worth mentioning that analogous results have been proved in the
context of elliptic fixed points as well, both for exponential and double exponential sta-
bility (see [GDF+89], [BFN20]). To show how Theorem C allows to approach the known
lower bound on the diffusion speed T (r) for some Diophantine vectors we will need the
following simple arithmetic lemma.

Lemma 1. For any τ > d− 1 and ω̃ ∈ Ωd−1
τ , a.e ωd ∈ R satisfies ω := (ω̃, ωd) ∈ Ωd

τ .

Hence, if we pick ω̃ ∈ Ωd−1
τ \Ωd−1

τ−ε, it is possible to “extend” it into ω = (ω̃, ωd) for some
ωd such that ω ∈ Ωd

τ .
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Corollary A. For any τ > d − 1, ε > 0 there is a real analytic Hamiltonian H as in
(∗) with ω ∈ Ωd

τ such that T0 is diffusive and T (rn) ≤ exp(Cr
−(τ+1−ε)−1

n ) for a sequence
rn → 0.

Then due to Lemma 1 the proof of Corollary A becomes a direct application of Theorem
C. The proof of Lemma 1 is elementary. We sketch it for completeness.

Proof of Lemma 1. Let I be an arbitrary bounded interval in R. We denote by Dω,τ,γ the
set of ωd ∈ I satisfying (ω̃, ωd) ∈ Ωd

τ,γ . For any k = (k1, . . . , kd) ∈ Zd, k 6= 0, consider
the set

Aωτ,γ,k =

{
ωd ∈ I | |〈k, ω〉| <

γ

‖k‖τ

}
.

Since ω̃ ∈ Ωd−1
τ , we have that

I \Dω,τ,γ ⊂
⋃

k∈Zd,kd 6=0

Aωτ,γ,k.

Hence, for some constant Cd > 0 we get that

µ(I \Dω,τ,γ) ≤
∑

k̃∈Zd−1

∑
0<|kd|<‖k̃‖

µ(Aωτ,γ,k) +
∑
|kd|>0

∑
‖k̃‖≤|kd|

µ(Aωτ,γ,k)

≤ 2γ
∑

k̃∈Zd−1

∑
0<|kd|<‖k̃‖

1

|kd|‖k̃‖τ
+ 2γ

∑
|kd|>0

∑
‖k̃‖≤|kd|

1

|kd|τ+1

≤ Cdγ
∑

k̃∈Zd−1\{0}

ln‖k̃‖
‖k̃‖τ

+ Cdγ
∑
|kd|>0

|kd|d−1

|kd|τ+1
= O(γ).

Therefore µ
(
I \
⋃
γ>0Dτ,γ,ω

)
= 0.

Liouville frequencies. For elliptic fixed points with non resonant frequencies of smooth
Hamiltonians, the existence of the BNF up to arbitrary order implies that the diffusion
time from small r-neighborhoods of the origin cannot be faster than arbitrarily high pow-
ers in r−1. For sufficiently Liouville frequencies, finite order BNFs may be not well de-
fined at an invariant torus, even for real analytic Hamiltonians. In this case, diffusion time
may be much faster than in the case of elliptic equilibria. We will work with non resonant
frequencies ω = (ω̃, ωd) ∈ Rd, d ≥ 3 where ω̃ ∈ Rd−1 is such that there is a sequence
{k̄j} ⊂ Zd−1 satisfying

lim
j→∞

ln|〈ω̃, k̄j〉|
‖k̄j‖

= −∞. (4.6)

Theorem D. For any ω ∈ Rd satisfying (4.6):
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a) There exists a real entire Hamiltonian H as in (∗) with the BNF of H at T0 given by
N(·) = 〈ω, ·〉, and such that T0 is diffusive with T (r) ≤ r−nn for a sequence rn → 0.

b) There exists a real entire Hamiltonian H as in (∗) such that T0 is diffusive and T (rn) ≤
r−4
n for a sequence rn → 0.

Remark 3. Notice that the difference between the two results in Theorem D is that having
a faster diffusion in b) comes with the price of not having a well defined BNF as we do
have in a). When, in Theorem 3, we will state the explicit constructions for both a) and
b), we will explain in Remark 6 the reason behind the slowing down of the diffusion in a).

Remark 4. It is easy to see from our proof that if we just ask to diffuse from an initial
condition ‖zn‖ = rn to n and not r−1

n , then it is possible to replace the upper bound r−4
n of

case b) by r−2−ε
n , with ε > 0 arbitrarily small. Moreover, if we assume stronger Liouville

conditions on ω̃ we can even get diffusion times that are even closer to r−2
n , which is

clearly a lower bound for diffusion times for H as in (∗).

4.3 Coexistence of diffusion and integrability

A natural question in Hamiltonian dynamics is whether a real analytic Hamiltonian system
can be integrable on an open set of the phase space and not completely integrable.
One aim of this paper is to show that such examples do exist. We actually construct real
analytic Hamiltonians that are analytically integrable on half of the phase space while all
orbits on the other side accumulate at infinity. We will work with non resonant frequencies
satisfying (4.6). The main result is the following.

Theorem E. For any ω ∈ Rd satisfying (4.6) there exists a real entire Hamiltonian H as
in (∗) such that:

i) There exists a real analytic symplectic diffeomorphism Ψ from M− = Td×Rd−1×
(−∞, 0) to itself, such that on M− we have H ◦Ψ = H0 := 〈ω, r〉.

ii) For any (θ, r) ∈ Td × Rd−1 × (0,∞), we have lim supt→∞ |Φt
H(θ, r)| =∞.

The BNF of H at T0 is given by N(·) = 〈ω, ·〉.

The question of coexistence of integrability and diffusion for analytic systems remains
completely open if integrability is required to be non-degenerate (twist integrability for
example). With a similar construction to that of Theorem E, we can obtain the following
examples.
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Theorem F. For any ω ∈ Rd satisfying (4.6), for any l ∈ N∗, there exists a real entire
Hamiltonian H as in (∗) and a symplectic diffeomorphism Ψ on Td × Rd, that is of class
C l but not of class C l+1, such that H ◦ Ψ = H0 := 〈ω, r〉. The BNF of H at T0 is given
by N(·) = 〈ω, ·〉.

Observe that the main ingredient in the proof of Theorem F (see below the statement and
proof of Theorem 5 that gives the explicit construction for Theorem F) is a fine tuning
of the effect of the almost resonances of ω on the instabilities of a Hamiltonian as in 1.1.
This fine tuning has the effect of maintaining linearizability in class C l but destroying
it in class C l+1. An analogy can be seen with Sternberg’s linearization theorem near a
hyperbolic fixed point that gives C l regularity of the linearization provided a sufficient
number, related to l, of non-resonance conditions hold [Ste58].

4.4 KAM stability

It was conjectured by Herman (see [Her98]) that, without any non-degeneracy condition,
a Diophantine KAM torus of an analytic Hamiltonian is accumulated by a set of positive
measure of KAM tori. Herman’s conjecture is known to be true in two degrees of freedom
[Rüs67], but remains open in general, with some progress being made in [EFK15], where
it is shown that an analytic invariant torus T0 with Diophantine frequency ω is never
isolated from other KAM tori.
Herman’s conjecture on KAM stability of a Diophantine equilibrium or QP torus is known
to be true in the smooth category for d = 2 due to Herman’s last geometric theorem (see
[FK09]). Counter-examples to the conjecture in C∞ and with arbitrary frequencies were
build in [EFK15] for d ≥ 4, and later in [FS17] for d = 3.
One aim of this work is to build, starting from 3 degrees of freedom and for sufficiently
Liouville frequencies ω, real analytic Hamiltonians that have QP tori with frequency ω
that are not accumulated by a set of positive measure of KAM tori. This shows that some
arithmetic condition in Herman’s conjecture is indeed necessary.

Theorem G. For any ω ∈ Rd, d ≥ 3 satisfying (4.6) there exists a real entire Hamiltonian
H as in (∗) such that for any (θ, r) ∈ Td × Rd with rd 6= 0,

lim sup
t→∞
|Φt

H(θ, r)| =∞.

The BNF of H at T0 is given by N(·) = 〈ω, ·〉.

Note that Bounemoura proved in [Bou16] that an invariant QP torus is KAM-stable under
the hypothesis that the Hamiltonian is sufficiently smooth and has a non-degenerate Hes-
sian matrix of its BNF of degree 2 (that part of the BNF is defined for all non-resonant
frequencies). In our example, the entire BNF can be defined and is in fact equal to 〈ω, r〉.
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Theorem G thus shows that Rüssmann’s local integrability result of Diophantine QP tori
with a degenerate BNF cannot be generalized to the case of sufficiently Liouville vectors.

Remark 5. In our construction T0 is not isolated, the hyperplane rd = 0 is foliated by
invariant tori with frequency ω. In [EFK15] it was proved that Diophantine analytic QP
tori are always accumulated by other QP tori. The question of the existence of Liouville
QP tori that are completely isolated is still open, even for smooth Hamiltonians.

5 Constructions

Given ω ∈ Rd, all our examples will have the form:

H = lim
n→∞

Hn, Hn(θ, r) = 〈ω(s), r〉 −
n∑
j=2

φj(s) sin(2π〈kj, θ̃〉). (5.1)

We can now give in Theorems 1–6 the specific forms of the Hamiltonians that will satisfy
Theorems B–G. Theorem B can be rewritten as follows.

Theorem 1. Let ω ∈ Rd. Choosing ω(·) to be ω̂(·) (or ω̄(·)), there exists a sequence
{kj} ⊂ Zd−1, such that the Hamiltonian in (5.1) with φj(s) = sje−j‖kj‖ satisfies the first
(or second) conclusion of Theorem B.

Although Theorem 1 holds for all frequencies its proof depends on whether the frequency
is resonant or not and also on the form of ω(·). Different sequences must be constructed
in the proof for the different cases.
Consider next ω = (ω̃, ωd) with ω̃ /∈ Ωd−1

τ . Then up to a permutation of indices for ω
Theorem C can be without loss of generality restated as follows.

Theorem 2. For any C, τ > 0, there exists a sequence {kj} ⊂ Zd−1 such that for φj(s) =

sje−
C
2
‖kj‖ and ω(·) = ω̂(·) the Hamiltonian in (5.1) belongs to Cω

ρ , ρ = C
8πd

, and satisfies
the conclusion of Theorem C.

We pass now to the purely Liouville constructions of Theorems D–G.

Theorem 3. For any ω ∈ Rd, d ≥ 3 satisfying (4.6), there exists a sequence {kj} ⊂ Zd−1

such that:
a) If φj(s) = sje−j‖kj‖ and ω(·) ≡ ω then the Hamiltonian in (5.1) satisfies a) of Theorem
D.

b) If φj(s) = s2e−j‖kj‖ and ω(·) ≡ ω then the Hamiltonian in (5.1) satisfies b) of Theorem
D.
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Remark 6. We will see in Section 6.2 why taking powers sj in φj(s) as in a) is required
to guarantee that the BNF of H at T0 is given by N(·) = 〈ω, ·〉. Of course, this has the
inconvenient of slowing down the diffusion compared to the definition of φj(s) with an s2

as in b).

Theorem 4. For any ω ∈ Rd, d ≥ 3 satisfying (4.6), there exists a sequence {kj} ⊂ Zd−1

such that if φj(s) = 〈ω̃, kj〉sje‖kj‖s and ω(·) ≡ ω then the Hamiltonian in (5.1) satisfies
the conclusion of Theorem E.

We also have

Theorem 5. For any ω ∈ Rd, d ≥ 3 satisfying (4.6), there exists a sequence {kj} ⊂ Zd−1

such that if φj(s) = 〈ω̃, kj〉sj‖kj‖−l−1j−2 and ω(·) ≡ ω then the Hamiltonian in (5.1)
satisfies the conclusion of Theorem F.

A simple modification of the construction in Theorem 4 gives a real entire Hamiltonian
with a QP torus of Liouville frequency that is not accumulated by a positive measure set
of KAM tori.

Theorem 6. For any ω ∈ Rd, d ≥ 3 satisfying (4.6), there exists a sequence {kj} ⊂ Zd−1

such that if φj(s) = 〈ω̃, kj〉sje‖kj‖s
2

and ω(·) ≡ ω then the Hamiltonian in (5.1) satisfies
the conclusion of Theorem G.

6 Proofs

For convenience of the presentation we summarize the choices made in the various con-
structions of Theorems 1–6. Recall that Hn are constructed as in (5.1), with {kj} ⊂ Zd−1

a strictly increasing sequence and the following possibilities for φj :

i) ω(·) : R→ Rd is either ω̂ or ω̄ and φj(s) = sje−j‖kj‖,

ii) ω(·) : R→ Rd is ω̂ and φj(s) = sje−
C
2
‖kj‖, for some C > 0,

iii) ω(·) ≡ ω and φj(s) = sje−j‖kj‖,

iv) ω(·) ≡ ω and φj(s) = s2e−j‖kj‖,

v) ω(·) ≡ ω and φj(s) = 〈ω̃, kj〉sje‖kj‖s,

vi) ω(·) ≡ ω and φj(s) = 〈ω̃, kj〉sj‖kj‖−l−1j−2,

vii) ω(·) ≡ ω and φj(s) = 〈ω̃, kj〉sje‖kj‖s
2 .
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Let us now explain how the sequences {kj} will be chosen in the different cases.
For cases iii)–vii), {kj} will be a fast growing subsequence of the sequence {k̄j} satis-
fying (4.6). For cases i) and ii) we will use the following elementary fact.

Lemma 2. For any ω ∈ Rd, d ≥ 3, assume ω(·) satisfies either (4.1) or (4.2). There
exists a sequence {sj} ⊂ R and an increasing sequence in norm {kj} ⊂ Zd−1 such that

a) limj→∞ |sj| = 0,

b) limj→∞ ‖kj‖ =∞,

c) 〈ω̃(sj), kj〉 = 0.

In case ω̃ /∈ Ωd−1
τ and if ω(·) satisfies (4.1), we can assume without loss of generality that

‖kj‖ < |sj|−(τ+1)−1

. (6.1)

Proof. Let us denote ω′ := (ω1, ω2) (we only consider the two first components of ω). We
will divide the proof according to whether ω′ is resonant or non-resonant. We will only
treat the case where ω(·) is as in (4.2), the case (4.1) being similar albeit easier.

a) Assume first that ω is such that ω′ is non-resonant, ω(·) as in (4.2). By Dirichlet’s
Theorem there exists C > 0 and an increasing sequence in norm {k′i} ⊂ Z2, k′i =

(ki,1, ki,2) such that

|〈ω′, k′i〉| <
C

‖k′i‖
. (6.2)

Consider ki := (ki,1, ki,2, 0, . . . , 0). Now 〈ω̃(si), ki〉 = 0 is equivalent to

ki,2s
2
i + ki,1si + 〈ω′, k′i〉 = 0, (6.3)

which is easily seen to have a solution si → 0 as required.

b) Assume now that ω is such that ω′ is resonant, ω(·) as in (4.2). There exists m =

(m1,m2) such that 〈m,ω′〉 = 0. Then for an increasing sequence {ai} ⊂ N we
define

ki := (aim1 + 1, aim2, 0, . . . , 0) ∈ Zd−1.

The equation 〈ω̃(si), ki〉 = 0 is then equivalent to

siki,1 + s2
i ki,2 = −〈ω̃, ki〉 = −ω1,

which clearly has a solution si → 0 as required.

In the non-resonant case, and ω(·) as in (4.1), equation (6.3) becomes ki,1si+〈ω′, k′i〉 = 0,
solved by si := −〈ω̃, ki〉/ki,1. If ω̃ /∈ Ωd−1

τ , we can assume without loss of generality that
|〈ω̃, ki〉| < ‖ki‖−τ and |ki,1| = ‖ki‖. Thus (6.1) holds.
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6.1 Convergence

The following settles the convergence question in Theorems 1–6.

Proposition 1. In cases i), iii)–vii) the convergence Hn → H holds in the Cω
ρ topology

for any ρ > 0, hence the limit H is real entire. In case ii), the convergence holds in Cω
ρ̄

for ρ̄ = C
8πd

, hence the limit H ∈ Cω
ρ̄ .

Proof. Cases i)–iv). We treat the case i), the other cases being similar. According to (5.1),
we have that for any ∆, ρ > 0, there exists N ∈ N such that for all m > n ≥ N

‖Hm −Hn‖∆,ρ ≤
m∑

j=n+1

(∆ + ρ)je−j‖kj‖‖sin(2π〈kj, θ̃〉)‖ρ

<
∞∑
j=N

(∆ + ρ)je−‖kj‖(j−2πdρ).

Therefore {Hn} is a Cauchy sequence in Cω
∆,ρ. Since ∆, ρ > 0 are arbitrary, the limit H

is a real entire function.

Cases v)–vii). We treat case v), the other cases being similar. From condition (4.6), there
exists a sequence uj →∞ such that

ln|〈ω̃, kj〉| ≤ −uj‖kj‖.

For any ∆, ρ > 0, for all ε > 0 there exists N ∈ N such that for all m > n ≥ N

‖Hm −Hn‖∆,ρ ≤
m∑

j=n+1

(∆ + ρ)je‖kj‖(∆+(2πd+1)ρ−uj) < ε.

Therefore {Hn} is a Cauchy sequence in Cω
∆,ρ. Since ∆, ρ > 0 are arbitrary, the limit H

is a real entire function.

6.2 Birkhoff normal forms

Proposition 2. In Theorems 1–6, and except for Theorem 3 b), the BNF at T0 is defined
and equals 〈ω(rd), r〉.

Proof. Define Ψn to be the canonical transformations obtained via the generating functions

Sn(Θ, r) = 〈Θ, r〉 − 1

2π

n∑
j=2

〈ω̃(s), kj〉−1φj(s) cos(2π〈kj, Θ̃〉), (6.4)
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which is a real analytic function near the origin. More explicitly for all n ∈ N we obtain
the change of variables (Θn, Rn) = Ψn(θ, r) given by the equations

R̃n =
∂Sn(Θn, r)

∂Θ̃n

= r̃ +
∑n

j=2 kj〈ω̃(s), kj〉−1φj(s) sin(2π〈kj, Θ̃n〉),

Rd,n =
∂Sn(Θn, r)

∂Θd,n

= s,

θ̃ =
∂Sn(Θn, r)

∂r̃
= Θ̃n,

θd =
∂Sn(Θn, r)

∂s
= Θd,n −

1

2π

∑n
j=2 ∂s (〈ω̃(s), kj〉−1φj(s)) cos(2π〈kj, Θ̃n〉).

Thus
Hn = H0 ◦Ψn,

where H0 = 〈ω(rd), r〉. In fact, we can define in a formal way

S∞(Θ, r) = 〈Θ, r〉 − 1

2π

∞∑
j=2

〈ω̃(s), kj〉−1φj(s) cos(2π〈kj, Θ̃〉),

which formally conjugates the limit Hamiltonian H to H0. We only need to verify that

f =
1

2π

∞∑
j=2

〈ω̃(s), kj〉−1φj(s) cos(2π〈kj, Θ̃〉) ∈ Cω(Tdρ)[[r]] ∩ O(r2).

When φj(s) = cjs
j as in Theorems 1, 2, and ω(·) = ω̂(·), the coefficient of sp in the

power series of f is the trigonometric polynomial3 given by

1

2π

∑
l≥0,j≥2

l+j=p

cj
〈kj, ω̃〉

(
− kj,1
〈kj, ω̃〉

)l
cos(2π〈kj, Θ̃〉).

In the other situations, for example when ω(·) ≡ ω and φj(s) = 〈ω̃, kj〉sje‖kj‖s as in The-
orem 4, then the coefficient of sp in the formal power series of S∞(Θ, r) is the trigono-
metric polynomial given by

1

2π

∑
l≥0,j≥2

l+j=p

‖kj‖l cos(2π〈kj, Θ̃〉).

The other cases are similar.

We now consider the cases of Theorems 4 and 5 where the conjugacies to the degenerate
BNF 〈ω, r〉 do converge.

3 This is exactly where the increasing powers sj in the definition of φj play a decisive role in controlling
the Birkhoff Normal Form at T0.
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Proposition 3. In case v), the map Ψ = lim Ψn with Ψn as in (6.4) is well defined on
M− = Td × Rd−1 × R− and is a real analytic symplectic diffeomorphism from M− to
itself.
In case vi), the map Ψ = lim Ψn with Ψn as in (6.4) is well defined on M = Td×Rd and
is a diffeomorphism from M to itself that is of class C l but not of class C l+1.

Proof. We start with case v). From the definition (6.4) we have that Ψn is generated by

Sn(Θ, r) = 〈Θ, r〉 − 1

2π

∑
2≤j≤n

sje‖kj‖s cos(2π〈kj, Θ̃〉),

that preserves for every ρ > 0 the domain M−
ρ = Td ×Rd−1 × (−∞,−ρ). Moreover, Sn

converges in Cω
ρ

100
on M−

ρ . Hence Ψn defines a real analytic symplectic diffeomorphism
on every M−

ρ , ρ > 0 (we assume k2 is sufficiently large and {kj} is fast growing).
We treat now case vi). In this case Ψn is generated by

Sn(Θ, r) = 〈Θ, r〉 − 1

2π

∑
2≤j≤n

sj‖kj‖−l−1j−2 cos(2π〈kj, Θ̃〉),

and it is clear that the limit Ψ = lim Ψn is a diffeomorphism of M of class C l but not of
class C l+1.

Remark 7. In principle, it should be possible to use our constructions to obtain examples
that are Lyapunov stable but not KAM stable. A possible approach would be to replace
the choice of φj in vi) by φj(s) = 〈ω̃, kj〉sjbj , with |bj| ≤ 1 chosen such that the resulting
Ψn forms a sequence of diffeomorphisms of M such that |π2(Ψn(θ, r))| ≤ 10|r| for all n
while Ψn diverges in the C0 topology in a way that guarantees the absence of invariant
tori besides the ones at s = 0.

6.3 Fast approximations

Let us denote by Φt
n(·) the flow ofHn. It is clear that by choosing {kn} to grow sufficiently

fast, one can guarantee that the flow of H will be very close to the flow of Hn during very
long times. Thus, it is convenient to give finite time versions of all the properties required
in Theorems 1–6 that we start by checking for the flow Φt

n(·). For fixed C, τ > 0, let us
define the following conditions:

(P1
n) There exists z ∈ Td × Rd with ‖z‖ ≤ 1

n
and t > 0 s.t ‖Φt(z)‖ > n.

(P2
n) There exists z ∈ Td × Rd with ‖z‖ ≤ 1

n
and t ≤ exp(C‖z‖−(τ+1)−1

) satisfying
‖Φt(z)‖ > ‖z‖−1.
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(P3
n) There exists z ∈ Td × Rd with rn := ‖z‖ ≤ 1

n
and t ≤ r−2n

n satisfying ‖Φt(z)‖ >
‖z‖−1.

(P4
n) There exists z ∈ Td × Rd with rn := ‖z‖ ≤ 1

n
and t ≤ r−4

n satisfying ‖Φt(z)‖ >
‖z‖−1.

(P5
n) For all z ∈ Q+

n there exists t > 0 s.t ‖Φt(z)‖ > n, where Q+
n := Td× [−n, n]d−1×

[n−1, n].

(P6
n) For all z ∈ Qn there exists t > 0 s.t ‖Φt(z)‖ > n, where Qn := Td × [−n, n]d−1 ×

([−n,−n−1] ∪ [n−1, n]).

We will write the previous conditions with n =∞ to indicate that they hold for all n large
enough. All the proofs of Theorems 1–6 rely on the following Lemma.

Proposition 4. For any i ∈ {1, 2, 3, 4, 5, 6}, if k2, . . . , kn are chosen and (P in) is satisfied
by the flow ofHn, then if kn+1 is chosen sufficiently large the flow ofH also satisfies (P in).

Proof. It follows from the Gronwall inequalities that the conditions (P in) are open in the
C3 topology on the Hamiltonian. Hence, the lemma follows from the fact that ‖H −
Hn‖C3 → 0 as kn+1 →∞.

6.4 Diffusion at finite scales

We now verify the diffusion properties (P in) for the flows Φt
n(·) ofHn in the various cases.

Proposition 5. There exists a sequence {kn} ⊂ Zd−1 and N > 0 such that for all n ≥ N ,
the following holds:
In case i), Φn satisfies (P1

n).
In case ii), Φn satisfies (P2

n).
In case iii), Φn satisfies (P3

n).
In case iv), Φn satisfies (P4

n).
In case v), Φn satisfies (P5

n).
In case vii), Φn satisfies (P6

n).

Proof. We start with case i). Consider the initial condition z = (θ, r) with

θ = (0, . . . , 0, 0), r = (0, . . . , 0, sn), (6.5)

where {sn} is the corresponding sequence for {kn} in Lemma 2. We can assume |sn| ≤
n−1, which implies ‖z‖ ≤ n−1. It follows from the expression of the Hamiltonian Hn

that along the orbit of z we have ṡ = −∂Hn
∂Θd

= 0 and also ˙̃θ = ω̃n := ω̃(sn), hence
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from c) in Lemma 2 we have 〈kn, θ̃(t)〉 ≡ 0. Therefore the corresponding flow becomes
Φt
n(z) = (ω̃nt, θd(t), r̃(t), sn) with

r̃(t) = An(t) +Bn(t),

where
An(t) = 2πkns

n
ne
−n‖kn‖t,

Bn(t) =
∑

2≤j<n s
j
n

e−j‖kj‖

〈kj, ω̃n〉
kj sin(2π〈kj, ω̃n〉t).

Then since Bn(t) is bounded there exists t > 0 such that ‖r̃(t)‖ > n, which implies that
Φn satisfies (P1

n).
Consider now the case ii), where ω̃ /∈ Ωd−1

τ . For z as in (6.5), Φt
n is as above with

r̃(t) = An(t) +Bn(t),

where now
An(t) = 2πkns

n
ne
−C/2‖kn‖t,

Bn(t) =
∑

2≤j<n s
j
n

e−C/2‖kj‖

〈kj, ω̃n〉
kj sin(2π〈kj, ω̃n〉t).

Then if t := exp(C|sn|−(τ+1)−1
), we get from (6.1) that for n sufficiently large ‖An(t)‖ ≥

2|sn|−1. By considering {sj} to decrease fast enough, we can assume that

|〈kj, ω̃n〉| = |sj − sn||kj,1| > |sn|, 2 ≤ j < n,

and so ‖Bn(t)‖ < 1 as well. We conclude that ‖r̃(t)‖ > |sn|−1 = ‖z‖−1, which implies
that Φn satisfies (P2

n).
Consider case iii). We define z as in cases i) and ii) but with sn := e−n

2‖kn‖. The flow
becomes Φt

n(z) = (ω̃t, θd(t), r̃(t), sn) with

r̃(t) = An(t) +Bn(t),

where now

An(t) = snn
e−n‖kn‖

〈kn, ω̃〉
kn sin(2π〈kn, ω̃〉t),

Bn(t) =
∑

2≤j<n s
j
n

e−j‖kj‖

〈kj, ω̃〉
kj sin(2π〈kj, ω̃〉t).

We suppose as before that ‖kn‖ grows sufficiently fast to guarantee that ‖Bn(t)‖ < 1.
Also due to (4.6) we can assume that kn are chosen in such a way that |〈ω̃, kn〉| ≤ e−n

4‖kn‖.
Hence for t := s−2n

n = e2n3‖kn‖ and n big enough, | sin(2π〈kn, ω̃〉t)| > |〈kn, ω̃〉|t. There-
fore ‖r̃(t)‖ > s−1

n , which implies that Φn satisfies (P3
n).

The proof of case iv) follows exactly in the same way, with the same choice of sn and
the initial condition z, but with s2

n in place of snn and sjn in the expressions of An and Bn,
which allows to take t := s−4

n and obtain (P4
n) instead of (P3

n).
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We consider now case v). For any initial condition z = (θ, r), the flow of Hn satisfies
Φt
n(z) = (θ̃ + ω̃t, θd(t), r̃(t), s), where

r̃(t) = r̃ +
n∑
j=2

kjs
je‖kj‖s sin(2π〈kj, θ̃ + ω̃t〉)−

n∑
j=2

kjs
je‖kj‖s sin(2π〈kj, θ̃〉).

Notice that if we define τn := |〈kn, ω̃〉|−1 then there exists 0 < t < τn such that
|sin(2π〈kn, θ̃+ ω̃t〉)− sin(2π〈kn, θ̃〉)| = 1. Therefore by choosing {kn} increasing suffi-
ciently fast in norm we can impose that for all z ∈ Q+

n there exits t > 0 such that

‖r̃(t)‖ ≥
∣∣∣∣‖kn‖nj e‖kn‖/n −

n−1∑
j=2

nj‖kj‖en‖kj‖ − n
∣∣∣∣ > n.

Case vii) is exactly similar to case v) except for the fact that the exponent ‖kj‖s2 is
positive yields diffusion on all Qn instead of Q+

n .

6.5 Concluding the proofs

We can now finish the proofs of Theorems 1–6.

Proof of Theorem 1. The convergence of Hn was proved in Proposition 1. The charac-
terization of the BNF was proved in Proposition 2. The instability comes from the fact
that the flow of H satisfies (P1

∞), which follows from Propositions 4 and 5 (provided the
sequence {kj} is chosen to grow sufficiently fast). It is left to verify that if ω(s) = ω̄(s)

(and ω is diophantine) then T0 is KAM stable. From Theorem A, it suffices to see that
N̄ satisfies the Rüssmann non-degeneracy condition, namely that there does not exist any
vector γ 6= 0 such that for every r in some neighbourhood of T0

〈∇N̄(r), γ〉 = 0. (6.6)

In our case we have

∇N̄(r) = (ω1 + s, . . . , ωd−1 + sd−1, ωd +
d−1∑
l=1

rlls
l−1),

and it is readily seen that (6.6) forces γ to be zero. Hence N̄ is Rüssmann non-degenerate.
This finishes the proof of Theorem 1.

Proof of Theorem 2. The convergence of Hn was proved in Proposition 1. The character-
ization of the BNF was proved in Proposition 2. The upper bound on the diffusion times
comes from the fact that the flow of H satisfies (P2

∞), which follows from Propositions 4
and 5 (provided the sequence {kj} is chosen to grow sufficiently fast).



Instabilities of quasi-periodic tori 21

Proof of Theorem 3. The convergence of Hn was proved in Proposition 1. The character-
ization of the BNF for part a) was proved in Proposition 2. The estimate on the diffusion
times comes from the flow of H satisfying (P3

∞) or (P4
∞), that follow as in the proof of

Theorem 2 from Propositions 4 and 5.

Proof of Theorem 4. The convergence of Hn was proved in Proposition 1. The character-
ization of the BNF was proved in Proposition 2. The diffusion for rd > 0 comes from the
flow of H satisfying (P5

∞), which holds again due to Propositions 4 and 5. The integra-
bility on M− was proved in Proposition 3.

Proof of Theorem 5. The convergence of Hn was proved in Proposition 1. The character-
ization of the BNF was proved in Proposition 2. The C l and not C l+1 integrability was
proved in Proposition 3.

Proof of Theorem 6. The convergence of Hn was proved in Proposition 1. The character-
ization of the BNF was proved in Proposition 2. The diffusion for rd 6= 0 comes from the
flow of H satisfying (P6

∞), again by Propositions 4 and 5.
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