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Abstract

A firm that sells a non perishable product considers intertemporal price discrimination in the

objective of maximizing its long-run average revenue. We consider a general model of patient cus-

tomers with changing valuations. Arriving customers wait for a random but bounded amount of

time and purchase the product whenever its price falls below their valuation, which varies following

a stochastic process. We show the optimality of a class of cyclic strategies and obtain an algorithm

that yields them. When the pace of intertemporal pricing is constrained to be comparable to the

upper bound on customers patience levels, we have a good control on the cycle length and on

the structure of the optimizing cyclic policies. The results hold also for forward looking strate-

gic customers as well as under an alternative objective of maximizing infinite horizon discounted

revenue.

We cast our results in a general framework of optimizing the long-run average revenue for a

class of revenue functions that we call weakly coupled, in which the revenue per period depends

on a finite number of neighboring prices. We analyze in detail the case of Markovian valuations

where we can obtain closed form formulations of the revenue function and some refinements of our

main results. We also extend our results to the case of patience levels that are bounded only in

expectation.

1 Introduction

Typically, customers try to estimate the value they will generate from a product and accordingly

decide whether to purchase or not. This valuation exercise is quite complex as it could depend on

many external factors and often done based on incomplete information on the product. As a result, it

is not uncommon to see customers changing repeatedly their willingness-to-pay, sometimes drastically,

before eventually making the purchase or deciding to drop it completely.

When customers become interested in a product, they often go through an evaluation phase, where

they gather information about the product and reach a first estimate of their willingness-to-pay or

valuation. They move next to the purchasing decision phase. Some customers would instantly purchase
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the product if they find the current price adequate. Others simply delay their decision aiming for a

better match in the future. Those customers will then be exposed to additional information, be it

about the product or their personal state, that could affect their valuation and thus their purchasing

decision. It is this latter phase that we are interested in modeling and analyzing in this work.

Consider for instance a customer who is looking into buying a new camera. The customer has

an estimate of her willingness-to-pay based on a previous experience she had with that brand, some

information gathered online, and the urgency to get the product. Given this valuation, she can decide

to buy the camera or delay the purchase depending on how attractive the price is and whether she is

expecting, say, a better deal in the near future. If she delays the purchase, she might indeed witness

changes in the prices but possibly also in her own valuation of the product. These changes in the

valuation could be due to a number of factors including, new product/customers-reviews highlighting

a specific feature or a flaw, marketing campaigns (e.g., targeted online advertising), availability and

prices of other competing products, and so on. The valuation can also be affected by the customer’s

personal information: e.g., a customer decides to go on an unplanned vacation and for whom getting

the camera becomes more valuable; another customer gets a bonus at work and can now allocate a

larger budget for the camera. All this information could be received sequentially feeding the decision

process and resulting in a dynamic update of the valuation.

Such behavior has been generally overlooked in the pricing literature where most often customers

are assumed to have a reservation price (possibly drawn from some given distribution) constant

throughout the purchasing process. In this work, we consider customers interested in purchasing

a product who see their valuations change through time. We try to shed some light on the impact

that such varying valuations have on the seller’s optimal pricing policy.

Intertemporal pricing is experienced in practice and often argued for as a way to price discriminate,

and to take advantage of customers heterogeneity, scarcity of capacity, and demand stochasticity. In

our case, we analyze this phenomenon in a specific context characterized by the following modeling

choices. We consider a setting where a non perishable product is being sold throughout an infinite

horizon during which the seller has committed to a sequence of prices. A continuous influx of heteroge-

nous customers get interested by the product and approach the seller at different times. They could

purchase on arrival or decide to remain in the system for a (random) period of time during which their

valuations change stochastically. We disregard any inventory and cost related issues and assume the

product is available throughout. The fact that the firm commits to future prices is in line with the

recent literature on intertemporal pricing with patient and/or heterogenous customers (see, ? ?, ?,

?, ? and ?). Customers’ heterogeneity is modeled through the dynamics of the stochastic valuation

process governing each arrival.

The type of questions we are interested in are whether, in this context, there is an opportunity for

price discrimination; and if there is one, how to go about characterizing it formally. We specifically

examine the optimality of cyclic policies and how numerically efficient these policies are, especially

since such cyclic policies have been proven to be optimal in similar settings in the literature.
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Our main contributions are the following.

1. We introduce a very general and innovative model that incorporates time-varying valuations in

a simple setting of intertemporal pricing for which we obtain structural results for the optimal

pricing strategies.

2. In the case where we bound customers lifespan in the system, we cast our results in a general

framework of optimizing the long-run average revenues for a class of revenue functions that we

call weakly coupled, in which the revenue per period depends on a finite number of neighboring

prices. Within this framework, we show the optimality of cyclic policies. We characterize such

solutions and present an algorithm to obtain them.

3. We introduce a control parameter M for the firm that measures the number of price-changes

that any customer may witness. Our algorithm yields the optimal pricing policies in polynomial

time in the number of prices available, but exponential in M . By constructing an example where

the optimal policy is cyclic, increasing and involves all but one of the available prices, we argue

that, in general, in such changing valuation setting, the exponential complexity is unlikely to be

reduced.

4. Our algorithm becomes fully relevant for small values of M . When customers can only see at

most two different prices (i.e. M = 1), we show that the pricing policy is either a fixed price

policy or cyclic and simple i.e. each price in the cycle is set only once for exactly a specified

amount of time.

5. We analyze in detail the case of Markovian valuations where we can obtain closed form for-

mulations of the revenue function and some refinements of our main results. Such Markovian

model paired with a simple intertemporal pricing setting allows us to argue that the complexity

of the problem can be traced primarily to the sole property of changing valuations. In realistic

Markovian models, we confirm numerically that taking into account the consumer’s changing

valuation behavior may have a major impact on the pricing policy that the firm should adopt.

In particular, overlooking such behavior can cause a sizable opportunity cost.

6. We establish the robustness of the optimality of cyclic policies by extending our results in three

important directions : i) patience levels bounded only in expectation; ii) forward looking or

strategic customers; iii) infinite horizon discounted revenue instead of long-run average revenue.

1.1 Literature Review

The literature on intertemporal pricing is quite extensive starting with the early work on durable

goods (e.g., ?, ?, ?, ?, ? and ?). The work of ?, ? and ? are among the first to argue that price

commitment policies in the presence of strategic customers are an effective way to exercise market

power. In their model, the firm faces a population of customers that is present in the system from the

3



start. In contrast, others (e.g., ?, ? and ?) consider a firm that sets dynamically its price and face

a continuous flux of strategic customers. The work of ? is the closest in this literature to our work.

Customers in this paper have two possible valuations of the product, Low and High, and they remain

in the system indefinitely until they purchase. Interestingly, ? show that the optimal pricing policy is

both cyclic and decreasing.

More recently, the operations management literature have looked at different variants of intertem-

poral pricing models (see, the recent reviews of ? and ?). Often in this literature, customers are

myopic and impatient. They arrive through time endowed each with a valuation drawn from a given

distribution. Customers purchase on arrival if the price is higher than their valuation, otherwise they

leave the system. Some of this literature incorporates customers’ strategic behavior (see, the review

of ?). ? and ? consider respectively a monopolistic and a set of firms selling to a set of differentiated

customers segments and assume that all customers are in the system from the start. ? consider

forward looking customers with declining valuations who arrive following a Poisson process and where

the listed price changes only once. More closely related to our work is the paper of ? that considers

a deterministic model where strategic customers are differentiated not only through their valuation,

but also, through their patience level. Optimal prices are shown to be monotone. The very recent

work of ? considers an intertemporal pricing problem under minimax regret where both strategic and

myopic patient-customers are considered. Finally, two recent notes (? and ?) tackle the problem

of intertemporal pricing in the presence of reference price effects in an infinite horizon setting with

discounted revenue.

Besides that of ?, the papers that are the most related to our model are the recent works of ?, ?

and ?. Their models are variants of ?, but, like us, consider a seller who commits to the pricing policy

at the start of the horizon and maximizes the long-run average revenue. In the case of ?, heterogenous

customers, through their valuations and their patience level, are strategic. They prove that a cyclic

pricing policy is optimal but, does not need to be decreasing. In an almost exactly similar setting, ?

consider patient customers, who purchase as soon as the price drops below their willingness-to-pay.

In their case, when the patience levels are deterministic and fixed, cyclic and decreasing policies are

optimal. Finally, ? consider the exact setting of ? and suggest a dynamic programming algorithm that

runs in polynomial time for finding optimal pricing policies under bounded but arbitrary distribution

of the patience levels.

None of the above considers valuations that change through time. It is only recently that a

handful of papers have tackled such behavior (see, ?, ? and ?). ? considers, similarly to us, an infinite

horizon setting where customers arrive through time with valuations that stochastically change while

facing a committed pricing path. There are though a number of differences with our work. First,

the model is set in continuous time where both buyers and sellers have a common discount rate and

where customers are strategic and homogeneous with a valuation governed by a Markov process that

continuously switches between only two values, Low and High. The seller, is optimizing on the set of

pricing paths (on the entire positive line). The optimal pricing path is shown to be cyclic decreasing
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(à la ?). As opposed to ?, we consider in this paper a very general valuation process that is only

required to be stationary. We do consider the case where the process is Markovian but we do not

restrict it to take two values (except for the simplified model of Appendix B). Moreover, we assume

that prices belong only to a finite and discrete set. Another recent paper that incorporates changing

valuations is that of ?. The model considers one unit of a good and one buyer who is present in the

system from the start and has a valuation drawn from some distribution. At some random time, a

stochastic shock occurs and causes the buyer’s valuation to be drawn again (from the same initial

distribution). Finally, we mention the paper of ? that models changing valuations in the context of

revenue management. They consider a firm selling a finite number of units of a product that can be

purchased anytime during a finite horizon and get consumed at the end of it. Customers are present

at the beginning of the horizon and see their expected valuations changing through time. The firm

commits to the prices and the customers need to decide when to purchase.

1.2 Outline of the Paper

In Section 2 we briefly introduce a Markovian model of changing valuations. The objective of this

section is to highlight, through a simple setting of an intertemporal pricing problem, the complexity

that the moving valuations property is bringing and compare that to the literature that focused on

constant valuations. In Section 3, we introduce a very general model of changing valuations. For

that we formulate an open loop optimization problem. We state the main results with respect to the

optimality of cyclic policies, their structure, and how efficiently these can be obtained. In Section 4,

we introduce the notion of weakly coupled revenue functions and show that the revenue function of a

pricing policy under a general but bounded valuation model belongs to the class of weakly coupled

functions. We next characterize the solutions of the optimization problem, defined in the previous

section, when applied to this class of revenue functions. We also present an algorithm to obtain them.

The proofs of our general results on optimal policies follow in a straightforward manner. In Section 5,

we focus on the special case where the valuations processes follow discrete time Markov chains. In

this context, we are able to obtain a closed form of the revenue function. We also show in this setting

that the revenue function satisfies an affine structure which allows us to refine some of our main

results. In Section 6, we discuss the complexity of the optimal policy. To support our claim that,

in general, the optimal policy lacks any simplifying structure, we give two examples, one for general

weakly coupled functions and one for the specific setting of Markovian valuations. Consequently, we

argue that our results can prove to be valuable in obtaining efficient approximations of the optimal

policy while preserving the changing valuations feature. In Section 7, we analyze some important

extensions. First, we consider the case where the patience levels are bounded only in expectation and

show, in the Markovian setting, that all the results hold when optimality is replaced with ε-optimality.

Next, we discuss how the main results can be adjusted to the case where the firm is maximizing an

infinite horizon discounted revenue function. Finally, we argue how our results extend to the case

where customers are forward looking. We devote Section 8 for an extensive numerical analysis that
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takes full advantage of the algorithm suggested earlier, and shows the opportunity cost of discarding

the changing valuations property. We conclude in Section 9. In Appendix A, we relate the proofs of the

Markovian model, in particular, when the revenue function is affine. In Appendix B, we analyze the

setting where the firm can set only two prices and the valuation process is Markovian with unbounded

patience levels. We specifically discuss in this setting the existence of a reset time.

2 A simple time varying valuation model

The objective of this section is to introduce a simple model of intertemporal pricing in an infinite

horizon setting and highlight the complexity that the changing valuation feature of our model brings

in. For this reason, we do not at this point precisely define some of the concepts (e.g., cyclic policy) but

delay that to the next section where, we carefully introduce a general model, as well as the different

definitions needed for the analysis, and state rigorously our main results.

Consider a stream of customers interested each in buying one unit of a non perishable product.

At each period t ∈ N, one customer arrives to the system. If customers don’t purchase on arrival,

we assume in this simple model that they all have a lifespan of τ periods, beyond the period of their

arrival, to purchase the product. This window of time is known as the patience level. If customers

don’t purchase by the end of their lifespan, they leave the system (if τ = 0, all customers are impatient

and they either purchase on arrival or leave without purchasing).

Customers arriving to the system have a valuation v ∈ Ω = {v1, v2, .., vK} with K < ∞ which is

drawn following some distribution γ. During the “lifespan” in the system, each customer’s valuation

of the product changes following a simple Markov chain with a given transition matrix Q̄ on Ω.

The seller adopts a committed pricing policy, whereby at time 0, the prices are set for the entire

horizon, π = (p1, p2, ..), in a way to maximize the long-run average revenue. As mentioned earlier,

the fact that the firm commits to future prices is in line with the recent literature on intertemporal

pricing and has been also shown to be the optimal strategy to follow (see, ? ?, ?, ?, ? and ?). We

denote by Lt(p1, .., pt) the revenue function, which is the expected revenues generated during the first

t periods, having set the first t prices to be p1, ..., pt. Let then R(π) = lim supt→∞
1
t Lt(p1, ..., pt) be

the long-run average revenue generated by a policy π. WLOG we assume that the pi’s belong to Ω.

The seller is looking to solve for

sup
π∈P
R(π). (1)

This simple model is a special case of the model considered in ? and ? but for these papers,

customers keep the same valuation (drawn on arrival) during their lifespan, which is equivalent to

setting Q̄ equal to the identity matrix, Q̄ = I. In the case of ?, customers are strategic while in the

case of ? customers are patient in the sense they are not forward looking but purchase as soon as their

current valuation is larger than the current price. Whether customers are patient or forward looking

the results happen to be of similar nature. We focus mainly on patient customers and tackle later in

the extensions the case of forward looking customers.
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2.1 Optimality of cyclic policies

As an example of the types of results obtained in the literature in the case of non varying valuations,

we now recall, using our notations, the main result of ?.

Theorem 1 (?) If Q̄ = I then there exists a decreasing cyclic policy of cycle size smaller or equal to

K + τ − 1 which can be obtained in polynomial in K and τ elementary computations.

A similar result has also been obtained in ? except that they showed in their strategic setting that

optimal policies are not necessarily decreasing but satisfy the so-called refelction principle. With our

simple Markovian model for the valuation process, we obtain that

Theorem 2 For a given transition matrix Q̄, there exists a cyclic policy that optimizes R. The cycle

size of the policy is in the order of O(Kτ ). The policy can be obtained through an algorithm that

requires O(K4τ ) elementary computations.

First, we observe that our result confirms that cyclic policies remain optimal even under changing

valuations. As for the cycle size and the complexity of finding the optimal policy, we note that for

τ = 1, our results and those of ? are comparable. However, for larger τ , Theorem 2 cannot guarantee

a good performance of the algorithm that generates the pricing policy while in ?, the optimal pricing

policy remains polynomial in τ . Next, we discuss these points in some detail.

2.2 The structure of optimal cyclic policies and the complexity of the optimization

The recent literature, as reflected in Theorem 1, has recognized that cyclic policies are optimal in some

variants of our current setting as long as Q̄ = I, (see also, ? and ?). Our main results and specifically

Theorem 2 are confirming the optimality of cyclic policies even when Q̄ 6= I. However in this context

of time-varying valuations, the proof of our result requires a more complex approach.

In order to prove that optimal policies are cyclic and tractable, all the aforementioned papers

relied on a regenerative point argument. Indeed, it is observed that for any pricing policy, the essential

minimum price (the lowest price that appears infinitely many times in the policy) acts as a regenerative

point. The optimization problem of choosing the prices in between each two appearances of the

minimum price is the same, which yields the optimality of cyclic policies.

This regenerative point argument does not apply when valuations change through time, even in

the simple Markovian setting of Theorem 2. Given a pricing policy, customers with lower valuations

can possibly have higher valuations in the future and hence the regenerative points have no reason to

exist even for the optimal policy.

The regenerative point argument also helps in showing some very interesting structure results

on the optimizing cyclic policies in the constant valuations models. For instance, in Theorem 1 the

optimal cyclic policies were shown to be decreasing. As a matter of fact, it is the decreasing property of

the policy that allows ? to show that the optimal policy can be obtained in polynomial time. Recently,

? generalized this latter result to customers having constant valuations and different patience levels.
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He observed that in this more general setting, the optimal cyclic policy may fail to be decreasing; it

remains however made of subcycles, each of which is decreasing. In ? it is the reflection principle

property that gives the tractability of the optimal cyclic solutions.

The next proposition shows how, even in the simplest Markovian setting, a changing valuation

model does not allow optimal cyclic policies to inherit any of the nice structures of optimal policies

obtained in the constant valuation case.

Proposition 1 Let τ := 1. For any K ≥ 5, there exists v = (v1, . . . , vK), and γ = (γ1, ..., γK) and a

transition matrix Q̄, such that the optimal solution is cyclic, increasing in its prices, and with a cycle

size equal to K − 1.

We will give the explicit example that proves Proposition 1 in section 6. The proposition shows

that despite the fact that customers spend at most two periods in the system (τ = 1), the optimal

cyclic policy can have a cycle as large as K − 1. We also recall that in the case where both valuations

are constant and all customers have one patience level, ? observed numerically and conjectured that

under some broad conditions the cycle size is independent of K and depends only on the patience

level. In the case of varying valuations, it seems that the optimal cyclic policy can be of any size.

The other surprising feature of the example of Proposition 1, which is in full contrast with the

results in the literature pertaining to constant valuations, is that the prices in a cycle of an optimal

policy are in fact increasing.

In conclusion, in the presence of stochastic valuations (even in the basic Markovian model), the

optimal policies may fail to have any of the nice structures of optimal policies in the constant valu-

ations models, that allowed to reduce the complexity of the optimization problem. With the lack of

simplifying structure, it is hard to imagine how one can reduce the complexity of obtaining the cycle

of the policy and thus, the curse of dimensionality seems inherent to this type of intertemporal pricing

problems.

2.3 Weakly coupled revenues

An influential work on intertemporal pricing is ? that proved among others the optimality of cyclic

policies for durable goods. The approach followed by ? is based on customers’ accumulation type

argument. The accumulation argument relies on the fact that customers with the lowest valuation

who don’t purchase remain in the system indefinitely, making it eventually worth resetting the system

by setting for one period the price at the lowest valuation. This approach again does not apply in our

case where the expected number of customers in the system remains uniformly bounded, preventing

any accumulation of customers in the system. In Appendix B, in the case of K = 2 under a Markovian

setting, we obtain necessary and sufficient conditions under which the seller is better off setting a reset

price at the end of the cycle, showing therefore that cyclic policies are strictly optimal. When K > 2,

it does not hold in general that optimal (or near optimal) cyclic policies contain a reset price.
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To handle that, we introduce in Section 4 the concept of weakly coupled revenue functions in which

the revenue per period depends on a finite number of neighboring prices. This property generalize to

some extent the concept of regenerative point, and will allow us to establish the optimality of cyclic

policies, as well as to get an algorithm that detects them.

We now move to introduce a general model of time varying valuations and state the corresponding

results.

3 The General Bounded Patience Level Model, or BP Model.

3.1 Model Description

We assume that at each period t ∈ N, a random number ξit ∈ N of customers arrive to the system

where i ∈ I indicates the customer’s class, and I is a finite set of integers. Customers either decide to

purchase on arrival or else remain in the system. During the “lifespan” in the system, each customer’s

valuation of the product changes following a stochastic process. All customers have a patience level,

which is a maximum window of time during which they are willing to wait to purchase, before they

lose interest in the product. We assume that the patience level of all customers is bounded by some

τ ∈ N \ {0}. Customers may also lose interest in the product before time τ and this is modeled by the

existence of an absorbing state 0 for the valuation processes.

More precisely, our assumptions on the arrival process are the following:

• For any i ∈ I, ξ = (ξit : t ≥ 0) is a stationary process in t, such that supi∈I Eξi0 <∞.

• For any i ∈ I, t ≥ 0, 1 ≤ k ≤ ξit , the process (V i,kt (s) : s ≥ 0) is the valuation process that

takes values on the non-negative real line and is independently and identically generated for each

customer k of class i that arrives at time t. Here s is the time after the instant t, with V i,kt (0)

being the valuation on arrival. We define the sequence of processes V it = (V i,kt (·) : 1 ≤ k ≤ ξit)

and V i ≡
(
V it : t ≥ 0

)
is assumed to be a stationary process (in t).

• There exists a positive integer preset constant τ such that for any i ∈ I, t ≥ 0, and 1 ≤ k ≤ ξit,

V i,kt (s) = 0, for all s ≥ τ . Moreover, if V i,kt (s) = 0, then for all s′ ≥ s, V i,kt (s′) = 0.

This general model will be denoted hereafter as the (BP) model, highlighting the Bounded Patience

feature. In Section 5, we discuss in more detail the Markovian valuation case under bounded patience

levels, denoted (M-BP) which was initially introduced in Section 2; in Section 7, we discuss the

Markovian valuation case under unbounded patience levels, denoted (M-UP).

We assume for the main exposition that customers are patient and will purchase the product as

soon as their valuation reaches a value higher than the current price. If that does not happen on

arrival, or during their patience level, they do not purchase and leave the system. In the extension

section (see, Section 7), we show that most of our results generalize to the case where customers are

strategic.
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On the supply end, we recall that the seller commits at the beginning of the horizon to an infinite

sequence of prices that belong to a finite set of values Ω, where Ω := {vj : 1 ≤ j ≤ K}, with

0 < v1 < v2 < ... < vK . To ease the notations we define the infinite price sequences π = (pt : t ≥ 0)

with pt ∈ [1,K] denoting the index of the price at time t. Hence, pt = k means that at time t the

value of the price is set at vk. We denote by P the set of all possible pricing policies.

Observe that the primitives of the model are given by the pair (ξi,V i)i∈I . Now, given such a pair,

and a policy π = (p1, p2, ...) ∈ P, we are again looking to solve for (1). We say that π∗ is optimal if it

is a solution to equation (1).

The results of this paper can also be extended beyond the long-run average revenue type-objective

that the related literature has been focusing on. For example, we show in the extensions, Section 7,

that most of our main results hold for the case of an infinite horizon discounted revenue function,

where R(π) is of the form
∑∞

t=0 e
−rtLt(p1, ..., pt).

3.2 Main Results

We state in this section our main results on the optimality of a class of cyclic policies in solving

problem (1), together with an algorithm that finds these optimal policies with a complexity that is

logarithmically small compared to the a priori number of cyclic solutions in our class. Moreover, with

an additional constraint on what we will define as the firm’s pricing pace, these optimal solutions

become effectively tractable.

We start with a few definitions and notations about cyclic policies and pricing pace, then we state

our results in a unified way for the unconstrained and the pace-constrained cases.

Definition 1 (Cyclic policies)

A policy π = (k1, k2, . . .) is called cyclic if there exists n ≥ 1 such that kj+n = kj for all j ∈ N. When

n is the minimal integer with the latter property, we say that (k1, k2, .., kn) is the cycle of π, n its size,

and denote π by its cycle π = (k1, . . . , kn).

A fixed-price policy, one where the same price is set indefinitely, can also be viewed as cyclic with

n = 1.

At this point, we introduce a way to express pricing policies that will be convenient for our exposition.

Any pricing policy π ∈ P can be viewed as a sequence of phases of the form π = ((kj , τj) : j ≥ 1),

where each (kj , τj) ∈ Ω× N ∪ {∞} is called a phase (of the policy) with kj being the price of the jth

phase and τj its duration, which is the time during which the price is continuously set at kj . For all

j ≥ 1, set Tj := τ1 + τ2 + ... + τj . Note that this expression of the policy is not unique unless if we

impose that kj 6= kj+1. Check (AE) Here it would be better to check and confirm that we can assume

kj 6= kj+1 everywhere, besides the fixed price policy that we can present as an exception for this rule.

We next introduce the notion of a pricing pace. This is a constraint on the prices that firms can

set in order to regulate how frequently a price will change through time. The pace will be regulated

by a constant σ ≥ 1, defined as the minimal duration that the firm allows each price to be set for.
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From a practical point view, the existence of such pricing pace seems quite natural due to the direct

and indirect costs incurred by frequently changing prices, whether from the logistical end, or, as a

reflection of customers’ dissatisfaction. As a result of such pace, the set of admissible policies will be

reduced.

Definition 2 (σ-policies) For any σ ≥ 1, we denote by Aσ the set of policies where each phase has

a duration that is a multiple of σ. We can always write such policy as a sequence of σ-phases of the

form π = ((kj , σ) : j ≥ 1), where kj+1 can be equal to kj. Policies in Aσ will be called σ-policies.

When the pricing pace is set to σ, and if we restrict ourselves to policies where prices are set in

multiples of σ, the firm’s problem becomes a constrained optimization over Aσ

sup
π∈Aσ

R(π). (2)

Note that the special case of σ = 1 corresponds to the unconstrained optimization on P, as initially

defined in (1).

We define the quantity M := dτ/σe. By setting a minimum pace σ, the firm can control the

maximum number of price-changes, M , customers could witness during their lifespan in the system.

For example, if σ is set so that M = 2, customers will see one price on arrival and utmost two additional

prices during their patience level. Up to enlarging τ if necessary, we will assume all through the paper

that

τ = Mσ.

In the unconstrained case σ = 1, and hence M = τ .

Before we state our results we introduce the notion of M -simple cyclic policies.

Definition 3 (M-simple) For M ∈ N \ {0}, a cyclic policy π = ((kj , σ) : j ≥ 1) ∈ Aσ is said to

be M -simple if any string of M prices (kj+1, . . . , kj+M ) corresponding to M consecutive σ-phases of

the policy appears at most once during a cycle. For M = 1, we just say the policy is simple (i.e., all

possible values of the prices appear at most one time in a cycle during exactly σ consecutive periods).

Theorem 3 There exists an M -simple cyclic σ-policy that optimizes R on Aσ. In particular, there

exists a τ -simple cyclic policy that optimizes R on P.

We move now to discuss how computationally meaningful this result is.

Observe that an M -simple policy in Aσ has a cycle of length at most KM σ-phases. For i ∈
{1, . . . ,KM}, the number of M -simple policies in Aσ with i σ-phases is of the order of KM (KM −
1) . . . (KM − i+ 1). 1

1I think it is ((KM−1)!)
1
M . Indeed, we have KM choices to start with an M string call it W1. Then we have to pick

among the remaining KM − 1 M -strings a string W2 that is compatible with our choice. The number of such strings

should be larger than KM−1 (to be checked). Hence the choice of W1W2 gives KMKM−1 possibilities. The choice of W3

11



Summing over all i ∈ {1, . . . ,KM}, we get that the total number of M -simple strategies in Aσ is

of the order of (KM )!, and by Stirling formula is actually roughly of the order of KMKM
. The next

result shows that this a priori double-exponential complexity can be logarithmically reduced by an

adequate algorithm that computes an optimal strategy of Theorem 3.

Theorem 4 The optimal cyclic policies of Theorem 3 can be obtained, through an algorithm that

requires O(K4M ) elementary computations.

Theorems 3 and 4 will be proved in the next two sections by relying on Proposition 2 and respectively,

Proposition 4 and Corollary 1.

Theorem 4 shows that the computational complexity of obtaining the optimal policy is affected

polynomially in the number of possible prices K. Hence, for small values of M the problem is tractable,

while for M large, despite a major reduction, it remains exponentially complex. We believe that in

the context of changing valuations one cannot reduce much further the order of complexity. We revisit

this claim in Section 6.

Next, we cast our main results in a general framework of optimizing the long-run average revenue

for a specific class of revenue functions.

4 Weakly Coupled Revenue Functions

In this section, we show that the revenue function corresponding to a (BP) model belongs to a general

class of revenue functions that we call weakly coupled. In the latter framework, it is shown that the

optimization problems formulated in (1) and (2) admit cyclic policies. We also provide an algorithm

that detects the optimal cyclic policies. With respect to the latter, finding the optimal cyclic policy

is similar to calculating minimum mean cycles on graphs and efficient algorithms of calculating such

minima were obtained in several works (e.g., ?). However, we stay in the context of optimizing long-

run average revenue and propose our own algorithm for detecting the optimal cyclic policies that

essentially has the minimal possible complexity.

We first introduce a general class of revenue functions that we call weakly coupled revenue functions

in which the revenue per period depends on a finite number of neighboring prices.

4.1 Definition of Weakly coupled functions

For a pricing strategy π ∈ P we define a class of long-run average revenue called weakly coupled.

: must be compatible with W2, that gives KM−1 choices, but must also avoid all the M strings contained in W1W2 that

is M . Hence the choice of W1W2W3 gives at least KMKM−1(KM−1 −M). Continuing like this we get for W1W2 . . .Wi

: KMKM−1(KM−1 −M) . . . (KM−1 − iM) that we can divide by i to eliminate the permutations. Taking i = KM−1/M

we get the maximal contribution that is of the order of ((KM−1)!)
1
M , that is KKM

12



Definition 4 (Weakly coupled revenue functions) We say that a function R : P → R+ is a

τ -weakly coupled revenue function for some positive τ , if there exists a function f : Ωτ × Ωτ → R+,

such that for any policy of the form, π =
(
(wn : n ≥ 1) : wn ∈ Ωτ

)
, the following holds

R(π) =
1

τ
ϕ(π)

ϕ(π) := lim sup
n→∞

1

n

n∑
i=1

f(wi, wi+1).

4.2 The Weakly Coupled property of Revenue Functions in (BP) Models

We show next that the revenue functions that appear in the context of (BP) models introduced in

Section 3.1 are weakly coupled.

Proposition 2 Under a (BP) model with patience level τ , the revenue function is τ -weakly coupled.

Proof. WLOG we can restrict ourselves to valuation processes that take values in Ω. Let us fix a

pricing policy that we write as π =
(
(wj : j ≥ 1) : wn ∈ Ωτ

)
. The prices given by the vector wj are set

during the jth time phase [(j − 1)τ + 1, jτ ]. Given a realization of the processes (ξit,V it)i∈I , t ≥ 0, let

us denote by L̂j the revenues generated during the phase wj . For j ≥ 2, the revenues L̂j is the result

of purchases that occur from either customers who arrive to the system during the jth phase and who

buy during this same phase, or from customers who arrived to the system earlier and who are still in

the system because they did not buy and did not reach the absorbing exit state, v0. Due to the fact

that the patience level is bounded by τ , the latter customers all come from the j − 1th phase (during

which prices wj−1 are set). Hence L̂j is a function of (wj−1, wj) and the realizations of (ξit,V it)i∈I , for

time t ∈ [(j − 2)τ + 1, jτ ].

Since the arrival process (ξit,V it)i∈I is assumed to be stationary in t, it follows that the expectation

Lj of L̂j over all realizations of (ξit,V it)i∈I is a deterministic function f(wj−1, wj).

It then follows that

R(π) = lim sup
n→∞

1

nτ

n∑
j=1

f(wj , wj−1)

is a τ weakly-coupled function of the pricing policies. �

4.3 Optimizing Weakly Coupled Revenue Functions

We consider a τ -weakly coupled revenue function following Definition 4. We are interested in finding

the policy that maximizes ϕ. We first extend the definition of ϕ to finite strings W = (w1, ..., wn) as

follows:

ϕ(W ) =
1

n

n∑
i=1

f(wi, wi+1), (3)

with the notation wn+1 = w1. Note that ϕ(W ) = ϕ(π), where π = (W,W, ...). When W = (w1, . . . , wP )

is the shortest period of π we write π = (w1, . . . , wP ).
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Proposition 3 (General optimization). There exists a cyclic π∗ ∈ P such that

ϕ(π∗) = sup
π∈P

ϕ(π)

Moreover, π∗ = (w1, w2, . . . , wP ), wi ∈ Ωτ and all the wi’s are distinct, with P ≤ Kτ .

Proof. Denote by Wn the set of strings of length less than n, that is W ∈ Wn if W = (ω1, . . . , ωl)

with ωi ∈ Ωτ for all i ≤ l and l ≤ n. We have that ϕ(W ) = ϕ(π(W )), where π(W ) = (W,W, ...). Let

W̄n = argmaxW∈Wn
ϕ(W ). From the definition of ϕ, it follows that for any π ∈ P,

ϕ(π) ≤ ϕ(W̄n) +
max f

n
.

Hence it is sufficient to prove that for any fixed n, the maximizer W̄n can be taken to be simple.

Suppose ω is such that W̄n = (W,W ′) with W and W ′ starting with some ω ∈ Ωτ , and let N and N ′

be the sizes of W and W ′. Then since

ϕ(W̄n) =
1

N +N ′
(Nϕ(W ) +N ′ϕ(W ′))

we get that ϕ(W ) = ϕ(W ′) = ϕ(W̄n). Continuing this procedure we reach a simple maximizer of ϕ

on Wn. From that we also conclude that

ϕ(π) ≤ ϕ(W̄ ),

where W̄ is the maximizer of ϕ on all cyclic policies where the elements of the cycle are all distinct.

�

Since we are also interested in the constrained optimization on Aσ, we state the following proposi-

tion, which is immediately obtained from the proof of Proposition 3 by restricting the pricing policies

to those in Aσ.

Proposition 4 (Optimization on Aσ). For any τ ≥ 1, for any function f : Ωτ × Ωτ → R+ we have

the following. There exists an M -simple cyclic π∗ ∈ Aσ such that

ϕ(π∗) = sup
π∈Aσ

ϕ(π).

By recalling Proposition 2, the previous proposition completes the proof of Theorem 3.

We observe here that the proof of the optimality of cyclic policies does not rely on the notion of

regenerative points (compared to ? or ?), but takes full advantage (see, proof of Proposition 3) of the

defining expression of weakly coupled functions.
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4.4 Optimization Algorithm

The objective of this section is to present an algorithm to find an optimal cyclic policy π∗ as in

Proposition 3.

The algorithm is the result of a greedy-type construction that generates an optimal solution. We

first fix two consecutive strings of prices w1 and w2, and set the third one in a way to insure that

the second string w2 is the maximizer of the revenue generated by these three strings in the first two

periods: f(w1, w2) + f(w2, w3). Once w3 (not necessarily unique) is identified, we move to find w4,

given w2 and w3. The complexity of the algorithm is reduced in particular thanks to the “simple”

property of the pricing policy.

For a finite string W = (w1, ..., wn), we denote by

ϕ̃(W ) =
1

n− 1

n−1∑
i=1

f(wi, wi+1).

We define the following map from Ωτ × Ωτ to the subsets of Ωτ ,

ψ(w,w′) = S; S = {w̄ ∈ Ωτ : ϕ(w,w′, w̄) = max
w̃∈Ωτ

ϕ(w, w̃, w̄)}.

A collection Wn of finite simple strings of the same size n is called admissible if for all W ∈ Wn, it is

of the form (w1, .., wn) with the same w1 := a; moreover, if (W,W ′) ∈ Wn
2 such that wn = w′n, then

W = W ′. Set K̃ = Kτ .

Algorithm.

Step 1. Initialization. Fix (w1, w2) ∈ Ωτ×Ωτ , with w1 6= w2, letW2(w1, w2) = {(w1, w2)}, S2(w1, w2) =

∅ and set n = 2

Step 2. Computation. Given an admissible simple collection Wn with n < K̃ and #Wn ≤ K̃, define an

admissible collection Wn+1 = Ψ(Wn) in the following way

1. for each W i ∈ Wn := (wi1, . . . , w
i
n), consider Si = ψ(win−1, w

i
n) := {si1, . . . , siJi} where,

Ji ≤ K̃ depends on the pair (win−1, w
i
n). Consider all the strings{

W i
j = (wi1, . . . , w

i
n, s

i
j) : 1 ≤ j ≤ Ji, 1 ≤ i ≤ #Wn

}
.

2. Select from these strings those such that sij = w1. This set of strings (possibly empty) is

denoted by Sn+1

3. Eliminate from the remaining all the strings W i
j ’s that are not simple

4. From those remaining, consider any two strings, such that sij = si
′
j′ for some (i, j) and (i′, j′).

If ϕ̃(W i
j ) < ϕ̃(W i′

j′ ) or ϕ̃(W i
j ) > ϕ̃(W i′

j′ ), then eliminate the string that has the smaller value of

ϕ̃. If ϕ̃(W i
j ) = ϕ̃(W i′

j′ ), we eliminate (randomly) one of them. We do that for all such strings.

The remaining strings must define an admissible collection of simple strings which we denote

by Wn+1 and note that the cardinality #Wn+1 ≤ K̃
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Step 3. Iteration. If n = K̃, STOP. Otherwise, set n = n+ 1 and GO TO Step 2.

We then make the following elementary observation.

Lemma 1 If the cycle of an optimal strategy of Proposition 3 is W := (w1, w2, . . . , wP ), for some

integer P ≥ 2, then W ∈ SP (w1, w2).

Given that each computation step generates simple strings, and by noticing that the first part of

Step 2 can be done offline, we need at most O(K̃2) computations to obtainWn(w1, w2) and Sn(w1, w2),

n ≤ K̃. This algorithm takes as an input, w1 and w2 and hence, needs to be repeated for all possible

values of w1 and w2. As a consequence of Lemma 1, if we consider

S :=
⋃

(w1,w2),w1 6=w2

⋃
n≤K̃

Sn(w1, w2)

and the set of single value strategies

S0 :=
⋃
w∈Ωτ

{(w)}

then an optimal strategy W of Proposition 3 satisfies W ∈ S. Note that the computation of S needs

at most O(K̃4) calculations of the type ϕ(w,w′, w′′). We have thus proved the following.

Proposition 5 If a revenue function is τ -weakly coupled, then an optimal cyclic policy of Proposition

3 can be obtained with O(K4τ ) elementary calculations.

2

As for the constrained optimization, the immediate corollary of Proposition 5 is the following.

Corollary 1 If a revenue function is τ -weakly coupled, then any optimal M -simple cyclic σ-policy of

Proposition 4 can be obtained with O(K4M ) elementary calculations.

Given Proposition 2, the previous corollary completes the proof of Theorem 4.

5 Markovian Models of Time-Varying Valuations

In this section, we revisit the model introduced in Section 2, where we specifically restrict ourselves to

the class of (BP) valuations processes that follow a Markov chain. This special and important class

allows us to achieve a number of things. First, we obtain an explicit expression of the revenue function.

This is particularly helpful in the numerical study of Section 8. Besides retaining the weakly coupled

2We can put the following remark here : Observe that in step 2, when finding all admissible strings that start with

(ω1, ω2) we get actually the informations on how other couples such as (ω2, ω
1
3) can be completed in admissible strings.

If one takes into account this information, the algorithm here presented can be slightly altered to give a complexity of

the order of K̃3 which corresponds to the minimal complexity known for such problems.
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property, the revenue function is shown to be affine in the duration of a phase and in the expected

number of customers available initially. As a result, we obtain some refinements of the main results

of Section 3.2. Finally, this Markovian setting allows us also to extend our analysis to the case where

the patience levels are bounded only in expectation (see, Section 7).

5.1 Model Ingredients

Similarly to Section 2, and in order to simplify the presentation, we consider a constant number of

customers arriving every period. WLOG we assume that this number is one. We restrict our analysis

to a single class of customers since the revenue function of a multiple class model is just a linear

combination of revenue functions of single class models, and since the additional properties that we

want to show for the revenue function of the Markovian model are stable under linear combination.

We recall that every arrival is endowed with an initial valuation ω ∈ Ω ≡ {vj : 1 ≤ j ≤ K} with a

distribution given by a probability vector γ = (γ1, ..., γK).

We also assume that the valuation process of the customer arriving at time t, (Vt(s) : s ≥ 0)

(where we dropped the superscripts i and k), follows a Markov chain on Ω, determined by his arrival

valuation and by a transition matrix that we denote by Q̄. Each entry qij of Q̄, is the probability that

a customer with current valuation vi sees his valuation changing to vj in the next period. Recall that

v0 := 0, is an absorbing state that once reached indicates that the client has lost interest in purchasing.

Hence, we take the first line of Q̄ to be all zero except for its first entry that is equal to 1. From now

on we will refer to the transition matrix by its minor Q obtained by removing from Q̄ the first line

and the first column. This model allows customers to have different life spans, but we recall that there

exists a maximum patience level τ so that Vt(s) = v0 = 0 for every s ≥ τ .

In this Markovian setting, besides τ , the primitives of the problem are summarized by (γ, Q).

With some abuse of notations, the pair (γ, Q) will also be used to represent the process Vt.
When τ < ∞, we call our Markovian model (M-BP), for Markovian, Bounded Patience. The

(M-BP) model satisfies the assumptions of the general setting discussed in Section 3, that is: it is

a (BP) model. As a consequence, its revenue function is weakly coupled and all the results that we

obtained for (BP) models hold for these Markovian models.

In contrast, we will refer to the case where τ =∞, as the (M-UP) model for Markovian, Unbounded

Patience. We will see in Section 7 how the analysis of the (M-BP) yields approximate solutions to the

(M-UP) case.

5.2 Revenue Pairs

We start this section by defining a revenue pair that will be helpful in calculating the revenue function

associated to the (M-BP) model.

We say that a vector θ denotes the expected number of customers in the system at some given

time, when the coordinates of θ, θm, 1 ≤ m ≤ K, are equal to the expected number of customers in
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the system with valuation vm at this time. Note that the number of customers in the system at any

point in time is bounded by τ .

Let M = Ω× N× [0, τ ]K .

Definition 5 (Revenue pair) Let θ be a vector determining the expected number of customers in

the system at the beginning of a phase (k, t), we define

Θ : M→ [0, τ ]K

(k, t,θ) 7→ θ′ = Θ
(
k, t|θ

)
,

where θ′ is the vector measuring the expected number of customers in the system at the end of the

phase (k, t).
Let

L : M→ R+

(k, t,θ) 7→ L
(
k, t|θ

)
,

where L
(
k, t|θ

)
is the total expected revenues generated during phase (k, t).

It is worth stressing that θ′ accounts (in expected value) for both those customers included in θ

and who did not exit by time t, as well as those who arrived during the phase (k, t) and did not exit

yet. Similarly, L
(
k, t|θ

)
are the expected revenues generated from either customers included in θ or,

from those who arrived to the system during the phase (k, t). Either way, these revenues must have

been also generated during time t.
The fact that the expected number of customers in the system, with valuation vm, at the end of

the phase (k, t), depends only on (k, t) and θ, is a consequence of : i.) the Markovian feature of the

valuation process that guarantees that the evolution of the customers included in θ does not depend

on the past, and ii.) the stationarity of the processes (γ, Q), (i.e., being independent of t). For these

same reasons we can also define the expected revenue as a function of (k, t) and θ.

We move now to express the revenue function via the pair (Θ, L). Since we are interested in the

optimization of the long-run average revenue, we may assume WLOG that the system starts empty

at t = 0.

Proposition 6 Let π =
(
(kj , tj) : j ≥ 1

)
. The revenue function is given by

R(π) = lim sup
n→∞

1

Tn

n∑
j=1

L(kj , tj |θj−1),

θj = Θ
(
kj , tj |θj−1

)
.

with Tn =
∑n

i=1 ti.

18



Proof. Fix a pricing policy π =
(
(kj , tj) : j ≥ 1

)
. For a realization through time of the arrival and the

transition processes (Vt(s) : s ≥ 0), we define θ̂
j

to be the realized number of customers in the system

at time Tj . As in Definition 5 we have that the θ̂
j

and the realized revenue during the jth phase are

functions of θ̂
j−1

and the realization of the arrival and the transition processes of customers during

this phase. Considering all the possible realizations of (γ, Q) for 0 ≤ t ≤ Tj , we find that the expected

value of θ̂
j

is exactly the sequence θj = Θ
(
kj , tj |θj−1

)
and that the expected value of the revenue

generated during the jth phase is L(kj , tj |θj−1), from which Proposition 6 immediately follows. �

5.3 The (M-BP) Model. Main Results

Our first result shows that under the (M-BP) model the revenue function satisfies the so-called τ -affine

property. We use the notation 〈·, ·〉 to denote the scalar product of two vectors.

Proposition 7 (Affine property) Under (M-BP) and given (γ, Q, τ), the following holds. For any

price 1 ≤ k ≤ K, there exist Θ̄k ∈ [0, τ ]K , Ak, Bk ∈ R+, and Ck ∈ RK such that for any t ≥ τ , and

for any θ ∈ [0, τ ]K , we have that

(A1) Θ
(
k, t|θ

)
= Θ̄k,

(A2) L(k, t|θ) = Ak +Bk(t− τ) + 〈Ck,θ〉.

In this case, the pair (Θ, L) is said to be τ -affine. The parameters Ak, Bk,Ck and Θ̄k can be given

in closed form.

The proof of the affine property is postponed to Appendix A.

This previous property not only allows one to obtain an explicit expression of the revenue function

but also leads to some refinements of the main results of Section 3.2.

While Aσ is the set of policies where each phase is a multiple of σ, we introduce P+
σ as the set of

policies where each phase has a duration larger than σ. Clearly, Aσ ⊆ P+
σ .

Proposition 8 Under (M-BP):

i.) One can find an optimizing strategy of (1) that is either a fixed price strategy or during which

no price is set for more than τ periods.

ii.) If σ ≥ τ , there exists a simple cyclic σ-policy that optimizes R on P+
σ . Moreover, there exists a

threshold σ0 such that, if σ ≥ σ0, then a fixed-price policy is optimal on P+
σ .

Proof.

i.) Suppose that the optimum cannot be reached by a fixed price policy. Let π∗ = ((k1, τ1), . . . , (kn :

τn)) be a cyclic optimal strategy. We will show by contradiction that τ1 ≤ τ . Suppose by

19



contradiction : repetition that τ1 > τ . Replace π∗ by πs = ((k1, s), (k2, τ2), . . . , (kn, τn)) with

s ∈ [τ,∞). Observe that

R(πs) =
1

s+
∑n

i=2 τi
(U + V (s− τ)),

where U and V do not depend on the value of s ≥ τ . It follows that the derivative of R(πs) has

a sign that does not depend on s. The sign must be negative otherwise the optimum could be

reached by the fixed price policy with price k1. Hence R(πs) for s ∈ [τ,∞) reaches its optimum

at s = τ a contradiction with τ1 > τ . Since the choice of which phase is the first one in a cyclic

strategy is arbitrary it means that all the τl are less than τ .

ii.) The same argument as that used in the proof of Proposition 8 i.), implies that for σ ≥ τ the

optimum of R on P+
σ is reached on a fixed price policy or on a σ-policy π = ((kj , τj) : j ≥ 1)

with τj = σ for all j ∈ N. By Proposition 7 4 , an optimal σ-policy can be taken to be simple

cyclic (in particular kj+1 6= kj unless it is a fixed price policy). Let πc = (k1, . . . , kn) (where

each ki is set for σ periods) be an optimal policy.

From the definition of affine revenue functions, we have that

R(πc) =
1

nσ

n∑
i=1

Ai +Bi(σ − τ) + Ti,i+1

where Ai and Bi are functions of ki and Ti,i+1 = 〈Ci, Θ̄(i+ 1)〉 is a function of (ki, ki+1) (and

not of σ) and where kn+1 := k1. Observe also that Bi is the long-run average revenue of the

fixed price policy with price ki.

As σ →∞, it is clear that the fixed price policy with price k such that Bk = maxk′ Bk′ becomes

an increasingly better approximation of an optimal policy in Aσ. In the generic case where

maxk′ Bk′ is a strict maximum for k′ = k, then as soon as σ ≥ σ0, where σ0 is such that for any

simple cyclic vector (k1, . . . , kn), we have

Bk(nσ0 + τ −
n∑
i=1

Bi
Bk

(σ0 − τ)) >
n∑
i=1

Ai + Ti,i+1,

then the fixed-price policy with price k is strictly optimal on P+
σ . �

The previous proposition brings indeed some refinements to Theorem 3. In the unconstrained case,

since an optimal strategy is τ -simple and cyclic, we already know that no single price is set during

more than 2τ periods. However, the affine structure of the revenue reduces this bound to τ periods.

Moreover, recall that Theorem 3 characterized an optimal policy in Aσ. When τ ≥ σ part ii.) of

the previous proposition generalizes the statement of Theorem 3 to P+
σ . Finally, note that ii.) of

this proposition claims also that if the pricing pace is too slow (σ large), then a fixed-price policy is

optimal.
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6 Absence of Structure and Complexity

We devote this section to complement our discussion on the complexity of the solutions obtained

in Theorem 3 and Proposition 3. We give respectively two examples, one for the general setting of

weakly coupled revenue function and one for the specific model of changing valuation, that show some

unexptected behavior of the optimal policy. These examples confirm that one cannot expect to reduce

the optimization (feasible) set through some simplifying structure of the optimal policy.

6.1 Example of an optimum along an arbitrary cyclic strategy for weakly coupled

revenue functions.

We revisit here the general setting of weakly coupled revenue functions. Despite the results obtained in

Section 4, the question remains of whether one could reduce the complexity of such cyclic policy even

further. The next very simple example shows that in general this is not possible, in particular, any

cycle of any size can be an optimal solution of an adequately chosen weakly coupled revenue function.

Example 1 Let π̄ = (w1, ..., wn) be a finite simple cyclic strategy. Fix U > 0, and define f such that

f(w,w′) =

U if (w,w′) = (wi, wi+1) for some i ∈ [1, n]

0 if not,

where we used the notation (wn, wn+1) := (wn, w1).

The following is straightforward from the definition of f . We have

ϕ(π̄) = U,

and for any strategy π 6= π̄, we have that

ϕ(π̄)− ϕ(π) ≥ 1

K
U.

6.2 Example of an M-BP model with an optimizing strategy that is increasing

with length K − 1.

In this section we construct the example that proves Proposition 1. This proposition confirms that

due to the changing valuations feature of the model, one can construct an optimal cyclic policy that

is increasing and involves all but one of the available prices.

The idea behind this example is the following. First, we standardize the return of any constant

price strategy and set it equal to 1 by carefully choosing the parameters γ and v. Next we choose the

transition probabilities qi,j as follows. We say that a customer is in state i if her current valuation is
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vi. We set qi,j = 0, from any state i ∈ [1,K − 2] to any state j ≤ K, except for j = i+ 2. We denote

by (i (i + 1)) the expected revenue generated by all customers with valuation strictly lower than vi,

who enter at a date where the price is i and see the price i+ 1 at the subsequent date. We set qi,i+2

so that (i (i + 1)) is a positive quantity U � 1 that does not depend on i ∈ [2,K − 1]. Since the

transition probabilities from i− 1 to states that are strictly higher than i+ 1 are zero, one observes

that whenever a price i appears in the strategy, it is optimal to follow it with the price i+1, otherwise,

there is a shortfall of U in the revenue. Finally, the transition probability, qK−1,j , is set to zero for

all states j, except for state j = 2; while the transition qK−1,2 is chosen sufficiently large so that the

expected revenue (K 2) is of order 11
10 U . The latter forces an optimal strategy to contain the string

(K, 2). Then, as discussed above, 2 must be followed by 3, then 4, etc., until K, which determines the

optimal strategy as (2, 3, . . . ,K − 1,K).

In terms of how to determine the values of v,γ and Q, these are designed so that the key properties

(E0)–(E2), defined below, hold. These properties are sufficient to prove the optimality of the strategy

π̄ = (2, . . . ,K). We first set v and γ such that (E0) and (E1) hold. Then the first K − 2 rows of Q

are chosen so that the first identity of (E2) holds. Then the row K − 1 is chosen to guarantee the

second identity of (E2). Finally the last row of Q, that plays no role in the optimization, is chosen to

be (0, 0, . . . , 0, 1).

Example 2 Fix K ≥ 5. Let ε = 1
200K . Take v,γ and Q as follows.

∀i ∈ [1,K] : γi = (1− ε)ε−K+i

∀i ∈ [1,K] : vi = εK−i/(1− εK+1−i)

∀i ∈ [2,K − 1], ∀j 6= i+ 1 : qi−1,i+1 =
10

11
εK+1(1− εK−i), qi−1,j = 0

∀j 6= 2 : qK−1,2 = ε2(1− εK−1)/(1− ε), qK−1,j = 0

∀j ∈ [1,K − 1] : qK,j = 0, qK,K = 1

Let Γi =
∑K

l=i γl. With our choice of parameters, let α = 1 and U = (1− ε)10
11ε

K−1 ≤ α. Then the

properties (E0) – (E2) hold true, where we denote by q̄i,j := γiqi,j, and where ξ ∈ [ 1
10 ,

1
10 + 2ε].

∀i ∈ [1,K] : Γivi = α (E0)

∀i ∈ [1,K − 1] : vi ≤
ε

1− ε
vi+1. (E1)


∀i ∈ [2,K − 1] : q̄i−1,i+1vi+1 = U, ∀j 6= i+ 1 : qi−1,j = 0

(q̄1,3 + q̄2,4 + . . .+ q̄K−2,K + q̄K−1,2)v2 = (1 + ξ)U, ∀j 6= 2 : qK−1,j = 0

∀j ∈ [1,K − 1] : qK,j = 0, qK,K = 1

(E2)
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The following claim shows that Example 2 satisfies Proposition 1.

Claim. Let π̄ = (2, . . . ,K). We have that R(π̄) = α+ U + ξ
K−1U and for any π 6= π̄

R(π) ≤ R(π̄)− 1

20(K − 1)
U.

Remark 1 Observe that for (E0) – (E2) to hold, while K ≥ 5, we must have U = O(εK−4α) and

thus the loss if one adopts a single price strategy with any price v2, . . . , vK , compared to an optimal

strategy is small. Note also the importance of the term q̄K−1,2v2 in our assumptions since (q̄1,3 + q̄2,4 +

. . .+ q̄K−2,K)v2 ≤ εU .

Proof of the Claim.

We denote by (ij) the expected revenue function generated by the customers with valuation strictly

lower than vi, who enter at a date where the price is i and see the price j at the subsequent date.

Thus, for π = (w1, . . . , wJ)

R(π) = α+
1

J

(
J−1∑
i=1

(wiwi+1) + (wJw1)

)
.

Lemma 2 Under (E1)–(E2) we have that

(i(i+ 1)) = U : ∀i ∈ [1,K − 1]

(i(i+ `)) = 0 : ∀1 ≤ i ≤ i+ ` ≤ K, ` ≥ 2

(K2) =
11

10
U

(ij) ≤
(

1 +
1

100K

)
U : ∀i, j ∈ [1,K], (ij) 6= (K2).

Proof. The first three equalities follow directly from the assumption (E2).

Consider i ≤ K − 1 and 2 ≤ j ≤ i. We have that

(ij) = (q̄j−2,j + q̄j−1,j+1 + . . .+ q̄i−1,i+1)vj ≤ (1 + 2ε)U

due to assumptions (E1) and (E2) (when j = 2 we used the notation q̄0,2 = 0).

Now, for j > 2

(Kj) = (q̄j−2,j + q̄j−1,j+1 + . . .+ q̄K−2,K)vj ≤ (1 + 2ε)U.

and finally,

(K1) = (q̄1,3 + q̄2,4 + . . .+ q̄K−2,K)v1 + q̄K−1,2v1 ≤ ε
11

10
U.

�
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It follows from the first two equalities of the lemma that R(π̄) = α+U + 1
10(K−1)U . Take π to be

another simple cyclic strategy. If π does not contain the string (K, 2) it follows from the third equation

of the lemma that R(π) ≤ α +
(
1 + 1

100K

)
U ≤ R(π̄) − 1

20(K−1)U. If, to the contrary, π contains the

string (K, 2) but is distinct from π̄ we have that π contains another string (i, j) with j 6= i+ 1, hence

using the first , second and third inequalities of the lemma we get if L is the length of the cycle of π :

R(π) ≤ α+
1

L

(
11

10
U + (L− 2)

(
1 +

1

100K

)
U

)
≤ R(π̄)− 1

20(K − 1)
U

and the claim is proved. �

6.3 Approximating the Solution of Problem (1)

The lack of simplifying structure of the optimal policies confirms the curse of dimensionality, that

seems inherent to the changing valuations feature of such type of intertemporal pricing. This has

been argued for in Section 2 by relying specifically on example 2. In such context, the exponential

complexity makes our results even more valuable in suggesting efficient approximations for problem (1).

Indeed, as a result of the untractability of problem (1), one would naturally look for approximations.

For instance, one could consider optimizing over fixed price policies. Such policies have been shown

to be asymptotically optimal in various settings (e.g., the recent work of ? who prove, the asymptotic

optimality of fixed price policies under price commitment). Another approach would be to approximate

a customer’s stochastic valuation by a carefully selected constant and accordingly, use the results of

?. Our results can be viewed as a third approach. By introducing the notion of pricing pace, we

formulated (2) which is a constrained version of (1) (and of independent interest). Hence, the optimal

solutions of (2) defined and obtained through Theorem 3 and 4 are therefore natural approximations of

(1). Moreover, such approximations have the advantage of preserving the nature of the problem with

respect to changing valuations. We show by many numerical examples (see, Section 8, Finding III and

V), that such solutions even for small values of M , outperform sensitively the two other approaches

of fixed price policies and constant valuations. This in turns shows that the algorithm does give an

added value to the pricing optimization even if it is operated in a constrained setting.

7 Extensions

7.1 Unbounded Patience Setting. The (M-UP) model

One main assumption throughout this paper was the boundedness of the maximum patience level. In

this section, we look at relaxing this assumption and setting τ = ∞ in the Markovian model. This

model was denoted by (M-UP) and is only determined by the pair (γ, Q). Under this setting, the time

at which the valuation process eventually reaches the value v0 = 0 is endogenous, governed only by

the matrix Q. We still assume that its expected value is finite. A sufficient condition for this to hold
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is

‖Q‖ := 1− ν < 1, (C)

for some ν ∈ (0, 1), where ‖·‖ is the infinity norm for matrices, that is the maximum absolute row sum

of the matrix. This same condition will guarantee that there will be no accumulation of customers in

the system, equivalently, at any time t the expected number of customers in the system is uniformly

bounded, (see, Appendix A for a proof of this claim).

We now analyze the (M-UP) case by approximating it by an (M-BP) model. For this, fix any ε > 0

and introduce the quantity

τε = |ln ε/ ln(1− ν)| . (4)

By definition, 1− ν is an upper bound on the probability of a customer - no matter the state - to

remain for an additional period in the system. It then follows from (C) and the expression of τε that

the probability that an arriving customer spends more than τε in the system is lower than (1−ν)τε = ε.

We therefore introduce the (M-BP) model with patience level τε and the same primitives (γ, Q) as

the (M-UP) we are studying.

To proceed, we say that a pricing policy π∗ is ε-optimal on a subset A of P for some ε > 0, if

sup
π∈A
R(π) ≤ R(π∗) + ε.

We have the following

Proposition 9 Under condition (C), if π∗ is an optimal strategy on any subset A of P, for the (M-

BP) model given by τε and (γ, Q), then π∗ is (vKε/ν)-optimal on A for the (U-BP) model given by

(γ, Q).

Proof. Consider one customer that arrives to the system at some time t with a valuation vm governed

by a (U-BP) model to which we apply some policy π ∈ A. Recall that an (M-BP) model disregards any

revenue generated by any customer who spends more than τε in the system. Therefore, the difference

between the expected revenues generated from respectively applying the same policy π to both an

(M-UP) model and an (M-BP) model with the same primitives, is bounded by ηπ(m, τε) vK , where

ηπ(m, τε) is the probability in the (M-UP) model, that under π, the customer remains in the system

for a period greater than τε. By definition of τε and condition (C), ηπ(m, τε) ≤ ε/ν. By considering

all customers that arrived to the system by time t, the difference in expected revenues from these t

customers throughout the horizon will be upper bounded by t vKε/ν. Let us denote by RU (π) (resp.,

RB(π)) the long-run average revenue generated by applying policy π under an (M-BP) (resp., (M-UP))

model. From the above we conclude that for any policy π ∈ A we have that

RU (π) ≤ RB(π) + vK ε/ν ≤ RB(π∗) + vK ε/ν ≤ RU (π∗) + vK ε/ν.

This completes our proof. �

As a corollary we obtain the following
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Proposition 10 Under (M-UP), Theorems 3 and 4 as well as Propositions 7 and 8 hold after replac-

ing the optimality concept by ε-optimality, and τ by τε.

7.2 Infinite Horizon Discounted Revenue Function

In this extension, we show how the main results can be easily extended to the context of infinite-

horizon discounted revenue functions. For that it is enough to revisit the weakly coupled framework of

Section 4 and extend Proposition 3 accordingly. The rest of the analysis on weakly coupled functions

and its implications on problems (1) and (2) will also extend in a similar way.

We start by a definition of weakly coupled revenue function in the discounted context. Let

R(π) =
∞∑
n=0

e−rnf(wn, wn+1).

The definition of ϕ given in Equation (3) is also modified in a similar way. Finally, we say that a

policy π is pre-cyclic, if it is of the form (W0,W1,W1, ...) for some “period” W1 and for some initial

finite string of prices W0.

Proposition 11 For any τ ≥ 1, for any function f : Ωτ × Ωτ → R+, we have the following. There

exists a pre-cyclic π∗ ∈ P such that,

R(π∗) = sup
π∈P
R(π).

Moreover, π∗ = (W0,W1,W1, . . .), with W0 = (w0
1, . . . , w

0
P0

) and W1 = (w1
1, . . . , w

1
P1

), such that all the

coordinates of (W0,W1) are distinct, with P0 + P1 ≤ Kτ .

Proof. Decompose any π ∈ P as π = (W0,W1, π̄) where W0 = (w0
1, . . . , w

0
P0

) and W1 = (w1
1 =

w̄, w1
2, . . . , w

1
P1

) and π̄ = (w̄, . . .) ∈ P where w̄ ∈ Ωτ is the first string that appears twice in the

expression of π. By definition of w̄ we have that all the coordinates of (W0,W1) are distinct.

Define π̃ = (W1, π̄). Observe that for some functions C and C ′ one has

R(π) = C(W0, w̄) + e−rP0R(π̃)

as well as

R(π) = C ′(W0,W1, w̄) + e−r(P0+P1)R(π̄).

Applying the first equality to an optimal strategy π∗, we see that π̃∗ should maximize R among

all strategies that start with w̄∗. Hence, one can take π̄∗ = π̃∗ and still get an optimal strategy

π∗∗ = (W ∗0 ,W
∗
1 ,W

∗
1 , . . .). �
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7.3 Extension to Strategic Consumers

We end this section by arguing how the weakly coupled property of the revenue function is also satisfied

when customers are strategic in the sense of forward looking.

The decision for a patient customer to purchase the product occurs as soon as the current valuation

becomes larger than the current price. In the case of a strategic customer, this decision is more subtle

and requires a specific model of strategic behavior. Strategic customers make their purchasing decision

not only based on the current valuation and price, but also based on future committed prices and

possibly on the distribution of their future valuation (e.g., a customer is expecting shortly a bonus

and thus the willingness-to-pay will be affected by how large the bonus will be). Independently of

the specifics of the strategic behavior model, we can show, in the (BP) model that Theorems 3 and

4 remain valid for strategic customers. In fact, since every arriving customer has a bounded patience

level τ , if we consider a policy of the form, π =
(
(wj : j ≥ 1) : wj ∈ Ωτ

)
, then the customers who

arrive between time jτ+1 and (j+1)τ will generate revenues that are only function of wj and wj+1 no

matter how their strategic behavior is modeled (as long as the stationarity assumption holds). Hence

the weakly-coupled property holds as in the case of strategic customers, and the results of Theorem 3

and 4 apply.

We end this discussion with a couple of examples on possible strategic models that could govern

forward looking customers.

Example 3. Customers present in the system purchase in a specific period if the current surplus

is larger than all possible surplus in the future calculated using the current valuation. Suppose a

customer is currently present in the system with valuation vk and who could remain in the system

for at most another u periods. The customer observes the current and future committed prices in his

remaining window say, (ks, ks+1, ..., ks+u) and would decide to purchase the product at the current

price, ks, if k − ks ≥ 0 and ks ≤ min{ks+1, ..., ks+u}. The customer would delay a purchase if the

product is offered at a cheaper price in the “future”. In this example, the customer believes that his

current valuation is the best prediction of her future valuation.

Example 4. In this example, the customers of every given class have a common model for their

stochastic valuation evolution process, call it Ṽt(·) (it does not need to be the same as the firm’s

model). Customers purchase in a specific period if the current surplus is positive and larger than the

expected value of the maximum surplus that can be generated in the remaining periods of the patience

level, that is if k − ks ≥ 0 and

k − ks ≥ E max
s+1≤j≤s+u

{Ṽt(j)− kj}.

8 Numerical Analysis

Our objective in this section is to use the algorithm of Theorem 4 to shed some light on the behavior

of optimal pricing strategies. We confine our analysis to the (M-BP) and (M-UP) models where we
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have a closed form of the revenue function. We use the algorithm to obtain and analyze an optimal

cyclic policy for many choices of the matrix Q, while also varying τ , the valuation vector v and its

size K. Without much loss of generality we set γ = [1/K, . . . , 1/K]. The parameters that we use in

drawing different realizations of Q and v are the following:

i.) The parameter ν > 0 represents the probability in any given period that a customer leaves the

system by reaching the absorbing state v0. Without a great loss of generality we often restrict,

for simplicity of notations, our numerical analysis to the case where ν is the same for any given

state of the customer. The coefficients of the matrix Q can thus be drawn randomly in (0, 1)

such that the sum on each row is equal to 1− ν.

ii.) The parameter e > 0 is introduced to represent the average gap between consecutive valuations.

That is, the vector v = [v1, . . . , vK ] is such that v1 = 1 and vi+1 = vi (1 + e ζi) where ζi is

uniformly drawn in (0, 1).

When the findings with respect to the (M-BP) and (M-UP) cases are the same, we present these

under the (M-BP) setting. We later discuss the findings that are specific to the (M-UP) case. For now,

we set M = 1, or equivalently, σ = τ . For each set of parameters (τ, ν, e,K) we make n� 1 drawings

of the different parameters to which we apply the analytic algorithm. We collected and summarized

the statistics of the outcomes in the table below.

We call k-cyclic policy a cyclic and simple τ -policy of size k τ (i.e., with k different prices).

We say that a cyclic policy π outperforms π′ by δ% if 100(R(π)−R(π′))/R(π′) = δ.

Set f the percentage of times where the maximal policy performs better than all the fixed price

policies, and d denotes the average ratio (in percent) of how much the maximal policy outperforms

the fixed price policy (this average is computed conditional on the fact that the maximal policy is not

a fixed price one).

Set f′ the percentage of times where the maximal policy performs better than all the fixed price

and two-cyclic policies, and d′ denotes the average ratio (in percent) of how much the maximal policy

outperforms the maximum over the fixed price and two-cyclic policies (this average is computed

conditional to the fact that the maximal policy has period larger or equal to three).

Finding I. Cyclic policies with cycle at most three and decreasing are almost always

optimal.

Under (M-BP), each customer sees at most two prices and this is true with probability larger

than 1 − ε in the (M-UP) case. It is hence reasonable to expect that the optimal cyclic policies

given by Theorem 3 actually have a short cycle size, even if K is large. We obviously know based on

Proposition 1 that this cannot be always true. However, our numerical analysis actually yielded, in all

the cases we considered, optimal policies that are monotone decreasing and k-cyclic with k smaller or

equal than 3. Hence, our first finding is that for all values of the parameters and for all the instances

we considered (as described above), the optimal policies were decreasing and k-cyclic with k ≤ 3.
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Finding II. Fixed price and two-cyclic policies are practically optimal.

Our second finding is that the fixed price and two-cyclic policies were nearly optimal, with just

very few instances where a three-cyclic policy outperformed them; and in those cases the performance

ratio was less than 1%. This is reflected in the two last columns of Table 1.

Finding III. As σ increases fixed price policies perform increasingly better compared to

two-cyclic ones.

In line with our result of Propositions 8 we find that, as long as the probability to reach the state

v0 or vK from all the other valuations is supposed to be strictly positive, then as σ gets very large

the fixed price policies become the best. This is because customers tend to see just one price as σ

goes to infinity. As shown by the fourth column of Table 1, the frequency at which two-cyclic policies

outperform the fixed price policies is decreasing with σ. As shown by the fifth column of Table 1 we

also see the outperforming rate of the two-cyclic policies d is also a decreasing function of σ. Finally,

the last line of these two columns confirm our result of Proposition 8, namely that as σ goes to infinity

the optimal policy is a fixed price one.

Finding IV. As ν increases fixed price policies perform increasingly better compared to

two-cyclic ones.

We also find that as the probability to reach the states v0 or vK , from all the other valuations,

increases, the fixed price policies become the best. This is natural since when the latter probability

grows, the customers spend less time in the system and it is clear for example that if each customer

stays in the system for just one period, then the price that optimizes the revenue of a single period

(without consideration of Θ) gives rise to an optimal policy that is the fixed price policy with this

same price. As shown by the fourth column of Table 1, the frequency at which two-cyclic policies

outperform the fixed price policies is decreasing with ν. As shown by the fifth column of the Table 1,

we also see the outperforming rate of the two-cyclic policies d is also a decreasing function of ν.

τ ν e f d f′ d′

1 0.1 0.1 76 2.6 5 0.1

5 0.1 0.1 43 0.6 2 0

9 0.1 0.1 21 0.3 0 0

13 0.1 0.1 13 0 0 0

5 0. 0.1 67 3 5 0.3

5 0.1 0.1 54 0.6 4 0.1

5 0.2 0.1 16 0.1 0 0

5 0.3 0.1 1 0 0 0

5 0.1 0.05 45 0.3 2 0.1

5 0.1 0.15 43 0.7 3 0.1

5 0.1 0.25 29 1.2 2 0.2

5 0.1 0.35 34 1.7 2 0.2
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Table 1. (BPL), σ = τ , K = 4.

Finding V. Impact of disregarding changing valuations on revenues.

We illustrate these findings with a couple of specific examples. Consider first the following. Set

K = 4 and τ = σ = 10 under the (M-BP) case and set the transition matrix Q close to the Identity,

Q =


0.9 0.05 0.03 0.02

0.05 0.8 0.1 0.05

0 0.05 0.95 0

0 0 0 1

 .
Note that ν(Q) = 1 as is the case for the Identity matrix. Let v = [1.0, 1.3, 1.45, 1.6]. For this

valuations’ vector and this transition matrix Q, an optimal policy is the two-cyclic policy [3, 2]. If

however the matrix is the Identity (i.e., the valuations are not changing), an optimal policy is given

by [2, 1]. Of course, if the seller disregards the impact of the changing valuations, and thus solves for

an optimal policy using Q′ = Id, she will end up setting the two-cyclic policy [2, 1] instead of [3, 2].

The loss in profit of doing so is found numerically to be 4%. This result is quite robust. Indeed, the

policy [2, 1] is in fact numerically found to be optimal for all diagonal matrices that are close to the

Id. Thus, the seller would incur the same loss of 4% if he replaces Q by any diagonal matrix close to

the Identity.

Now, let v = [1.0, 1.1, 1.25, 1.4] and

Q =


0.7 0.1 0.05 0.07

0.05 0.7 0.07 0.07

0.07 0.07 0.7 0

0 0 0.05 0.8

 .
For any transition matrix that is diagonal, Q′ = Diag(d1, d2, d3, d4) where di ∈ [0.6, 1], we find

that the fixed price policy [1] is optimal. On the other hand, when we consider Q to be the transition

matrix, the policy [3, 2, 1] is optimal and outperforms [1] by 5%.

Finding VI. An example of three-cyclic optimal policy.

In the case of τ = Mσ, M ≥ 2, one expects that optimal policies with longer cycles appear.

However each customer sees M + 1 prices in this context and it is reasonable to conjecture that the

length of the cycles will be small if M is taken to be small. Because of the complexity K4M we are

bound to let M be small if we want to apply our algorithm.

In all the examples we have tested (M ≤ 4) the optimal policies were decreasing and had a cyclic

length of at most 3. However, as opposed to the case M = 1, we often got cases where a three-cyclic

policy outperforms both two-cyclic and the fixed price policies by more than 5%. We illustrate this

finding with the following example.
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Consider the following (M-BP) example with K = 4, τ = 6 and σ = 2, that is M = 3. We set

v = [1.0, 1.2, 1.4, 2] and γ = [0.25, 0.25, 0.25, 0.25]. We let

Q =


0.8 0.05 0.0 0

0.2 0.6 0.0 0.2

0.1 0.2 0.6 0

0.1 0.2 0.6 0

 .
The maximum fixed price policy is given by [1] with R([1]) = 1. The optimal two-cyclic policy is

given by [3, 1] with R([3, 1]) = 1.09. Finally, an optimal policy is a three-cyclic policy and is given by

[4, 3, 1] with R([4, 3, 1]) = 1.14. It is an example where an optimal policy outperforms the fixed price

policies by 14% and the two-cyclic ones by 4%.

Finding VII. Tuning ε in the (M-UP) case.

Consider the (M-UP) case. We fix K,Q,v, and γ. One could aim at selecting ε in a way to obtain

the best possible solution of (1). For every ε > 0 we define τε = − ln ε/ν and we set τ = τε and take

σ = τ or equivalently M = 1 (a similar reasoning below can be made for any M).

We denote by πε an optimal policy given by the algorithm that uses the analytic approximation of

the revenue by a τ -affine revenue function. We denote by R̄(πε) the approximate return of an optimal

policy as given by the algorithm. Given that the error of the affine approximation is bounded by ε we

may introduce the quantity R̄(πε)− ε and focus on the choices of ε that make it positive.

For example, to compare the performance of πε versus the fixed price policies, we can introduce the

notation ∆ε = R̄(πε)− ε−R∗f where R∗f denotes the revenue of the best fixed price policy. Typically,

as ε → 0, fixed price policies are optimal as is confirmed by the (M-UP) version of Proposition 8

(included in Proposition 10) and the algorithm (see Table 2). As ε becomes large, we often find

two-cyclic optimal policies πε. However as ε becomes too large, ∆ε becomes negative which implies

that any optimal policy we find is not guaranteed to perform better than the fixed price ones, once

we account for the error ε of our approximation. In conclusion, as we vary ε > 0, we aim to maximize

R̄(πε)− ε and track ∆ε as a way to compare the approximation with fixed price policies.

We illustrate this approach using the following example. We let v = [1.0, 1.2, 1.5, 2] and

Q =


0.65 0.05 0 0.05

0.05 0.65 0 0.05

0.05 0.05 0.6 0

0 0 0 0.6

 .
Note that ν(Q) = 0.3. From Table 2, we observe that there is a broad range of values of ε,

where a two-cyclic policy is strictly better than fixed-price policies. In particular, by setting ε = 0.01

the algorithm generates a policy that outperforms the best fixed price policy by more than 3%, and

represents our best approximation of the unconstrained optimization.
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ε τε πε R̄(πε) ∆ε

10−13 83 [4] 1.02 0

10−5 32 [4,1] 1.03 0.02

10−3 19 [4,1] 1.04 0.04

10−2 12 [4,1] 1.05 0.05

10−1 6 [4,1] 0.99 0

0.2 4 [4,1] 0.91 -0.1

0.4 2 [4,1] 0.73 -0.27

Table 2. An (M-UP) case, with M = 1.

9 Conclusion

We tackled in this paper an intertemporal pricing problem that incorporates what we argued to be

a natural consumer’s behavior, namely, customers with time-varying valuations. We considered a

continuous flux of patient customers with random but bounded patience levels during which their

valuation processes stochastically change through time. The model depicting the valuation process

is extremely general and requires only time stationarity. We show, with some explicit numerical

examples, that disregarding stochastic valuations can make the firm miss a sizable profit. As for the

analytical analysis, and despite the generality of the model, the additive revenue function is shown in

this context to preserve an interesting property, denoted by weakly coupled, which guarantees that

cyclic policies are optimal. We thus established that the optimality of cyclic policies in the context of

intertemporal pricing is quite robust.

The time-varying valuations feature of the model brings however a major complexity with respect to

the structure and the tractability of these policies. Concerning the latter, one can obtain well behaved

and numerically tractable policies by limiting the pricing pace, i.e., by forcing the firm to keep each

price for a minimum amount of time. As for the structure, previous work (see, ?) have highlighted the

complexity of finding the optimal policy even for constant valuations as soon as one considers multiple

patience levels. In the latter setting, ? shows that it can remain tractable. However with general

time-varying valuations, we argue here that it will not be possible to reduce the exponential complexity

of the optimal policy. For that, we constructed an example showing that even when customers spend

no more than two periods in the system (M = 1), an optimal policy can be cyclic increasing and the

size of the cycle can be as large as K − 1. Interestingly however, we observed numerically that in the

same setting of the example (M = 1), when we randomly select the primitives of the problem, it is

quite rare that an optimal cyclic policy has a size strictly larger than two (and hence, independent of

K) or that an optimal policy is not monotone decreasing.

In terms of potential next steps, we believe that the last observation is worth investigating carefully

by looking for conditions under which the cycle size is independent of the number of prices. The

problem is difficult but a better understanding of this possible independence in K would represent
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a valuable breakthrough. It will be also valuable to look more carefully into the strategic customer

case and study the best way to model such behavior. It has been argued (see ? and ?) that the

strategic case is easier to handle than the patient case. We note that under changing valuations, it

seems impossible to get better than the weak coupling dissociation on the revenue function. Finally,

most of the closely related literature have been looking at a single product. It could be an interesting

challenge to look at substitutable products and see whether one could identify the structure of optimal

policies under such a more complex demand model.
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Appendix A.

1 Markovian Valuations - Formulation of the Revenue Pair

This section is devoted to some preliminary analysis and calculations when the valuation process

follows a discrete time Markov chain on Ω with an absorbing state at v0 = 0; hence its transition

matrix can be written as follows

Q̄ =

(
1 0

H Q

)
,

where H is a column vector with dimension K, which entries are the probabilities to go from any state

k > 0 to v0. We also assume, WLOG, that one customer arrives every period.

Our objective is to characterize how the expected number of customers that are in the system

evolve through time and we also obtain a closed form formulation of the revenue function (L,Θ).

We start by introducing new notations. We set the following

• Pi,j+ =
∑K

l=j qil. The probability to transfer from state i to any possible state l ≥ j.

• Pi−,j+ =
(∑K

l=j q1l,
∑K

l=j q2l, . . . ,
∑K

l=j q(i−1)l

)T
. The column vector whose entries are the prob-

abilities to go from a state strictly lower than i to all possible states higher than j.

• Ui,j− =
(
qi1, . . . , qi(j−1)

)
. The row vector whose entries are the probabilities to go from state i

to a specific state strictly lower than j

• Qi−j− = {qkl : 1 ≤ k < i, 1 ≤ l < j} is the matrix of transfer probabilities from states lower than

i to states lower than j. It is a minor of the matrix Q̄. We denote by Qm the square matrix

Qm−m−

Note first that “− ” involves states strictly lower while “ + ” involves states larger or equal; secondly,

all the above quantities involve transition probabilities between states in Ω and do not involve the

absorbing state v0.

Expected Number of Customers in the System.

We consider θ = (θ1, ..., θK) ∈ [0, τ ]K , where θm is again the expected number of individuals with

valuation vm who are currently in the system. Given a phase (k, t), an expected state of the system,

θ, we recall that Θ(k, t| θ) =
(
Θ1(k, t|θ), ...,ΘK(k, t|θ)

)
, is the expected state of the system one phase

later. Therefore, if m ≥ k then Θm(k, τ |θ) ≡ 0, otherwise,

Θm(k, t|θ) =

(
k−1∑
l=1

θl Ul,k−Q
t
k +

t∧τ−1∑
i=0

k−1∑
l=1

γl Ul,k−Q
i
k

)
m

+ γm (5)
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We recognize that for t ≥ τ and for m < k, we have that

Θm(k, t) = Θ̄m(k) :=

(
τ−1∑
i=0

k−1∑
l=1

γl Ul,k−Q
i
k

)
m

+ γm, (6)

and Θm(k, t) = Θ̄m(k) ≡ 0, when m ≥ k.

Expected Revenues.

We denote by L(k,t)(m) the expected revenue generated in the next t periods by one individual currently

present in the system with valuation vm, facing in the next t periods the price vk. It is possible that the

individual does not purchase during these t periods; any revenues generated after t are not included

in L(k,t)(m). Therefore,

L(k,t)(m) =
[
Pm,k+ + Um,k−Pk−,k+ + Um,k−QkPk−,k+ + Um,k−QkQk Pk−,k+ + . . .

]
· vk

=
[
Pm,k+ +

t∧τ−2∑
l=0

Um,k− Q
l
k Pk−,k+

]
· vk

(7)

We also denote by L̄(k,t)(m) the expected revenue generated from one individual who just arrived into

the system with valuation vm, and who will be facing the phase (k, t). Therefore,

L̄(k,t)(m) = δm≥kvk + (1− δm≥k)L(k,t)(m).

The first term depicts the expected revenue generated if at arrival the customer has a valuation larger

or equal than the listed price k. Otherwise, the customer now is in the system and the expected

revenue generated from the remaining period are given by L defined above.

Putting together some of these formulations we obtain a closed formulation of the expected revenue

L.

Proposition 12 Given a transition matrix, Q, a vector γ of initial proportions and a set Ω of valua-

tions, the expected revenues generated from a set of consecutive phases
(
(kj , tj) : 1 ≤ j ≤ n)

)
, is given

by

L(k1, ..., kn : t1, ..., tn) =
n∑
j=1

L(kj , tj |θj−1)

=

n∑
j=1

K∑
m=1

[
γm

tj∑
t=1

L̄(kj ,t)(m) + θj−1
m L(kj ,tj)(m)

] (8)

with θjm = Θm(kj , tj |θj−1) is given in closed form in (5) and θ0 = 0.

We end this section by a result that is relevant primarily in the unbounded case.

Proposition 13 Suppose that the system starts empty. Then, for any policy π ∈ P, and any 1 ≤ m ≤
K, the expected number of customers in the system with valuation vm is bounded by ρ = min{τ, 1/ν}.
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The result is obvious in the (M-BP) case. For the (M-UP), it is enough to prove that for any policy

π =
(
(kj , τj) : j ≥ 1

)
∈ P, we have that for all j ≥ 1 and 1 ≤ m ≤ K,

θjm = Θm(kj , τj |θj−1) ≤ ρ <∞.

We start with two observations. First, the probability that a customer with valuation vm jumps next

to v0 is upper bounded by Λ := 1− ν. Second, the expected number of customers with valuation vm

at time t, is always less than the expected number of customers with valuation vm at time t, that

would have been in the system if the pricing policy was set at K throughout. Recall, that ΘK = 0

and θ0 = 0, and thus from Equation 5 we have that

||Θ(K, t)|| ≤ ||
t−1∑
i=0

K−1∑
l=1

γl Ul,K−Q
i
K ||+ ||(γ1, γ2, ..., γK−1, 0)||

≤
t−1∑
i=0

K−1∑
l=1

γl ||Ul,K− || ||QK ||i + 1

≤ Λ
t−1∑
i=0

Λi + 1 ≤ 1

1− Λ
.

The third inequality is due to the fact that
∑K−1

l=1 γl ||Ul,K− || ≤ Λ
∑

l γl ≤ Λ. The bound above shows

that each component of Θ is bounded by 1/(1−Λ). Hence, the expected number of customers in the

system is bounded by K/(1− Λ). �

2 Proof of Propositions 7

2.1 Additional Notations

We introduce some additional notations. Recall that L(k,t)(m) (resp. L̄(k,t)(m)) is the expected

revenues generated in the next t periods from one individual who is already in the system (resp. just

arrived to the system) facing the price vk for t consecutive periods. Given a certain duration τ , we

denote by

• Ck(m) = L(k,τ)(m), is the expected revenues generated during the phase (k, τ) by an individual

initially in state m,

• Bk(m) = L̄(k,τ)(m), is the expected revenues generated during the phase (k, τ) by an individual

arriving with valuation vm,

• Ak(m) =
∑τ

t=1 L̄(k,t)(m)

• Ak :=
∑

m γmAk(m), is the aggregate expected revenues generated during the phase, (k, τ), by

all the customers that arrived during this same phase,
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• Bk :=
∑

m γmBk(m), is the aggregate expected revenues generated during the phase, (k, τ), by

all the customers that newly arrived at the beginning of this phase,

• Tk,k′ :=
∑

m Θ̄m(k)Ck′(m), is the expected revenues generated by Θ̄(k) during a phase (k′, τ),

where, Θ̄ is given by (6)

• pk,t,m is the probability that a customer who faces a phase (k, t) remains in the system at the

end of the phase.

2.2 The proof

Next we detail the proof of Proposition 7. Property (A1) holds as a direct result of τ < ∞. As for

(A2), we start with the quantity L(k, t|θ) for t ≥ τ and that can be written as the sum of three terms.

First, the expected revenues generated during the phase from new customers in the last τ periods

of the phase. That is exactly Ak. Secondly, the expected revenues generated from new comers that

arrived in the first t − τ periods of the phase and that is exactly,
∑

m

∑t
s=τ+1 γm L̄(k,s)(m). Finally,

the revenues generated from customers that were in the system at the beginning of the phase, θ, and

that is
∑

m θm Lk,t(m). We write that

L(k, t|θ) = Ak +
∑
m

t∑
s=τ+1

γm L̄(k,s)(m) +
∑
m

θm Lk,t(m)

= Ak +
∑
m

t∑
s=τ+1

γm(Bk(m) + pk,τ,m v0) +
∑
m

θmCk(m) +
∑
m

θm pk,τ,m v0

= Ak +Bk (t− τ) +
∑
m

θmCk(m).

By setting Ck to be the vector with entry Ck(m), we complete our proof.
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Appendix B

A Simpler Model. The case of K = 2

In this section, we consider an (M-UP) model withK = 2. Let Ω = {v1, v2}, with v0 < v1 ≤ v2. A seller

facing a patient customer would only consider a pricing policy p where at any time t, pt ∈ {v1, v2}. We

start by observing that the price v1 is a reset price and that is, once set the system empties. Having

this in mind, it is easy to see that the optimal policy is either a fixed price policy where for all t,

pt = vi i = 1, 2, or is cyclical of the form πc =
(
(v2, t), (v1, 1)

)
; the cycle starts with v2 that is set for

0 < t < ∞ consecutive periods and then v1 is set once. Note that the extreme cases of t ∈ {0,∞}
cover the cases where the prices are constant.

The arriving customers has valuation v2 with probability γ, and have valuation v1 with probability

γ̄ = 1− γ. The average revenue per period collected by the seller is R(t), with

R(t) =
1

t + 1

(
γv2t + v1 + v1

γ̄q12

1− q11

(
t− 1− qt11

1− q11

)
+ v1γ̄

1− qt11

1− q11
(q11 + q12)

)
The first two terms in parenthesis represent the revenues from customers that arrive and buy right

away: those with valuation v2 at price v2 during t periods, and everyone at price v1 in the last period.

The last two terms in parenthesis account for the customers that accumulate over time and end up

buying at either v1 or v2. The expected number of customers buying in a particular period l, 1 ≤ l ≤ t,
at price v2 is given by the expression

γ̄q12

l−2∑
n=0

qn11 = γ̄q12
1− ql−1

11

1− q11
,

i.e., these are all customers that arrive earlier with low valuation v2, and for whom the valuation

remains at v2 and jumps to v1 from at period l − 1. Summing over all l, 1 ≤ l ≤ t, we get:

t∑
l=1

(
γ̄q12

1− ql−1
11

1− q11

)
=

γ̄q12

1− q11

(
t−

t∑
l=1

ql−1
11

)
=

γ̄q12

1− q11

(
t−

t−1∑
l=0

ql11

)
=

γ̄q12

1− q11

(
t− 1− qt11

1− q11

)
The expected number of customers buying in period t + 1 at price v1 is given by those who arrived

earlier with valuation v1 and remained at v1 until period t, and then either stayed at v1 or jumped to

v2, i.e.,

γ̄

t−1∑
l=0

ql11(q11 + q12) = γ̄(q11 + q12)
1− qt11

1− q11
.

We next state our main result here where we show that under some conditions involving the prim-

itives of the problem, the seller is better off implementing a strictly cyclic policy of the form πc =(
(v2, t), (v1, 1)

)
with t finite.

Proposition 14 We denote by t∗ = arg maxt∈N{R(t)}. We have the following

0 < t∗ <∞ iff C ln q11 < B − v1 < C,
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where

B = γ v2 + v2γ̄
q12

1− q11
= v2

γq20 + q12

1− q11
> 0,

and

C = −v2γ̄
q12

(1− q11)2
+ v2γ̄

q11 + q12

1− q11
.

If these conditions do not hold, then t∗ = 0 iff B − v1 < C ln q11, and t∗ =∞ otherwise.

Proof. Given the expressions of B and C, we rewrite the revenue function as follows

(t + 1)R(t) = v1 +B t + C (1− qt11).

Note that C > 0 iff v2 < v1(1 + q11
q12

) (1− q11) where the term (1 + q11
q12

) (1− q11) ≥ 1. In order to prove

that it is optimal for the seller to set pt at v1 and reset the system, it is enough to prove that t∗ the

maximizer of R is finite i.e. 0 ≤ t∗ <∞. Simple calculations show that

R′(t) =
B − v1 − C + C qt11 (1− (t + 1) ln(q11))

(t + 1)2
.

We denote by N (t) the numerator of R′(t). By taking the derivative with respect to t of g(t) =

qt11 (1− (t + 1) ln(q11)), we observe that this quantity is non-increasing in t, from which we conclude

that N (t) is itself monotone in t. Therefore, the equation R′(t) = 0 admits at most one solution.

In light of that, we denote by t̂∗ the supremum of R on the positive real line and conclude that a

necessary and sufficient condition for 0 < t̂∗ <∞ is that

i.) N (0) > 0 and ii.) N (∞) < 0.

Hence, by putting these two inequalities together we get that −C(1 − ln q11) < B − v1 − C and

B − v1 − C < 0. We finally get that

0 < t̂∗ <∞ iff C ln q11 < B − v1 < C.

Note that under these condition R(t) > R(∞) ≡ B for any t ≥ t̂∗ and R(t) > R(0) for any t ≤ t̂∗

and hence t∗ := arg maxnR(n) ∈ (0,∞), which completes our proof.
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