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ABSTRACT. For area preserving C 2 surface diffeomorphisms, we give an ex-
plicit finite information condition on the exponential growth of the number
of Bowen’s (n,δ)-balls needed to cover a positive proportion of the space, that
is sufficient to guarantee positive topological entropy. This can be seen as an
effective version of Katok’s horseshoe theorem in the conservative setting. We
also show that the analogous result is false in dimension larger than 3.

1. INTRODUCTION

Let X be a compact smooth surface with a Riemannian metric. Denote by
Diffr

vol(X ) the group of C r diffeomorphisms which preserve the volume form m
induced by the Riemannian metric. Without loss of generality, we assume that
m(X ) = 1.

A well-known result of Katok, based on Pesin theory, says that if f ∈ Diff1+ε(X )
has non-zero Lyapunov exponent for some f -invariant non-atomic ergodic mea-
sure, then the topological entropy of f is positive and that f actually has invari-
ant horseshoes that carry most of the topological entropy (see, for example, [5]
or [6]). In particular, this is the case for any f ∈ Diff1+ε

vol (X ) having positive Lya-
punov exponents on a positive measure set, or, in other words, when f has
positive metric entropy by Pesin’s formula.

Besides the positivity of Lyapunov exponents, another manifestation of pos-
itive metric entropy is the exponential rate of growth of the Bowen (n,δ)-balls
(see Definition 1) that are needed to cover a definite proportion of X (see, for
example, [6]).

DEFINITION 1. Given a continuous map f : X → X . For any δ> 0, integer n ≥ 1,
any x ∈ X , we define Bowen’s (n,δ)-ball centered at x by

B f (x,n,δ) =
{

y
∣∣ d( f i (x), f i (y)) < δ, ∀ 0 ≤ i ≤ n −1

}
.

Given an f -invariant measure µ. For any ε ∈ (0,1), let N f (n,δ,ε) = infU #U ,
where U is taken over all the subsets of

{
B f (x,n,δ)

}
x∈X such that the union
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of the (n,δ)-balls in U has µ-measure not less than 1−ε. For a finite set I , we
use #I to denote the cardinality of I .

By the sub-multiplicative growth of the number of Bowen balls and Katok’s
horseshoe theorem, the following statement is true by compactness.

Fact: Given f ∈ Diff2(X ) so that the C 2 norm of f is bounded by D > 0, and
h,δ,ε > 0. Then there exists n0 = n0(D,h,δ,ε) > 0 such that if N f (n,δ,ε) ≥ enh

for some integer n > n0, then f has positive topological entropy.

Sketch of proof. Assume by contradiction that there exists h,δ,ε > 0 and a se-
quence fn with a uniform bound on its C 2 norm for which N fn (n,δ,ε) ≥ enh

and htop( fn) = 0. By compactness we can, up to passing to a subsequence, as-
sume that fn has a limit f that is C 1+Lip. Since for any g , the minimal number
Ng (n,δ) needed to cover all of X is essentially sub-multiplicative in n, we have
that for a fixed k ∈ N, and for any n sufficiently large N fn (k,δ) ≥ ekh/2. There-

fore N f (k,δ) ≥ ekh/2 for any k ∈N and hence f has positive topological entropy.
By Katok’s horseshoe theorem, this contradicts the assumption htop( fn) = 0 for
all n.

In this paper, we will give a direct proof of the above fact for area preserv-
ing f , that also provides an explicit upper bound for n0(D,h,δ,ε). Our bound

will essentially be a tower-exponential of height K ∼ log( log A
h ) where A = ‖ f ‖C 1 .

The norm of the second derivative of f enters into the argument of the tower-
exponential bound. We will not use in our proof any ergodic theory.

Our main tool is a finite information closing lemma for a map g ∈ Diff2
vol(X )

that generalizes the one obtained in [2, Theorem 4]. [2, Theorem 4] asserts that
if x is such that |Dg q (x)| is comparable to |Dg |θq where θ is close to 1 and q
is sufficiently large compared to powers of the C 2 norm of g , then there exists
a hyperbolic periodic point that shadows a piece of a length q orbit of x. A
similar effective closing lemma was previously obtained by Climenhaga and
Pesin in [4] for C 1+ε-diffeomorphisms in any dimension, assuming however
the existence of a splitting of the tangent spaces along a long orbit with some
additional estimates of effective hyperbolicity. For an interesting application of
the latter effective approach, we refer the reader to [3]. In this note we will need
a generalized version of the effective closing lemma in [2] that gives a shadowing
of x by a hyperbolic periodic orbit, even when |Dg q (x)| is much smaller than
|Dg |θq , provided that |Dg q (x)| ≥ |Dg (g i (x))|θq , for most of the i ∈ [0, q]. An
inductive use of this closing lemma allows one to obtain, under the growth
condition of the (n,δ)-balls, sufficiently many hyperbolic periodic points with a
good control on their local stable and unstable manifolds to insure the existence
of a horseshoe. Note that, in order to exploit the growth condition of the Bowen
balls, we need sufficiently precise informations from the shadowing property,
which are not covered by the direct bootstrapping of [2, Theorem 4].

With the same approach, we are also able to conclude positive topological
entropy from derivative growth at an explicit time scale along a single, yet not
too concentrated, orbit.
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EFFECTIVE KATOK’S HORSESHOE THEOREM 427

1.1. Statements of the main results. Throughout this note, X is a compact sur-
face with a volume form m. Without loss of generality, we assume that m(X ) = 1.
We will denote by f : X → X a C 2 diffeomorphism that preserves m such that
for constants A,D > 0, { |D f | ≤ A,

|D2 f | ≤ D.
(∗)

Here |D f |, |D2 f | denote respectively the supremum of the first and second
derivatives of f .

All the constants that appear in the text will implicitly depend on the sur-
face X .

To simplify notations, we define the following.

DEFINITION 2. For R0,R1 > 0, K ∈ Z+, we define function Tower : R2+×Z+ → R

by the following recurrence relation,

Tower(R0,R1,K ) =
{

R0, K = 1,

RTower(R0,R1,K−1)
1 , K ≥ 2.

(1.1)

Our main result is the following.

THEOREM A. There exists a constant C0 = C0(X ) > 0 such that the following is
true. For any A,D > 1, h ∈ (0, log A], ε ∈ (0,1), δ> 0, denote by

P0 = max(ε−1eC0(log( log A
h ))2+C0 ,C0h−1 logδ−1),(1.2)

P1 = eC0h−1 logD log A .(1.3)

If f : X → X is a C 2 diffeomorphism preserving m that satisfies (∗), and N f (n,δ,ε)

> enh for some n ≥ Tower(P0,P1,K0), where K0 = dC0 log( log A
h )+C0e, then f has

positive topological entropy.

Theorem A gives positive topological entropy from complexity growth at an
explicit large time scale. Some adaptation of the proof also allows us to conclude
positive topological entropy from derivative growth at an explicit time scale
along a single, yet not too concentrated, orbit. To precisely formulate such a
result, we introduce the following notation.

DEFINITION 3. Given a continuous map f : X → X , for any subset I ⊂ Z, any
x ∈ X , we set Orb( f , x, I ) = {

f i (x)
∣∣ i ∈ I

}
. For constants c,δ> 0,ε ∈ (0,1), we say

that x is (n,c,δ,ε)-sparse if for any subset I ⊂ {0, . . . ,n−1} satisfying |I | > cn we
have m(B(Orb( f , x, I ),δ)) > ε.

THEOREM B. There exists a constant C0 = C0(X ) > 0 such that the following is
true. For any A,D > 1, h ∈ (0, log A], ε ∈ (0,1), let

P0 = ε−1eC0(log( log A
h ))2+C0 , P1 = eC0h−1 logD log A .

If f : X → X is a C 2 diffeomorphism preserving m that satisfies (∗), and there

exists x ∈ X such that for some n ≥ Tower(P0,P1,K0), where K0 =
⌈
C0 log( log A

h )+
C0

⌉
, we have
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• |D f n(x)| > enh ,
• x is (n,Tower(P0,P1,K0 −1)−1,D−Tower(P0,P1,K0−1),ε)-sparse,

then f has positive topological entropy.

Observe that a non-concentration condition, such as the second condition
of Theorem B, is necessary to conclude positive entropy, for otherwise x could
just belong to a hyperbolic periodic orbit with a small period.

We remark that Theorem A does not hold in general in dimension at least 4
as the following example shows.

EXAMPLE 4. Denote by {g t }t∈R a geodesic flow on Y := S1M , the unit tangent
space of a hyperbolic surface M , preserving the Liouville measure µ. We set
h0 := hµ(g1) > 0. Let T=R/Z be the circle and let ϕ ∈C∞(T) be a function such
that

∫
Tϕdθ = 0 and ϕ|[0, 1

2 ] ≡ 1. For any α ∈R, denote by Rα :T→T the rotation

θ 7→ θ+α[1], and consider the C 2 map fα :T×Y →T×Y defined as follows:

fα(θ, x) = (θ+α, gϕ(θ)(x)), ∀ (θ, x) ∈T×Y .

Observe that for any α ∈ R, fα preserves the smooth measure ν := LebT×µ.
It is clear that supα∈T| fα|C 2 <∞. Moreover, we have the following which shows
that Theorem A does not hold in general in dimension at least 4.

PROPOSITION 5. We have that

(1) For any α ∈R−Q, the topological entropy htop( fα) = 0.
(2) There exists δ> 0 such that for any ε ∈ (0,1), any integer n0 > 0, there exists

n > n0, ᾱ ∈T, such that for any α ∈ [0, ᾱ] it holds that N fα(n,δ,ε) > e
nh0

2 .

Proof. Abramov-Rohlin formula [1] for the entropy of a skew product yields (1).
To see (1) directly, let (qn)n∈N be the sequence of denominators of the best
rational approximations of α. Then by Denjoy-Koksma theorem, the partial
sums Sqnϕ defined as Sqnϕ(θ) :=∑qn−1

i=0 ϕ(θ+iα), ∀ θ ∈T, converge uniformly in
the C∞ topology to 0, as n tends to infinity. By direct computations, we see that

f qn
α (θ, x) = (θ+qnα, gSqn (θ)(x)), ∀ (θ, x) ∈T×Y .

This implies that f qn
α converge to Id in the C∞ topology, as n tends to infinty. By

Ruelle’s entropy inequality, such convergence can happen only if htop( fα) = 0.
To see (2), we notice that by hµ(g1) = h0 > 0, there exists δ> 0, such that for

any ε ∈ (0,1), any n0 > 0, there exists n > n0 such that Ng1 (n,δ,ε) > e
nh0

2 . Then
by choosing α to be sufficiently close to 0, so that iα ∈ [0, 1

2 ] for all 0 ≤ i ≤ n, we
have f i

α(θ, x) = (θ+iα, gi (x)) for any (θ, x) ∈T×Y , any 0 ≤ i ≤ n. Then it is direct

to see that N fα(n,δ,ε) ≥ Ng1 (n,δ,ε) > e
nh0

2 . This concludes the proof.

NOTATION 6. For any n ≥ 1, any x ∈ X , we will denote µx,n = 1
n

∑n−1
m=0δ f m (x).

For any x ∈ X , any linear subspace E ⊂ Tx X and any r > 0, we denote BE (r ) ={
v ∈ E

∣∣ |v | < r
}
. For any subset A ⊂ X and any r > 0, we denote B(A,r ) ={

x
∣∣ d(x, A) < r

}
. For any measurable subset K ⊂ X , we denote the measure

of K by |K | := m(K ). For a finite set A, we use #A to denote the cardinality of A.
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We will use c,c1, . . . to denote generic positive constants which are allowed to
vary from line to line, and may or may not depend on X , but independent of ev-
erything else. Under our notations, expressions like c A ≤ B ≤ c A are legitimate.
For two variables A,B > 0, we denote A À B (resp. A ¿ B) if we have A ≥ cB
(resp. c A ≤ B) for some constant c as above.

2. FROM HYPERBOLIC POINTS TO POSITIVE ENTROPY

DEFINITION 7. Let g : X → X be a C 1 diffeomorphism. For α ∈ (0,π),r ∈ (0,1), a
hyperbolic periodic point of g , denoted by y ∈ X , is said to be (α,r )-hyperbolic
if the following is true. Let E s(y),E u(y) be respectively the stable and unstable
direction at y . Then

(1) The angle between E s(y) and E u(y) is at least α;
(2) The local stable (resp. local unstable) manifold of g at x contains the

set expy (graph(γs)) (resp. expy (graph(γu))), where γs : BE s (y)(r ) → E u(y)
(resp. γu : BE u (y)(r ) → E s(y)) is a Lipschitz function such that γs(0) = 0 and
Lip(γs) < 1

100 (resp. γu(0) = 0 and Lip(γu) < 1
100 ).

Moreover, we denote expy (graph(γs)) (resp. expy (graph(γu))) by W s
r (y) (resp.

Wu
r (y)).
For any α ∈ (0,π),r > 0, the set of all (α,r )-hyperbolic points of g is denoted

by H(g ,α,r ). To simplify notations, for any λ ∈ (0,1), a (λ2,λ3)-hyperbolic point
of g is said to be λ-hyperbolic. The set of all λ-hyperbolic points of g is denoted
by H(g ,λ).

DEFINITION 8 (Heteroclinic intersection). For any C 1 diffeomorphism g : X →
X , for any two distinct hyperbolic periodic points of g denoted by p, q , we say
that p, q has a heteroclinic intersection, if the global stable submanifold of p in-
tersects transversely the global unstable manifold of q , and the global unstable
submanifold of p intersects transversely the global stable manifold of q .

The following proposition shows that for any given α,r , there cannot be too
many (α,r )-points unless there is a heteroclinic intersection.

PROPOSITION 9. There exist C1,C2 > 1 depending only on X such that, for any
α ∈ (0,π), any 0 < r <C−1

1 , if a C 1 diffeomorphism g : X → X satisfy #H(g ,α,r ) >
C2r−2α−4, then there exists a heteroclinic intersection for g . In particular, g has
positive topological entropy. In particular, if λ¿ 1 and #H(g ,λ) À λ−14, then
there exists a heteroclinic intersection for g .

Proof. In order to be able to measure the angles between vectors in nearby
tangent spaces, we cover the surface X by finitely many C∞ local charts

{
ψ :

[−1,2]2 → X
}
ψ∈B indexed by B. For any three distinct points x, y, z ∈ R2, let

∠(x, y, z) denote ∠(x − y, z − y). For any β > 0, any v ∈ R2 à {0}, let C (v,β) :={
u

∣∣∠(u, v) <β}∪ {0}.
We will choose

{
ψ : [−1,2]2 → X

}
ψ∈B and a constant c0 > 0, depending only

on X, such that for any x ∈ X , any ψ ∈B such that x ∈ψ([0,1]2), for any v1, v2 ∈
Tx X à {0}, set x̂ :=ψ−1(x), v̂1 := Dψ−1(x, v1), v̂2 := Dψ−1(x, v2), then:
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1. 2−1∠(v1, v2) ≤∠(v̂1, v̂2) ≤ 2∠(v1, v2);
2. If |v1|, |v2| < 2c−1

0 , then ψ−1expx (vi ) is defined and

2−1∠(v1, v2) ≤∠(ψ−1 expx (v1), x̂,ψ−1 expx (v2)) ≤ 2∠(v1, v2).

We fix an arbitrary smooth measure m̂ on compact manifold

X̂ = {
(x, v1, v2)

∣∣ x ∈ X , v1, v2 ∈ Tx X , |v1| = |v2| = c−1
0

}
.

Let c1 > 0 be a large constant to determined later, and for any (x, v1, v2) ∈ X̂ , any
ψ ∈B so that x ∈ψ((0,1)2) and set

Qψ(x, v1, v2) =
{

(y,u1,u2) ∈ X̂
∣∣∣ |x̂ − ŷ | < rα

c1
,∠(v̂1, û1),∠(v̂2, û2) < α

40

}
.

Then there exists c2 > 0 depending only on X ,c1, such that for all (x, v1, v2) ∈ X̂ ,
any ψ ∈B so that x ∈ψ((0,1)2), we have

m̂(ψ(Qψ(x, v1, v2))) > c−1
2 r 2α4.

By pigeonhole principle, there exists a constant c3 > 0 depending only on
X ,c2, such that whenever #H(g ,α,r ) > c3r−2α−4, there exists a chart ψ ∈ B,
(yi , v s

i , vu
i ) ∈ X̂ , i = 1,2 so that

(1) y1, y2 ∈H(g ,α,r )∩ψ((0,1)2) are two distinct points;
(2) For i = 1,2, ∠(v s

i , vu
i ) ≤ π

2 , and v s
i (resp. vu

i ) lies in the stable (resp. unsta-
ble) direction of yi ;

(3) Qψ(y1, v s
1, vu

1 )∩Qψ(y2, v s
2, vu

2 ) 6= ;.

This implies that |ŷ1 − ŷ2| < 2rα
c1

, ∠(v̂ s
1, v̂ s

2) < α
20 and ∠(v̂u

1 , v̂u
2 ) < α

20 .
For i = 1,2, let us denote αi = ∠(vu

i , v s
i ). By the definition of H(g ,α,r ) we

have α1,α2 ≥α. Then ∠(v̂u
i , v̂ s

i ) ≥ 2−1αi for i = 1,2. Moreover for r ¿ 1, we have

ψ−1(Wu
r (yi )) ⊂ ŷi +C (v̂u

i , 1
20αi ) since there exists γu : BE u (yi )(r ) → E s(yi ) with

Lip(γu) < 1
100 , such that Wu

r (yi ) = expyi graph(γu) and graph(γu) ⊂C (vu
i , 1

40αi ).

Similarly, we have ψ−1(W s
r (yi )) ⊂ ŷi +C (v̂ s

i , 1
20αi ).

By straightforward calculations, when c1 is chosen to be sufficiently large,
y1,y2 above have a heteroclinic intersection. Thus for any r ¿ 1, any C 1 diffeo-
morphism g : X → X so that #H(g ,α,r ) À r−2α−4, there exists a heteroclinic
intersection for g . It is a standard fact that for C 1 surface diffeomorphism, the
existence of a heteroclinic intersection implies positive topological entropy. This
concludes the proof.

3. A CLOSING LEMMA

DEFINITION 10. For any η > 0, any integer l > 0, any C 0 map g : X → X , any
subset Y ⊂ X , a point x ∈ X is said to be (η, l , g )-recurrent for Y if we have

1

l
#
{

0 ≤ j ≤ l −1
∣∣ g j (x) ∈ Y

}
> η.

For any subset Y ⊂ X , we denote by

R(Y ,η, l , g ) := {
(η, l , g )-recurrent points for Y

}
.
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If in addition g : X → X is a C 1 diffeomorphism, we set for any λ,ξ> 0 that

G(λ,ξ, g ) := ⋃
y∈H(g ,λ)

B(Wu
λ3 (y),ξ).(3.1)

By our definition, we clearly have G(λ,ξ, g ) = G(λ,ξ, g k ) for any k ≥ 1, since
H(g ,λ) =H(g k ,λ) for any k ≥ 1.

The theorem [2, Theorem 4] can be strengthened to prove the following
proposition.

PROPOSITION 11. There exist absolute constants C̄ > 0, θ0 ∈ ( 1
2 ,1), and C =

C (X ) > 1+ C̄ such that the following is true. For each ∆≥ 1, we set

η= η(∆) :=C−1∆−2 ∈ (0,1).(3.2)

Let g : X → X be a C 2 diffeomorphism preserving m. If for A1 ≥C , D1 ≥ A1, an
integer q ≥ DC∆

1 and x ∈ X , we have the following:

(1) |Dg | ≤ A∆1 ,
(2) |D2g | ≤ D1,
(3) x ∉R({

y
∣∣ |Dg (y)| > A

θ−1
0

1

}
,η, q, g

)
, or equivalently,

1

q
#
{

0 ≤ j ≤ q −1
∣∣∣ |Dg (g j (x))| ≤ A

θ−1
0

1

}
≥ 1−η,

(4) |Dg q (x)| > Aq
1 ,

then

x ∈F (A1,D1,∆, q, g ) := ⋃
1≤ j≤q

g− j (G(D−C̄∆
1 , A

− q

2DC∆
1

1 , g )
)
.

The proof of Proposition 11 follows closely that of [2, Theorem 4]. In our case
we need to get more precise informations on the regularity of local invariant
manifolds, as well as the location of the hyperbolic point. We defer its proof to
Appendix A relying on many estimates from [2].

4. ESTIMATES ALONG A TOWER EXPONENTIAL SEQUENCE

Without loss of generality, we will always assume that D, A in Theorem A, B
satisfy

D > A À 1.(4.1)

Then we can assume that for any C 2 map g : X → X such that |Dg |, |D2g | ≤ D ,
we have

|D2g k | < D2k , ∀ k ≥ 1.

Let C ,C̄ ,θ0 be defined in Proposition 11. For D, A,h given in Theorem A or B,
set C ′ to be a large positive constant depending only on X to be determined
later. We set

∆= 16log A

h
, K =

⌈
log(∆4 )

− logθ0

⌉
≥ 2, η= η(∆) (see (3.2)).(4.2)
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Define

H = H(X , A,h) :=C ′∆.(4.3)

In the following, let n ≥ 1 be given by Theorem A or B. Moreover, we will assume
that C0 =C0(X ) ÀC ′ where C0 is given by Theorem A or B.

Given ε ∈ (0,1), we inductively define {qk }K+1
k=0 and {lk }K

k=0 as follows:

q0 =
⌈
ε−1eC ′(log∆)2⌉

,(4.4)

lk =
{ dDqk H e, 0 ≤ k ≤ K −1

d n
qK

e, k = K
, qk+1 = qk lk .(4.5)

For 0 ≤ k ≤ K , we set

λk = D−2C̄∆qk , ξk = A
− qk+1θ

k+1
0

2D2C∆qk ,(4.6)

and set

Q0 = ε−1eC ′(log∆)2
, Q1 = e20C ′h−1 logD log A .

We have the following lemma.
LEMMA 12.

(1) e
h
16 < AθK+1

0 ≤ e
h
4 ;

(2) For any C ′ À 1, for all 0 ≤ k ≤ K −1, we have

Dqk H ≤ lk ≤ Tower(Q0,Q1,k +2).

If n > Tower(Q0,Q1,K +3), then lK ≥ DqK H ;
(3) For any C ′ À 1, set δ0 = D−Tower(Q0,Q1,K+1), we have

ξi ≤ ξ0, δ0 < min(λ3
K ,ξ0),

C ′λ−11
i max(δ0,ξi ) < ε, ∀ 0 ≤ i ≤ K .

Proof. We omit the proof since this lemma is derived from the definitions of
K , H , qk , lk ,λk ,ξk ,Q0,Q1 by straightforward computations.

We define for 0 ≤ k ≤ K ,

Gk :=G(λk ,ξk , f ),(4.7)

Fk :=F (Aqkθ
k+1
0 ,D2qk ,∆, lk , f qk ).(4.8)

The following is a corollary of Proposition 11.

COROLLARY 13. If n > Tower(Q0,Q1,K +3), then for any 0 ≤ k ≤ K we have

x ∉R({
y

∣∣ |D f qk (y)| > Aqkθ
k
0
}

,η(∆), lk , f qk
)∪Fk =⇒ |D f qk+1 (x)| ≤ Aqk+1θ

k+1
0 .

Proof. By Lemma 12(2), if n > Tower(Q0,Q1,K +3) then for any 0 ≤ k ≤ K , we
have lK ≥ Dqk H . By our choice of A,D , we have

|D f qk | ≤ Aqk , |D2 f qk | < D2qk , ∀ 0 ≤ k ≤ K .
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We take any 0 ≤ k ≤ K and an arbitrary x ∈ X such that |D f qk+1 (x)| > Aqk+1θ
k+1
0 . It

suffices to show that x ∈R
({

y
∣∣ |D f qk (y)| > Aqkθ

k
0
}

,η(∆), lk , f qk
)∪Fk . By Lem-

ma 12(1) we have

|D f qk (x)| ≤ Aqk ≤ (Aqkθ
k+1
0 )

16log A
h .

If x ∈R({
y

∣∣ |D f qk (y)| > Aqkθ
k
0
}

,η(∆), lk , f qk
)
, we are done. Otherwise, by (4.5),

(4.3) and by letting C ′ ÀC , we can verify conditions (1)-(4) in Proposition 11 for

( f qk , Aqkθ
k+1
0 , D2qk , 16log A

h , lk ) in place of (g , A1,D1,∆, q). We can apply Proposi-
tion 11 for map g = f qk to show that x ∈Fk . This completes the proof.

The following is a straightforward consequence of Proposition 9.

COROLLARY 14. For all C ′ À 1 the following is true. If we have at least one of
following:

(1) there exists 0 ≤ i ≤ K such that |Gi | ≥ ηK−iε
(K+1)li

,

(2) there exists 0 ≤ i ≤ K −1 such that |B(Gi ,D−Tower(Q0,Q1,K+3))| > ε,

then f has a heteroclinic intersection, in which case f has positive topological
entropy.

We include the proof of Corollary 14 in Appendix B.

REMARK 15. Given A,D,h as in Theorem A or B, we will choose C ′ to be suffi-
ciently large so that the conclusions of both Lemma 12 and Corollary 14 hold.

5. AN ITERATIVE DECOMPOSITION

Now we say a few words about the general strategy behind the proof of Theo-
rem A and Theorem B. We will inductively define a sequence of decompositions
of the surface X , denoted by X = Mi tEi . To start the induction, we define
M0 = X and E0 = ;. Assume that for k ≥ 0, we have defined Mk ,Ek satisfying
the following condition:

For each x ∈ Mk , we have |D f qk (x)| ≤ Aqkθ
k
0 .

Then Ek+1 is defined as the set of the points that up till some finite time scale,
either run into Ek with frequency ≥ η, or is shadowed by hyperbolic orbits (of
course the first case does not happen if Ek is empty). We will use Proposition 11
to show that the complement of Ek+1, defined as Mk+1, again satisfies the in-

duction hypothesis. We then argue that after roughly K = O(log( log A
h )) steps,

EK+1 has to be large. This will show that at some previous time scale, there are
enough different hyperbolic hyperbolic points to create a homoclinic intersec-
tion.

The formal construction is the following. For all 0 ≤ k ≤ K + 1, we define
Mk ,Ek through the following inductive formula. Let

E0 =;, M0 = X(5.1)
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and for all 0 ≤ k ≤ K , we define

Ek+1 =R(Ek ,η, lk , f qk )∪Fk ,(5.2)

Mk+1 = X àEk+1(5.3)

LEMMA 16. If n > Tower(Q0,Q1,K +3), then for any 0 ≤ k ≤ K +1 we have

x ∈ Mk =⇒ |D f qk (x)| ≤ Aqkθ
k
0 .

Proof. This is clear when k = 0 by |D f | ≤ A and sub-multiplicativity. Assume

that the lemma is valid for some integer k ∈ {0, . . . ,K }, then {x||D f qk (x)| > Aqkθ
k
0 }

⊂ Ek (we consider the inclusion valid if both sides are empty). By Corollary 13

and (5.2), we see that any x ∈ X such that |D f qk+1 (x)| > Aqk+1θ
k+1
0 is contained in

Ek+1. This completes the induction, thus finishes the proof.

We will give the proof of Theorem A and B in the next two subsections. In the
following, we let C ,θ0 be defined in Proposition 11, let A,D,h > 0 be given by
Theorem A or B, and let C ′ be sufficiently large depending only on X , satisfying
Remark 15.

5.1. Proof of Theorem A.

PROPOSITION 17. Let C0 in Theorem A be sufficiently large. Then under the
conditions of Theorem A, we have

|EK+1| ≥ ε.

Proof. We first show the following lemma.

LEMMA 18. Let C0 in Theorem A be sufficiently large, and let n be given as in
Theorem A. Then for each y ∈ MK+1, we have

B(y,e−2nh/5δ) ⊂ B f (y,n,δ).

Proof. It is clear from (4.5), Lemma 12(2) and D À 1 that

n

qK
≤ lK ≤ n

qK
+1 < 21

20

n

qK
.

Let y ∈ MK+1. For each 0 ≤ i ≤ lK −1, we denote by

ai = log|D f qK ( f i qK (y))|, δi = e−2nh/5+i qK h/24+∑i−1
j=0 aiδ, Bi = B( f i qK (y),δi ).

By letting C0 in Theorem A be sufficiently large, we can ensure that n > Tower(P0,
P1, K0) > Tower(Q0,Q1,K +3). Then by Lemma 12(1) and Lemma 16, we have
for each z ∈ MK , log|D f qK (z)| ≤ qK θ

K
0 log A ≤ hqK /4. Then by y ∈ MK+1, (5.2)

and Lemma 16, we have y ∉R({
z

∣∣ log|D f qK (z)| > hqK /4
}

,η, lk , f qk
)
, thus

#
{

0 ≤ i ≤ lK −1
∣∣ ai > hqK

4

}
≤ ηlK .

Since 0 ≤ ai ≤ qK log A for any 0 ≤ i ≤ lK −1, we have

i−1∑
j=0

a j ≤
lK −1∑
j=0

a j ≤ ηlK qK log A+ lK qK h

4
≤ 7lK qK h

24
, ∀ 0 ≤ i ≤ lK −1.
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The last inequality follows from η≤ h
24log A which is a consequence of (4.2), (3.2)

and h ∈ (0, log A]. Then for any 0 ≤ i ≤ lK −1, we have

δi ≤ e−2nh/5+lK qK h/3δ≤ e−
1

20 nhδ.(5.4)

We claim that for any integer 0 ≤ i ≤ lK −1,

f i qK (B0) ⊂ Bi .(5.5)

We first show that the above claim concludes the proof of our lemma. Indeed,
for any 0 ≤ l ≤ n, there exist 0 ≤ i ≤ lK −1,0 ≤ j ≤ qK −1 such that l = i qK + j .
Then we have

f l (B0) = f j ( f i qK (B0)) ⊂ f j (Bi ) ⊂ B( f l (y),δ)

The last inclusion follows from AqK δi ≤ AqK e−nh/20δ ≤ δ, by |D f j | ≤ AqK , (5.4)

and n
qK

≥ 40logD
h .

Now we obviously have (5.5) for i = 0. Assume that we have (5.5) for some
0 ≤ i ≤ lK −1, we will show that we have (5.5) for i +1. It suffices to show that
f qK (Bi ) ⊂ Bi+1. Using the C 2 bound |D2 f qK | ≤ D2qK and n

qK
≥ 40logD

h , we see
that for any z ∈ Bi ,

|D f qK (z)| ≤ eai +δi D2qK

≤ eai +D2qK e−nh/20δ≤ eai+hqK /24.

Since δi+1 = eai+hqK /24δi , we obtain f qK+1 (Bi ) ⊂ Bi+1. This proves (5.5) and
concludes the proof of Lemma 18.

To proceed with the proof of Proposition 17, observe that by Lemma 18,
MK+1 = X àEK+1 can be covered by ce4nh/5δ−2 many Bowen’s (n,δ)-balls. By
(1.2), n > P0 and by letting C0 be large, we have cδ−2 < eP0h/5 < enh/5. Thus
MK+1 can be covered by less than enh many Bowen’s (n,δ)-balls. By our hy-
pothesis that N f (n,δ,ε) > enh , we obtain |MK+1| < 1 − ε. This implies that
|EK+1| ≥ ε.

Proof of Theorem A. Since f is area preserving, by Markov’s inequality we have

|R(Ek ,η, lk , f qk )| ≤ η−1|Ek |.
Again by the fact that f is area preserving, we obtain the following inequality by
(5.2), (4.8)

|Ek+1| ≤ η−1|Ek |+ |Fk | ≤ η−1|Ek |+ lk |Gk |.(5.6)

By (5.6) and (5.1), we have

|EK+1| ≤
K∑

i=0
ηi−K li |Gi |.

Thus |EK+1| ≥ ε implies that |Gi | ≥ ηK−i ε
(K+1)li

for some 0 ≤ i ≤ K , which by
Corollary 14 (1) implies that f has positive entropy.
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5.2. Proof of Theorem B. The proof of Theorem B is parallel to that of Theo-
rem A. The following proposition is an analogue of Proposition 17.

PROPOSITION 19. Let C0 in Theorem B be sufficiently large, and let n be as in
Theorem B. Then under the condition of Theorem B, we have

µx,n(EK ) ≥ h

2log A
.

We recall that µx,n = 1
n

∑n−1
m=0δ f m (x).

Proof. By letting C0 in Theorem A be sufficiently large, we can ensure that n >
Tower(P0,P1,K0) > Tower(Q0,Q1,K +3). Then by Lemma 16, for each y ∈ MK ,

we have |D f qK (y)| ≤ AqK θ
K
0 ≤ e

qK h
2 .

We let p1 be the smallest integer p ∈ {0, . . . ,n −qK } so that f p (x) ∈ MK . Then
for each integer j ≥ 1 so that q1, . . . , q j are defined and belong to {0, . . . ,n −qK },
we let q j+1 be the first entry to MK after p j +qK −1 if such entry exists, otherwise
we terminate the construction. We thus obtain {p1, . . . , pl } ⊂ {0, . . . ,n − qK } so
that I j := {p j , . . . , p j + qK −1},1 ≤ j ≤ l are disjoint subsets of {0, . . . ,n −1} with
f p j (x) ∈ MK for all j ; and for any k ∈ {0, . . . ,n −1}à⋃l

j=1 I j , we have f k (x) ∈ EK .
Then by sub-multiplicativity, we have

log|D f n(x)| ≤
l∑

i=1
log|D f qK ( f pi (x))|+ (n − l qK ) log A

≤ 1

2
lhqK + (n − l qK ) log A.

By the condition in Theorem B, we have log|D f n(x)| > nh. Thus n(log A−h) >
l qK (log A− h

2 ). Then we see that µx,n(EK ) ≥ n−l qK

n ≥ h
2log A .

Proof of Theorem B. For any measurable set B ⊂ X , any integers n, l ≥ 1, any
x ∈ X , we have

µx,n( f −l (B)) ≤ l

n
+µx,n(B).

Then for any k = 0, · · · ,K −1, by Markov’s inequality we have

µx,n(R(Ek ,η, lk , f qk )) ≤ (ηlk )−1
∫ lK −1∑

i=0
1 f −i qK (Ek )dµx,n

≤ (ηlk )−1
lk−1∑
i=0

µx,n( f −i qk (Ek ))

≤ (ηlk )−1
lk−1∑
i=0

(µx,n(Ek )+ i qk

n
)

≤ η−1µx,n(Ek )+ qk+1

2nη
.
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Similarly, we have

µx,n(Fk ) ≤
lk−1∑
i=0

µx,n( f −i qk (Gk ))

≤ lkµx,n(Gk )+ lk qk+1

n
.

Then we have an inequality analogous to (5.6), as follows:

µx,n(Ek+1) ≤µx,n(R(Ek ,η, lk , f qk ))+µx,n(Fk )

≤ η−1µx,n(Ek )+ qk+1

2nη
+ lkµx,n(Gk )+ lk qk+1

n
.

By the simple observation that lk ≥ l0 ≥ η−1 for all 0 ≤ k ≤ K , we have

µx,n(EK ) ≤
K−1∑
i=0

η−K+i+1(liµx,n(Gi )+ 2li qi+1

n
).

By (4.5) and Proposition 19, we see that there exists 0 ≤ i ≤ K −1 such that

µx,n(Gi ) ≥ l−1
i (

ηK−i−1

K

h

2log A
− 2qK lK−1

n
) ≥ l−2

i .

The last inequality follows from

2qK lK−1

n
< 2lK−1

lK
< q−1

0 ≤ e−C ′(log∆)2 < ηK h

4K log A
,

ηK h

4K log A
> l−1

0 ≥ l−1
i , ∀ 0 ≤ i ≤ K −1,

by letting C ′ be larger than some absolute constant. In particular, by Lemma
12(2), (4.2), (4.4), (4.5) and by letting C0 in Theorem B be sufficiently large, we
have

µx,n(Gi ) > Tower(Q0,Q1,K +1)−2 > Tower(Q0,Q1,K +2)−1,

K0 ≥ K +4, Pi >Qi , i = 0,1.

By the condition that x is (n,Tower(P0,P1,K0−1)−1,D−Tower(P0,P1,K0−1),ε)-sparse
in Theorem B, we see that

|B(Gi ,D−Tower(Q0,Q1,K+3))| ≥ |B(Gi ,D−Tower(P0,P1,K0−1))| > ε.

This concludes the proof by Corollary 14(2).

APPENDIX A.

In this section we prove the main technical result Proposition 11. We start
with a slight generalization of Pliss lemma [7].

LEMMA 20 (a variant of Pliss). For any real numbers N ≥ 1, 1 > θ0 > θ1 > θ2 > 0,
η ∈ (0, 1

2
1−θ0
N−θ0

θ1−θ2
N−θ2

), for any integer n ≥ 1, real number l > 0, the following is true.
Given a sequence of n real numbers a1, ..., an . Assume that

(1) ai ≤ N l for all 1 ≤ i ≤ n,
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(2)
∑n

i=1 ai > nθ1l ,
(3) #

{
1 ≤ i ≤ n

∣∣ ai > θ0l
}< ηn.

Then there exist at least θ1−θ2
1−θ2

n indexes i ’s such that 1
k

∑i+k−1
j=i a j > θ2l for all

1 ≤ k ≤ n +1− i .

Proof. Denote by

A :=
{

i
∣∣ there exists 1 ≤ k ≤ n +1− i such that 1

k

∑i+k−1
j=i a j ≤ θ2l

}
.

Without loss of generality, we assume that A 6= ;, for otherwise the conclusion
of Lemma 20 is already true. We claim that A is contained in a non-empty set
I ⊂ {1, . . . ,n} satisfying that 1

#I

∑
i∈I ai ≤ θ2l . Indeed, we can inductively construct

I as follows. We set I0 =;. Assume that In is constructed for some n ∈N so that
A 6⊂ In , then we let i be the smallest element of A à In , and let 1 ≤ k ≤ n +1− i
be an integer such that 1

k

∑i+k−1
j=i a j ≤ θ2l . Then we set In+1 = In ∪{i , . . . , i +k−1}.

After finite steps, we obtain In satisfying A ⊂ In for some n ≥ 1. It is direct to see
that I = In satisfies the required property.

Then by (1),(2), we obtain that

l N #(I c )+ lθ2#I > l nθ1.

By l > 0, the above inequality implies that #(I c ) ≥ θ1−θ2
N−θ2

n. We claim that

1

#(I c )

∑
i∈I c

ai ≤ l .(A.1)

Indeed, if (A.1) was false, by (1) we would have at least 1−θ0
N−θ0

#(I c ) ≥ 1−θ0
N−θ0

θ1−θ2
N−θ2

n >
ηn indexes i ∈ I c such that ai > θ0l , but this would contradict (3).

Now we use (2) again, with the improved estimate (A.1) in place of (1), and
obtain

l#(I c )+θ2l#I ≥ ∑
i∈I c

ai +
∑
i∈I

ai > nθ1l .

This implies #(I c ) ≥ θ1−θ2
1−θ2

n. We conclude the proof by the definition of I .

Let x be given by the condition of Proposition 11. We will define a collection
of charts along a sub-orbit of x following the definitions and estimates in [2].

Let vs be a unit vector in the most contracting direction of Dg q (x) in Tx X ,
and let vu be a unit vector orthogonal to vs . For each 0 ≤ i ≤ q , we define

v s
i := Dg i (vs)

|Dg i (vs)| , vu
i := Dg i (vu)

|Dg i (vu)| ,

λs
i := log

|Dg (v s
i )|

|v s
i |

, λu
i := log

|Dg (vu
i )|

|vu
i |

,

λ
e
i := min{λu

i ,−λs
i }.

Given r > 0,τ> 0,κ> 0, we define a (r,τ,κ)-Box, which we denote by U (r,τ,κ),
to be

U (r,τ,κ) = {
(v, w) ∈R2

∣∣ |v | ≤ r, |w | ≤ τ+κ|v |} .
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For example, the narrow-lined contour in Figure 1 represents a (r,τ,κ)-Box after
re-scaling.

For κ> 0, we denote by

C (κ) = {
(v, w) ∈R2

∣∣ |w | < κ|v |} ,

C̃ (κ) = {
(v, w) ∈R2

∣∣ |v | < κ|w |} .

We will refer to these sets as cones.
We now recall some definitions in [2].

• A curve contained in R2 =Rx ⊕Ry is called a κ-horizontal graph if it is the
graph of a Lipschitz function from an closed interval I ⊂ Rx to Ry with
Lipschitz constant equal to or less than κ. Similarly, we can define the
κ-vertical graphs.

• The boundary of an (r,τ,κ)-Box U is the union of two 0-vertical graphs
and two κ-horizontal graphs. We call these graphs respectively, the left
(resp. right) vertical boundary of U and the upper (resp. lower) horizontal
boundary of U . We call the union of the left and right vertical boundary of
U the vertical boundary of U . Similarly we call the union of the upper and
lower horizontal boundary of U the horizontal boundary of U .

• Horizontal and vertical graphs which connect the boundaries of U will be
called full horizontal and full vertical graphs as in the following definition.
Given r,τ,κ,η > 0, for each (r,τ,κ)-Box U , an η-full horizontal graph of
U is an η-horizontal graph L such that L ⊂U and the endpoints of L are
contained in the vertical boundary of U . Similarly, we define the η-full
vertical graphs of U .

• We define an η-horizontal strip of U to be a subset of U bounded by
the vertical boundary of U and two disjoint η-full horizontal graphs of
U which are both disjoint from the horizontal boundary of U . Similarly
we can define η-vertical strips of U . Like Boxes, we define the horizontal,
vertical boundary of a strip.

• Given a Box U , R′ a vertical strip of U , and R a horizontal strip of U , a
homeomorphism that maps R′ to R is said to be regular if it maps the
horizontal (resp. vertical) boundary of R′ homeomorphically to the hori-
zontal (resp. vertical) boundary of R.

We recall the definition of hyperbolic map in [2].

DEFINITION 21. Given r,τ > 0 and 0 < κ,κ′,κ′′ < 1, denote U = U (r,τ,κ) and
let R1 be a κ-vertical strip of U , R2 be a κ-horizontal strip of U . A C 1 diffeo-
morphism G : R1 → R2 is called a hyperbolic map if it satisfies the following
conditions:

G is a regular map from R1 to R2,(A.2)

∀ x ∈R1,DGx (C (κ′)) ⊂C ( 1
2κ

′),(A.3)

∀ x ∈R2,DG−1
x (C̃ (κ")) ⊂ C̃ ( 1

2κ").(A.4)
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a b

cd

a′ b′

c ′d ′

R1

R2

FIGURE 1. R1 is the topological rectangle abcd ; R2 is the topo-
logical rectangle a′b′c ′d ′. Under a hyperbolic map G , ab is
mapped to a′b′ and similarly bc,cd ,d a are mapped respectively
to b′c ′,c ′d ′,d ′a′.

A sketch of a hyperbolic map is provided in Figure 1.

For each 0 ≤ n ≤ q , we define in :R2 → Txn X as

in(a,b) = avu
n +bv s

n .

There exists a constant R = R(X ) > 0 such that expxn
is a diffeomorphism re-

stricted to in(B(0,D−∆
1 R)) and that exp−1

xn+1
is a diffeomorphism restricted to

g expxn
in(B(0,D−∆

1 R)). Denote by gn the C 2 diffeomorphism

gn : B(0,D−∆
1 R) →R2

gn(v, w) = i−1
n+1 exp−1

xn+1
g expxn

in(v, w).

We set M := 1000, and

r̄ = D−3∆M
1 , κ̄= D−∆M

1 , δ= log A1

100
.

The main estimates in [2] are summarized in the following proposition.

PROPOSITION 22. Under the conditions of Proposition 11 for some absolute con-
stant θ0 ∈ (0,1) sufficiently close to 1, and C > 0 sufficiently large depending only
on X , there exist constant C1 = C1(X ) which can be made arbitrarily large by
choosing C to be large, integers 0 ≤ i1 ≤ i2 ≤ q, and sequences of positive numbers{
(rn ,τn ,κn , κ̃)n

}
i1≤n≤i2

such that:

(1) (Positive proportion)

i2 − i1 ≥ D−C1∆
1 q,
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(2) (Tameness at the starting and ending points)

cot∠(vu
i1

, v s
i1

),cot∠(vu
i2

, v s
i2

) < DM∆
1

100
,

106r̄ ≥ ri ≥ τi , ∀ i1 ≤ i ≤ i2

ri1 = τi1 = r̄ , κi1 = κ̃i1 = κ̄,

ri2 = 106r̄ , τi2 ≤
1

10
r̄ , κi2 =

1

100
κ̄, κ̃i2 = 100κ̄,

i2−1∑
n=i1

λu
n ,

i2−1∑
n=i1

−λs
n ≥ 2

3
(i2 − i1)a,

(3) (Transversal mappings) Let rn ,τn ,κn be as above, we let

Un =U (rn ,τn ,κn), Cn =C (κn), C̃n = C̃ (κ̃n).

If Γ is a κn-full horizontal graph of Un , then gn(Γ)∩Un+1 is a κn+1-full
horizontal graph of Un+1. Moreover, the image of the horizontal boundary
of Un under gn is disjoint from the horizontal boundary of Un+1; the im-
age of the vertical boundary of Un under gn is disjoint from the vertical
boundary of Un+1.

(4) (Cone condition) Furthermore, for any (v, w) ∈Un , we have (Dgn)(v,w)(Cn) ⊂
Cn+1; for any (v, w) ∈ gn(Un)∩Un+1, we have (Dg−1

n )(v,w)(C̃n+1) ⊂ C̃n . More-
over, for any (v, w) ∈Un , any (V ,W ) ∈Cn , let (V̄ ,W̄ ) = (Dgn)(v,w)(V ,W ), we
have |V̄ | ≥ eλ

u
n−δ|V |; for any (v, w) ∈ gn(Un)∩Un+1, any (V ,W ) ∈ C̃n+1, let

(V̄ ,W̄ ) = (Dg−1
n )(v,w)(V ,W ), we have |W̄ | ≥ e−λ

s
n−δ|W |.

(5) (Hyperbolic map) Denote

J = i−1
i1

exp−1
xi1

expxi2
ii2 ,

G = i−1
i1

exp−1
xi1

g i2−i1 expxi1
ii1 = J gi2−1 · · ·gi1 .

There exist R1, a 100κ̄-vertical strip of Ui1 , and R2, a 100κ̄-horizontal strip
of Ui1 such that G is a hyperbolic map from R1 to R2 with parameters κ′ =
κ̄,κ′′ = 100κ̄. Moreover, for each 0 ≤ j ≤ i2 − i1, we have gi1+ j−1 · · ·gi1 (R1)
⊂Ui1+ j .

REMARK 23. We stress that by (1), i2 − i1 is lower bounded by a definite propor-
tion of the length of the orbit q , although their ratio could be extremely small,
i.e., D−C1∆

1 .

We will give a sketch of the proof and refer the detailed estimates to [2].

Proof. Set a = log A1. Condition (4) in Proposition 11 translates into

1

q

q−1∑
i=0

λs
i ≤−a,

1

q

q−1∑
i=0

λu
i ≥ a.

Using condition (3) and Lemma 20 in place of the Pliss lemma, by setting
θ0 ∈ (0,1) to be an absolute constant sufficiently close to 1 and setting C > 0
to be sufficiently large depending only on X , we can show analogously to [2,
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Lemma 4.4] that there are more than q/2 points in
{

g k (x)
∣∣ 0 ≤ k ≤ q −1

}
that

are “good in the orbit of x.” Here a point g n(x) is said to be good in the orbit
of x if n ∈ [1, q −1] satisfies the following conditions:

1

k

n+k−1∑
j=n

λ
e
j >

(
1− 1

1000

)
θ−1

0 a, ∀ 1 ≤ k ≤ q −n,(A.5)

1

k

n−1∑
j=n−k

λ
e
j >

(
1− 1

1000

)
θ−1

0 a, ∀ 1 ≤ k ≤ n.(A.6)

We can show in analogy to [2, Lemma 4.5] that |cot∠(v s
n , vu

n )| ≤ A3∆
1 for all n

such that g n(x) is good in the orbit. Let L0 = dD−C1∆
1 qe and J0 := ⌊ q

L0

⌋
. Then

the sequence (xk )L0 J0−1
k=0 is the union of L0 subsequences (xi+ j L0 )J0−1

j=0 where i =
0, . . . ,L0 −1. Then there exists an integer 0 ≤ i < L0 such that the subsequence
(xi+ j L0 )J0−1

j=0 contains at least 1
3 DC1∆

1 many points which are good in the orbit

of x. By letting C1 to be sufficiently large depending only on X , we can apply
the pigeonhole principle to the above subsequence as in the proof of [2, Propo-
sition 4.1] and obtain 0 ≤ i1 < i2 ≤ q −1 that satisfy the following conditions:

(1) i2 − i1 ≥ D−∆C1
1 q ,

(2)
∑i1+k−1

j=i1
λ

e
j > (1− 1

1000 )θ−1
0 ak, ∀ 1 ≤ k ≤ i2 − i1,

(3)
∑i2−1

j=i2−k λ
e
j > (1− 1

1000 )θ−1
0 ak, ∀ 1 ≤ k ≤ i2 − i1,

(4) The angles ∠(v s
i1

, vu
i1

),∠(v s
i2

, vu
i2

) satisfy

log |cot∠(v s
i1

, vu
i2

)| ≤ 3∆a, log |cot∠(v s
i2

, vu
i2

)| ≤ 3∆a,

(5) Moreover, we have d(g i1 (x), g i2 (x)) < D
−C1∆

200
1 , and

dT 1 X (v s
i1

, v s
i2

) < D
−C1∆

200
1 , dT 1 X (vu

i1
, vu

i2
) < D

−C1∆
200

1 .

We note the similarities between the above conditions and those of [2, Defini-
tion 4.3]. However here we have a large inverse power of D1 in (5) instead of a
small inverse power of q as in [2, Definition 4.3(4)]. This is sufficient for the rest
of proof, since ri1 ,ri2 , ∠(v s

i1
, vu

i1
) and ∠(v s

i2
, vu

i2
) are lower bounded by D−O(∆).

At this point, we can invoke the proof of Proposition 4.2, and obtain (2) as
a consequence of [2, Lemmas 4.6, 4.7, 4.8]; and obtain (3) and (4) as a conse-
quence of [2, Proposition 4.5]. We obtain (5) following the proof of [2, Proposi-
tion 4.4].

Now we are ready to conclude the proof of Proposition 11.

Proof of Proposition 11. We apply Proposition 22 and obtain i1,i2, R1, R2, G ,
Ui , Ci , C̃i as in the proposition. We set i = i1, j = i2. By (5) in Proposition 22 and
[2, Proposition 4.3], we obtain a hyperbolic periodic point in R1 ∩R2, denoted
by y .
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We note the following lemma whose proof follows from the standard con-
struction of unstable / stable manifolds for uniformly hyperbolic maps using
graph transform argument. For this reason, we omit its proof.

LEMMA 24. Let r,τ > 0, L > 1, 0 < κ,κ′,κ′′ < 1, U = U (r,τ,κ), and let G : R1 →
R2 be a hyperbolic map, where R1 (resp. R2) is the κ-vertical strip (resp. κ-
horizontal strip) of U as in Definition 21, and κ′,κ′′ satisfy inclusion (A.3), (A.4)
respectively. Assume that

1. For each x ∈R1, each (V ,W ) ∈ C (κ′), set (V̄ ,W̄ ) = DGx (V ,W ), then |V̄ | ≥
L|V |,

2. For each x ∈R2, each (V ,W ) ∈ C̃ (κ′′), set (V̄ ,W̄ ) = DG−1
x (V ,W ), then |W̄ | ≥

L|W |.
Then there exists a hyperbolic fixed point of G, y ∈R1∩R2, whose local unstable
manifold in R2, denoted by Wu

G (y), is a κ′-horizontal graph, and whose local
stable manifold in R1, denoted by W s

G (y), is a κ′′-vertical graph. We also have

G(R1) ⊂ B(Wu
G (y),2L−1diam(U )).

We set L = A
j−i

2 . We now verify conditions (1),(2) of Lemma 24 for L, G , U =
Ui1 , κ = 100κ̄,κ′ = κ̄,κ′′ = 100κ̄. We only verify condition (2) in details since
condition (1) can be verified in a similar fashion. By Proposition 22(5), for any
i ≤ n ≤ j −1, we have g−1

n+1 · · ·g−1
j−1 J−1(R2) = gn · · ·gi (R1) ⊂ Un+1 ∩ gn(Un). For

any i ≤ n ≤ j , (v, w) ∈R2, (V ,W ) ∈ C̃ j (here C̃ j is given by Proposition 22(3)),
denote by (vn , wn) = g−1

n · · ·g−1
j−1 J−1(v, w), (Vn ,Wn) = D(J g j−1 · · ·gn)−1

(v,w)(V ,W ).
Then we have (vn , wn) ∈ Un for all i ≤ n ≤ j . By Proposition 22(2,4), we have

|Wi | ≥ e
∑ j−1

n=i (−λs
n−δ)|W j | ≥ A

j−i
2 |W | = L|W |.

By Lemma 24 and Proposition 22(2), we obtain

G(R1) ⊂ B(Wu
G (y),200A− j−i

2 r̄ )

We denote by z = expxi1
ii1 (y). By Proposition 22(5) and the fact that y is a hyper-

bolic fixed point of G , we conclude that z is a g -hyperbolic periodic point. Then
by Proposition 22 for sufficiently large C1, we can ensure that z ∈H(g ,D−M∆

1 ),
and

g j (x) ∈ expxi1
ii1G(R1) ⊂ B(Wu

D−3M∆
1

(z), A
− q

2D
C1∆
1

1 )

We conclude the proof by letting C̄ = M , and C to be sufficiently large depending
only on X .

APPENDIX B.

Proof of Corollary 14. In the following, we briefly denote H( f ,α,r ) by H(α,r ),
and denote H( f ,λ) by H(λ).

We first prove the corollary under condition (1). For any α,r,ξ > 0, any y ∈
H(α,r ),

|B(Wu
r (y),ξ)|¿ rξ.

JOURNAL OF MODERN DYNAMICS VOLUME 11, 2017, 425–445



444 BASSAM FAYAD AND ZHIYUAN ZHANG

It is clear from the definition of G in (3.1) that for any λ ∈ (0,1),

#H(λ) ≥ |G(λ,ξ, f )|/|B(Wu
λ3 (y),ξ)|

Àλ−3ξ−1|G(λ,ξ, f )|
By (4.6), (4.7) and Proposition 9, it suffices to check that

|Gi |Àλ−11
i ξi = A

− qi+1θ
i+1
0

2D2C∆qi D22C̄∆qi .

Since η ∈ (0,1), A À 1 and 1 > x A−x for x ∈ (0,∞), we have

|Gi | ≥ ηK−iε

(K +1)li

> ηK−iε

(K +1)li

qi+1θ
i+1
0

4D2C∆qi
A
− qi+1θ

i+1
0

4D2C∆qi

> (10K li )−1ηK ε
qi+1θ

i+1
0

D2C∆qi
A
− qi+1θ

i+1
0

4D2C∆qi

À A
− qi+1θ

i+1
0

2D2C∆qi D22C∆qi .

The last inequality follows from by letting C ′ À 1, and

• K −1ηK εqi+1θ
i+1
0 l−1

i À 1, since qi+1l−1
i θi+1

0 ≥ 1
2 qiθ

i
0 ≥ 1

2 q0, and q0 ≥(4.4)

ε−1eC ′(log( log A
h ))2+C ′ À(4.2) ε

−1Kη−K ,

• A
qi+1θ

i+1
0

4D2C∆qi ≥ D24C∆qi . Indeed by A À 1, we have

A
qi+1θ

i+1
0

4D2C∆qi ≥ qi+1θ
i+1
0

4D2C∆qi
≥(4.2),Lemma 12(1)

qi+1

4∆D2C∆qi

and
qi+1

4∆D2C∆qi
≥(4.3),(4.5),C ′ÀC D24C∆qi .

This concludes the proof since by our choice C > C̄ .
Now we consider condition (2). We set δ0 = D−Tower(Q0,Q1,K+3).

By Lemma 12(3), we have

δ0 ≤ ξ0 and δ0 ≤λ3
i , ∀ 0 ≤ i ≤ K .

For any λ,ξ ∈ (0,1), any y ∈H(λ), any δ ∈ (0,λ3), we have

|B(B(Wu
λ3 (y),ξ),δ)|¿λ3 max(ξ,δ).

By (3.1) and condition (2), we have for some 0 ≤ i ≤ K that,

#H(λi ) ≥ |B(G(λi ,ξi , f ),δ0)|
/

sup
y∈H(λi )

|B(B(Wu
λ3

i
(y),ξi ),δ0)|

À ελ−3
i min(ξ−1

i ,δ−1
0 ).

By Proposition 9, it suffices to observe from Lemma 12 that

εÀλ−11
i max(ξi ,δ0), ∀ 0 ≤ i ≤ K .
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