A dichotomy between uniform hyperbolicity and
zero Lyapunov epxonents for SL(2,R) cocycles.

Jairo Bochi and Bassam Fayad

April 18, 2005

Abstract

1 Introduction

Throughout this paper let G = SL(2, R).

We will be interested in G-valued cocycles A : X — G over dynamics
T : X — X which preserve a finite measure y on the space X. More
concretely, we shall consider the following two general situations:

e Measurable case: (X, p) is non-atomic Lebesgue space, T: X — X is
an automorphism (i.e., a bi-measurable p-preserving bijection), and
A : X — G is measurable such that log||A|| € L'(u). The discrete
situation where A takes finitely many values, is treated separately.

e Continuous case: X is a compact manifold of dimension at least 2,
i is a normalized volume measure, T : X — X is a yu-preserving
homeomorphism, and A4 : X — G is continuous.

In either case, the pair (A4,T) is called a cocycle. It induces a skew-
product map (also called a cocycle) Fra: X x R2 — X x R? defined by
Fra(z,v) = (T(z), A(z)v). We will use the same notation (A4,7T) to denote
the quotient map at the projective level from X x PY(R) to itself.

Denote

Al (z) = A(T" (@) - A(T()) Az).
The upper Lyapunov exponent of the cocycle (A,T) at x € X, given by
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exists for p-almost every x € X. Denote also

LE(A,T) :/X/\(T,A,x) du(x).

In this paper we address the question, given a cocycle A : X — G, of the
dependence of LE(A,T) on the dynamics T with respect to the following
topologies:

e Measurable case: Let Aut(X, ) be the set of automorphisms 7" : X —
X, endowed with the weak topology, according to which T,, — T iff
u(Th(B) AT(B)) — 0 for every measurable set B C X.

e Continuous case: Let Homeo(X, 1) be the set of uy-preserving homeo-
morphisms 7' : X — X, endowed with the uniform (C°) topology.

Remark 1.1. The generic maps T € Aut(X,pu) and T € Homeo(X, u) are
ergodic; these are classical theorems of Halmos and Rokhlin [H] and Oxtoby
and Ulam [OU], respectively. Although we shall not use these results, we
use some related ideas from [AP].

1.1 Duality between hyperbolicity and zero exponent
1.1.1 The measurable case.

We say that A : X — G is uniformly hyperbolic if there exists A\p > 0 such
that LE(A,T) > Ao for all T € Aut(X, ). This will be the case of course if
A is a constant hyperbolic matrix, and more generally if the support of the
measure v = A, in G is a hyperbolic set in the following sense:

Definition 1.2. A set 3 C G is called hyperbolic if there exists A > 1 such
that
|An - - A1|| > A™  for all Ay,..., A, € 2.

Let us say that A satisfies duality if

1. either the support of the measure v = A,u in G is a hyperbolic set
and therefore A is uniformly hyperbolic!

2. or the set of T' € Aut(X, p) for which LE(A,T) = 0 is residual in the
weak topology.

When the support of A.p is a finite set X, we will conjecture later that A can be
uniformly hyperbolic without ¥ being hyperbolic, cf. Problem 4.8.



Our goal is to express that “most” A’s satisfy duality. For technical
reasons that will be explained below, it is useful to ask differentiability of
A (although this is not very natural since we are working in the measurable
category):

Theorem A (Measurable case). Let X be a C"-manifold with finitly
many connected components and let € N*. Then the set of A € C"(X,G)
that satisfy duality is open and dense.

Remark 1.3. In opposition to uniform hyperbolicity, we shall define a con-
dition over A, called richness, that guarantees the existence of maps T such
that LE(A,T) = 0. In fact, we will prove that if A is rich then the generic
T € Aut(X,p) satisfies LE(A,T) = 0. The richness condition explicit (it
doesn’t appeal to Baire’s theorem, for instance). It only invovles the mea-
sure v = A,u and provides some “abundance” of matrices in the support
of v that makes it possible to find elliptic products, “mix directions”, and
make the exponents vanish after a perturbation of the dynamics. It is in
showing that in general A,y is either rich or has a hyperbolic support that
the differentiability condition on A is actually useful.

Indeed, in the case of differentiable A and compact connected base space
X with volume measure yu, duality is actually satisfied by virtually every

cocycle A (Cf. §1.3).

Remark 1.4. If the regularity of the dynamics on the base is more restrictive,
a cocycle A can switch dramatically from alternative 2 above to alternative
1. This is the case for example for Schrodinger cocycles with polynomial
potentials above the torus

Sy (0) = (Wl(”) _01> . AeTLAeR

and V() is a trigonometrical polynomial. For these cocycles our theorems
will imply alternative 2, while alternative 1 holds if the dynamics in the base
is restricted to real analytic maps in some given band, and if ) is greater to
some Ao, by Herman’s lower bound on the exponent [Hel].

1.1.2 The continuous case.

We recall that a cocycle (T, A), T € Homeo(X, ) and A € C(X,G) is said
to be uniformly hyperbolic if there exists C' > 0, A > 1 and a continuous
section
E*: X - S
z — E%ax)



such that for all z € X and n € N we have ||A7.(z)E"(z)|| > CA™. To recover
the language of the precedent section we will use the following equivalent
definition

Proposition 1.5 (Proposition 2. [Yo]). A cocycle (T, A), T € Homeo(X, i)
and A € C(X,G) is uniformly hyperbolic iff there exists C >0, A > 1 such
that

A7 (2)]] = CA",

foralln >0, z € X.

In this setting, let us say that A satisfies duality if for the generic T €
Homeo(X, p),

1. either the cocycle (A, T) is uniformly hyperbolic;
2. or LE(A,T)=0.
We have

Theorem B (Continuous case). Let X be a C"-manifold, 1 < r < oo.
Then the C"-generic A : X — G satisfies duality.

Remark 1.6. Our problem is dual to the one addressed in [B], [BV], [ArB]
where the map T on the base is fixed and the cocycle A is perturbed. Our
result in the continuous case can in this way be related to the result from [B]
stating that for any T' € Homeo(X, ), there is a residual set Ry C C(X,G)
(C(X,G) being the set of continuous mappings A : X — G endowed with
the uniform topology) such that if A € Ry then either the cocycle (A,T) is
uniformly hyperbolic or LE(A,T) = 0.

The results of [B] are extended for higher-dimensional matrices in [BV].
The papers [B] and [BV] also deal with the special (and more difficult)
situation where 7" is a volume-preserving (or symplectic) diffeomorphism
and A is the derivative of T. There are related results for the measurable
case: see [B] and [ArB].

1.1.3 The smooth case.

The phenomena of [B] and [BV] where in the absence of uniform hyperbol-
icity, the map A can be perturbed in the C° topology so as the exponent
drops down, may disappear if higher regularity is requested of the pertur-
bation. This is the case for example when the base map T is an Anosov
diffeomorphism of the torus T%, d > 1, since the exponent is then positif
and continuous on an open and dense set of C*(T¢,G) [BnV].



Herman’s lower bound on the exponent in the analytic setting gives
also an example where the dichotomy between uniform hyperbolicity and
zero exponents does not hold (Cf. remark 1.4 above). Above Diophantine
translations there are open sets of C" cocycles for which the expoenent is
positive and continuous.

In our setting, given a smooth manifol X with a smooth measure y and
amap A: X — G of class C' such that A is elliptic on some open set of X,
we even do not know if there exists a single C! diffeomorphism T preserving
p (and ergodic) such that LE(A,T) = 0.

Remark 1.7 (The smooth case. Non conservative dynamics). We mention
here two results obtained by Herman proving abundance of zero exponents in
the absence of uniform hyperbolicity for smooth cocycles above uniquely er-
godic diffeomorphisms of the circle; here the exponents are computed above
the unique invariant measure. The results are based on Baire category argu-
ments and the method used is to approximate the base dynamics by periodic
maps and concentrate the measure on orbits above which the product of ma-
trices are elliptic.
Define

Fp° = {f € DifiY(T"), p(f) € R\ Q}

where p(f) € R denotes the unique rotation number of f. We consider maps
Ace€ C;‘(’)(']I‘l, G), that is, smooth maps that are not homotopic to a constant
matrix. The set F° x C%(']I‘l, G) is a Baire space with the C*-topology.
Then

Proposition 1.8. [He2] There is a dense Gs set G C F° x C%(']I‘l,((}) of
cocycles (f,A) such that f is uniquely ergodic and LE(f, s, A) =0 with py
the unique invariant measure of f.

Here the absence of uniform hyperbolicity is granted by the fact that the
cocycle is not homotopic to identity.

The set of smooth maps that are homotopic to a constant matrix is
denoted by C§°(T!,G). Then

Proposition 1.9. [He2] There exists a set F € Ff° x C(TY, G), such that
the C™ closure of F, F is C° dense in the subset of non uniformly hyperbolic
cocycles in F®° xC§°(TY, G), and such that there is a C™ dense G set G C F
of cocycles (f, A) such that f is uniquely ergodic and LE(f,ps, A) = 0 with
py the unique invariant measure of f.



1.1.4 The discrete case.

We return to the measurable case and consider this time the discrete situ-
ation where A : X — G assumes a finite number of values. Such A cannot
satisfy the richness condition, so the previous results do not apply. Never-
theless we can prove a generic duality result:

Theorem C. Let N > 2 be an integer. There exists a residual set R C GN
such that for every % € R:

e cither X is uniformly hyperbolic;

e or for every measurable map A: X — ¥ which assumes every value in
3 on a set of positive measure, there is a residual set R4 C Aut(z, p)
such that for every T € Ra, LE(A,T) =0.

Given N-uple of matrices ¥ = (A;,..., Ay), we also write X for the set
{41,..., AN}
1.2 Richness and zero exponents.

As we mentionned in a remark above, the property opposed to hyperbolicity
of a cocycle is richness. To define this property we need first to introduce
some notation. If v is a measure in G and v € P!, then the push-forwards
of v by the maps

MeG—M'eG and MeG—M-veP

are indicated by »~! and v * v, respectively. If n € N, the push-forward of
V™ by the map

(My,....Mp,)eG"—» M, ---M €G

is indicated by v*". Finally, assuming that v is finite and has bounded
support, we write

V| =v(G) and ||v|e =inf{C >1; ||A|| < C for v-a.e. A€ G},
where ||-|| is some fixed operator norm.

Definition 1.10. Let v be a finite measure on G of bounded support. v is
called rich if there are N € N and k > 0 such that for every v € P! we have

v Nxv>rm and (W) lxv > km,

where m denotes Lebesque measure in P*. If N = 1, we call v spreading.



The richness property is studied in appendix 5.4 where the following
criteria are obtained:

Proposition 1.11. Let M be a compact manifold (maybe with dimension 1,
maybe not connected, maybe with boundary), with a smooth volume measure
p, and let A : M — G be a C' map. Assume there are points py, ...,
pr € M such that the matriz A(py)--- A(p1) is elliptic and moreover A is
not locally constant at at least one of the p;’s. Then A.p is rich.

Proposition 1.12. If v is a measure in G such that there is an open set
U C G of elliptic matrices and k > 0 such that v|y > kh|y, where h is Haar
measure in G, then v is rich.

Our main theorems, that imply theorems A and B, are:

Theorem D (Measurable case). Assume A : X — G is rich. Then there
is a residual set Ra C Aut(X,pu) such that LE(A,T) =0 for all T € R 4.

Remark 1.13. There is a residual subset R C C(X,G) such that for every
A € R, the conclusion of theorem D is true. This follows from the above-
mentioned result from [B] and proposition 5.4.

Theorem E (Continuous case). Assume the pair (A,T) is rich. Then
for every € > 0 there is T € Homeo (X, i) arbitrarily close to T such that
LE(A,T) < e.

In the proof of the above theorem we use theorem D and tools from [AP].

Corollary 1.14 (Continuous case). Assume the pair (A, T) is stably rich,
that is, (A, S) is rich for every S in a neighborhood U C Homeo(X, ) of
T. Then there is a residual subset R of U such that LE(A,T) = 0 for all
TeR.

1.3 Complete classification in the case of smooth cocycle A
and connected space X.

Theorem F. Let X be a compact connected manifold, and u be a volume
measure. Let A: X — G be a C' map. Then

1) either there 1s a closed interva such that A(x)-1 C I for every
) either th ) losed i 7 ;Cé P! h that A ICIf
Tz € X;

(ii) or LE(A,T) =0 for the generic T € Aut(X, ).



We study now the Lyapunov exponent if the first alternative holds.
There are three possibilities:

1. The interval I is a point;
2. the interval I is not a point but A(z) - I NI # () for all z € X;
3. the interval I is not a point and A(z) - I C I° for some z € X.

For an open and dense set of A € C'(X,G), (i) occurs under alternative
3. In this case we have
Claim: Under alternative 3 above, A is uniformly hyperbolic; that is, there
exists Ao > 0 such that LE(A,T) > Ao for all T € Aut(X, u).

With this claim, theorem A clearly follows from F.

Proof of the claim. Let us recall some facts about the Hilbert metric. If
I = (a,b) C P! is an open interval, then

di(z,y) = |$1(z) = d1(y)l;

where ¢y : I — R is given by

1. |z —ad

— £E| :
Let I and J be open intervals, and A € G. Then:
L. dyn(Az, Ay) = di(z,y).
2. If J C I then there is some ) < 1 such that d; < nd;.

3. Assume A(I) C I and let 0 < n < 1 be the Lipschitz constant of
A : T — I. Then the spectral radius p(4) > n~/2.

Now we come back to the proof of the claim. By continuity, there is
an open set of x € X such that A(x)(I) C I°. Let n(z) be the Lipschitz
constant of A(x) : I° — I°, and

)\0:—1/ logn du.
2 /x

Then Ao > 0 and LE(A,T) > X for all T € Aut(X, u). O



We continue our study of the Lyapunov exponent under alternative ().
In the subcase 1, there is vg € P! such that A(x)vy = vg for all z then the
Lyapunov exponent does not depend on the dynamics:

| frog 140l
o 1) =| [ 1o A0 duco).

for all T € Aut(X, p).

In the second subcase, the Lyapunov exponent may depend on the dy-
namics, and can be non-zero or zero (notice that sometimes 2nd subcase can
be reduced to the 1st).

For example, let X = [0,1] and

withd>0,¢>0,b=0in Xy =[1/2,1], c=0in X; = [0,1/2]. If T €
Aut(X, ) preserves X; and X5 then LE(A,T) = 0. Otherwise, LE(A,T) >
0.

In 2nd subcase, LE(A,-) seems to be continuous and > 0 in an (open and) dense set
(that includes all ergodic T').

To prove theorem F, we will need the following:

Lemma 1.15. Let X C G be a compact connected set. Assume that there is
no closed interval 1 ; P! such that A-1 C I for every A € . Then there
are Ay,..., Ay € X such that A1 --- Ay is elliptic.

Proof. We claim that there is ng € N such that for all v, w € P!, there exist
Ai,..., Ap, € ¥ such that A;--- Apv = w.

Indeed, fix any matrix Ag € 3, and let vy € P! be such that Agvg = vg.
Let I, C P! be the set of directions A; --- A, (vg), with 4; € . Since ¥ is
connected, each I, is an interval or the circle. Also, I, C I,,+1, because vg
is invariant by a matrix in 3. Let us see that I,,, = P! for some n;. Assume
the contrary, and let I = |J,, I,. We have A(I) C I for all A. Since we
are assuming ¥ has no invariant interval, we must have I = P!. Therefore
I = P! \ {2} for some 2. By the same assumption, there must be A € %
such that A(z) # z. Then A71(z) € I and so there must exist Ay, ..., 4,
such that Ay --- A, (vo) = A™!(2). But this implies z € I, a contradiction.

We have shown that there is n1 such that for any w there is a product
of length ny which sends vy to w. The same reasoning applied to the set
¥~1 (which does not have an invariant interval as well) gives that there is



ng such that for any v there is a product of length no sending v to vg. Let
ng = n1 + noe. The claim is proved.

Next we construct an elliptic product. Fix any A € ¥, A # id. If A is
elliptic, we are done.

If A is hyperbolic, with eigenvalues e™, e~, then let B be a product such
that B(e') = e~. Then a calculation shows that tr A"B — 0 as n — o0, S0
there exist an elliptic product.

If A is parabolic then, relative to some basis {e1,e2},

Let B be a product such that Be; = Rey. Write

0 b .
B_<c d)’ with ¢ # 0.

Then |tr A"B| = |Ben + d| — oo as n — oco. This shows that ¥ has an
hyperbolic product. Then we can repeat the previous reasoning and find an
elliptic product. U

We are ready now to give the

Proof of theorem F. If the function A is constant then the first case holds if
A is hyperbolic or parabolic, and the second case holds if A is elliptic. So
we can assume A is not constant.

Assume the first case does not hold. Applying lemma 1.15 to ¥ =
{A(z); z € X}, we conclude that there is n € N such that the function

(1., zp) € X" = A(zy) - - A(zq)

assumes an elliptic value. This function is not constant and X™ is connected,
so proposition 1.11 applies and the exponent vanishes generically by theorem
D. O

2 Proof of theorem D

In all this section, (X, ) denotes a non-atomic Lebesgue space. We begin
introducing some notation: If A: (X, ) — G is a bounded measurable map,
k€N, and T € Aut(X, p), let

1
A1) = ¢ [ tog 4] du.
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Observe that by subadditivity of [} log || A%||du we have LE(A,T) < Agx(A,T).
We define the infimum exponent of order k of A

Ap(A) = inf  Ap(A,T).
k(4) TEAluI;(X,u) K4, T)

In §2.1 we will study some properties of the maps A +— Ai(A) and show
that they enjoy useful properties of continuity and convexity and that they
actually depend only on the push-forward measure A,u. We will then show
that if A,u is spreading then Ai(A) tends to zero as k tends to infinity.
Finally, for A : X — G rich and T' € Aut(X, ), we will consider induced
cocycles from (A, T) (cf. §2.5 and apply the latter result to perturb T so
that the Lyapunov exponent under A comes close to zero.

2.1 Infimum exponent of order k.

The continuity property of A states as follows:

Lemma 2.1. Given k € N, C > 1 and § > 0, there exists n > 0 with the

following properties: If A, B : (X, u) = G are measurable maps with || Al s,
|IBlloo < C and

||A—B||1=/X||A—B|| dj <1

then
[AK(4) = Ap(B)] < 6.

Proof. We take n = C~**14. The lemma follows from the facts below:
1. If x > 1 and y > 0 then log(z + y) < logz + ¥;
2. if A;, B; € G satisfy ||A;||, || Bi|]| < C then

k
IBi -+ By — A+ Ag]| < C*1 Y T |IB; — Ayl.
=1

The map Ay has a convexity property:

Lemma 2.2. Let vy, vy be probability measures in G, with bounded supports.
If0 <t <1 then

Ak(tl/l + (1 - t)l/g) < tAk(I/l) + (]_ — t)Ak(l/Q).

11



Proof. Let A; : I — G be such that (4;)«m = v;. Let f1 :[0,¢] — I and
f2 1 [t,1] — I be affine bijections. Given T, Ty € Aut(I,m), let

Alx) = Aiofi in[0,1), T(z) = filoTiofy in|0,t),
Ago fy in [t,1], fytoTyo fo in [t,1].

Then Aym = tvy + (1 — t)ve, T € Aut(I,m), and
Ap(A,T) = tAp(A1, Th) + (1 — t)Ar (A2, Tn).
The result follows. U

An important property of Ax(A) is that it depends only on the push-
forward A, u:

Lemma 2.3. Let A,B : (X,u) — G be such that Ay = B.u. Then
A (A) = Ax(B).

Remark 2.4. If A: X — G is measurable and bounded, and S : (X, u) —
(X',p') is an isomorphism, it is clear that Ax(A o S) = Ag(A), because
A(Ao S, T) = Ap(A,SoT oS 1) for every T € Aut(X, p).

Based on the lemma and remark above, we can introduce the following
notation: If v is a finite measure in G with bounded support, and & € N,
we write

Ag(v) = Ar(4),

where A : (I,m) — G is any map such that A,m = v.
To prove lemma 2.3 we will need lemmas 2.5 and 2.6 below

Lemma 2.5. Let A:12 = G be measurable and bounded. Let w : 12 — 1 be
the projection on the first coordinate, and consider the map

Aon: (I2,m) — G.
Then Ap(Aom) = Ag(A) for every k € N.

We use m to denote the Lebesgue measure on I as well as on 12 =1 x L.
The idea of the proof is to approximate m by something invertible and
to use remark 2.4. and the continuity property in lemma 2.1.

Proof. 1t is clear that Agx(A o m) < Ag(A), because Ag(A o m, T x id) =
Ar(A,T) for any T € Aut(I,m). Fix § > 0. Let T € Aut(I?,m) be such
that Ag(Aom,T) < Ag(Aom)+ 6.

12



For n € N, define an isomorphism P, : 1?2 — I such that if I C I is a
dyadic interval with |I| = 2™ then P,(I x I) = I. Then the functions =
and P, : I? — I are uniformly 2 "-close. This implies L'-convergence:

lim [|[Ao P, — Aoml; =0.
n—00

Indeed, given € > 0, Lusin’s theorem gives a compact K C I such that A|x
is continuous and m(K°) < e. If n is large enough then for every z,y € K
that are 2" "-close we have ||A(z) — A(y)|| < e. Let G, = 7 Y(K)NP, }(K);
then m(G¢) < 2e. Thus

/||A0Pn—A07r||dm:/ ()+/ () <e+2|A]oo-
I n Ge

By lemma 2.1, if n is sufficiently large then Ax(AoP,,T) < 6 +Ag(Aom).
Let T' = P, o T o P;l; then Ag(A,T') = Ax(Ao P,,T). This shows that
Ak(A) < 0+ Ap(Aom). Since d > 0 is arbitrary, the lemma follows. O

Following Rokhlin we can state

Lemma 2.6. Let A, A’ : T — G be measurable functions such that A,m =
A'm = v. Then there exists S € Aut(I?,m) such that A'omo S = Ao
m-a.e.

Now we can give the:

Proof of lemma 2.3. ;From remark 2.4 we can assume that A and B are
defined over (X, pu) = (I,m). Since A,m = B,m, by lemma 2.6 there is an
automorphism S such that Aom = Bowo S. In particular, A,(Aon) =
Ag(B o). So, by lemma 2.5, Ax(A) = Ag(B). O

2.2 An existence result

Now we prove that if a measure v is spreading then Ag(v) — 0 as k — oo.
This implies the existence for A such that A,m = v of dynamics in Aut(I,m)
with arbitrarilly small exponent.

Proposition 2.7. Let C > 1, § > 0, and o be a spreading measure with
lollo < C. Then there ezists k € N with the following properties: If w is a
measure in G such that |w| <1 and ||w|e < C then

Ag(w +0) < |w|d +|o|log C.

13



The fact that k& depends uniformly on w, provided |w|e < C will
be important in the proof of theorem D. It also allows to observe that
Ap(v) —k—oo 0 if v is a bounded spreading measure since 7v is spreading
for any 7 > 0 (write v = (1 — 7)v + Tv).

Proof. Definition of k: Given C' > 1, there is ¢y € N with the following
properties: If H, R € G are matrices such that

o |H| <C,|IR| <C%

e H is a hyperbolic matrix with expanding and contracting eigendirec-
tions e* and e® € P!,

o R(e") =e%

then the matrix RH? is elliptic for every ¢ > /.
Given the spreading measure o, let kK > 0 be as in definition 1.10. Fix
an integer
£ > max{ly,2/x}.

Given 6 > 0, we take k' € N such that if E € G is an elliptic or parabolic
matrix with ||E| < C*? then

1
—log ||[E™|| < 0 Vn > K.
n 4

Finally take k € N such that

1
E>(0+2)(k+2) and 7 log C2H2) < g.

First case: We will first prove the proposition in the case where w is a Dirac
measure dg on some H € G.

If H is elliptic or parabolic, we simply take T' = id; then for any A such
that A,m = w + o, we have Agx(A,T) < |w|d + |o|log C.

So we assume H is a hyperbolic matrix. Let e* and e® € P! be its ex-
panding and contracting eigendirections, respectively. Since o is spreading,
we have

oxe">km, o ~xe®>km.

14



There are measures 01,02 < o such that km = o1 *e" and km = 0, Lyes?

Let Ly C Ji, Ly C Jp be intervals with |L;| = 35 = 3loi], |Ji| = 3|o],
JinJy =0.

Consider two measurable maps 4; : J; = G (i = 1, 2) such that (4;)«(m|r,) =
+0; and (4;)(m|s;<1;) = (0 — 0;). By lemma 2.6, there exists an isomor-
phism S such that the following diagram commutes a.e:

s Az(-)e
Ly x [ [, 20

5| .

Lo x T—— Lo
That is, for every z € Ly x I,
(A2 07)(5(2)) - (A1 om)(2) - " = e’
Define a convenient Lebesgue space to work in:
X =Tu(Jy xD)u (Jo xI),

The measure y in X restricted to I, resp. J; X1, is one, resp. two, dimensional
Lebesgue measure. The map A : X — G isdefinedas A = Hinl, A = Ajon
inJ; xI,and A= Asomin Jy X . Then A, = dg + 0. At last, we define
the measure-preserving dynamical system 7' : X — X. Break I into disjoint
intervals I, ..., I; of equal measure m(Il;) = 1/£. Since 1/£ < k/2, we
can take a set Z C Ly x I with m(Z) = m(I;). Let U; : I; — Z be an
isomorphism. We define T' as being the identity in

I= (L xIN2)U(J xINS(2)),
and in the rest as
I1_>I2_)—)I££)Z£)S(Z)2>Ila

where the unspecified arrows are translations and the isomorphism U, is
chosen so that T%"2|, is identity. Note that [;log||A|ldy < logC|o|. On
the other hand, given p € N, the product matrices along T' of length p(l + 2)
above I; are of the form F(z)? where

E(z) = A(So T 12) AT '2)HY, zeI,

2Given f : (X,u) — (Y,v) homomorphism and v; < v, define a measure y; in X by

d _ dv . —
—d’L—l = L o f; then fuur = v1.
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with A(S o T 12)A(T* '2) - e = e*. By our choice of £, E(z) is elliptic for
every z € I;. Also, |E(2)|le < C*2. Tt then follows from our choice of k
that Ag(4,T) < $ +|o|logC.

General case: Now let v be any measure satisfying the hypotheses of the
lemma. Let I; = [0, |o|], Io = [|o], |o| + |w|] A : I; U Iy — G be such that

Ai(m|) =0 and Ai(m|,) = w.

Let n = n(k,C,|w|d/2) be given by lemma 2.1.
Let B : Iy — G be a simple function such that ||A|;, — B||1 < 7. Extend
B to I by taking B = A in I;. We can write

n n
Bm=0+Y tidm =(1—-|w)o+> t(dm +0),
=1 i=1

where H; € G, t; > 0and ) | t; = |w| < 1.
By lemma 2.2 and the case already considered,

Ag(B) < (1= |w|)Ak(0) + D tili (5u, + o)

(1= lwl)lo] og lollse + (3" %) (§ + lo]10g lo]oo)
Ll + |or|10g -

IA

Since ||A — Bl|1 < 7, we obtain Agx(A) < |w|d + |o|log||o||cc- This proves
the proposition. O

2.3 Perturbing measures

We adopt a definition of closeness in the space of measures which is suitable
to our purposes:

Definition 2.8. Let v1, 19 be measures in G with bounded support and same
mass |v1| = |ve| =v. Given n > 0, we say that v1 and vy are n-close if there
exists A1, Az : ([0,v],m) = G such that (A;)«p = v; and ||A1 — Agl1 < 7.

We can define a distance d(v1,v2) as the infimum of the 7 such that 14
and v, are 7-close in the sense above. That this is indeed a metric follows
from the lemma below:

Lemma 2.9. Let A: X — G and v = A.p. If U is n-close to v then there
exists A: X — G such that |A — Al1 <n and v = Aym.
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Proof. Without loss of generality we assume |v| = 1. By assumption, there
are A1, As : T — G such that (41).m =v, (A3)sm =0, and ' =75 — ||A; —
A2||1 > 0.

By lemma 2.6, there exists an S € Aut(I?,m) such that and AjomoS =
Aom ae. Let P, : 12 = I be as is the proof of lemma 2.5 and choose n € N
large enough so that |A o7 — Ao P,y < 7. Define A= AyomoSo P,
Then A,m = & and

|A—Aly=||AoPy,—AoPylly = |[AyomoS— Ao Py <
<||[AgomoS —AjomoS|i1+||[Aom— Ao P,|l1 < ||A2 — A1]l1 +7 = 1.

O

We will also need the following:

Lemma 2.10. Let A : (X,u) = G, v = A,u and o < v Then for every
n > 0 there exists a measurable set Y C X such that A.(u|y) is n-close to
o.

Proof. Let f : G — I be the Radon-Nikodym derivative g—l‘f. Define Yy =
{(z,t) € X xI; 0 <t < foA(z)}. Let P, : X xI — X be as is the
proof of lemma 2.5, with n € N large enough so that [[Aom — Ao P,[j; <.
Let Y = P,(Yp). Then A.(uly) = (Ao P,)«((n x m)ly,) is n-close to
(Aom),((p x m)|y,). The later measure equals o. Indeed,

((Aom)((nx m)|y,))(2) = (u x m)(Yonn ' (A71(2)))
:/ foAdu:/de:a(Z),
A-1(2) z

for any measurable Z C G. O

Remark 2.11. Since all Lebesgues with probability measures are isomorphic,
lemmas 2.9 and 2.10 can be stated with (X, u) instead of (I, m).

2.4 Towers and convolutions

In this section we show that convolution measures can be dynamically ap-
proximated in the following sense:

Lemma 2.12. Let A:1 — G be bounded and v = A,m. Given N € N and
n > 0 there exists F € Aut(I,m) and a set Z C I such that FN = id, the
sets Z, F(Z), ..., FN7Y(Z) are disjoint, and the measure (AN).(m|z) is
n-close to %I/*N.
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Proof. If N = 1 there is nothing to prove; assume N > 2. Let us first
consider the case where A has a special form, namely there is M € N such
that A restricted to each interval I; = [7%, &), 5 =1,...,M, is constant,

say equal to A;. Then

M
1 U |
V=— E 6Aj and v = —n TN g 5AJ'N"'AJ'1 -
M j=1 je{1,., M}

Break each interval I; into NMY ! disjoint intervals of equal length,
Lig, k=1,...,NM"N~!. Take a bijection

{1,..., Ny x{1,....,M¥N = {1,...,M} x {1,..., NMN~1}

of the form (4,7) ~ (4;, k(i, ), where j = (j1,...,jm)-
Write J;j = I, k(i,j); then {Ji;}i; is a partition of I. Define F': I — I
by mapping each J;; to Jit1,; (and JIn,j to Juj, say) by a translation.

Let
7 = |_| Jij-
JE{Lury M}V

Then Z, F(Z), ..., FN71(Z) are disjoint and (A¥).(m|z) = £v*V.
General case: Given any A : 1 — G bounded, define C' = || A, and assume
that N € N and 7 > 0 are aribtrarily chosen. Let A : T — G be a bounded
simple function which is v(C, N,n) — L'-close to A and such that A has M
level sets, all with the same measure 1/M; where M is some integer and
v(C, N,n) will be defined later.

Take S € Aut(l,m) that map these level sets to intervals, so A = Ao §
falls in the later case. Accordingly there exist F' € Aut(I,m) and a set
Z c I such that Z, F(Z), ..., FN='(Z) are disjoint and (fig)*(m
L(A,m)*N.

Let F =S 'oFoSand Z=S"(Z). Then (AN).(m|z) = & (A.m)*.
From point 2 of the proof of lemma 2.1 we see that v(C, N, n) can be chosen
so that the v(C, N,n) — L' closeness of A and A implies that (A,m)*" and
(A,m)*N are /2 close (in the sense of definiton 2.8 as well as (AY).(m|z)

and (AX).(m|z). This concludes the proof.

7)) =

O

2.5 End of the proof

Proof of theorem D. Assume A : X — G is such that v = A,u is rich and
let T € Aut(X, ). We have to show that for any é, € R’ , there exists T' €
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Aut(X, 1) arbitrarily close to T' in the weak topology such that LE(A,T) <
d. Since we are working in the measurable category we can assume that X
is the unit interval T and p is the Lebesgue measure on it.

Let € > 0 be fixed. By density of cyclic interval permutations, we can as-
sume that 7" is a cyclic interval permutation and assume its rank M satisfies
M > 4/e.

By definition of richness, there exists o spreading with ¢ < v*V for some
N.

Before going into the details of the proof let us sketch how we will obtain
the perturbation T that will actually satisfy m[T # T < e The perturbation
is done in two steps. In the first one, we will use richness of the measure v
to produce a map 77 that is close to 7" and that has two cyclic towers: a
(big) cyclic tower of height M that fills most of the space and that comes
from the original tower of T, a (small) cyclic tower of height N such that
the push forward of the measure on its base by the product of A’s along its
N levels is a measure close to a spreading one, namely ¢/N (from lemma
2.12). Then we consider the first return on the set W equal to the union
of the basis of the big and the small tower: we obtain an induced cocycle
over W with identity for dynamics and a matrix map A such that A, (m W)
contains a part that is close to o/N.

Here we pass to the second step and perturb T} in T, keeping the two
towers above W invariant but modifying the first return map in a map S
so that the Lyapunov exponent LE (A, S) of the induced cocycle becomes
small (this is done by taking 7' equal to T} except on Tle with nevertheless
TTI_IW = W). Since UnezT™W = UnezIT'W has almost full measure, the
latter implies smallness of LE(A,T). The map T that we obtain is close to
T since we only modify the dynamics on T1_1W.

To understand how the map S is obtained, replace for a moment A, (m‘ W)
by a map A such that fl*(m|W) contains o/N so that proposition 2.7 ap-
plies and identity on W can be replaced by a dynamics that reduces Ay (4, )
close to zero (for some k that depends on o/N). Now, the fact that k de-
pends only on the spreading part of the measure and a careful choice of
quantifiers allow to use the continuity of A, and derive the same conclusion
for A instead of A. Now we give the exact proof.

Since 7o is spreading for any 7 > 0 we can assume |o| < £ where

e =min{e/(4M +4),6/(M log C)}, C =] A]co-

The measure o/N is spreading as well and let k = k(o /N, 6,CM) be given
by proposition 2.7.
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Let = n(k, §, C™@{M:N}) be given by lemma 2.1.

Using lemma, 2.12, we find F' € Aut(I,m) such that F¥ = id, and a set
Z C I such that Z,..., FN"1(Z) are disjoint and (AY).(m|z) is n-close to
+v*N. By lemma 2.10, there exists a set Y C Z such that (AN).(m|y) is
n-close to +o (from the definition 2.8 this requires that |Y| = |o|/N).

Let Tr = |Jiy" F*(Y); this set is an F-tower of height N, and has small
measure:

m(Tr) = Nm(Y) = |o| < €.

Let T7 = N, T~%(T%£). This set has almost full measure: m(75) <
Mm(Tr) < Me' < /4. Tt is also invariant by T (since T™ = id) and we
can write it as a T-tower of height M over I N7 where I is any interval of
the cyclic permutation 7.

Consider a first perturbation of 1"

T(z) ifzeTr,
Ti(z) = F(z) ifz e Tp,
T otherwise.
Then 77 and T are two disjoint invariant towers for 77 with heights
M and N respectively, and basis I N Tr and Y respectively. We define
T=TrUTp,and W =(INTp)UY.
The first return map to W of T} is the identity. The return time function
is nw(z) =M for x € INTr and nw(z) = N for x € Y. Hence we define
on W the following map:

A AN ifzeln
Ay = (AT @ iTeelnTr,
Ap(z) ifzeY.
Because (AY).(m|y) and o0 are n-close, lemma 2.9 gives a map A:
Y — G such that A,(m|y) =o/N and |[A — A¥|y|1 <7n. Let B: W — G
be such that
. AM if I
Blz) = ~T(ac) T.’EE N7Tr,
Az) ifzeY.

By proposition 2.7, since we took k = k(o /N, 6, CM) we get

- M g 5 EI M
Ae(Ba(mlw)) = Ak (AF)s(mlmms) + ) < 7 + = logCM < 26.

N M N
Since ||A — B||; < 27, with 5 = n(k, §, C™>{M:N}) we get by lemma 2.1,
Ax(A) < 36.
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’IA‘his means that there exists an agtomorphism S : W — W such that
Ak(4,S) < 36, and consequently LE(4,S) < 34.
Finally we define T on I:

Fa) = {S(Tl(a:)) if £ € TLY (W),

T (z) otherwise.

The set 7 = T7 U TF is still invariant by 7', the return time to the set
W is still the function ny as for T and the products of matrices above W
before the first return are still given by A. But the first return map to W by
T is now S. Hence, by proposition 5.1, we have LE(A|r,T|7) = LE(A, S).
Recall that m(7°¢) < m(7f) < Me' and that we took &' < §/(MlogC),
therefore
LE(A,T) = LE(A,S) + LE(A|7<,T|7¢) < 4.

We have

~ ~ 1 !
mlT 1) < mlT # 7]+ ml1 # T) < m(W) +m(Tf) < 2o+ =+ <e
as required. O

3 The continuous case

From now on X will denote a compact connected manifold, possibly with
boundary, of dimension d > 2. And u will denote a smooth volume measure
(or, more generally, an OU measure, see [AP, ch. 9]).

In this section we will use a restricted definition of richness.

Definition 3.1. We will say that (T, A) is rich if for all € > 0 there is a pe-
riodic (T, ¢€)-pseudo-orbit {xo,z1, -+ ,2n = xo} such that A(zp_1)--- A(zo)
is elliptic.

Lemma 3.2. Let A: X — G be C' smooth and T € Homeo(X, ). Assume

that there exists a periodic point p such that A7.(p) is elliptic and AT is not
locally constant at p. Then (A,T) is rich.

3.1 Notations. Tools

For vy, € 1% we denote the Euclidean distance between y and § by |y — /.
We recall that the uniform topology on Homeo(1% is determined by the
distance

IT —T|| = sup |T'(x) — T(x)| + sup [T~ (z) — T~ (x)|.
zeld zeld
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If T or T (or both) are not in Homeo(I% m) but in Aut(I%m) then the
distance above should be considered with ess sup instead of sup.

A map P € Aut(I%m) is called a cube exchange map if there exists a
partition of I in a finite number of collections of cubes such that P acts as
a cyclic permutation of the atoms of each collection. Each collection is then
called a tower for P.

Here we collect some tools from [AP] that we will use in the proof of
theorem E.

The result below permits us to work in the cube (I¢ m) instead of the
manifold (X, u).

Theorem 3.3 (Theorem 9.6 from [AP]). There exists a map ® : 1¢ — X
such that:

1. ® is onto;

2. ®|ine1a 8 a homeomorphism of the interior of 1¢ onto its image;
3. ®(01% is a closed nowhere dense set, disjoint from ®(int1%);

4. p(@(E1%) = 0;

5. ®.om = p.

In the proof of theorem E, we will make a non-continuous perturbation of
the given homeomorphism, and then perturb again to get a homeomorphism.
For that last step we will need the measure preserving Lusin theorem:

Theorem 3.4 (Theorem 6.2 from [AP]). Let T € Homeo(I% m) and
S € Aut(1%m), with ||S — T|| < €. Then for any 6§ > 0 there exists S €
Homeo(1% m), with ||S — T|| < € and equal to the identity in the boundary
of 1%, such that

m{z;|S(x) — S(x)| > 6} < 6.

An important perturbation result due to Lax (with the cyclic property
added by Alpern) is the following:

Theorem 3.5 (Theorem 3.3 from [AP]). Let T € Homeo (1% m). Then
for any € > 0 there is a cyclic cube exchange map P such that |P—T|| < ¢.
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3.2 Proof of theorem E

In light of theorem 3.3 we can assume that T € Homeo(I% m). Let & > 0.
The perturbation of T' is done in three steps:

1. By the Lax lemma (theorem 3.5), there exists P € Aut(I%m) such
that:

o |[P-T| <e/%

e P is a cube exchange map with two towers 7; and 75 with heights
n1 and ny and with bases B; and B, satisfying diam(B; U By) <
e/2;

e There is g € By such that A%'(z¢) is elliptic and A%' is not
locally constant at x;.

2. The measurable theorem applied to the induced cocycle on B = B1LIB,
yields a measurable dynamics P € Aut (1% m) such that |[P—P|| < &/2
and LE(A, P) < ¢/2;

3. By the semicontinuity of the Lyapunov exponent, let § > 0 be such
that if S € Aut(I%m) satisfies m{z;|S(z) — P(z)| > 0} < & then
LE(A,S) < . Theorem 3.4 then gives T € Homeo(I% m) such that
|IT — P|| < /2 such that LE(4, S) < . From 1, we have ||T —T|| < e.

O

4 Discrete case, elementary open problem

4.1 Uniformly hyperbolic sets

For some results on the classification of uniformly hyperbolic sets, see [Yo].

Proposition 4.1. The set of ¥ € GV which are uniformly hyperbolic is
open, in GV

Proof. Let ¥ = (Ay,..., Ay) and denote by A the finite alphabet {1,2,..., N}.
Definte a map A : N2 — G that only depends on the letter in position 0
with A(k) = A,k = 1,..., N. Consider the full shift 7 : N4 — NZ. Then
our definition of 3 uniformly hyperbolic is equivalent to the uniform hyper-
bolicity of the cocycle (7, A), which is an open condition [Yo]. O
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4.2 Elliptic products

Lemma 4.2. There is an open and dense subset Rg C GV such that if
¥ € Ry then either X2 is uniformly hyperbolic or there is an elliptic matriz
in the semigroup (X) generated by 3.

The lemma is an immediate consequence of the following result, which
was pointed to us by Artur Avila.

Lemma 4.3. For everyn € N and Ay,...,A, € G, there is 0 € R such that

RyA,, -+ RyAs Ry Ay is elliptic and |0] < ¢ log p(Ay, -+ A1),
n

where Ry is a rotation of angle 0, p(-) denotes spectral radius, and C = 7.

The proof is given in the appendix (cf. [Yo]).

4.3 Liouville pairs

Recall that p denotes the spectral radius.

Definition 4.4. Let 1 : N — N, with lim,_, ¥(n) = oo. If R and H belong
to G, we say that the pair (R, H) is 1-Liouville if R is elliptic and

minf n b)) —

%gl_il_lgf e logp(R H ) =0.
We say that a pair (R, H) is Liouwville if it is 1p-Liouville for some 1 such
that ¥(n) > n.

Notice that if H is not hyperbolic, then (R, H) is Liouville for every
elliptic R.

Lemma 4.5. Given any v : N — N with lim,,_,o, 9% (n) = oo, let R be the
set of (R, H) € G? such that R is not elliptic or (R, H) is 1-Liouville. Then
R is a residual subset of G?.

Proof. Let Gg be the subset of G formed by elliptic matrices, and let £ C G?
be the set of 1-Liouville pairs. We have £ = ﬂm21,5>0 Up,e, where

1
¥(n)

Un,e = { (R, H) € Gar x G; 3n>ms.t. log p(R"HV™) <& }.
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Each Up, e is open and we have to show it is dense in Gey x G.  Given
(R,H) € G x G, with H hyperbolic, take a basis of R? such that we can

write
A0
H = (0 )\1> . Al > L

Arbitrarily close to R, there is an elliptic matrix R such that R”(I,O) €
R(0,1) for some n > m, that we can choose satisfying 1 < e?(™) | Hence

=n 0 ¢ ~ W(n) _ 0 A

B = (b d) and - REHTH = (bAwU” dA~v(m),
Therefore | tr R”H¢(”)‘ = |d||\|7¥(™ < 2. Hence p(RPHY(™) =1 < e¥(M),
that is, (R, H) € Uy, O

4.4 Monomials

Let N = {1,2,...,N}. To every vector ky,...,k¢ € N', £ > 1, we can
associate the monomial (map) F : GN — G, (A1,...,AN) = A, --- A
For each i € N, let us write

m(F) = 7 € (1,05 by = i},

that is, the number of appearances of the letter A; in the monomial F'.
Let us call two monomials Fy, Fy : G¥ — G independent if the vectors
(m1(F1),...,my(F1)) and (m1(Fy),...,my(Fy)) € RY are not collinear.

0"

Lemma 4.6. Let F|,F, : G — G be independent monomials, and let
F = (F,F) : GN — G2. Then for every residual subset R of G?, the set
F~Y(R) is residual in GV .

Proof. Let C C G be the set of critical points of F. We will show that
C has empty interior. This will imply the lemma, because F restricted to
the open dense set GV \ C is an open map. Since C is a (real) algebraic
submanifold of GV, if C # G, then C has positive codimension and, in
particular, has empty interior. So it is enough to prove that C # G.

The derivative of F at (id, ..., id) is easily computed; it is:

(a1,...,an) € sI(2,R)N s (z": m;(F1)a;, zn:mi(Fg)a,) € sl(2,R)%.

Due to the independence assumption, DF(id,...,id) is surjective, that is,

(id,...,id) ¢ C and C # G". O
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4.5 Proof of theorem C

In all the proof we fix the function 9 = idxy.

First we define the residual set R C G for which we will prove the
conclusion of the theorem. Given two independent monomials Fy, Fb :
GN — G, let R(F}, F») be the set of all © € GV such that

F; (%) is not elliptic or (F;(X), F5(X)) is ¢-Liouville.

By lemmas 4.5 and 4.6, R(Fy, F) is a residual subset of Gv. Take the
intersection over all independent pairs Fi, F5 and call it R;. Finally, let
R =Ry NR1, where Ry is the set from lemma 4.2.

Now take ¥ € R. If ¥ is uniformly hyperbolic, there is nothing to do. In
the other case, since ¥ € Ry, there is a monomial F; such that R = F;(X)
is elliptic. F; will be fixed from now on. By construction, (F}(X), F»(X)) is
Liouville for every monomial F» which is independent from F3.

Let A: X — ¥ be a measurable function such that every matrix in 3 is
attained on a positive measure set of X. As usual, we assume X is the unit
interval I. We can also suppose there is a partition I = I LI --- U Ix into
intervals such that A|;, = A;, where ¥ = (A4y,..., An).

Now let T': T — I be any given measure-preserving transformation. We
will explain how to perturb it in the weak topology to make the exponent
small.

1. A dyadic permutation of rank n on I is a map that permutes the
intervals of the dyadic decomposition of I into intervals of size 1/2™.
Following [H]|, we may assume 7' is a dyadic permutation of some
arbitrarily high rank N.

2. Since the rank is high, most of the dyadic intervals will be completely
contained in one of the intervals I; (where A is constant). By perturb-
ing T, we may assume the collection of “good” intervals is invariant
by T. In fact, we don’t need to worry about the “bad” intervals since
their union has small measure, so, to simplify writing, we will assume
that all the dyadic intervals of rank N are good.

3. A sequence of disjoint dyadic intervals I; = T'(I;),i = 1,...,p is
called a tower of height p. The tower is said to be cyclic if in addition
TP+1(I}) = I;. Since we assumed that the map A : I — ¥ is constant
on each dyadic interval we can talk about the product of matrices
along a tower, that we denote by A(I)--- A(I;). As a function of ¥
the latter is by definiton a monomial of degree p.
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Let p be the degree of F;. Since the rank of T can be chosen arbitrarily
high compared to p we can assume, after perturbation (see [AP]), that
the dynamics of T' decomposes into two cyclic towers, one of which is
of height p and such that the product of matrices along its levels is
precisely Fi(X). The other tower occupies most of the space and we
write it as

J—=> Jo— - = Jp = Jh,

and we call F»(X) the product of matrices along its levels. Since we can
take off any single level of this second tower via a small perturbation
of T' we may assume that F; and F» are independent.

Hence, by definition of R, the pair (R,H) = (F1(X),F2(X)) is 9-
Liouville, that is, for any choice of € there is an n such that

1
- log p(H"R") < e. (1)

. Decompose each interval J; into n intervals of equal length J; = J; 1 U
JigU---UJ; 2. Modify slightly 7" in order to form the following tower
of height /n:

Jl,l—)---—>Jg’1—>
Jig— = Jpo —

- =
Jip2 == Jppe = Ji.

The product along this new tower is H™, and it covers almost all the
space.

In the same way we decompose the R tower in n towers that we unfold
as above into a signle tower along which the product of matrices will
be R".

By our construction, the base of the H" tower is of the same size as the
base of the R™ tower so we can actually concatenate them one on top of
the other to get a single cyclic tower along which the matrix product is
H™R™(this is done by composing on the left the dynamics with a map
that permutes J; ; and the base of the R" tower). Since almost all the
space is covered by this tower, we deduce from (1) that the integrated
Lyapunov exponent corresponding to the perturbed dynamics is small.
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4.6 Some open questions

Problem 4.7. Does there exist a finite set 32 C G with the following prop-
erties:

1. ¥ cannot be approzimated by a uniformly hyperbolic set;

2. there exists a measurable map A: X — X which assumes every value
in X on a set of positive measure such that LE(A,T) > 0 for every
T e M ? such that LE(A,T) > X\ > 07?

By theorem C, those ¥ form a meager subset of GV .
A positive answer to the following more elementary question would (by
Birkhoff’s theorem) answer problem 4.7 positively:

Problem 4.8. Does there exist a pair of matrices A1, Ay € G, with Ay
hyperbolic and Ay elliptic, and constants 0 < p <1 and X\ > 1 such that for
every word A; A;, -+ A;, satisfying the frequency condition

#{j € {1,....k}; i; =2} < pk, (2)

we have
HAilAiz Tt AZkH > )‘k ?

Assuming problem 4.8 has a positive answer, notice that the products
A Ay, -+ A;, that satisfy the frequency condition (2) form a semigroup of
G which is not finitely generated and is formed only by hyperbolic matrices.

Fixing some integer N > 2, we can also ask whether the set of ¥ € GV
that have the properties as in problem 4.7 has positive, or even full measure
in GV.
Remark 4.9. From the proof of theorem C we see that even if the right hand
side in (2) is replaced by any function ¢ such that ¢(k) — oo then the set
of ¥ € G? that satisfy the conclusion of problem 4.8 is meager.

5 Appendices

5.1 Derived cocycles and exponent

For A: (X,u) - G and T € Aut(X,u), recall the definition of the mean
exponent:

.1
LE(A,T) = nlggoﬁ/xl()g”A%H dp.
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Attention: we can have u(X) # 1.

Now, given a set Y C X of positive measure. Let Ty : Y — Y be the first
return. map, i.e. Ty (z) = T™ @) where ny(z) = min{n > 1; T"(z) € Y}.
ny and Ty are defined a.e. and we have Ty € Aut(Y, puly).

Define Ay : Y — G as Ay (z) = A;Y(w) (x); this is the derived cocycle

Let Yr = U,,cz T7"(Y); this is a T-invariant set.

PI‘OpOSitiOH 5.1. We have LE(Ay,Ty) = LE(A|YT,T|YT)-
Proof. Adapt the proof of [K, lemma 2.2], using that

/Y nydp = p(Yr).

(even if T' is not ergodic: adapt the first proof of Kac’s lemma from Petersen).
O

5.2 Semicontinuity

It is well-known that:
1
LE(A,T) = 11]\1]fN/X10g||A¥||du.

Among the consequences, we have semicontinuity of LE.

Proposition 5.2. Fiz T € Aut(X,u). Let A be the space of measurable
functions A : X — G that satisfy log||A|| € L'(u). Then the function
A € A LE(A,T) is upper semicontinuous in the L' topology. That is,
for every A € A and € > 0, there exists § > 0 such that if B € A and
Jx |B—A| dp < 6 then LE(B,T) < LE(A,T) +e.

For the proof, see [ArB].

Proposition 5.3. Let A: X — G be measurable and such that log ||A| €
L'(u). Then the function T € Aut(X,pu) — LE(A,T) is upper semicontin-
UOUS.

Proof. We may assume that X is the unit interval [0, 1] and y is Lebesgue
measure. The weak topology in Aut(X, i) is then given by the weak metric

d(S,T) = inf{p > 0; p({[S —T| > p}) < p}.

Let A: X - G, T € Aut(X, ), and € > 0 be fixed. There exists N € N
such that

1
LE(A,T) > —e+—/ log [[ AN dp.
N Jx
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Since log ||A]| is integrable, there is 6; > 0 such that if Z C X has measure
pu(Z) < 01 then [, logl|lA|ldu < e. By Lusin’s theorem, there exists a
compact set K C X such that the functions A|x and T|g are continuous,
and p(K€) < §;/(2N). Let C = supg ||Al|. There is §o > 0 such that if
Ai,...,AN,B1,...,By € G are matrices with norm at most C' and ||4; —
By|| < &, for each i then ||[]y 4:i — [In Bill < & Let 83 > 0 be such
that if z,y € K, |z — y| < d3 then ||A(z) — A(y)|| < d2. Take numbers
m > -+ >nn—1 > 0 such that 7; = d3/2 and

z,y € K, |z —y| <2mip1 = |T(z) —T(y)| < -

Let p = min{nnx_1,01/(2N)}.
Now assume S € Aut(X, p) is such that d(S,T) < p. Let W = {|S—T| <
p}; then p(W°) < p. Define

N-1
G= ) [THKnW)NSHKNW)].
1=0

Then G has small measure: u(G¢) < Nu(K¢+ W¢€) < §;. We are going to
bound the expression + [, log ||AY || du. To do so, we are going to split the
integral in two parts, [ = [+ [;- For the first part, we have

N—1
1 / N 1
2 tog|| AN dp < ~ J/ log | Al d < e.

For the second part,

1 1 1
— [ log||AY|ldp < — [ log|AY —/ AY — AY
5 Losla¥ian < 5 [ o aNldu-+ 5 [ 143 - 4 d
1
<LE(A,T)+€—I——/ 1AY — AN dp.
N Jo

(We used that log(a +b) <loga+bfora>1,b6>0.)
Let z € G. We claim that |T"(z)—S*(z)| < 2ny—; foralli =0,1,...,N—
1. This is easily shown by induction:
T (z) — 8 (2)| < |T(T'()) — T(S*(2))| + |T(S"(x)) — S(5*(x))|
<NN—i-1+p < 2N—i-1-
In particular, for all i we have |T%(z) — S*(z)| < 03 and thus |A(T*(z)) —
A(S¥(z))|| < 2. Therefore || AN (z) — A¥ (2)]| < e.
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Summing the two parts, we conclude that

1
LE(A, 8) < —/ log || AY || du < LE(A,T) + ¢ + <.
N Jo N

This shows upper semicontinuity. O

5.3 Generic Fubini

Proposition 5.4. If X, Y are separable Baire spaces and R C X x Y is
residual, then there is a residual subset R' C X such that for every x € R/,
the set R, ={y €Y; (z,y) € R} is a residual subset of Y.

Proof. First let A C X XY be an open and dense set. For any open set
V CY,let X4y ={z € X; there exists y € V such that (z,y) € A}. Then
Xa,v is open and dense in X. Let V be a countable base of open subsets of
Y, and consider the residual set X4 = (), Xa,v. If we define A, = {y €
Y; (z,y) € A}, then A, is open and dense in Y for every z € X 4.

Now, given a residual set R C X x Y, write R = [,y An, Where A,
are open and dense. Let R’ = (1, .y X4,,- Then for every z € R/, the fiber
Rz = Nnen(An)z is a residual subset of Y. O

5.4 Criterium for richness

We begin with a linear-algebraic lemma:

Lemma 5.5. Let A, B € G be elliptic matrices that are conjugated via a
matriz in G.> Then
tr AB < tr A2,

with equality if and only if A = B.
Proof. Write B = CAC~!, with C € G. We can assume

a b
A - R07 C — (0 a_l) 9

with @ > 0. Direct calculation gives
trAB=2— (24 a® +a 2 +b%)sin?f < 2 — 4sin? f = tr A2,

with equality if and only if a =1 and b = 0. O

3Note that two matrices in G may be GL(2, R)-conjugated and yet not G-conjugated.

E.g. Ry and R_g = C™'RoC, where C = ((1) _01>
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Now we give the:

Proof of proposition 1.11. Write & = (z1,...,zx), and A(2) = A(zy) - - - A(z1).
By assumption, there are open sets V; C M, such that A:VixxV, > G
is not constant and assumes only elliptic values. We can assume that V; is
connected and V; N OM = @ for each 7. Write V=V x--x V.. We can
also assume that the function

eV = trA(z) e (-2,2)

is not constant. [Indeed, if the function is constant then by lemma 5.5 the

function
(@1,.@2) EV XV trA(:ﬁl)A(fQ) eR

is not constant. Therefore we can replace k with 2k and 1% by a subset of
V x V.] Finally, we can assume that tr A has no critical points in V.
We can find C! functions  and C such that

fiox vy 1 __ [cosf —sinf
A(2) = C(&)Ry()C(2)™, where Rp= (Sin0 cos 0 ) '

Then 6 = arccos % tr A has no critical points in V. An easy calculation shows
that if n is sufficiently large then for any v € P! the map

€V [A@)]" v =C(2)Ryps)C&) " v eP
is surjective and has no critical points. Let § > 0 be small so that the map
(1, ,2n) € V5(A) = A(2y) --- A(31) € G,

defined in the §-neighborhood of the diagonal A C V™, assumes only elliptic
values. Let ¢ be the push-forward of u"k|V5( a)- Taking smaller ¢ if necessary,
we have that for each v € P!, the map

(1, ,8n) € Va(A) = A(dn)--- A(&1) v P!

is surjective and has no critical points. Therefore the push-forward o v has
a density bounded from below. Accordingly, o < (A,u)™ is spreading and
8o A, p is rich. O

Proposition 1.12 follows from proposition 1.11.

32



5.5 Proof of lemma 4.3
Proof. Let, for z € C,

cosz —sinz
Rz = . .
sinz cosz

Let C, = R,A,--- R,A; and consider the function h: C — R defined by
h(z) = n~tlog p(C,). We will show that

h(z) > [Imz| , for all z € C. (3)

In particular, h~1(0) ¢ R If z is such that h(z) # 0 then C, has two
different eigenvalues (notice det C, = 1). This shows that the restriction of
to C~ h~1(0) is an harmonic function. To conclude the proof — assuming (3)
— suppose that the matrix C, is hyperbolic for z € [—¢,¢]. Then disk |z| < ¢
does not intersect ~1(0) and so

1 2 2e

) 2w
hO) =5 | hlee)do > %/0 [sin] o = =.

The lemma follows.
It remains to prove (3). Let, for w € C,

T _ (%(w2 +1) —g(w? - 1))

w=Lwr-1) N2+
and Dy, = TyAy,---TpAi. Then, for w = €%, T, = wR, and D,, =
w?"C,. The eigenvalues of D,, define, for |w| < 1, two holomorphic functions
A1(w) and Ag(w) such that |\ (w)| > |A2(w)| (see [AB, lemma 5]). Since
A1 (w) Ao (w) = det Dy, = w?", we get | A1 (w)] > [w[™ and [Ag(w)| < |w|", for
|lw| < 1. Given z € C with Imz < 0, let w = €'*. Then

p(C:) = |w|_2np(Dw) > |lw|™" = |e—inz| — g nImz
That is, h(z) > —Imz if Imz < 0. So (3) follows from the reflection
principle. -
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