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ABSTRACT. In this paper we introduce a new technique that allows us to inves-
tigate reducibility properties of smooth SL(2,R)-cocycles over irrational rota-
tions of the circle beyond the usual Diophantine conditions on these rotations.

For any given irrational angle on the base, we show that if the cocycle has
bounded fibered products and if its fibered rotation number belongs to a set of
full measureΣ(α), then the matrix map can be perturbed in the C∞ topology to
yield a C∞-reducible cocycle. Moreover, the cocycle itself is almost rotations-

reducible in the sense that it can be conjugated arbitrarily close to a cocycle
of rotations. If the rotation on the circle is of super-Liouville type, the same
results hold if instead of having bounded products we only assume that the
cocycle is L2-conjugate to a cocycle of rotations.

When the base rotation is Diophantine, we show that if the cocycle is L2-
conjugate to a cocycle of rotations and if its fibered rotation number belongs
to a set of full measure, then it is C∞-reducible. This extends a result proven
in [5].

As an application, given any smooth SL(2,R)-cocycle over a irrational ro-
tation of the circle, we show that it is possible to perturb the matrix map in
the C∞ topology in such a way that the upper Lyapunov exponent becomes
strictly positive. The latter result is generalized, based on different techniques,
by Avila in [1] to quasiperiodic SL(2,R)-cocycles over higher-dimensional tori.

Also, in the course of the paper we give a quantitative version of a theorem
by L. H. Eliasson, a proof of which is given in the Appendix. This motivates the
introduction of a quite general KAM scheme allowing to treat bigger losses of
derivatives for which we prove convergence.

1. INTRODUCTION

We will be interested in smooth quasiperiodic cocycles on T×SL(2,R), where
Tdenotes the circleR/Z (the base) and SL(2,R) the set of 2 by 2 real matrices with
determinant 1 (the fiber). For α ∈RàQ and A ∈C r (T,SL(2,R)), r ∈N∪{∞,ω}, we
define the cocycle (α, A) as a diffeomorphism on the product T×SL(2,R):

(α, A) : T×SL(2,R) →T×SL(2,R),

(θ, y) 7→ (θ+α, A(θ)y).
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We denote by C r
0 (T,SL(2,R)) the set of maps A ∈ C r (T,SL(2,R)) that are ho-

motopic to the identity. We say that a C r -cocycle (α, A) is C r -reducible if there
exist B ∈C r (R/2Z,PSL(2,R)) and A∗ ∈ SL(2,R) such that

B(θ+α)−1 A(θ)B(θ) = A∗ ∀θ ∈R/2Z.

Reducibility is an important issue in the study of quasiperiodic cocycles and
their applications (e.g., to the spectral theory of Schrödinger operators). An obvi-
ous obstruction to reducibility is nonuniformly hyperbolic behavior of the cocy-
cle, that is, a nonuniform exponential increase almost everywhere of the fibered
products of matrices over the base rotation. On the other hand, when certain
parametrized families of cocycles are considered, Kotani’s theory asserts essen-
tially that there is an almost sure dichotomy between nonuniform hyperbolic-
ity and L2-rotations-reducibility (conjugacy to a cocycle with values in SO(2,R),
see the exact definition below). More precisely, to any cocycle (α, A) one can
associate a fibered Lyapunov exponent LE (α, A) (we refer to Section 2.1 for the
definitions and basic results). Now let Qϕ(·) = RϕA(·), where Rϕ ∈ SO(2,R) is the

rotation matrix

(

cos2πϕ −sin2πϕ
sin2πϕ cos2πϕ

)

. Then, for Lebesgue almost every ϕ ∈ [0,1],

either LE (α, A) > 0 or (α,RϕA) is L2-rotations-reducible (see [5] for references).
This dichotomy also holds for Lebesgue almost every value of E ∈R in the setting
of Schrödinger cocycles

SV ,E =
(

E −V (θ) −1
1 0

)

,

(V ∈C r (T,R)), which, combined with rigidity results that we now describe, gives
information on the spectrum of the corresponding Schrödinger operator.

In [5], the latter dichotomy was pushed further to a global analytic rigidity
result (also true in the smooth category). By analytic (resp. smooth) rigidity, we
mean the fact by which weak regularity information (L2) on the conjugating map
is enough to guarantee its analyticity (resp. smoothness) under some additional
assumptions. An important role is played by the fibered rotation number of the
cocycle (see Section 2.2 for its definition).

THEOREM A. [5] If α ∈RàQ is recurrent-Diophantine and if A ∈Cω
0 (T,SL(2,R))

satisfies:

(i) ρ f (α, A) is Diophantine with respect to α and

(ii) (α, A) is L2−conjugate to a cocycle of rotations,

then (α, A) is Cω-reducible. As a consequence, for Lebesgue a.e. ϕ ∈ [0,1]) (resp. if

V ∈Cω(T), for Lebesgue a.e. E ∈R), either (α,RϕA) (resp. (α,SV ,E )) is Cω-reducible

or it is nonuniformly hyperbolic.

The set of recurrent-Diophantine numbers is by definition the full Lebesgue-
measure set of irrationals with the property that the iteration of α by the Gauss
map G : (0,1) → (0,1), G(x) = {x−1}, falls infinitely many times in some Diophan-
tine set with fixed constant and exponent. Also, for any fixed α, numbers that are
Diophantine with respect to α form a set of full Lebesgue measure. See Section
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2.3 for precise definitions. One aim of this note is to extend in a smooth setting
the result of [5] to all Diophantine frequencies as follows.

1.1. Almost-sure dichotomy for every Diophantine α.

THEOREM 1. If α ∈ RàQ is Diophantine, there exists a set Σ(α) ⊂T of measure 1

such that if A ∈C∞
0 (T,SL(2,R)) satisfies

(i) ρ f (α, A) ∈Σ(α) and

(ii) (α, A) is L2−conjugate to a cocycle of rotations,

then (α, A) is C∞-reducible.

In the analytic case, this theorem is also true, by different techniques, as a
consequence of [4, 2], and [6] where, in addition, the Diophantine condition on

α can be relaxed to be limn→∞
log qn+1

qn
= 0, where qn denotes the denominator of

the n-th continued-fraction expansion of α (see Section 2.3).
As in [5], Theorem 1 yields a global dichotomy that generalizes Theorem A to

all Diophantine frequencies (in the C∞ category).

COROLLARY 1. Let α ∈ RàQ be Diophantine and let A ∈ C∞
0 (T,SL(2,R)) (resp.

V ∈C∞(T,R)). Then, for Lebesgue almost every ϕ ∈ [0,1] (resp. E ∈ R), the cocycle

(α,RϕA) (resp. (α,SV ,E )) is either nonuniformly hyperbolic or C∞-reducible.

1.2. Almost rigidity. It is clear that the notion of reducibility for cocycles de-
fined over Liouvillean translations is too restrictive since in that case even an
S1 or R-valued cocycle is in general not reducible. The appropriate notion in
this case is rotations-reducibility. We say that (α, A) is L2−conjugate, (resp. C r -
conjugate), to a cocycle of rotations (for short, we shall say that (α.A) is L2 (resp.
C r ) rotations-reducible) if there exists a measurable B : T → SL(2,R) such that
‖B(·)‖ ∈ L2(T,R), (resp. B ∈C r (T,SL(2,R)), and

B(θ+α)−1 A(θ)B(θ) ∈ SO(2,R), ∀θ ∈T.

How to extend Theorem A or Corollary 1 to any irrational number when re-
ducibility is replaced by rotations-reducibility is an interesting and important
problem.

Here we introduce and study the following notions of almost-reducibility and
almost-rotations reducibility: a cocycle (α, A) is almost reducible (resp. almost

rotations-reducible) if there exist sequences B(n) ∈ C r (R/2Z,SL(2,R)) and A(n) ∈
SL(2,R) (resp. A(n) ∈C r (T,SO(2,R))) such that B−1

(n)(·+α)A(·)B(n)(·)− A(n) → 0 in
the C r -topology as n →∞.

We prove the following “almost rigidity” results

THEOREM 2. Let α ∈ RàQ. There exists a set Σ(α) ⊂ T of measure 1 such that if

A(·) ∈C∞
0 (T,SL(2,R)) satisfies

(i) ρ f (α, A) ∈Σ(α) and

(ii) (α, A) is C 0-rotations-reducible,

then A is C∞-almost rotations-reducible and is C∞-accumulated by functions

Ã(·) ∈C∞
0 (T,SL(2,R)) such that (α, Ã) is C∞-reducible.
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REMARK 1. Note that from [16], it follows that (ii) is equivalent to the fact that
the fibered products of A(·) be C 0-bounded; if we use the notation (α, A(·))n =
(nα, An(·)) (n ∈Z), this means supn∈Z ‖An(·)‖C 0(T) <∞.

This theorem can be strengthened in two cases. The first is that the frequency
in the base is Diophantine, in which case, as stated in Theorem 1, (ii) can be
replaced by L2-rotations-reducible and the conclusion is reducibility. The other
case is that α is very well approximated by rational numbers: we shall say that
α ∈RàQ is super Liouville if

limsup
n→∞

loglog qn+1

log qn
=∞,

where qn denotes the denominator of the n-th continued-fraction expansion of
α (see Section 2.3).

THEOREM 3. Letα ∈RàQ be super Liouville. There exists a setΣ(α) ⊂T of measure

1 such that if A(·) ∈C∞
0 (T,SL(2,R)) satisfies

(i) ρ f (α, A) ∈Σ(α) and

(ii) (α, A) is L2-rotations-reducible,

then A is C∞-almost rotations-reducible and is C∞-accumulated by functions

Ã(·) ∈C∞
0 (T,SL(2,R)) such that (α, Ã) is C∞-reducible.

1.3. Density of cocycles with positive Lyapunov exponent. As a corollary of The-
orems 1 and 2 we have the following result.

THEOREM 4. For fixed irrational α ∈ T, the set of A ∈ C∞
0 (T,SL(2,R)) such that

(α, A) has positive Lyapunov exponent is dense in C∞
0 (T,SL(2,R)) for the C∞-

topology.

Proof. The proof relies on Kotani’s theory and proceeds along the lines of [14].
Let α ∈RàQ and A(·) ∈C∞

0 (T,SL(2,R)). Then, by a theorem of De Concini and
Johnson [7], either for any δ > 0 there exists ǫ0 ∈ (−δ,δ) for which the Lyapunov
exponent of (α, A(·)Rǫ0 ) is positive, or (α, A(·)Rǫ) has C 0-bounded fibered prod-
ucts for any ǫ ∈ (−δ,δ), in which case we also have that the continuous function
(−δ,δ) ∋ ǫ→ ρ f (α, A(·)Rǫ) is not constant.

As mentioned earlier, we know from [16] that C 0-boundedness of the fibered
products is equivalent to the fact that the cocycle is C 0-conjugate to rotations.
Since the fibered rotation number of this cocycle is continuous and not constant
as ǫ varies in (−δ,δ), we can choose ε0 such that, depending on α, hypothe-
sis (i) of Theorem 2 or of Theorem 1 is satisfied. We conclude that the cocycle
(α, A(·)Rǫ0 ) is accumulated by reducible cocycles.

Theorem 4 then follows if we make the following observation (cf. [14])

LEMMA 1. Any constant A0 in SL(2,R) is C∞-accumulated by functions A(·) ∈
C∞

0 (T,SL(2,R)) such that (α, A(·)) is hyperbolic (in the fiber).
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REMARK 2. In fact, as proven in [1], a stronger result holds: Theorem 4 is true
for SL(2,R)-cocycles over translations on tori of any dimension (and even more
general dynamics).

Let us describe briefly the novelty of this paper. There are usually two tech-
niques to attack the reducibility problem for quasiperiodic systems: KAM the-
ory and renormalization. In the case of SL(2,R)-cocycles, a third approach to
tackle reducibility, based on localization and Aubry duality, proved to be fruit-
ful in [15, 3, 2, 4]. Renormalization is usually used to reduce to a local (pertur-
bative) situation where KAM techniques are applicable. This naturally requires
Diophantine conditions on both the rotation number on the base and on the
fibered rotation number of some renormalized system. The crucial observation
in the present paper is that if the Diophantine condition on the base fails, it is
indeed possible to take advantage of this fact and conjugate the cocycle closer to
rotations (depending on the base point) with an error that will be even smaller
as the involved small divisor is small (cf. Theorem 2 and 3). This remark is also
useful to treat the Diophantine case in full generality (cf. Theorem 1). We refer to
Sections 3.2 and 4.1 for a more detailed discussion concerning each case.

1.4. A quantitative version of the Eliasson Theorem and a generalized KAM

scheme. Given an analytic cocycle (α, A), αDiophantine and A sufficiently close
to a constant (as a function of α), Eliasson proved in [9] a theorem that guaran-
tees reducibility of (α, A), provided the fibered rotation number satisfies some
(weak) Diophantine condition.

We will prove a precise version of Theorem 1 (see Theorem 8 below) that uses
an extension of Eliasson’s reducibility theorem to the smooth case and also pro-
vides estimates, involving the Diophantine constants, on the required closeness
to constants. This is our Theorem 5.

As pointed out to us by the referee (and as will be explained in Section 4.1), a
usual KAM scheme with estimates would be sufficient for the purpose of proving
Theorem 1. However, proving the quantitative version of Eliasson’s theorem is
itself interesting and allows for a slightly more general result on reducibility (cf.

§4.1).
Thus, we present a proof of Theorem 5 in the Appendix together with a quite

general KAM scheme that we think may be of broader utility, especially in prob-
lems where small divisors cause losses of derivatives that are proportional to the
order of differentiability.

2. DEFINITIONS AND PRELIMINARIES.

2.1. The fibered Lyapunov exponent. Given a cocycle (α, A), for n ∈ Z, we de-
note the iterates of (α, A) by (α, A)n = (nα, An(·)), where for n ≥ 1,

An(·) = A(·+ (n −1)α) · · · A(·)

A−n(·) = A(·−nα)−1 · · · A(·−α)−1.

We call the matrices An(·) for n ∈N fibered products of (α, A).

JOURNAL OF MODERN DYNAMICS VOLUME 3, NO. 4 (2009), 479–510
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The fibered Lyapunov exponent is defined as the limit

L(α, A) := lim
n→∞

1

n

∫

θ∈T
log‖An(θ)‖dθ,

which by the subadditive theorem always exists (similarly, the limit when n goes
to −∞ exists and is equal to L(α, A)).

2.2. The fibered rotation number. Assume that A(·) : T→ SL(2,R) is continuous
and homotopic to the identity; then the same is true for the map

F : T×S1 →T×S1

(θ, v) 7→
(

θ+α,
A(θ)v

‖A(θ)v‖

)

;

thus F admits a continuous lift F : T×R→T×R of the form F̃ (θ, x) = (θ+α, x +
f (θ, x)) such that f (θ, x +1) = f (θ, x) and π(x + f (θ, x)) = A(θ)π(x)/‖A(θ)π(x)‖,
where π : R → S1, π(x) = e i 2πx := (cos(2πx),sin(2πx)). In order to simplify the
terminology, we shall say that F̃ is a lift for (α, A). The map f is independent of
the choice of the lift up to the addition of a constant integer p ∈Z. Following [10]
and [11], we define the limit

lim
n→±∞

1

n

n−1
∑

k=0

f (F̃ k (θ, x)),

which is independent of (θ, x) and where the convergence is uniform in (θ, x).
The class of this number in R/Z, which is independent of the chosen lift, is
called the fibered rotation number of (α, A) and denoted by ρ f (α, A). Moreover
ρ f (α, A) is continuous as a function of A (with respect to the uniform topology

on C 0
0

(

T,SL(2,R)
)

).

2.3. Continued fraction expansion. Diophantine conditions. Define as usual
for 0 <α< 1,

a0 = 0, α0 =α,

and inductively for k ≥ 1,

ak = [α−1
k−1], αk =α−1

k−1 −ak =G(αk−1) =
{

1

αk−1

}

,

where [ ] denotes the integer part and G(·) the fractional part (the Gauss map).
We also set

βk =
k
∏

j=0

α j .

For all k ≥ 0,
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βk = (−1)k (qkα−pk ),(2.1)

1

qk+1 +qk
<βk <

1

qk+1
,(2.2)

βk =
1

qk+1 +αk+1qk
.(2.3)

We use the notation

|||x||| := inf
p∈Z

|x −p|.

Recall that

(2.4) ∀1 ≤ k < qn , |||kα||| ≥ |||qn−1α|||.

We say that α ∈ RàQ satisfies a Diophantine condition DC(γ,τ), where γ> 0,
τ> 0, if for every p ∈Z, q ∈N∗,

|qα−p| ≥
γ−1

q1+τ .

Let α ∈ R and θ > 0. We say that ρ ∈ R/Z is θ-Diophantine with respect to α if
there exists C such that

|2ρ−kα− l | >C (1+|k|+ |l |)−θ, (k, l ) ∈Z2.

For short, we shall say that ρ is Diophantine with respect to α (no mention to θ

is made) when it is θ-Diophantine with respect to α with θ = 2. Note that the
set

⋃

γ>0 DC(γ,τ) of Diophantine numbers with given exponent τ > 0 is a set of
full Lebesgue measure. Note also that given any α ∈ R, the set of ρ ∈ T that are
Diophantine with respect to α is a set of full Haar measure on the circle.

2.4. Eliasson’s local theorem on reducibility. We will need the following quan-

titative extension of a result by Eliasson [9] (where the case of analytic continu-
ous quasiperiodic Schrödinger cocycles is considered).

THEOREM 5. There exist two constants C1,C2 > 0 such that the following holds.

Let Â ∈ SL(2,R) and τ > 0 be fixed. Then there exists ǫ(τ, Â) > 0 such that if a

cocycle (α, A) ∈R×C∞(T,SL(2,R)) satisfies

(i) α ∈ DC(γ,τ),

(ii) ρ f (α, A) is Diophantine with respect to α, and

(iii) ‖A− Â‖C 0 ≤ γ−d0ǫ and ‖A− Â‖C s0 ≤ 1, where d0 =C1(τ+1), s0 = [C2(τ+1)],

then (α, A) is C∞ reducible.

REMARK 3. Assume that only τ is fixed and Â varies in some compact subset K

of SL(2,R). Then ǫ can be taken uniform with respect to Â.

A sketch of the proof of Theorem 5, based on Eliasson’s original proof, is given
in Appendix B.
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2.5. Z2-actions [14, 5]. Let Ωr = R×C r (R,SL(2,R)) be the subgroup of Diff(R×
R2) made of skew-product diffeomorphisms (α, A) : R×R2 →R×R2,

(α, A)(x, w) = (x +α, A(x)w).

A C r fibered Z2-action is a homomorphism Φ : Z2 → Ω
r . We denote by Λ

r the
space of such actions. When, in the above definitions, the group SL(2,R) is re-
placed with SO(2,R), we denote by Λ

r (SO(2,R)) the subset of Λr thus obtained.
As Φ(1,0) and Φ(0,1) determine Φ, we often write for short Φ= ((Φ(1,0),Φ(0,1)).
Let π1 : R×C r (R,SL(2,R)) → R, π2 : R×C r (R,SL(2,R)) → C r

(

R,SL(2,R)
)

be the
coordinate projections. Let also γΦn,m =π1 ◦Φ(n,m) and AΦ

n,m =π2 ◦Φ(n,m). We

let Λr
0 be the set of Φ ∈Λ

r such that γΦ1,0 = 1 and γΦ0,1 ∈ [0,1].
We say that an action is:
– constant if for all (n,m) ∈Z2, the maps AΦ

n,m are constants;
– normalized if Φ(1,0) = (1, Id), and in that case, if Φ(0,1) = (α, A) the map

A ∈C r
(

R,SL(2,R)
)

is clearly Z-periodic.
If Φ ∈ Λ

∞, r ∈ N, and I ⊂ R is an interval or I = T, we denote by ‖Φ‖r,I the
quantities

‖Φ‖r,I := max(‖∂r AΦ

1,0‖C 0(I ),‖∂r AΦ

0,1‖C 0(I )), ‖Φ‖max
r,I := max

0≤s≤r
‖Φ‖s,I .

We define

dr,I (Φ1,Φ2) := max
(

‖∂r (A
Φ1
1,0 − A

Φ2
1,0)‖C 0(I ),‖∂r (A

Φ1
0,1 − A

Φ2
0,1)‖C 0(I )

)

.

and a distance on Λ
r : if Φ1,Φ2 ∈Λ

r we set

d max
r,I (Φ1,Φ2) := max

0≤s≤r
ds,I (Φ1,Φ2).

When I is the interval [0,T ] (T ∈ R), we denote ‖ · ‖r,I and dr,I (·, ·) by ‖ · ‖r,T and
dr,T (·, ·).

DEFINITION 1. Two fibered Z2 actionsΦ,Φ′ are said to be conjugate if there exists
a smooth map B : R→ SL(2,R) such that

∀(n,m) ∈Z2
Φ

′(n,m) = (0,B)◦Φ(n,m)◦ (0,B)−1,

that is, if

AΦ
′

n,m(t ) = B(t +γΦn,m)AΦ

n,m(t )B(t )−1 and γΦ
′

n,m = γΦn,m .

We write Φ
′ := ConjB (Φ) and get from the Hadamard–Kolmogorov convexity es-

timates (see Appendix A, (5.3)) the following estimates:

(2.5) ‖Φ′‖r,I ≤ Kr (I )(1+‖B‖0,I )3(‖Φ‖max
r,I ‖B‖0,I +‖Φ‖0,I‖B‖r,I )

and, similarly, if Φ′
j
= ConjB (Φ j ), j = 1,2,

(2.6) dr,I (Φ′
1,Φ′

2) ≤ Kr (I )(1+‖B‖0,I )3(d max
r,I (Φ1,Φ2)‖B‖0,I +d0,I (Φ1,Φ2)‖B‖r,I ),

where the constant Kr (I ) is, for any r , a decreasing function of the length of I

(and can be chosen equal to C r , where C > 0, when I = T). We shall sometime
denote Kr (I ) by Kr,I ; when I = [0,T ], we write Kr,T in place of Kr,[0,T ], and when
I =T we simply write Kr .
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A fibered action is said to be reducible if it is conjugate to a constant action. A
fibered Z2-action can always be conjugated to a normalized one.

LEMMA 2. If Φ ∈Λ
r withγΦ1,0 = 1, then there exist a conjugation B ∈C r

(

R,SL(2,R)
)

and a normalized action Φ̃ such that Φ̃ = ConjB (Φ); then, letting s,T ∈ N with

0 ≤ s ≤ r , there exists Ks such that

‖B‖C s ([0,T ]) ≤ KsT s(‖Φ(1,0)‖0,T )T ‖Φ(1,0)‖max
s,T .

If furthermore, P := maxT∈Z ‖Φ(T,0)‖C r (R) <∞, then

‖B‖C s ([0,T ]) ≤ KsP 4sT s‖Φ(1,0)‖2
0,1‖Φ(1,0)‖max

s,T .

The same results are true if Φ ∈Λ
r (SO(2,R)).

We give the proof of Lemma 2 in Appendix A.
Finally, we observe that a normalized action Φ = ((1, Id), (α, A)) is reducible if

and only if the cocycle (α, A) is reducible (cf. [14, 5]).

2.6. Renormalization of actions. A fundamental tool in this note will be the
results on convergence of renormalizations of bounded cocycles obtained in
[14, 5, 6]. We recall here, following [5], the scheme of renormalization of Z2 ac-
tions introduced in [14].

Let λ 6= 0. Define Mλ : Λr →Λ
r by

Mλ(Φ)(n,m) := (λ−1γΦn,m , AΦ

n,m(λ·)).

Let θ∗ ∈R. Define Tθ∗ : Λr →Λ
r by

Tθ∗(Φ)(n,m) := (γΦn,m , AΦ

n,m(·+θ∗)).

Let U ∈GL(2,Z). Define NU : Λr →Λ
r by

NU (Φ)(n,m) :=Φ(n′,m′), where

(

n′

m′

)

=U−1
(

n

m

)

.

Notice that these three operations commute. Also, Tθ∗ and UN commute with
ConjB while Mλ ◦ConjB = ConjB(λ·) ◦Mλ. Further, if Φ1,Φ2 ∈Λ

∞, then

(2.7) ‖MλΦ1‖r,λ−1T =λr ‖Φ1‖r,T , dr,λ−1T (MλΦ1, MλΦ2) =λr dr,T (Φ1,Φ2).

Let

(2.8) Qn =
(

qn pn

qn−1 pn−1

)

,

and define for n ∈N and θ∗ ∈R the renormalized actions

R
n(Φ) := Mβn−1

◦NQn
(Φ)

R
n
θ∗

(Φ) := T −1
θ∗

[Rn(Tθ∗(Φ))].

Renormalization is a powerful tool with which to study reducibility due to the
following elementary fact:

LEMMA 3 ([14, 5]). If there exist n and θ∗ such that Rn
θ∗

(Φ) is C r -reducible, then

Φ is C r -reducible.
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2.7. Fibered rotation number of nondegenerateZ2-actions. It is possible to as-
sociate to any (nondegenerate) fibered Z2-action Φ a notion of fibered degree.
Since our initial quasiperiodic cocycle (α, A) is homotopic to the identity, the
degree of the associated Z2-action Φ

A is zero (cf. [14, 5]) and in that case, once
a lift is chosen for the corresponding quasiperiodic projective cocycle, we can
define a fibered rotation number rot(Φ) for the Z2-action Φ

A . A change in the
choice of the lift results in adding to the fibered rotation number an element of
the frequency module {kγΦ1,0 + lγΦ0,1 : (k, l ) ∈Z2}. We refer the reader to [14, 5] for
the definition of this rotation number and its behavior under renormalization. It
is proven in the aforementioned references that

(2.9) rot(Rn
Φ) = (−1)nrot(Φ)/βn−1.

2.8. Convergence of the renormalized actions [14, 5, 6]. Let Φ be the action

((1, Id), (α, A)). Write ((1,C (1)
n ), (αn ,C (2)

n )) =Rn
θ∗

(Φ). By definition

(2.10) C (1)
n = A(−1)n−1qn−1

(βn−1·), C (2)
n = A(−1)n qn

(βn−1·).

[6] established the following result:

THEOREM 6 ([6]). If (α, A) is of degree 0 and is L2-conjugate to a cocycle of ro-

tations, then for almost every θ∗ ∈ T, there is a constant matrix B such that if

ConjB (Φ) denotes the conjugate action of Φ by B, then one has Rn
θ∗

(ConjB (Φ)) =
((1,C̃ (1)

n ), (αn ,C̃ (2)
n )) with

C̃
( j )
n = eU

( j )
n R

ρ
( j )
n

, j = 1,2,

such that for any r ∈N, ‖U
( j )
n ‖C r ([0,1],sl (2,R)) → 0, and ρ

( j )
n ∈R.

3. THE WELL APPROXIMATED CASE

3.1. Statement of the result.

DEFINITION 2. A number α ∈ RàQ is said to be of Roth type if for every ǫ > 0
there exist at most finitely many integers q such that |||qα||| ≤ 1

q1+ǫ .

We will say that a number α ∈ RàQ is well approximated if it is not of Roth
type. In this case, there exist ǫ > 0 and an infinite set N(ǫ) ⊂N such that for any
n ∈N(ǫ), we have

|||qnα||| ≤
1

q1+ǫ
n

.

Notice that if α is well-approximated, then there exists M ∈N such that if n ∈
N(ǫ) is sufficiently large, then

(3.1) αM
n ≤

1

qn
.

We say that α ∈ TrQ is super-Liouville if limsupn→∞
loglog qn+1

log qn
= ∞. Equiva-

lently, this means that for any A > 0, limsupn→∞
log qn+1

q A
n

= ∞. In that case, we

denote by L⊂N an infinite set for which limn∈L,n→∞
loglog qn+1

log qn
=∞.
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In this section, we prove the following theorem that encompasses both Theo-
rem 2 and Theorem 3.

THEOREM 7. Suppose α ∈ RàQ is well approximated and A(·) ∈ C∞
0 (T,SL(2,R))

satisfies one of the two following sets of assumptions:

Case (I)

(H1) |||
2ρ f (α, A)

βni−1
||| ≥ ρ0 > 0 for some sequence ni →∞, ni ∈N(ǫ);

(H2) (α, A) is C 0-conjugate to a cocycle of rotations (or equivalently has uniformly

bounded products);

Case (II)

(SL) α is super-Liouville;

(H1) |||
2ρ f (α, A)

βni−1
||| ≥ ρ0 > 0, for some sequence ni →∞, ni ∈L;

(H2’) (α, A) is L2-conjugate to a cocycle of rotations.

Then A(·) is C∞-accumulated by functions Ã(·) ∈C∞
0 (T,SL(2,R)) such that (α, Ã)

is C∞-reducible. Moreover, (α, A) is almost rotation-reducible.

REMARK 4. Given any sequence of numbers βn → 0, the set of numbers ρ for
which there exist ρ0 > 0 and an infinite sequence ni ∈N(ǫ) (resp. ni ∈ L) such
that for all i , we have |||ρ/βni

||| ≥ ρ0, is of full Lebesgue measure.

3.2. Plan of the proof of Theorem 7. We concentrate on the description of case
(I). The basic observation for the proof of Theorem 7 is the following: let (α, A)
be a cocycle (homotopic to the identity), where A(·) is close to some cocycle of
rotations Rϕ(·) ∈C∞(T,SO(2,R)), and assume that ϕ is close to ϕ(0) that satisfies
minl∈Z ‖ϕ(0) − (l/2)‖ ≥ δ where δ is not too small. On the other hand, let us
assume that α is very well approximated by rational numbers and consider the
even worse case where α is very small. The assumptions on A allow us to find
a conjugation B ∈ C∞(T,SL(2,R)) that “diagonalizes” A(·) in the usual algebraic
sense: B(·)−1 A(·)B(·) = Rϕ1(·) ∈ C∞(T,SO(2,R)), the C k -norms of B being under
control. Though this conjugation relation is only algebraic, it can be put in a
“dynamical” form by writing

B(·+α)−1 A(·)B(·) =
(

B(·+α)−1B(·)
)

Rϕ1(·).

But B(·+α)−1B(·) = I+O(α‖∂B‖) and since we have assumed that α is very small,
this quantity will also be very small (as we said before, we have good estimates
on the norms of B). The virtue of this remark is to reduce by conjugation the sit-
uation to a perturbative case where the size of the perturbation is now related to
the “badness” of α. This is the content of Lemma 4 below. Notice that this step
can be iterated a finite number of times and this will allow us to prove Proposi-
tion 2, which is the main ingredient of the paper.

We now illustrate how this argument coupled with renormalization gives the
proof of Theorem 7. Consider now the case where α is a Liouville number. If
we assume that (α, A) is C 0-rotations-reducible, renormalization will converge
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to constants. This means (after normalizing the renormalized action) that there
exists a cocycle (αn , Ã(n)), with αn = Gn(α) (G is the Gauss map G(x) = {1/x})
and with Ã(n) close to a constant rotation in C k -topology for some fixed k, from
which one can retrieve many of the dynamical properties of (α, A). If we make
some assumption on the fibered rotation number of (α, A), we can expect that
Ã(n)(0) will be not too close to I . Also, if α is a Liouville number, there are renor-
malization times nk where αnk

goes to zero much faster than any power of q−1
nk

.
If we apply the basic observation we have described in the previous paragraph,
we can conjugate (αnk

, Ã(nk )) to a cocycle (αnk
, Â(nk )) that will be closer to an

SO(2,R)-valued cocycles (αnk
,Rϕnk

) with αnk
small. Now invert the renormaliza-

tion both for (αnk
, Â(nk )) and (αnk

,Rϕnk
): this basically means that we iterate each

of these cocycles about qnk
times. But these two cocycles are much closer than

q−1
nk

; this has as a consequence that the two cocycles obtained after applying in-
verse renormalization will remain close. Since conjugation and renormalization
commute (up to dilation that is of the order of qnk

at the kth step), this will give
the desired result. Some technicalities about actions complicate the argument a
little bit, which essentially remains the same for case (II).

The same set of ideas and Proposition 2, coupled with the quantitative version
of Eliasson’s reducibility theorem, will also be useful in the proof of Theorem 1
(cf. Subsection 4.1).

3.3. The renormalized actions. Theorem 6 (about the convergence of renor-
malization) and Lemma 2 (about normalization) imply the following proposi-
tion.

PROPOSITION 1. Let Φ be the action ((1, Id), (α, A)), and assume it is L2-reducible.

Then there exist a subsequence ni and a sequence of matrices Bi such that for any

r ∈N, T ∈R,

(3.2) ‖Bi‖r,T ≤ ui (r,T ).

Here

(3.3) ui (r,T ) = Kr T r ‖A‖qni −1(T+1)

0 ‖A‖r ,

and the action ConjBi
(Rni

θ∗
(Φ)) is of the form ((1, Id), (αni

,Gi )) and satisfies

Gi (·) = eUi (·)Rρi

with, for any r ∈N,

Ui ∈C r
(

T, sl (2,R)
)

, ‖Ui‖C r (T) → 0,

and (cf. 2.9))

ρi = (−1)ni
ρ f (α, A)

βni−1
.

Furthermore, if the fibered products An(·) are uniformly C 0-bounded, namely if

maxn∈Z ‖An‖C 0(T) <∞, one can take ui (r,T ) to be equal to u(r,T ):

(3.4) u(r,T ) = K̃r (A)T r ,
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where K̃r (A) depends on A.

Proof. From Section 2.8, consider a subsequence of ni (that we still call ni to
simplify notation) such that Rni

θ∗
(ConjB (Φ)) = ((1,C̃ (1)

i
), (αni

,C̃ (2)
i

)), with

C̃
( j )
i

= eU
( j )
i R

ρ
( j )
i

, j = 1,2,

and for any r ∈ N, εi ,r := max j=1,2 ‖U
( j )
i

‖
C r ([0,1])

→ 0 as i goes to infinity, and

ρ
( j )
i

∈R.

Since C̃ (1)
i

= AdB ·A(−1)ni −1qni −1
(βni−1·), from Lemma 8 of Appendix A and (2.10)

we deduce that for any T ∈R,

‖∂r C̃ (1)
i

‖r,T ≤ Krβ
r
ni−1qr

ni−1‖A‖r ‖A‖qni −1

0

≤ Kr ‖A‖r ‖A‖qni −1

0 .

Using Lemma 2, this provides us with a normalizing conjugation B̃i such that
Bi := B̃i B satisfies the required bound (3.2) and the conclusion of the theorem.

If we now assume that supn∈Z ‖An‖0 <∞, then the fibered products of C̃ (1)
i

are

C 0-bounded and we have

‖(1,C̃ (1)
i

)‖C r ([0,T ]) ≤βr
ni−1qr

ni−1Kr ‖A‖C r (T).

Using Lemma 2 concludes the proof.

3.4. Further reduction. We now come to the crucial basic observation that al-
lows us to conjugate the renormalized system, which is close to a constant sys-
tem, to a cocycle which is a perturbation of a cocycle of rotations, the size of the
perturbation now being explicit in terms of the new rotation number on the base
(αni

).
We use the notation of Proposition 1.

PROPOSITION 2. There exists a sequence of conjugacies Di ∈C∞(T,SL(2,R)) that

is bounded (in C r (T,SL(2,R))-norms, for each r ∈N) and such that the sequence

Φ̃
(1)
i

= ConjDi
((1, Id), (αni

,Gi )) = ((1, Id), (αni
,G̃i )) satisfies

(3.5) G̃i (·) = eŨi (·)Rρ̃i (·)

with, for any l , l ′ ∈N,

lim
i→∞

‖Ũi‖C l

αl ′
ni

= 0(3.6)

lim
i→∞

‖ρ̃i (·)−ρi‖C l = 0.(3.7)

Moreover, there exists constants µs(ρ0) depending only on s and ρ0 such that

‖Di‖C s (T) ≤µs(ρ0).

Combining this proposition with Proposition 1, we immediately get the fol-
lowing corollary.
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COROLLARY 2. If we define Zi := Di Bi , we have

Φ̃i = ConjZi
(Rni

θ∗
(Φ)) = ((1, Id), (αni

,G̃i )),

and Zi satisfies the following estimate for ni ∈N(ε) (Case (I)) or ni ∈L (Case(II)):

(3.8) ‖Zi‖C r ([0,T ]) ≤µr (ρ0)ui (r,T ).

Proposition 2 follows inductively from the following.

LEMMA 4. Let ρ0 ∈ (0,1/2) and M > 0. There exist ε0 > 0 and, for any s ∈ N,

constants Cs > 0 such that for any U ∈C r
(

T, sl (2,R)
)

, ρ ∈C r (T,R) satisfying

‖U‖C 0(T) ≤ ε, inf
l∈Z,x∈T

|2ρ(x)− l | ≥ 2ρ0 and ‖ρ‖C s ≤ M ,

there exist Y ,Ũ ∈C r
(

T, sl (2,R)
)

, and ρ̃ ∈C r (T,R) such that

(0,eY (·))◦ (α,eU (·)Rρ(·))◦ (0,eY (·))−1 = (α,eŨ (·)Rρ̃(·)),

with

‖Ũ‖C s−1 ≤Cs(ρ0)α‖U‖C s(3.9)

‖ρ̃−ρ‖C s ≤Cs(ρ0)‖U‖C s ,(3.10)

with a conjugacy eY (·) satisfying

(3.11) ‖Y ‖C s ≤Cs(ρ0)‖U‖C s .

Proof. By simple algebra, there exists ε0 > 0 such that for any u ∈ sl (2,R), ρ ∈ R

satisfying ‖u‖ ≤ ε0, ρ ∈ (ρ0,1/2−ρ0)M , there exist y ∈ sl (2,R) and ρ̃ ∈ R such that

euRρ = e−y Rρ̃e y .

Also, y = H1(u,ρ), ρ̃ = H2(u,ρ) for some real analytic functions H1, H2 defined on
Eε0,ρ0,M := {u ∈ sl (2,R) : ‖u‖ ≤ ε0}×(ρ0,1/2−ρ0), and we clearly have H1(0,ρ) = 0
and H2(0,ρ) = ρ for any ρ ∈ (ρ0,1/2−ρ0). We define Y (·) = H1(U (·),ρ(·)) and
ρ̃(·) = H2(U (·),ρ(·)) so that

eU (θ)Rρ(θ) = e−Y (θ)Rρ̃(θ)e
Y (θ).

It is then a standard fact that ‖Y ‖C s ≤Cs‖U‖C s , ‖ρ̃−ρ‖C s ≤Cs‖U‖C s .
Next, we write

eU (θ)Rρ(θ) = e−Y (θ+α)eŨ (θ)Rρ̃(θ)e
Y (θ),

where eŨ (θ) := eY (θ+α)e−Y (θ). Now it can be proven (cf [13], Prop. A.2.3) that if
φ, f ,u are smooth functions, for any s ∈N there exists a constant Cs such that

‖φ◦ ( f +u)−φ◦u‖s ≤Cs‖φ‖s(1+‖ f ‖0)s(1+‖ f ‖s)‖u‖s .

If we choose φ= exp, f = Y (·), u = Y (·+α)−Y (·), then (3.9) follows from (3.11) if
ε0 > 0 is chosen sufficiently small.
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3.5. End of proof of Theorem 7. We introduce the notationΨ := IRn
θ∗

(Ψ′) ifΨ′ =
R

n
θ∗

(Ψ). It is easy to check that

IR
n
θ∗

(Φ) = T −1
θ∗

◦NQ−1
n
◦Mβ−1

n−1
◦Tθ∗(Φ).(3.12)

The proof of Theorem 7 from Corollary 2 will be a consequence of the follow-
ing lemma, the proof of which is given in the Appendix.

LEMMA 5. Let Φ1,Φ2 ∈Λ
r . Then, provided d0,T (Φ1,Φ2) ≤ (1/q2

n), we have

dr,β2
n−1T (IRn(Φ1),IRn(Φ2)) ≤ Kr,βn−1T q2r+1

n ‖Φ2‖
qn

0,T ‖Φ2‖r,T dr,T (Φ1,Φ2).

We can now conclude the derivation of Theorem 7 from Corollary 2. We use

the notation of Section 3.4. We define Φ1 = Φ := ((1, Id), (α, A)), Φ(i )
1 = R

ni

θ∗
(Φ1),

Φ̃
(i )
1 = ConjZi

(Φ(i )
1 ) = ((1, Id), (αni

,G̃i )) and Φ̃
(i )
2 = ((1, Id), (αni

,Rρ̃i
)). We then set

Φ
(i )
2 = ConjZ−1

i
(Φ̃(i )

2 ), and Φ2,i = IRni (Φ(i )
2 ). From Proposition 2, we know that

there exists Kr,l ′ (r = l ) such that

dr,T (Φ̃(i )
1 ,Φ̃(i )

2 ) ≤ Kr,l ′α
l ′

ni

for any r,T, l ′. If we set Φ̃1,i = ConjZ−1
i

(β−1
ni −1·)

(Φ1), Φ̃2,i = ConjZ−1
i

(β−1
ni −1·)

(Φ2,i ), we

have Φ̃ j ,i = IR
ni (Φ̃(i )

j
) ( j = 1,2). By Lemma 5, the fact that Φ̃(i )

2 is in Λ
∞(SO(2,R)),

and, since for ni big enough, dr,T (Φ̃(i )
1 ,Φ̃(i )

2 ) ≤ (1/q2
ni

) (see (3.1)), we can write

(3.13) dr,β2
ni −1T (Φ̃1,i ,Φ̃2,i )) ≤ Kr,l ′,βni −1T q2r+1

ni
‖Φ̃(i )

2 ‖r,T α
l ′

ni
.

Since Φ j ,i = ConjZi (β−1
ni −1·)

(Φ̃ j ,i ), using inequalities (2.6) and (3.8) we then get

(3.14) dr,β2
ni −1T (Φ1,Φ2,i ) ≤ Kr,l ′,βni −1T (µ(ρ0)ui (r,βni−1T ))4q3r+1

ni
‖Φ̃(i )

2 ‖r,T α
l ′

ni
.

From Lemma 8 of the Appendix,

(3.15) ‖Φ̃(i )
2 ‖r,T ≤ Kr q2r

ni
,

and thus

dr,β2
ni −1T (Φ1,Φ2,i ) ≤ Kr,l ′,βni −1T (µ(ρ0)ui (r,βni−1T ))4q5r+1

ni
αl ′

ni
.

Denote by εr,ni
the quantity on the right-hand side of this last equation with

T =β−2
ni−1. That is (notice that Kr,l ′,β−1

ni −1
= Kr,l ′ since β−1

ni
> 1),

(3.16) εr,ni
= Kr,l ′(µ(ρ0)ui (r,β−1

ni−1))4q5r+1
ni

αl ′

ni
.

In case (I), it is enough to assume that α is well-approximated to ensure that

εr,ni
→ 0 as ni → ∞, ni ∈ N(ε), since in that case αni

≤ q
− 1

M
ni

for some subse-
quence; notice that if this is so, then case (I) has the improved estimates on ui

(which is u), to work with (cf. Proposition 1). In case (II), the stronger assump-
tion limn∈L,n→∞(log qn)−1 loglog qn+1 =∞ is a sufficient condition to ensure this
convergence to 0.
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The action Φ2,i is conjugate to an action in Λ
r (SO(2,R)) and is εr,ni

-close to
Φ1 in the C r -topology, but it is not necessarily normalized. Since

‖Id−Φ2,i (1,0)‖C r ([0,1] = ‖Φ1(1,0)−Φ2,i (1,0)‖C r ([0,1] ≤ εr,ni
,

we can construct from Lemma 2 a conjugacy B̃i ∈C r
(

R,SL(2,R)
)

such that B̃i (·+
1)Φ2,i (1,0)B̃i (·)−1 = Id and satisfying

(3.17) ‖B̃i − Id‖C r ([0,1]) ≤ Kr εr,ni
.

As a consequence, from (2.6),

dr,1(Φ2,i ,Φ̄2,i ) ≤ Kr εr,ni
(1+εr,ni

)3‖Φ2,i‖r,1

and from (3.15),

dr,1(Φ2,i ,Φ̄2,i ) ≤ 2K 2
r εr,ni

q2r
ni

.

The normalized action Φ̄2,i := ConjB̃i
Φ2,i is conjugate to one in Λ

r (SO(2,R))
satisfying

(3.18) dr,1(Φ1,Φ̄2,i ) ≤ 3K 2
r εr,ni

q2r
ni

.

With the preceding notation, observe that Φ̄2,i = ConjB̃i
ConjZi (β−1

ni −1·)
(Φ̃2,i ) and

that Φ̃2,i ∈ Λ
r
SO(2,R). This means that for any i , there exist Āi ∈ C r (T,SL(2,R)),

ϕi ∈ C r (T,R), and B̄i ∈ C r (T,SL(2,R)), where B̄i (·) = B̃i (·)Zi (β−1
ni−1·) satisfies (cf.

Corollary 2 and (3.17))

(3.19) ‖B̄i‖C r (T) ≤ Kr qr
ni
µr (ρ0)ui (r,β−1

ni−1),

such that

(3.20) ‖A(·)− Āi (·)‖C r (T) ≤ 3K 2
r εr,ni

q2r
ni

and

(3.21) (α, Āi ) = (0, B̄i )◦ (α,Rϕi
)◦ (0, B̄i )−1.

Proof of the fact that (α, A) is accumulated by reducible cocycles. In both cases (I)
and (II), εr,ni

q2r
ni

goes to zero as ni goes to infinity (ni being in N(ε) in case (I)
and ni being in L in case (II)). Thus (3.20) shows that (α, A) is C r -accumulated
by cocycles that are C r -conjugate to the C r -cocycles (α,Rϕi (·)) with values in
SO(2,R). But such cocycles can be accumulated by reducible ones: just trun-
cate the Fourier series of ϕi far enough to get a trigonometric polynomial ϕ̄i (·)
and solve the usual cohomological equation ψ(·+α)−ψ(·) = ϕ̄i (·)−

∫

T ϕ̄i (x)d x.

Proof of the fact that (α, A) is almost rotations-reducible. From (3.21), (3.20), (3.19)
and the convexity inequalities we have

(3.22) ‖(0, B̄i )−1 ◦ (α, A)◦ (0, B̄i )−Rϕi
‖C r (T) ≤ 3K 4

r q4r
ni

(µr (ρ0)ui (r,β−1
ni−1))2εr,ni

.

But from (3.3) and (3.16) the quantity in the right-hand side of this inequality
goes to zero as ni goes to infinity (ni being in N(ε) in case (I) and ni being in L in
case (II)). This proves the almost rotations-reducibility and completes the proof
of Theorem 7.
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3.6. Proofs of Theorems 2, 3. Theorems 2, 3 now clearly follow from Theorem
7.

4. THE DIOPHANTINE CASE.

In this section, we prove Theorem 1.

4.1. Plan of the proof of Theorem 1. We show in this subsection how the argu-
ments given in Section 3.2 can be used to prove Theorem 1; we now assume that
(α, A) is a smooth cocycle homotopic to the identity and that α is a Diophantine
number. We observed in Section 3.2 that after renormalization and conjuga-
tion, we can associate to (α, A) cocycles (αn , Â(n)), where αn =Gn(α) and Â(n) is
αC

n -close in the C r -topology (r fixed) to some SO(2,R)-valued cocycle (αn ,Rϕn
),

where C > 0 is an arbitrarily large constant. Since α is Diophantine, αn is also
Diophantine with the same exponent, but its Diophantine constant can be small.
The relevant observation is that there exist infinitely many times nk such that
the Diophantine constant of αnk

is not less than cst ·αnk
. This allows us, first

to find a further conjugation that conjugates (αnk
, Â(nk )), αC ′

nk
-close (C ′ > 0) in

C r -topology to a constant cocycle (αnk
,Rnk

), and second to apply a quantitative
version of Eliasson’s Theorem (Theorem 5, the proof of which can be found in
the Appendix) that guarantees reducibility of (αnk

,Rnk
) provided the fibered ro-

tation number satisfies some (weak) Diophantine condition. Since reducibility
is preserved by renormalization, this proves that (α, A) is reducible.

In fact, it was pointed to us by the referee that a local KAM theorem on re-
ducibility with estimates would suffice to prove Theorem 1. Indeed, in Theorem
1 it is supposed that the fibered rotation number should belong to a set Σ(α) of
full measure, while in Theorem 8, that is, a precise version implying Theorem
1, the set Σ(α) is partly described by the fact that the fibered rotation number
ρ f (α, A) is supposed to be Diophantine with respect to α, a condition that is ev-
idently of full measure. With this condition, a quantitative version of Eliasson’s
result is needed to obtain reducibility.

However, one can further restrict the set Σ(α) and remain with a set of full
measure ensuring nonetheless that, along a subsequence, the renormalized co-
cycle (αnk

, Â(nk )) has the vector (αnk
,ρnk

) (where ρnk
is the fibered rotation num-

ber of (αnk
, Â(nk ))) satisfying a Diophantine condition with constant cst ·αnk

.
From there, a usual KAM theorem with estimates would allow to conclude, since
Â(nk ) is αC ′

nk
close to a constant, where C ′ > 0 is arbitrarily large.

4.2. Diophantine constants. We will first make explicit the condition on the
fibered rotation number that will be used in the proof of Theorem 1. We need
the following.

LEMMA 6. Let α ∈ RàQ be a Diophantine number. Then there exist ν > 0 and

C > 0 that depend on α, and an infinite set M⊂N, such that for n ∈M, we have

(4.1) ∀k ≥ 1, |||kαn ||| ≥
Cαn

k1+ν ,
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that is, αn ∈ DC(Cαn ,ν).

Proof. For n ≥ 1 define νn > 0 such that qn+1 = q
1+νn
n . Since α is Diophantine,

there exists ν0 > 0 such that for all n ≥ 1 we have νn ≤ ν0. We define

ν= 10ν0 +10.(4.2)

Let M be the subset of n ∈N such that

(4.3) ∀l ≥ n, νl ≤ 2νn .

The set M is infinite because νn is bounded, and we will show that the assertion
of the lemma holds for every n ∈M with C = 1

2·4ν+1 .

Recall that αk =βk /βk−1 and that βk = (−1)k (qkα−pk ); hence for k, l ∈N, we
have

|kαn − l | =
1

βn−1
|(kqn + l qn−1)α−kpn − l pn−1|

≥ qn |(kqn + l qn−1)α−kpn − l pn−1|.

Since
qn

2qn+1
≤αn ≤ 2

qn

qn+1
,

we have

|||kαn ||| = |kαn − l (k)| for some l (k) ≤ 3k
qn

qn+1
.

If 1 ≤ k < qn+1

4qn
, we have

|||kαn ||| = kαn ≥αn .

If
qn+1

4qn
≤ k < qn+2

4qn
, we have kqn + l (k)qn−1 < qn+2; hence (2.2) and (2.4) imply

|||kαn ||| = |kαn − l (k)| ≥ qn |(kqn + l qn−1)α−kpn − l pn−1| ≥
qn

2qn+2
,

while we have
qn

2qn+2
=

1

2q
(1+νn )(1+νn+1)−1
n

.

Since k ≥ qn+1

4qn
, we have

1

kν+1
≤

4ν+1

q
νn (ν+1)
n

;

hence the fact that νn(ν+1) ≥ νnν≥ (1+νn)(1+νn+1) implies that

|||kαn ||| ≥
C

kν+1
.

More generally, for
qn+i

4qn
≤ k < qn+i+1

4qn
, i ≥ 1, we have kqn + l (k)qn−1 < qn+i+1;

hence (2.2) and (2.4) imply

|||kαn ||| ≥
qn

2qn+i+1
,
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or equivalently

|||kαn ||| ≥
1

2q
(1+νn )...(1+νn+i+1)−1
n

;

having in mind that

1

2 ·4ν+1

(

4qn

qn+i

)ν+1

=
1

2q
(ν+1)[(1+νn )...(1+νn+i )−1]
n

.

Our choice of ν in (4.2) then implies

|||kαn ||| ≥
C

kν+1
.

Lemma 6 is proved.

We can now state a precise version of Theorem 1.

THEOREM 8. Let α ∈RàQ be a Diophantine number and let M=M(α) be the set

of integers given by Lemma 6. Then if A ∈C∞
0 (T,SL(2,R)) satisfies

(D1) ρ f (α, A) is Diophantine with respect to α,

(D2) |||
2ρ f (α, A)

βni−1
||| ≥ ρ0 > 0, for some sequence ni →∞, ni ∈M, and

(D3) (α, A) is L2-conjugate to a cocycle of rotations,

then (α, A) is C∞-reducible.

This theorem implies Theorem 1 since the arithmetic conditions imposed on
ρ f (α, A) are both clearly of full measure.

4.3. Proof of Theorem 8. We will need the following elementary fact.

LEMMA 7. If ρ is Diophantine with respect to α, then for any n ∈ N,
ρ

βn−1
is Dio-

phantine with respect to αn .

Proof. As in the proof of Lemma 6, we have

|2
ρ

βn−1
−kαn − l | =

1

βn−1
|2ρ− (kqn + l qn−1)α+kpn + l pn−1|

≥
1

βn−1

C

(1+|kqn + l qn−1|+ |kpn + l pn−1|)2

≥
Cn

(1+|k|+ |l |)2

Let M be the set given by Lemma 6 and consider a sequence ni → ∞, ni ∈
M, such that (D2) holds for this sequence. Since reducibility is invariant un-
der renormalization and conjugation, it is enough to show that the action Φi =
((1, Id), (αni

,Gi )) of Section 2.8 is reducible.
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By (D2), we can apply Proposition 2 and conjugate Φi to ((1, Id), (αni
,G̃i )) such

that G̃i = eŨi (·)Rρ̃i (·), with, for any l , l ′ ∈N

lim
i→∞

‖Ũi‖C l

αl ′
ni

= 0(4.4)

lim
i→∞

‖ρ̃i −ρi‖C l = 0,(4.5)

where ρi := (−1)ni ρ f (α, A)/βni−1.

From (4.5), we have that lim
i→∞

‖ρ̃i −
∫

T

ρ̃i‖
C l

= 0. In addition, αni
∈ DC(Cαni

,ν),

so there exists hi ∈C∞(T,R) such that

ρ̃i (·)−
∫

T

ρ̃i = hi (·+αni
)−hi (·)

and

lim
i→∞

αni
‖hi‖C l = 0.

Due to (4.4), conjugating (1,Id), (αni
,G̃i )) by Rhi (·), we get ((1, Id), (αni

,G i )),
where

(4.6) ‖G i −R∫

T ρ̃i
‖

C l
= o(αl ′

ni
)

for any l , l ′ ∈N as i →∞.
Finally, ρ f (αni

,G i ) = ρ f (αni
,Gi ) = (−1)ni ρ f (α, A)/βni−1 is Diophantine with

respect to αni
, as is asserted by Lemma 7. So, the fact that αni

∈ DC(Cαni
,ν)

and (4.6) allow us to use Eliasson’s local theorem on reducibility, Theorem 5 (cf.

Remark 3), to conclude that for i sufficiently large, (1, Id), (αni
,G i )) is reducible,

and so is Φi and the original action Φ.

5. APPENDIX A

5.1. Proof of Lemma 2. One just has to prove that, given C ∈ C∞(

R,SL(2,R)
)

,
one can always find B ∈C∞(

R,SL(2,R)
)

such that C (t ) = B(t +1)B(t )−1, which is
not difficult in the C∞-category (it is more difficult in the analytic category; see
Lemma 4.1 of [5]). Indeed, one can find B ∈ C∞([0,1],SL(2,R)) such that B(0) =
Id, B(1) = C (0), and such that for any k ≥ 1, ∂k B(0) = 0 and ∂k B(1) = ∂k (C B)(0),
‖B‖s,[0,1] ≤ Ks‖C‖s,[0,1]. Setting B(t ) =C (t−1) · · ·C (t−m)B(t−m) for t ∈ [m,m+1]
completes the definition of B . One then has, for any T ∈N,

(5.1) ‖B‖C s ([0,T ]) ≤ Ks max
0≤l≤T

(

‖Cl‖C s ([0,1])‖C‖C 0([0,1]) +‖Cl‖C 0([0,1])‖C‖C s ([0,1])

)

,

where (l ,Cl (·)) = (1,C (·))l . Lemma 2 will follow from Lemma 8 and Corollary 3
below.

LEMMA 8. Let (uk )1≤k≤n be a sequence of functions in C∞(T,SL(2,R)), and let

Un = u1 · · · · ·un . Denote by Ms = max1≤k≤n(‖uk‖s). Then

‖Un‖r ≤ (nC )r M n−1
0 Mr .
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If the functions are defined on [0,1] one can replace C r by some constant Kr de-

pending only on r (and on the interval [0,1]).

Proof.

(5.2) ∂r Un(x) = ∂r

(

0
∏

k=n−1

uk

)

(x),

which by the Leibniz formula is a sum of nr terms of the form (s ≤ r )

I(i∗)(x) =
(

i1+1
∏

l=n−1

ul (x)

)

·∂m1 ui1 (x) ·
(

i2+1
∏

l=i1−1

ul (x)

)

·

·∂m2 ui2 (x) ·
(

i3+1
∏

l=i2−1

ul (x)

)

· · ·

·∂ms uis
(x) ·

(

0
∏

l=is−1

ul (x)

)

,

where i∗ runs through I = {0, . . . ,n −1}{1,...,r }, and where {i1, . . . , is} = i∗({1, ...,r })
satisfy n−1 ≥ i1 > i2 > ·· · is ≥ 0 and ml = #(i∗)−1(il ) (notice that m1+. . .+ms = r ).

From this and the convexity (Hadamard–Kolmogorov) inequalities [12],

(5.3) ‖∂mu‖C 0 ≤C‖u‖1−(m/r )
0 ‖∂r u‖

m
r

C 0 , 0 ≤ m ≤ r,

we deduce (using
∑s

p=1 mp = r )

‖I(i∗)(x)‖ ≤ M n−s
0

s
∏

p=1

(

C M
1−mp

r

0 M
mp

r
r

)

≤C s M n−1
0 Mr ,

so

‖Un‖ ≤
∑

i∗∈I
‖I(i∗)(x)‖ ≤ nr C r M n−1

0 Mr .

Lemma 8 has an immediate corollary on the growth of the products An .

COROLLARY 3. Let J ⊂R be some interval and define Jn =
⋃n−1

l=0
(J+lα). If Mk (x) >

1 is an upper bound of ‖Ak (x)‖ for x ∈ J , then for any x ∈ J

‖∂r An(x)‖ ≤ K r ‖An(x)‖C 0(J )M0(x)2r (M 2
0 (x)+·· ·+M 2

n−1(x))r ‖∂r A(x)‖C 0(Jn ).

Observe that when the fibered products Cl (t ) are uniformly bounded for t ∈R

(P := supl∈R ‖Cl‖C 0(R) < ∞), we have ‖Cl‖C s (R) ≤ Ks(M 4l )s‖C‖C s ([0,l ])‖C‖C 0([0,1])

for some constants Ks , s ∈N, and using (5.1) we get the estimate for B .
In the general case,

‖Cl‖C s ([0,1]) ≤ Ks l s‖C‖l−1
0,l ‖C‖s,l .

This and (5.1) conclude the proof of Lemma 2.
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5.2. Proof of Lemma 5.

Proof. We use the following lemma.

LEMMA 9. Let (γ, A), (γ, Ã) ∈Ω
r , and define (γ, A)k := (kγ, Ak ), (γ, Ã)k := (kγ, Ãk )

for k ∈Z. If we define In :=
⋃n−1

l=0
(I + l ), Ms := ‖A‖C s (In ), Hs := ‖A− Ã‖C s (In ), then

‖∂s An −∂s Ãn‖C 0(I ) ≤ Ksns+1(M0 +H0)n−2
(

(Ms +Hs)H0 + (M0 +H0)Hs

)

.

Proof. Define H = Ã − A and set ∆(ν, t ) =
∏0

l=n−1(A(t + lγ)+νH(t + lγ)). By the
Mean-Value Theorem, we clearly have

‖∂s An −∂s Ãn‖C 0(I ) ≤ max
0≤ν≤1

‖∂ν(∂s
∆(ν, ·))‖C 0(I ).

But ∂ν(∂s
∆(ν, ·)) is a sum of n terms of the form (0 ≤ m ≤ n −1)

∂s
(( m+1

∏

l=n−1

(A(t + lγ)+νH(t + lγ))
)

H(t +mγ)
( 0

∏

l=m−1

(A(t + lγ)+νH(t + lγ))
))

.

By the convexity inequalities and Lemma 3, the C s-norm of this expression is
less than

Csns+1(M0 +H0)n−2 ((Ms +Hs)H0 + (M0 +H0)Hs) .

Denote Ψi = Mβ−1
n−1

◦Tθ∗(Φi ), i = 1,2, and Γn = T −1
θ∗

◦NQ−1
n

. We clearly have

dr,βn−1T (Ψ1,Ψ2) =β−r
n−1dr,T (Φ1,Φ2)

and
‖Ψ1‖r,βn−1T =β−r

n−1‖Φ1‖r,T .

From (3.12), the previous lemma, and the definition of NQn
, we then get

dr,β2
n−1T (Γn(Ψ1),Γn(Ψ2)) ≤ Kr,βn−1T qr+1

n ‖Ψ1‖
qn−2
0,βn−1T

×
(

‖Ψ1‖0,βn−1T dr,βn−1T (Ψ1,Ψ2)+‖Ψ1‖r,βn−1T d0,βn−1T (Ψ1,Ψ2)
)

,

which in view of the previous formulae is the conclusion of Lemma 5.

6. APPENDIX B
AN ABRIDGED PROOF OF THEOREM 5

The proof relies on a KAM scheme (named after Kolmogorov, Arnold, and
Moser). Assume that α ∈ DC(γ,τ), that is,

|||qα||| ≥
γ−1

q1+τ ,

and that A(·) = eF0(·) A0; here F0 ∈C r
(

T, sl (2,R)
)

, where sl (2,R) is the Lie algebra
of SL(2,R), whose elements are traceless 2×2 real matrices.

DEFINITION 3. For N ,K > 0, define the set

DS(N ,K ) := {β ∈R | inf
l∈Z,0<|k|≤N

|β−kα− l | ≥ K −1}.

It is easy to check the following.
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LEMMA 10. Let α ∈ DC(γ,τ), N > 0, and K ≥ γ(2N )3(τ+1). Then:

(i) If β ∉ DS(N ,K ), then there exists a unique k0 ∈ Z− {0}, such that |k0| ≤ N

and |||β−k0α||| < 1/K , and we have β−k0α ∈ DS(N 3,K ).

(ii) The following inclusion holds: {|β| < K −1} ⊂ DS(N 3,K ).

This lemma will be used with sequences Nn and Kn given by Nn = L(1+σ)n

,
Kn = γ(2Nn)3(τ+1), where σ> 0 and L > 1 some constants that will be fixed later.
The lemma shows that if β is almost resonant at step n, that is, β ∉ DS(Nn ,Kn),
then it is possible, by replacing β by β̃= β−k0α, to get a number β̃ that is non-
resonant for a much longer period. The importance of the exponent in the Dio-
phantine condition on β̃ will be explained later.

If g in SL(2,R) is elliptic (that is, conjugate to a rotation matrix or, equivalently,
if the absolute value of its trace is less than 2), it can be written eM , where M ∈
sl (2,R) is elliptic (conjugate to an infinitesimal rotation). In that case, det M is
positive, and we write β(g ) := π−1

p
det M . The eigenvalues of Ad(g ) : sl (2,R) →

sl (2,R) (which is defined by Ad(g ) ·X = g X g−1) are 1 and ±e2πiβ(g ). Notice that if
(α, A) is a cocycle with A constant and elliptic, then its fibered rotation number
ρ equals β(A)/2.

If f is a periodic C r function, we define its Fourier coefficients

f̂ (k) :=
∫

T

f (θ)e−2πi kθdθ,

its truncation up to order N ,

TN f :=
∑

|k|≤N

f̂ (k)e2πi kθ,

and its remainder at order N , RN f := f −TN f . For any s, s′ ∈ N, s′ ≥ s we have
the following estimates:

(6.1) |TN f |s′ ≤Cs,s′N
s′−s+1| f |s , and |RN f |s ≤Cs,s′

| f |s′
N s′−s−1

.

Also, if Q is quadratic in ( f , g ) (Q being C 2 and Q(0,0) = 0, DQ(0,0) = 0), we have

(6.2) |Q( f , g )|s ≤Cs(1+| f |0 +|g |0)s+1(| f |0 +|g |0)(| f |s +|g |s),

which simplifies to

|Q( f , g )|s ≤Cs(| f |0 +|g |0)(| f |s +|g |s)

if | f |0 +|g |0 is a priori bounded (by 1 for example).
The main procedure at every step of the KAM scheme is given by the following

proposition.

PROPOSITION 3. If |A| ≤ 1 and N and K satisfy K = γ(2N )3(τ+1) and N 6(τ+1)|F |0
is small enough, then:

(i) if β(A) ∈ DS(N ,K ), there are

Y ∈C∞(

T, sl (2,R)
)

, A′ ∈ sl (2,R),F ′ ∈C∞(

T, sl (2,R)
)
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such that

eY (·+α)(eF (·) A)e−Y (·) = eF ′(·) A′,(6.3)

A′ = e F̂ (0) A,

|F ′|s ≤Csγ
2N 6(τ+1)|F |s |F |0 +Cs,s′

|F |s′
N s′−s−1

,

|Y |s ≤ γCs N 6(τ+1)|F |s , and

ρ(α,eF ′(·) A′) = ρ(α,eF (·) A);

(ii) if there exists m ∈ Z, 0 < |m| ≤ N , such that ‖β(A)−mα‖ < K −1, then there

exist B ∈C∞(R/2Z,SL(2,R)), A′ ∈ sl (2,R), F ′ ∈C∞(

T, sl (2,R)
)

such that

|β(A′)| < K −1,

B(·+α)(eF (·) A)B(·)−1 = eF ′(·) A′,

|F ′|s ≤Cs,s′γ
4N 20(τ+1)

(

N s |F |20 +|F |s |F |0)+
N s′ |F |0 +|F |s′

N 3(s′−s−1)

)

, and

ρ(α,eF ′(·) A′) = ρ(α,eF (·) A)−mα/2.

Proof.

Case (i): Since α is Diophantine and β(A) ∈ DS(N ,K ), where K = γ(2N )3(τ+1),
it is easy to see, going through Fourier coefficients, that the so-called linearized

equation

Y (·+α)−Ad(A)Y (·) =−(TN F − F̂ (0))

has a unique solution Y ∈ C∞(

T, sl (2,R)
)

such that Ŷ (0) = 0 and, for k ∈ Z− {0},
one has Ŷ (k) = 0 if |k| > N and

Ŷ (k) =
(

e2πi kαId−Ad(A)
)−1

F̂ (k)

if |k| ≤ N . The eigenvalues of
(

e2πi kαId−Ad(A)
)−1

are

(e2πi kα−1)−1, (e2πi kα−e2πiβ(A))−1 and (e2πi kα−e−2πiβ(A))−1,

and from this it is not difficult to get

(6.4) |Y |s ≤Csγ
2N 6(τ+1)|F |s .

If we define A′ = e F̂ (0) A and F ′ by (6.3), one can see that F ′ is the sum of an
expression that is at least quadratic in (TN F,Y ,F ) and of a remainder of size com-
parable to RN F = F −TN F . The required estimates then follow from the applica-
tion of (6.1), (6.2) and (6.4). The equality on the fibered rotation numbers is due
to the fact that this fibered rotation number is invariant under conjugations that
are homotopic to the identity.

Case (ii): In this case, the constant matrix A is elliptic and can be conjugated

to a rotation exp(β(A)πH), where H =
(

0 −1
1 0

)

, the constant conjugation being
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of size bounded by C /β(A)2 ≤ Cγ2N 2(τ+1) (because for some 0 < |k0| ≤ N , |||β−
k0α||| ≤ 1/K < (γN 3(τ+1))−1 while |||k0α||| ≥ (γNτ+1)−1).

Applying this conjugation to eF A results in a new cocycle e F̄ exp(πβ(A)H),
where |F̄ |s ≤ Cγ2N 2(τ+1)|F |s . To keep the notation simple, we will still write A

in place of exp(πβ(A)H) and F in place of F̄ . We now perform a conjugation
D(·) = exp(−πHm·) ∈C∞(R/2Z,SL(2,R)). Writing

D(·+α)(eF (·) A)D(·)−1 = e F̃ (·) Ã,

we see that Ã = A−mαH , so β(Ã) =β(A)−mα and

|F̃ |s ≤Cs(N s |F |0 +|F |s).

Notice that although D is only 2Z-periodic, F̃ is Z-periodic. But then we have

seen that β(Ã) ∈ DS(N 3,K ), so Case (i) applies to e F̃ (·) Ã with N 3 in place of N :

there exists a conjugation Ỹ ∈ C∞(

T, sl (2,R)
)

such that if we set B(·) = e Ỹ (·)D(·),
one has the desired estimates

|F ′|s ≤Cs,s′γ
2N 2(τ+1)

(

γ2N 6(τ+1)(N s |F |20 +|F |s |F |0)+
N s′ |F |0 +|F |s′

N 3(s′−s−1)

)

.

The relation on the fibered rotation number is due to the fact that if B : R/2Z→
SL(2,R) has topological degree −m, then

ρ(α,B(·+α)eF (·) AB(·)−1) = ρ(α,eF (·) A)−mα/2.

In view of the estimates of Proposition 3, we now apply Corollary 4 of Appen-
dix C with a = 20(τ+1), σ0 = 1, M = 1, m = 0, and (µp , µ̄p ) ∈ {(1,0), (3,1)}. This
provides us with 0 <σ<σ0, 0 < g , s0 ∈N (of the form s0 = O(τ)), and L := γ4C̄s0 ,
C̄s0 := maxs≤s0,s′≤s0 Cs,s′ for which the conclusions of Corollary 4 are satisfied. As-
suming that

|F0|s0 ≤ γ−d0ε,

where d0 = 4s0/g , ε = (C̄s0 )−s0/g , setting Nn = L(1+σ)n

and inductively apply-
ing Proposition 3 (with, at step n, Nn , An , Fn in place of N , A,F ) enables us to
construct sequences An ∈ sl (2,R), Fn ∈ C∞(

T, sl (2,R)
)

, Zn ∈ C∞(R/2Z,SL(2,R)),
m̃n ∈Z such that

Zn(·+α)eFn (·) An Zn(·)−1 = eFn+1(·) An+1,

2ρ(α,eFn+1(·) An+1) = 2ρ(α,eFn (·) An)−m̃nα,

and satisfying the following estimates: setting εn,s = |Fn |s and Kn = γ(2Nn)3(τ+1),
for all s ≥ 0,

εn,s =O(N−∞
n ).

Also,

• if β(An) ∈ DS(Nn ,Kn) then m̃n = 0 and Zn is of the form eYn , with Yn ∈
C∞(

T, sl (2,R)
)

satisfying |Yn |s ≤ γCs N 6(τ+1)
n εn,s and

• if β(An) ∉ DS(Nn ,Kn), then 0 6= |m̃n | ≤ Nn and |β(An+1| < K −1
n .
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Notice that Zn can be, depending on whether at step n we are in Case (i) or Case

(ii) of Proposition 3, “small” or “big” according to the C∞-topology.
We have thus proven almost reducibility without any condition on the fibered

rotation number.

THEOREM 9. If α ∈ DC(γ,τ) is Diophantine and A ∈ SL(2,R), there exists ǫ (de-

pending only on τ and A) and s0 ∈ N such that for any F ∈ C∞(

T, sl (2,R)
)

with

|F |s0 ≤ γ−d0ε, there is a sequence Wn ∈ C∞(R/2Z,SL(2,R)) (Wn = Zn−1 · · ·Zn) for

which Wn(· +α)(eF (·) A)Wn(·)−1 is Z-periodic and converges to a constant in the

C∞-topology.

Now, to prove Theorem 5 under the assumption |F |s0 ≤ γ−d0ε, we just have to
prove that ifρ(α,eF (·) A) is Diophantine with respect toα thenβ(An) ∈ DS(Nn ,Kn)
for all large enough n. We make the following remarks: at the n-th step of the it-
eration scheme, the fibered rotation number of (α,eFn An) satisfies

2ρ(α,eF (·) A) = 2ρ(α,eFn (·) An)+ (m̃0 + . . .+m̃n−1)α,

and using the smallness of Fn we get

|2ρ(α,eF (·) A)−β(An)− (m̃0 + . . .+m̃n−1)α| ≤ εn,0.

Now assume that there is an infinite sequence nk such that m̃nk−1 6= 0; then
|β(Ank

)| < K −1
nk

and we have

|2ρ(α,eF (·) A)− (m̃0 + . . .+m̃nk−1)α| ≤ K −1
nk

+εnk ,0.

But since ρ(α,eF (·) A) is Diophantine with respect to α,

C

(N0 +·· ·Nnk−1)2
≤ K −1

nk
+εnk ,0.

This is clearly impossible for k large enough, since Kn = γ(2Nn)3(τ+1) and εn,0 =
O(N−∞

n ).
We conclude that for n big enough, β(An) ∈ DS(Nn ,Kn), and consequently the

conjugation Zn(·) is of the form eYn (·) with Yn ∈ C∞(

T, sl (2,R)
)

satisfying |Yn |s ≤
γCs N 6(τ+1)

n εn,s (Case (i) of the iteration scheme). The product Zn(·) · · ·Z0(·) clearly
converges in the C∞-topology; this is the required conjugation that transforms
(α,eF (·) A) to a constant cocycle.

7. APPENDIX C
CONVERGENCE OF A GENERALIZED KAM SCHEME

In this section we present a proof of the convergence of a generalized KAM
scheme. We insist on the fact that nonconstant losses of derivatives are allowed
when solving the linearized equations; typically, a loss of ms derivatives is pos-
sible (m < 1) if we are dealing with C s-norms. Also, a loss in the truncated part
is allowed (in the sequel of the text, this is governed by the constants µ, µ̄). We
essentially follow the presentation of [13, Chap. 5] and [8, Sec. 6] with some sim-
plifications and generalizations (and corrections of some minor errors).
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Let a > 0, 0 <σ0 ≤ 1, M ,m,µ, µ̄> 0 such that

M

µ
< 1+σ0,

m

µ
< 1, 0 < 2µ̄<µ.

Then there exists g such that

1

µ− µ̄
< g < min(

1+σ0

M
,

1

m
,

1

µ̄
).

and 0 <σ<σ0 such that

1+σ< (µ− µ̄)g ,

that is

(7.1)
1+σ

µ− µ̄
< g < min

(

1+σ0

M
,

1

m
,

1

µ̄

)

.

For s, s̄, let Cs,s̄ : [0,∞) → [1,∞] be a family of continuous functions on [0,2]
such that Cs,s̄(t ) = ∞ if t > 2, increasing with respect to s, s̄ ≥ 0, and let C̄s =
maxt≤2 Cs,s(t ).

THEOREM 10. There exist s0 > 0 such that if εp,s is a double sequence satisfying,

for any s, s̄, p ∈N,

(7.2)
εp+1,s ≤Cs,s̄(1+λa

pεp,0)×(λa+M s
p ε

1+σ0

p,0 +λa+ms
p εp,sεp,0+λ

a−(s̄−s)µ
p (εp,s̄ +λ

µ̄s̄
p εp,0)),

where λp = L(1+σ)p

, L =C s0 , and if

ε0,0 ≤ (C̄s0 )−s0/g , ε0,s0 ≤ 1,

then, εp,s = O(λ−∞
p ) for any s ∈N. Also, s0 does not depend on the sequence (C̄s)s

and can be taken of the form (a +1)ξ(σ0, M ,m,µ, µ̄).

Proof. In view of (7.1), we choose κ such that

(7.3)
1+σ+κ

µ− µ̄
< g .

The proof consists of several lemmas. We assume that (εp,s) is a sequence

satisfying (7.2), where λp = L(1+σ)p

for some L > 1.

LEMMA 11. Let γ0 > 0, s0 = gγ0, b = κγ0. Then there exists

γref
0 (a,σ0, M ,m,µ, µ̄, g ,σ,κ)

such that if γ0 > γref
0 and λp = L(1+σ)p

, L = C̄s0 , then

εp,0 ≤λ
−γ0
p and εp,s0 ≤λb

p

for any p ∈N, provided these inequalities hold for p = 0. Also, there exists

Ω
ref(σ0, M ,m,µ, µ̄, g ,σ,κ) > 0

such that one can choose γref
0 = (a +1)×Ω

ref.
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Proof. In view of (7.2), where we make s = 0, s̄ = s0, and s = s0, s̄ = s0 we just have
to check that

λa
pεp,0 ≤ 1

and

3C̄s0λ
a
pλ

−(1+σ0)γ0
p ≤λ

−γ0(1+σ)
p , 3C̄s0λ

a+M s0
p λ

−(1+σ0)γ0
p ≤λb(1+σ)

p ,

3C̄s0λ
a
pλ

−2γ0
p ≤λ

−γ0(1+σ)
p , 3C̄s0λ

a+ms0
p λ

−γ0
p λb

p ≤λb(1+σ)
p ,(7.4)

3C̄s0λ
a−µs0
p (λb

p +λ
µ̄s0−γ0
p ) ≤λ

−γ0(1+σ)
p , 3C̄s0λ

a
p (λb

p +λ
µ̄s0−γ0
p ) ≤λb(1+σ)

p ,(7.5)

These inequalities are satisfied if

(7.6) a < γ0

and

a < γ0(σ0 −σ), M s0 − (1+σ0)γ0 < b(1+σ)−a,(7.7)

a < γ0(1−σ), ms0 −γ0 < bσ−a,(7.8)

(7.9)

{

a +b <µs0 −γ0(1+σ),

a < (µ− µ̄)s0 −σγ0,

{

a < bσ,

µ̄s0 −γ0 < b(1+σ)−a,

provided L is larger than some Lref(a,σ0, M ,m,µ, µ̄, g ,σ,κ,γ0,C̄s0 ), where in the
limit of large γ0 it is possible to take Lref = C̄s0 . Also in the limit of large γ0, the
previous conditions (7.6), (7.7)–(7.9) will be satisfied if

κ<µg − (1+σ), M g − (1+σ0) < κ(1+σ),

mg −1 < κσ, σ< g (µ− µ̄),

µ̄g −1 < (1+σ)κ,

or equivalently if

max

(

1+σ+κ

µ
,

σ

µ− µ̄

)

< g < min

(

(1+σ)κ+ (1+σ0)

M
,

1+κσ

m
,

1+ (1+σ)κ

µ̄

)

,

which follows from (7.1) and (7.3). For later use (see (7.12)), we impose in addi-
tion that γ0 is big enough so that

(7.10) 1 < min
(µg −κ− (a/γ0)

1+σ
,

(µ− µ̄)g − (a/γ0)

1+σ

)

and

(7.11)
a

σκ
≤ γ0.

It is clear that in order for (7.6), (7.7)-(7.9), and (7.10) to be satisfied, it is enough
to choose γ0 larger than some (a +1)×Ω

ref(σ0, M ,m,µ, g ,σ,κ) > 0.

LEMMA 12. Let a > 0, 0 < σ < σ0, and γ0 > a
σ0−σ . If γ0 < γ < c

1+σ and if up =
O(λ

−γ0
p ) satisfies

up+1 ≤C (λa
p u

1+σ0
p +λ−c

p )

for some constant C > 0, then up =O(λ
−γ
p ).
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Proof. We can assume 0 < up < 1. Observe that

2Cλa
pλ

−γ(1+σ0)
p ≤λ

−γ(1+σ)
p , 2Cλ−c

p ≤λ
−γ(1+σ)
p

if p is big enough (since γ> a/(σ0−σ) and c/γ> 1+σ). Now either of the follow-
ing holds.

(i) For any p, the inequality up >λ
−γ
p is true, and then

λ−c
p < u

c/γ
p .

We have

up+1 ≤ 2Cλa
p u

min((c/γ),(1+σ0))
p .

If we define νp by up =λ
−νp

p , we see that

νp+1 ≥
min((c/γ), (1+σ0))

1+σ
νp −

a

1+σ
−

log(2C )

(1+σ)p+1 logL
.

We now introduce σ< ρ <σ0 and δ> 0 such that c
1+σ > γ0 > a+δ

ρ−σ ; it is plain

that for p ≥ p0 big enough (remember that by assumption infp νp > 0 and
1+ρ < min((c/γ), (1+σ0))), one has

νp+1 ≥
1+ρ

1+σ
νp −

a +δ

1+σ
,

and thus

νp+1 −
a +δ

ρ−σ
≥

( 1+ρ

1+σ

)p−p0

(νp0 −
a +δ

ρ−σ
).

Since by assumption liminfνp ≥ γ0, this implies up =O(λ−∞
p ).

(ii) There exists pk → ∞ such that upk
≤ λ

−γ
pk

and then the induction can be
initiated.

The next lemma is similar to but easier than Lemma 12, so we leave the proof
to the reader.

LEMMA 13. Suppose the sequence up ≥ 0 satisfies

up+1 ≤C (λ
−γ1
p up +λ

−γ2
p )

for some C > 0, γ2 > 0, γ1 ∈R.

(i) If γ1 < 0, then up =O(λb
p ) for any b > |γ1|/σ.

(ii) If γ1 > 0, then up =O(λ−b
p ) for any b < min(|γ1|/σ,γ2/(1+σ)).

The next lemma shows that, in fact, we can improve the estimates on εp,0

significantly without altering the one on εp,s0 , but rather extending it to εp,s for
any s.

LEMMA 14. In view of (7.1), let us choose

0 <ω< min

(

1+σ0

M g
−1,

1

µ̄g
−1,

1

mg
−1

)

,
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and define for k ≥ 1 sequences γk , sk such that

sk = [(1+ω)sk−1], γk =
sk

g
.

Then, for any p ∈N,

(Pk ) εp,0 =O(λ
−γk
p ), εp,sk

=O(λb
p ).

Proof. We prove by induction on k that (Pk ) holds for k, assuming it is true for
k−1 ≥ 0 (the case k = 0 is the content of Lemma 11). Observe that the sequences
γk , sk are increasing. By making s = s̄ = sk in (7.2),

εp+1,sk
≤Csk

(

λ
a+M sk
p ε

1+σ0

p,0 +λ
a+msk
p εp,0εp,sk

+λa
p (εp,sk

+λ
µ̄sk
p εp,0)

)

,

and since (Pk−1) holds, λa+M sk
p ε

1+σ0

p,0 =O(λ
a+M sk−(1+σ0)γk−1
p ) with

a +M sk − (1+σ0)γk−1 = a + (M g (1+ω)− (1+σ0))γk−1 < 0,

since γk > γ0, M g (1 +ω) < 1 +σ0, and γ0 was chosen big enough. We have,
furthermore,

µ̄sk −γk−1 = (µ̄g (1+ω)−1)γk−1 < 0,

since µ̄g (1+ω) < 1. The inductive hypothesis (Pk−1) also yields λa+msk
p εp,0εp,sk

=
O(λ

a+msk−γk−1
p εp,sk

), and it follows from mg (1+ω) < 1 that

a +msk −γk−1 = a + (mg (1+ω)−1)γk−1 < a.

Finally, Lemma 13(a) applies and gives εp,sk
= O(λb

p ) with b > a/σ, hence for
b = κγ0 due to (7.11).

Also, taking s = 0, s̄ = sk in (7.2),

εp+1,0 ≤Csk

(

λa
pε

1+σ0

p,0 +λa
pε

2
p,0 +λ

a−µsk
p

(

εp,sk
+λ

µ̄sk
p εp,0

))

,

hence
εp+1,0 =O

(

λa
pε

1+σ0
p,0 +λ

a+b−µsk
p +λ

µ̄sk−γk−1+a−µsk
p

)

.

In order to be able to apply Lemma 12, we have to check that

γ0 < γk <
µsk − (b +a)

1+σ
, and γ0 < γk <

(µ− µ̄)sk +γk−1 −a

1+σ
,

or equivalently

(7.12) γ0 < γk < min
(µgγk −κγ0 −a

1+σ
,

(µ− µ̄)gγk +γk−1 −a

1+σ

)

.

But the condition (7.10) ensures that this is the case. Lemma 12 then applies.

We now conclude the proof of Theorem 10. Fix s > 0. Making s̄ = sk in (7.2),
we get

εp+1,s ≤Cs

(

λ
a+M sk
p ε

1+σ0

p,0 +λa+ms
p εp,0εp,s +λ

a−µ(sk−s)
p

(

εp,sk
+λ

µ̄sk
p εp,0

))

From Lemma 14, we know that εp,0 =O(λ−Γ
p ) for any Γ> 0, so

εp+1,s =O
(

λa+ms−Γ
p εp,s +λ

max(a+M sk−Γ(1+σ0),a−µ(sk−s)+b),a−µ(sk−s)+µ̄sk−Γ
p

)

.
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Now, we can choose Γk such that (remembering limk→∞ sk =∞)

inf
k

max
(

a−µ(sk−s)+b, a+M sk−Γk (1+σ0), a+ms−Γk , a−(µ−µ̄)sk+µs−Γk

)

=−∞.

Lemma 13(b) then implies that εp,s =O(λ−∞
p ) for any s ∈N.

We now assume that a > 0, 0 <σ0 ≤ 1, M ,m > 0 are fixed and we assume that
we are given sequences (µp ), (µ̄p ), with 0 < 2µ̄p < µp taking a finite number of
values (to simplify) and such that for any p,

1

µp − µ̄p
< min

(

1+σ0

M
,

1

m
,

1

µ̄p

)

.

Now take g , σ with 0 <σ<σ0 such that

1

µp − µ̄p
< g < min

(

1+σ0

M
,

1

m
,

1

µ̄p

)

, 1+σ< (µp − µ̄p )g .

As before, for any s, s̄, let Cs,s̄ : [0,∞) → [1,∞] be a family of continuous functions
on [0,2] such that Cs,s̄(t ) =∞ if t > 2, increasing with respect to s, s̄ ≥ 0, and let
C̄s = maxt≤2 Cs,s(t ).

The following extension of Theorem 10 is clear from the previous proof.

COROLLARY 4. There exists s0 > 0 such that if εp,s is a double sequence satisfying,

for any s, s̄, p ∈N,

(7.13)

εp+1,s ≤Cs,s̄(1+λa
pεp,0)×(λa+M s

p ε
1+σ0
p,0 +λa+ms

p εp,sεp,0+λ
a−(s̄−s)µp

p (εp,s̄+λ
µ̄p s̄
p εp,0)),

where λp = L(1+σ)p

, L = C̄s0 and if

ε0,0 ≤ (C̄s0 )−
s0
g , ε0,s0 ≤ 1,

then, for any s ∈N εp,s = O(λ−∞
p ). Also, s0 does not depend on the sequence (C̄s)s

and can be taken of the form (a +1)ξ(σ0, M ,m,µ, µ̄).

REFERENCES

[1] A. Avila, Density of positive Lyapunov exponents for quasiperiodic SL(2,R) cocycles in arbitrary

dimension, preprint.
[2] A. Avila, The absolutely continuous spectrum of the almost Mathieu operator, preprint,

arXiv:0810.2965.
[3] A. Avila and S. Jitomirskaya, “The ten Martini Problem,” Annals of Mathematics, 170 (2009),

303–342.
[4] A. Avila and S. Jitomirskaya, Almost localization and almost reducibility, to appear in “Journal

of the European Mathematical Society”, arXiv:0805.1761.
[5] A. Avila and R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic

Schrödinger cocycles, Annals of Mathematics (2), 164 (2006), 911–940.
[6] A. Avila and R. Krikorian, Monotonic cocycles, Lyapunov exponents and rigidity, preprint.
[7] C. De Concini and R. Johnson, The algebraic-geometric AKNS potentials, Ergo. Th. Dyn. Syst.,

7 (1987), 1–24
[8] D. Dolgopyat and R. Krikorian, On simultaneous linearization o f diffeomorphisms of the

sphere, Duke Mah. Journal, 136 (2007), 475–505.
[9] L. H. Eliasson, Floquet solutions for the 1-dimensional quasiperiodic Schrödinger equation,

Comm. Math. Phys., 146 (1992), 447–482.

JOURNAL OF MODERN DYNAMICS VOLUME 3, NO. 4 (2009), 479–510

http://arxiv.org/pdf/0810.2965
http://www.ams.org/mathscinet-getitem?mr=MR2521117&return=pdf
http://arxiv.org/pdf/0805.1761
http://www.ams.org/mathscinet-getitem?mr=MR2259248&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0886368&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2309172&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1167299&return=pdf


510 BASSAM FAYAD AND RAPHAËL KRIKORIAN

[10] M. R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples

montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2,
(French) [A method for determining the lower bounds of Lyapunov exponents and some ex-
amples showing the local character of an Arnold–Moser Theorem on the two-dimensional
torus], Comment. Math. Helv., 58 (1983), 453–502.

[11] R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math.
Phys., 84 (1982), 403–438.

[12] A. N. Kolmogoroff, On inequalities between the upper bounds of the successive derivatives of

an arbitrary function on an infinite interval, Amer. Math. Soc. Translation, (1949), 19 pp.
[13] R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes com-

pacts, (French) [Reducibility of compact-group-valued skew-product systems], Astérisque,
259 (1999), 1–216.

[14] R. Krikorian, Reducibility, differentiable rigidity and Lyapunov exponents for quasiperiodic

cocycles on T×SL(2,R), Pr eprint 2002, Preprint, arXiv:math/0402333.
[15] J. Puig, – Cantor spectrum for the almost Mathieu operator, Comm. Math. Phys., 244 (2004),

297–309.
[16] J.-C. Yoccoz, Some questions and remarks about SL(2,R) cocycles, in “Modern Dynamical Sys-

tems and Applications,” 447–458, Cambridge Univ. Press, Cambridge, 2004.

BASSAM FAYAD <fayadb@math.univ-paris13.fr>: CNRS LAGA, Université Paris 13, 93430 Vil-
letaneuse, France, and LPMA Université Paris 6, 75252–Paris Cedex 05, France

RAPHAËL KRIKORIAN <raphael.krikorian@upmc.fr>: Laboratoire de Probabilités et Modèles

aléatoires, Université Pierre et Marie Curie, Boite courrier 188, 75252–Paris Cedex 05, France

JOURNAL OF MODERN DYNAMICS VOLUME 3, NO. 4 (2009), 479–510

http://www.ams.org/mathscinet-getitem?mr=MR0727713&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0667409&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0031009&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1732061&return=pdf
http://arxiv.org/pdf/math/0402333
http://www.ams.org/mathscinet-getitem?mr=MR2031032&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2093316&return=pdf
mailto:fayadb@math.univ-paris13.fr
mailto:raphael.krikorian@upmc.fr

	1. Introduction
	1.1. Almost-sure dichotomy for every Diophantine  . 
	1.2. Almost rigidity
	1.3. Density of cocycles with positive Lyapunov exponent
	1.4. A quantitative version of the Eliasson Theorem and a generalized KAM scheme

	2. Definitions and preliminaries.
	2.1. The fibered Lyapunov exponent.
	2.2. The fibered rotation number.
	2.3. Continued fraction expansion. Diophantine conditions.
	2.4. Eliasson's local theorem on reducibility.
	2.5. Z2-actions K,AK1.
	2.6. Renormalization of actions.
	2.7. Fibered rotation number of nondegenerate Z2-actions
	2.8. Convergence of the renormalized actions K,AK1,AK2.

	3. The well approximated case
	3.1. Statement of the result.
	3.2. Plan of the proof of Theorem 7
	3.3. The renormalized actions.
	3.4. Further reduction. 
	3.5. End of proof of Theorem 7
	3.6. Proofs of Theorems 2, 3

	4. The Diophantine case.
	4.1. Plan of the proof of Theorem 1
	4.2. Diophantine constants
	4.3. Proof of Theorem 8.

	5. Appendix A 
	5.1. Proof of Lemma 2
	5.2. Proof of Lemma 5

	6. Appendix B  An abridged proof of Theorem 5
	7. Appendix C  Convergence of a generalized KAM scheme 

