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Abstract. We give an example of a strictly positive analytic reparametrization (or time
change) of an irrational flow on T3 that is mixing. As an immediate application we obtain
perturbations of completely integrable Hamiltonian systems that display many invariant
tori on which the restricted dynamics is mixing.

1. Definitions and notation

1.1. On the n torus Tn = Rn/Zn, a translation of vector α = (α1, . . . , αn) ∈ Rn is the
transformation

Tn → Tn,

(x1, . . . , xn)→ (x1 + α1, . . . , xn + αn).

We denote it by Rα . The translation Rα is said to be irrational if the real numbers
1, α1, . . . , αn are rationally independent, i.e. if the relation k1α1 + · · · + knαn = p, where
k1, . . . , kn, and p are in Z implies k1 = · · · = kn = p = 0. In this case Rα is strictly
ergodic (uniquely ergodic and minimal).

1.2. The translation flow on Tn of vector α ∈ Rn is the flow arising from the constant
vector field X(x) = α. We denote this flow by {Rtα}. When the numbers α1, . . . , αn are
rationally independent, i.e. none of them is a rational combination of the others, {Rtα} is
strictly ergodic. In this case we say it is an irrational flow. Note that one of the coordinates
of the corresponding vector field might be rational. More specifically, given an irrational
translation Rα on Tn, then the flow {Rt(1,α)} on Tn+1 is irrational.
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1.3. Reparametrization of {Rtα}. If φ is a strictly positive smooth real function on Tn,
we define the reparametrization of {Rtα} with velocity φ as the flow given by the vector
field φ(x)α, that is, by the system

dx

dt
= φ(x)α.

The new flow has the same orbits as {Rtα} and preserves a measure equivalent to the
Haar measure given by the density 1/φ. Moreover, if {Rtα} is ergodic then so is the
reparametrized flow. (For a general abstract definition of the reparametrization of flows,
and for the proof of measure-preserving and ergodicity of the resulting flow see [12].)

1.4. Special flows. Given a function f ∈ L1(Tn), f > c > 0, the special flow
constructed over Rα and under the function f is the quotient flow of the action

Tn × R −→ Tn × R

(x, s) −→ (x, s + t)
by the relation (x, s + f (x)) ∼ (Rα(x), s). This flow acts on the manifold MRα,f =
Tn×R/ ∼, and preserves the normalized Lebesgue measure onMRα,f , i.e. the product of
the Haar measure on the basis Tn with the Lebesgue measure on the fibers divided by the
constant

∫
Tn
f (x) dx. To lighten the notation, when there is no ambiguity, we will call this

measure ν, and simply writeM forMRα,f .
• The function f , that measures the time needed by a point on the basis to return to it,

is called the ceiling function. As an example, one can look at the flow {Rt(α,1)} as a
special flow over the translationRα and under the constant function equal to one. For
the natural correspondence between reparametrization and special flows refer to §4.

• In the case of a special flow {T t } over T2, we denote the Haar measure on the basis
by µ = λ × λ, where λ designates either the Lebesgue measure on the line or the
Haar measure on T1.

• A subset R of T2 is called a rectangle if it is a product of two intervals from T1;
and for 0 < δ < c we call cube on the basis, of height δ and base R, the product
R × [0, δ] =⋃

0≤t≤δ T t (R).
• If I is an interval on T1 we agree on the notation |I | := λ(I).
• Let z = (x, y) ∈ T2; we write, for i ∈ N, Riα(z) = (x + iα, y + iα′) the ith iterate

of z under Rα .
• When there is no confusion, we will denote the Birkhoff sums of the function f over

the iterates of the translation Rα by

fm(z) =
m−1∑
i=0

f (Riα(z)).

1.5. We also recall the definition of mixing for a measure-preserving flow: a flow {Tt }
preserving a measure ν on M is said to be mixing if, for any measurable subsets A and B
ofM , one has

lim
t→∞ ν

(
T t (A)

⋂
B
)
= ν(A)ν(B).
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1.6. Finally, we introduce some arithmetic notation. Let x be a real number; then:
• [x] is the integer part of x;
• {x} = x − [x] is its fractional part; and
• ‖x‖ = min({x}, 1 − {x}) is the distance of x to the closest integer.

When we write p/q ∈ Q, we assume that q ∈ N, q ≥ 1, p ∈ Z and that p and q
are relatively prime. We also give the following reminder on continued fractions. Let α
be an irrational real number: there exists a sequence of rationals {pn/qn}n∈N, called the
convergents of α, such that

‖qn−1α‖ < ‖kα‖ ∀k < qn (1)

and for any n
1

qn(qn + qn+1)
≤ (−1)n

(
α − pn

qn

)
≤ 1

qnqn+1
.

2. Introduction
Kočergin, in 1972 [9], gave a very simple proof of the fact that no measure-preserving flow
on the torus T2, of class C1 and without periodic orbits, can be mixing. He proves the
more general result that a special flow constructed over an irrational rotation of the circle
with a ceiling function of bounded variation is never mixing. Kočergin’s proof is based
on the Denjoy–Koksma inequality (for instance, when f is of class C1 and

∫
f = 1, one

can immediately prove that if the qn are the denominators of the convergents of α, then
T qn → Id uniformly as n goes to infinity. This rigidity clearly impedes mixing).

In the case where the rotation numbers are ‘not too well approximated’ by rationals,
and the ceiling function is analytic, Kočergin’s result on special flows is included in what
was obtained by Kolmogorov [11] in his analysis of aperiodic measure-preserving flows
on the two-torus. Kolmogorov proves that, ‘in general’ (i.e. for a set of total measure
of rotation numbers α), the dynamics of the special flow over Rα and under any analytic
ceiling function can be reduced by means of the analytic transformation of coordinates to
the dynamics of an irrational flow (the absence of mixing is a clear consequence). He also
made the remark that the conjugacy to the irrational flow can be proven even when the
ceiling function is less regular (obviously, for a smaller set of rotation numbers and with
less regularity of the conjugating function)†.

The case of the ‘bad’ numbers, i.e. those that are well approximated by rationals,
remained open. However, for these numbers, Katok [6] used his theory of

† In fact, in order to show equivalence of a special flow over a rotation of the circle Rα and under a function f
with the irrational flow Rt(

∫
fα,

∫
f ), it is enough to solve the cohomological equation

ψ ◦ Rα − ψ = f −
∫

T

f dλ (∗)

and the conjugacy will be as regular as ψ is. The original proof of this now classical result, is due to Kolmogorov
[11]. A simple proof, based on the construction of a new section for which the return time is constant, can be
found in [7, Proposition 2.9.5]. A generalization of Kolmogorov’s result to higher dimensions was given by
Herman [4], who also gives a more direct proof of conjugacy using the vector fields, when the conjugacy one
seeks should be of class C1. As for the cohomological equation, one sees using Fourier expansions that for a set
of full measure of α ∈ R, if f ∈ C1+ε(T), equation (∗) has a continuous solution (the cohomological equation
is thoroughly studied in the appendix of [3]). See footnote on page 464.
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periodic approximations to show that the corresponding special flows admit fast cyclic
approximations (under a regularity condition on the ceiling function), a property that rules
out mixing. Combining his result with that of Kolmogorov to cover all numbers α, he
obtained a stronger result than that of Kočergin (he proved the simple spectrum property
along with the non-mixing property), but one which is less general, since he assumed a
ceiling function of class at least C5 (actually, to obtain cyclic approximations when the
number is sufficiently well approximated, Katok does not require that much regularity on
the ceiling function, but he needs it to cover the remaining numbers using Kolmogorov’s
method).

Maybe it is worth noting here that, according to Kolmogorov, a new behavior for
measure-preserving flows on the torus, one which differed from the canonical ones
(a discrete spectrum with a finite number of independent frequencies, and the Lebesgue
spectrum with countable multiplicity), was rather unexpected in the analytic case [10].
However, Shklover in 1967 [13] (see [1] for an English version) gave examples of special
flows over irrational rotations of the circle with an analytic ceiling function that had a
continuous singular spectrum (they were weak-mixing but not mixing). In the case of
measure-preserving flows on T2 with fixed points, Kočergin in 1975 [8], gave explicit
examples of mixing flows of class C∞. The notion of stretching for the Birkhoff sums
of the ceiling function, underlying the occurrence of mixing for special flows over rigid
transformations, appeared in both these works (although under different aspects and for
different reasons).

From Kočergin’s result in [9], we find that any reparametrization of an irrational flow
on T2 by a smooth strictly positive function fails to be mixing. Our aim in this paper is to
prove that this is no longer the case on the torus T3 (or on any Tn, n ≥ 3). We will give
examples of irrational flows on T3 that display the mixing property when reparametrized
by adequately chosen strictly positive real analytic functions. Since it is more convenient
to work with special flows, we will start by giving an example of an irrational vector
(α, α′) ∈ R2 and a strictly positive real analytic function ϕ on T2, such that the special
flow over R(α,α′) and under ϕ is mixing. The crucial fact is that the Denjoy–Koksma
inequality for functions defined on the circle disappears in dimensions higher than 1, as was
proved by J.-C. Yoccoz in an appendix to his thesis [14]. More precisely, he constructed
an irrational translation on T2, and a real analytic functionψ , having complex values and
mean value zero, such that there exists a Borelian subset of T2, (, with a full Lebesgue
measure having the following property: for any couple (x, x ′) ∈ (, the Birkhoff sums of
ψ , ψm(x, x ′) corresponding to the translation Rα,α′ , tend to infinity in modulus when m
tends to infinity. The main ingredient in Yoccoz’s proof is that the denominators, {qn}n∈N
and {q ′n}n∈N, of the convergents of α and α′ alternate and, more precisely, they are such
that the sequence . . . qn, q ′n, qn+1, q

′
n+1 . . . increases exponentially. We will see later how

this is used to produce mixing.

Let Y be the set of couples (α, α′) ∈ R2 − Q
2
, whose sequences of best approximations

qn and q ′n satisfy the following criteria: for any n ≥ n0(α, α
′)

q ′n ≥ e3qn, qn+1 ≥ e3q ′n.
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Let ϕ be the following strictly positive real analytic function on T2:

ϕ(x, y) = 1 + Re

( ∞∑
k=2

ei2πkx

ek
+

∞∑
k=2

ei2πky

ek

)
.

Our main theorem is as follows.

THEOREM 1. (Special flows) For any (α, α′) ∈ Y , the special flow constructed over the
translation Rα,α′ on T2 under the ceiling function ϕ is mixing.

Remarks. (a) In his construction, Yoccoz points out the elementary fact that the set Y as
defined in Theorem 1 is uncountable and dense.

(b) From the proof of the main theorem, it will be easy to see that we can take for the
ceiling function, instead of ϕ(x, y), a function ϕ(x, y) + P(x, y), where P(x, y) is any
trigonometric polynomial on T2 such that ϕ + P > 0. More generally, it appears that we
can take any strictly positive function

ϕ(x, y) = 1 + Re

( ∞∑
k=1

ei2πkx

ak
+

∞∑
k=1

ei2πky

bk

)
,

such that ak and bk satisfy for large k

ek/2 ≤ ak ≤ e2k, ek/2 ≤ bk ≤ e2k.

From Theorem 1 and the foregoing remark we will be able to derive the following.

COROLLARY 1. (Reparametrized flows) There exists a strictly positive analytic function
on T3, φ, such that, for any (α, α′) ∈ Y , the reparametrization of the irrational flow
(α, α′, 1) by 1/φ is mixing.

The convenience of using 1/φ instead of φ in the statement of the corollary will
appear clearly when we will study the natural correspondence between special flows over
translations and reparametrizations of irrational flows.

Application to Hamiltonian dynamics. For an integrable Hamiltonian system with N
degrees of freedom, the 2N-dimensional phase space is completely foliated with invariant
N-dimensional tori on which the motion is that of a translation flow. The Kolmogorov–
Arnold–Moser (KAM) theorem states that for a generic and sufficiently small C∞
perturbation of such a completely integrable system, an arbitrarily large proportion
(in measure) of the invariant tori will be preserved, i.e. slightly deformed into invariant tori
where the dynamics is C∞ conjugate to translation flows. These preserved tori correspond
in general to translation frequencies that are badly approximated by rational vectors, i.e. to
the Diophantine frequencies. On the other hand, the perturbed system in general also
displays many invariant tori that carry nonlinear flows. These tori, corresponding to non-
Diophantine frequencies of the integrable system, may be found in the closure of the KAM
tori (see [16] or [17]). It is then a natural question to ask what type of behavior can
be expected on these invariant tori. For the generic C∞ perturbation of the integrable
Hamiltonian system, Herman proved in [16] that on a residual subset among all the
invariant tori of the perturbed flow, the dynamics is uniquely ergodic and weak mixing.
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However, even in the general non-perturbative context, no examples were known of
Hamiltonian flows presenting smooth invariant tori on which the restricted dynamics is
mixing. For a Hamiltonian system with two degrees of freedom, the result by Kočergin
asserts the absence of mixing on any smooth (classC1) invariant torus. For three degrees of
freedom or more, mixing situations can occur as will be derived from our construction that
actually provides analytic examples. Indeed, consider the completely integrable system on
T3 × R3 given by

H(θ, r) = H(r) = r2
1 + r2

2 + r2
3 ,

and define
Ĥ (θ, r) = φ(θ)(H(r)− 1),

where (θ, r) = (θ1, θ2, θ3, r1, r2, r3) ∈ T3 × R3, and φ is chosen as in Corollary 1.
Denote by Xt

Ĥ
the corresponding Hamiltonian flow. The energy surface E

Ĥ=0 given by

r2
1 + r2

2 + r2
3 = 1 or equivalently by r ∈ S2, is completely foliated by invariant tori Tr ,

r ∈ S2 fixed, on which the dynamics ofXt
Ĥ

is that of the linear flow {Rt(2r)} reparametrized
by φ(θ). We then deduce the following from Corollary 1.

COROLLARY 2. For an uncountable and dense set of vectors r ∈ S2, the restriction ofXt
Ĥ

to the invariant torus Tr is mixing.

In another direction, we prove that for a ‘general’ vector (α, α′) ∈ R2, it is rather
rare to be able to construct mixing special flows over Rα,α′ , even with less regular ceiling
functions. More precisely we have the following.

THEOREM 2. There exists a set G ⊂ R2 that contains a set of full measure (when
intersected with any compact set) and a dense Gδ of R2 such that any special flow over
Rα,α′ , (α, α′) ∈ G, with a ceiling function ϕ ∈ C4(T2) is not mixing.

The proof of this theorem will be based on the fact that for a generic vector (α, α′) ∈ R2

(under both points of view of measure and topology) the Denjoy–Koksma property still
appears in dimension two and prevents the special flow from being mixing. Most likely,
the differentiability class C4 is not optimal in this result.

Plan of the work. What follows is an outline of the different parts of this paper. In §3, we
are interested in special flows and we prove the main theorem, Theorem 1. The section will
be divided in three parts. We start by giving a general lemma based on a Fubini integration
that guarantees mixing for a special flow over T2. We then give the definition of uniform
stretch for a function on an interval and we prove, using the general lemma mentioned
earlier, that the uniform stretch of the Birkhoff sums of the ceiling function implies mixing
for special flows constructed over irrational translations of the torus. In the same subsection
we give a simple criterion, involving only the derivatives of the Birkhoff sums, that implies
uniform stretch, hence mixing. Finally, in §3.3 we check this last criterion for ϕ and for
any (α, α′) ∈ Y , which achieves the proof of the main theorem. In §4 we derive the results
on reparametrizations, and we prove Corollary 1. Section 5 is devoted to the proof of
Theorem 2 on the absence of mixing in the general case. In §6 we give a generalization of
our main result, relevant in particular for the higher dimension case. We finish the section
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R × [0, δ]
J

FIGURE 1. An interval J and its image.

with an application to the three-dimensional cubic billiard. Finally in the last section we
ask what might happen with less regular ceiling functions if the translation vector on the
basis is diophantine, and we give an example of a mixing special flow over a (2 + ε)-
diophantine translation of T2 with a ceiling function of classC2. We finish this introduction
by giving an idea of the proof of Theorem 1.

Idea of the proof of the main theorem. Because of the disposition of the denominators in
the best approximations of α and α′ the Birkhoff sums ϕm of the function ϕ, for any m
sufficiently large, will always be stretching (i.e. have big derivatives), in one or other of the
two directions, x or y, depending on whether m is far from qn or far from q ′n. This stretch
will increase when m runs to infinity. So when time goes from 0 to t , t large, the image of
a small typical interval I from the basis T2 (depending on t the intervals should be taken
along the x or y axis) will be more and more distorted and stretched in the fibers’ direction
until the image of I at time t will consist of a lot of almost vertical curves whose projection
on the basis lies along a part of the trajectory of the translationRα,α′ . By unique ergodicity
these projections become more and more uniformly distributed, and so will T t (I). For
each t , and except for increasingly small subsets of it (as a function of t), we will be able
to cover the basis with such ‘typical’ intervals. Besides, what is true for I on the basis
is true for T s(I) at any height s on the fibers. So applying Fubini in two directions, first
along the other direction on the basis (for a time t all the stretched intervals considered are
in the same direction), and second along the fibers, we will obtain the asymptotic uniform
distribution of any measurable subset, which is, by definition, the mixing property (see
Figure 1).

3. Mixing for special flows over translations on T2

3.1. A general lemma. Let {T t } be a special flow constructed over an ergodic
transformation T of T2 and under a ceiling function f , that we suppose bounded from
below by a constant c > 0. Let M be the space where this flow acts (see §1). Recall
that we denote by ν the invariant probability measure

(
1/
∫
f
)
µ × λ, where µ = λ × λ

is the Haar measure on T2 and λ is the Lebesgue measure on the line. For an interval I
on T1, and points y ∈ T1, I × {y, 0} designates the set of M situated on the basis T2 in
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the x direction, call it a horizontal interval. We use similar notation for the direction y, the
vertical direction. We will denote I × {y, z} := T z(I × {y, 0}). When z ≤ c < inf f ,
with a slight abuse, we will use the notation λ(I × {y, z}) = λ(I) = |I |. When R is a
rectangle on the basis and δ is a strictly positive number δ < c, we defined a ‘cube’ on the
basis, of base R and height δ, to be the set Q = R × [0, δ] = ⋃

0≤t≤δ T t (R). Obviously
ν(Q) = µ(R)δ. We have the following lemma based on Fubini’s theorem.

LEMMA 1. If for any cubeQ on the basis, of base R and height δ < c, and for any ε > 0,
there is a t0 such that for any t > t0 there is a partial partition of the circle, ηt = {C(t)i }
satisfying the following

ηt −−−→
t→∞ ε (partition into points),

and, depending on t > t0, at least one of the two conditions is true:
(i) for all y ∈ T1, and all C(t)i ,

λ
[
(C
(t)
i × {y, 0})

⋂
T −tQ

]
≥ (1 − ε)δµ(R)λ(C(t)i );

(ii) for all x ∈ T1, and all C(t)i ,

λ
[
({x} × C(t)i × {0})

⋂
T −tQ

]
≥ (1 − ε)δµ(R)λ(C(t)i );

then the flow {T t } is mixing.

A partial partition of a setX consists of a disjoint subset ofX and we say that a sequence
of partial partitions {ηt }, t ∈ R+ tends to the partition into points if for every ε > 0 and
every partition ofX into a finite number of measurable sets P1, . . . , Pr , there exists t0 such
that for any t > t0 and for any l ≤ r , there exists a collection of atoms A1, . . . , Ail in
ηt such that λ

(⋃
Ai9Pl

)
< ε, where λ denotes the measure on X and 9 denotes the

symmetrical difference between sets.
A similar lemma was used by Kočergin in [8] with this difference: we have to use the

Fubini integration twice because our lemma takes into account the occurrence of mixing
for intervals on the basis in one or other of the directions x and y depending on t . The
property implied by this lemma is stronger than that of mixing for measurable sets of the
three-dimensional space of the special flow. Indeed even sets of codimension two, like
intervals, are uniformly distributed in all the space under the action of the flow.

Proof. To prove mixing for the flow {T t }, it is enough to show that given two measurable
subsets A and A′ ofM , then for any ε > 0, when t is big enough

ν
(
A′⋂T −tA

)
> (1 − ε)ν(A)ν(A′), (2)

indeed, if we apply this to Ac and A′ we get

ν
(
A
⋂
T −tA′) < (1 + ε)ν(A)ν(A′)+ εν(A′).

Since finite unions of cubes on the basis and of their images under the flow generate the
Borel σ -algebra on M it is enough to prove (2) for any couple Q and Q′ of cubes on the
basis.
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Also, we will place ourselves in situation (i), the other case being similar. By the
definition of a cube on the basis, there exists an interval in T1, J , such that

Q′ =
z1⋃
z=0

y2⋃
y=y1

J × {y, z}.

From the hypothesis ηt → ε, there exists for t large enough, a subset S of N and a union
of atoms from ηt , J̃ =⋃

i∈S C
(t)
i , such that λ(J�J̃ ) < ελ(J )ν(Q). Hence the set

Q̃′ =
z2⋃
z=0

y2⋃
y=y1

⋃
i∈S
C
(t)
i × {y, z},

satisfies
ν(Q′�Q̃′) < εν(Q′)ν(Q),

and

ν
(
Q̃′⋂ T −tQ

)
=
∫ ∫ ∑

i∈S
λ
[
(C
(t)
i × {y, z})

⋂
T −tQ

]
dy dz.

Recall that C(t)i × {y, z} = T z(C
(t)
i × {y, 0}), z ≤ z1, and that we have assumed z1 ≤ c,

so we can consider that (i) holds also for λ[(C(t)i × {y, z})⋂T −tQ]; hence,

ν
(
Ã
⋂
T −tQ

)
≥
∫ ∫ ∑

i∈S
δµ(R)λ(C

(t)
i )(1 − ε) dy dz

≥ δµ(R)ν(Ã)(1 − ε).
Finally, we have

ν
(
A
⋂
T −tQ

)
≥ (1 − ε)ν

(
Ã
⋂
T −tQ

)
≥ (1 − ε)3δµ(R)ν(A).

The lemma is proved. ✷

3.2. A mixing criterion on the ceiling-function Birkhoff sums. Until §4, we will be
exclusively interested in special flows over ergodic translations of the two-torus T2. First,
we will use the general lemma for mixing stated earlier for general special flows over the
torus and derive from it, in the particular case of a special flow with a translation on the
basis, a criterion on the Birkhoff sums of the ceiling function that implies mixing for the
flow. Then we check this criterion for the special flow {Rα,α′, ϕ}, where (α, α′) ∈ Y and ϕ
is the function introduced in §2.

Henceforth, {T t } will be a special flow over an ergodic translation Rα,α′ of T2 with a
smooth ceiling function f that we suppose bounded from below by c > 0. To simplify the
exposition of our proofs we will assume that

∫
T2 f = 1 and that

1
2 ≤ f ≤ 3

2 ,

which does not cause any loss of generality in the propositions we will state. (Besides,
this condition is effectively satisfied by ϕ if we drop the first non-constant terms from its
Fourier series.)

The following definition, relative to one variable real functions, will be essential in the
following. It is similar to the definition of uniform distribution in [8].
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Definition 1. (Uniform stretch) Given ε > 0 and K > 0; we say that a real function g, on
an interval [a, b] is (ε,K)-uniformly stretching on [a, b] if

sup
[a,b]

g − inf[a,b] g ≥ K,

and if for any u and v such that

inf[a,b] g ≤ u ≤ v ≤ sup
[a,b]

g,

the set

Iu,v = {x ∈ [a, b]/u ≤ g(x) ≤ v},
has Lebesgue measure

(1 − ε) v − u
g(b)− g(a)(b − a) ≤ λ(Iu,v) ≤ (1 + ε) v − u

g(b)− g(a) (b − a).

Agree on the notation9g[a,b] for supx∈[a,b] |g(x)| − infx∈[a,b] |g(x)|. We assume now that
g is of class at least C2 and we give a straightforward but useful criterion on the derivatives
of g insuring its uniform stretch on the segment [a, b]:
LEMMA 2. (A criterion for uniform stretch) If

inf
x∈[a,b] |g

′(x)||b − a| ≥ K

and

sup
x∈[a,b]

|g′′(x)||b − a| ≤ ε inf
x∈[a,b] |g

′(x)|

then g is (ε,K)-uniformly stretching on [a, b].
Proof. The first condition implies that g is monotonic on [a, b], we will suppose it to
be increasing. It also implies 9g[a,b] = g(b) − g(a) ≥ K. To check the condition on
uniformity take u = g(c) and v = g(d), where a ≤ c ≤ d ≤ b. By Rolle’s theorem there
exist ξ1, ξ2 ∈ [a, b] such that

v − u
g(b)− g(a) =

g′(ξ1)
g′(ξ2)

d − c
b − a ,

from the condition on the second derivative we have that∣∣∣∣g′(ξ1)g′(ξ2)
− 1

∣∣∣∣ ≤ ε,
hence

(1 − ε)d − c
b − a ≤ v − u

g(b)− g(a) ≤ (1 + ε)d − c
b − a ,

and the proof is complete. ✷
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Now, we will show how uniform stretch of the Birkhoff sums of f implies mixing.

PROPOSITION 1. (Fundamental proposition) If there exist partial partitions of T1, ηt =
{C(t)i }, where the C(t)i are intervals such that

sup
C
(t)
i ∈ηt

|C(t)i | −−−→
t→∞ 0,

∑
C
(t)
i ∈ηt

|C(t)i | −−−→
t→∞ 1,

and positive functions ε(t) and k(t) such that

ε(t) −−−→
t→∞ 0,

k(t) −−−→
t→∞ ∞,

and if the function f is such that, for any t at least one of the following two conditions is
true:
(i) for anym ∈ [ 1

2 t, 2t], for any y0 ∈ T1 and any C(t)i ,

fm(·, y0) is (ε(t), k(t))-uniformly stretching on C(t)i ;

(ii) for anym ∈ [ 1
2 t, 2t], for any x0 ∈ T1 and any C(t)i ,

fm(x0, ·) is (ε(t), k(t))-uniformly stretching on C(t)i ;

then the flow {T t } is mixing.

Proof of Proposition 1. First we prove that the conditions on ηt implies that ηt → ε

(partition into points on T1): as any measurable set can be approximated by intervals,
it is enough to show that any interval I on the circle can be approximated for t large
enough by a union of atoms of ηt . Indeed, fix σ > 0 and assume that sup |C(t)i | ≤ σ

and
∑ |C(t)i | ≥ 1 − σ . Let Ĩ be the union of all the atoms C(t)i of ηt that intersect I ,

obviously λ(I � Ĩ ) ≤ 3σ . Now, to prove the proposition, we will show that the intervals
of this partition satisfy the condition of the general lemma on mixing, Lemma 1. In fact
we will show that, if we fix ε and we take t big enough, according to whether the first or
second pair of conditions of Proposition 1 hold we will get the first or second inequality of
Lemma 1.

Fix ε′ > 0 and a cube Q of base R and height δ < 1
2 (Q = ⋃δ

t=0 T
t (R) where R is

a rectangle on T2). In the proof we will determine a t0 that will depend only on Q and
ε′ > 0.

Let t ≥ t0 be fixed, and assume that for this t it is the first condition of Proposition 1
that holds. Take an arbitrary interval of ηt , Cti and an arbitrary y0 ∈ T1 and let I be the
interval Cit × {y0, 0}. In light of Lemma 1, we will finish if we prove

λ
[
I
⋂
T −tQ

]
≥ (1 − ε)δµ(R)λ(I).

In the proof we will write I := [x1, x2] while x ∈ I will be a simplified notation of
(x, y0, 0) ∈ I . Recall from the sketch of the proof the following definitions, for any
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m ∈ N,

Im = {x ∈ I : 0 ≤ t − fm(x, y0) ≤ f (Rmα,α′(x, y0))}
= {x ∈ I : N(x, t) = m},

Im,δ = {x ∈ Im : 0 ≤ t − fm(x, y0) ≤ δ},

whereN(x, t) is the biggest integerm such that t−ϕm(x) ≥ 0, that is the number of fibers
covered by x during its motion under the action of the flow until time t . By definition

T t (x) = (RN(t,x)
α,α′ (x), t − ϕN(t,x)(x)).

So T t (x) ∈ Q if and only if RN(t,x)
α,α′ (x) ∈ R and t − ϕN(t,x)(x) ≤ δ. The set T t (Im) lies

inM in the band over Rm
α,α′(I). It will, in general, intersectQ when Rm

α,α′(I) ⊂ R and the
intersection would be T t (Im,δ). Consequently, the set I

⋂
T −tQ will essentially be the

union of those Im,δ with m such that Rm
α,α′(I) ⊂ R. We say essentially because there are

border effects: the interval Rm
α,α′(Im) might intersect R but not fall completely inside it.

But I can be thought of being so small with regard to R that whenever it hits R, it falls
completely inside. This will be more precise in the following lemma.

Let Rη be what is left from the rectangle R after we have taken off from its border a
narrow strip of thickness η. The rectangle R and ε′ being fixed, we can choose η > 0 and
a continuous function on T2, χRη , such that:

• χRη is identically zero outside Rη;
• 0 ≤ χRη ≤ 1;
• ∫

T2 χRη ≥ (1 − ε′)µ(R).
In the definition of t0 we will ask that for any t ≥ t0, supCit ∈ηt |Cit | ≤ η. Hence, |I | ≤ η,
and from the definition of χRη we have the following lemma.

LEMMA 1.1. Let x1 be an arbitrary point in I , we have

λ
[
I
⋂
T −tQ

]
≥
∑
m∈N

χRη(R
m
α,α′(x1))λ(Im,δ).

Proof. If m is such that

χRη(R
m
α,α′(x1)) > 0,

since |I | ≤ η we will have

Rmα,α′(I) ⊂ R,

which in its turn implies

T t (Im,δ) ⊂ Q. ✷

Note that only finitely many sets Im will not be empty.
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Unique ergodicity. Because Rα,α′ is uniquely ergodic and χRη and f are continuous,
there exist N0 such that ∀N > N0, ∀(x, y) ∈ T2, ∀m0 ∈ N,∑N

j=0 χRη(R
m0+j
α,α′ (x, y))

N
≥ (1 − ε′)2µ(R) (3)

∣∣∣∣
∑N
j=0 f (R

m0+j
α,α′ (x, y))

N
− 1

∣∣∣∣ ≤ ε′. (4)

In the definition of t0 we ask that t0 ≥ 4N0; and that t ≥ t0 implies on the stretch that
k(t) ≥ max(4N0, 1/ε′) and ε(t) ≤ ε′. On the one hand, the fact that k(t) is large will allow
us to make sure that I breaks down into sufficiently many intervals Im. Consequently, with
(4) we will obtain an asymptotic estimation of the number of non-empty Im (Lemma 1.3)
and using (3) we will estimate the proportion of the Im that fall into R and show it is
close to µ(R). On the other hand, the condition ε(t) ≤ ε′ will allow us to give a precise
estimation of λ(Im,δ) (Lemma 1.4). We will need the following fact.

LEMMA 1.2. For t large enough, for any (x, y) ∈ T2,

N(x, y, t) ∈ [ 1
2 t, 2t].

Proof. By the definition of N(x, y, t),

0 ≤ t − fN(x,y,t)(x, y) ≤ f (RN(x,y,t)α,α′ (x, y)).

So, f being bounded by 3
2 ,

0 ≤ t − fN(x,y,t)(x, y) ≤ 3
2 (5)

and
t − 3

2 ≤ fN(x,y,t)(x, y) ≤ 3
2N(x, y, t),

therefore, when t ≥ t0 ≥ 4N0,
N(x, y, t) ≥ N0.

By ergodicity, (4), this implies ∣∣∣∣fN(x,y,t)(x, y)N(x, y, t)
− 1

∣∣∣∣ ≤ ε′.
This last inequality with (5) and the fact that N(x, y, t) ≥ N0 imply∣∣∣∣ t

N(x, y, t)
− 1

∣∣∣∣ ≤ 3ε′

and if ε′ ≤ 1
10 this would imply the bounds of the lemma. ✷

For the interval I , Lemma 1.2 gives, in particular, that N1 := N(x1, t) ∈ [ 1
2 t, 2t]. From

the hypothesis of Proposition 1 and our choice of t0 (and because we have assumed that
we are in situation (i) for the time t):

fN1 is (ε′, 4N0)-uniformly stretching on I . (6)
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Hereafter, we will suppose fN1(x1) ≥ fN1(x2), the other case being similar.
Define

K(I) =
{
j ∈ N

/
sup
x∈I
fj (R

N1
α,α′(x)) ≤ 9fN1 |I − δ

}
,

M(I) = max K(I).

To understand the meaning of these definitions and the lemmas that will follow
immediately, imagine that the Birkhoff sums fm are monotonic decreasing on I = [x1, x2].
Consequently when we go from left to right on I the points in their trajectory under the flow
up to time t will have passed through more and more fibers. That is how T t (I) splits into
the T t (Im) that we have already mentioned in the introduction when we stated that T t (I)
breaks into many vertical strips the projections of which on the basis lie on the trajectory
of the translation. With this assumption on monotonicity, fN1(x1) − fN1(x2) = 9fN1 |I
is the ‘delay’ between x1 and x2: after N1 translations, while the point x1 reaches its last
fiber, x2 still has a distance9fN1 |I to cover on the fibers. The number of fibers covered by
x2 by this means isM(I). By ergodicity we can assume the average size of a fiber to be the
mean value of f , that is 1. Consequently M(I) is equivalent to 9fN1 |I . More precisely
we have Lemma 1.3.

LEMMA 1.3. We have ∣∣∣∣∣ M(I)9fN1 |I
− 1

∣∣∣∣∣ ≤ 5ε′.

Using the hypothesis on uniform stretch, we give in the following lemma, for j ≤ M(I),
a uniform estimation on the measure of IN1+j,δ .

LEMMA 1.4. For any j such that 1 ≤ j ≤M(I),
λ(IN1+j,δ) ≥ (1 − 5ε′) δ

9fN1 |I
|I |.

Proof of Lemma 1.3. For any (x, y) ∈ T2,

f (x, y) ≤ 3
2 . (7)

From the maximality ofM(I) ∈ K(I) we have for some x ∈ I ,

9fN1 |I − δ − 3
2 ≤ fM(I)(RN1

α,α′(x)) ≤ 9fN1 |I − δ (8)

otherwise by (7)M(I)+ 1 would be in K(I). But, from the stretch in (6),

9fN1 |I ≥ 4N0

so, using (7) again, we have for any x ∈ I , 3
2M(I) ≥ fM(I)(RN1

α,α′(x)), we deduce that

M(I) ≥ 2N0 (9)

which, by the unique ergodicity (4), implies, for any x ∈ I ,∣∣∣∣∣
fM(I)(R

N1
α,α′(x))

M(I)
− 1

∣∣∣∣∣ ≤ ε′.
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Since N0 ≥ 1/ε′, (9) implies that when we divide (8) byM(I)∣∣∣∣∣
fM(I)(R

N1
α,α′(x))

M(I)
− 9fN1 |I
M(I)

∣∣∣∣∣ ≤ 2ε′,

hence, ∣∣∣∣9fN1 |I
M(I)

− 1

∣∣∣∣ ≤ 4ε′.

The proof of the lemma is complete. ✷

Proof of Lemma 1.4. Whenever j ∈ N is such that

inf
x∈I(t − fN1+j (x)) ≤ 0 ≤ δ ≤ sup

x∈I
(t − fN1+j (x)), (10)

then by the intermediate value theorem there is an x ∈ I such that N(x, t) = N1 + j and
Lemma 1.2 implies N1 + j ∈ [ 1

2 t, 2t]. Furthermore, we can apply the uniform stretch
hypothesis to fN1+j , we have

λ(IN1+j,δ) ≥ (1 − ε(t)) δ

9fN1+j |I
|I |. (11)

Before we derive the conclusion of the lemma from (11), we will show that whenever
1 ≤ j ≤ M(I) equation (10) is satisfied. From the definition of N1 = N(x1, t)

0 ≤ t − fN1(x1) ≤ f (RN1
α,α′(x1))

the right-hand side of this equation implies for j ≥ 1

t − fN1+j (x1) ≤ 0,

hence the left-hand side of equation (10) is valid. For the other side, because by definition
t − fN1(x1) ≥ 0, obviously

sup
x∈I
(t − fN1(x)) ≥ t − fN1(x1)+9fN1 |I ≥ 9fN1 |I .

Since
t − fN1+j (x) = t − fN1(x)− fj (RN1

α,α′(x)),

immediately

sup
x∈I
(t − fN1+j (x)) ≥ sup

x∈I
(t − fN1(x))− sup

x∈I
fj (R

N1
α,α′(x)),

but by the definition of j ∈ K(I), supx∈I fj (R
N1
α,α′(x)) ≤ 9fN1 |I − δ so

sup
x∈I
(t − fN1+j (x)) ≥ 9fN1 |I − (9fN1 |I − δ) ≥ δ,

and the left-hand side of (10) is also satisfied. For any 1 ≤ j ≤ M(I), equation (10)
is established, thus (11) holds. Yet, to have a uniform estimation we need to compare
9fN1+j |I with 9fN1 |I , when j ≤M(I). For all j ∈ N

|9fj |I | ≤ j‖f ‖C1|I | ≤ j‖f ‖C1η,
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where η is the maximal size of an interval in ηt . If t is large enough we will have
η ≤ ε′/‖f ‖C1 . So, whenever j ≤ M(I), we have

|9fj |I | ≤ M(I)ε′
≤ 2ε′9fN1 |I

hence, for any j ≤M(I), ∣∣∣∣∣
9fN1+j |I
9fN1 |I

− 1

∣∣∣∣∣ ≤ 2ε′

this, with (11) ends the proof of Lemma 1.4. ✷

We can conclude now using, successively, Lemma 1.1, Lemma 1.4, the ergodic
estimation (3) and then Lemma 1.3:

λ
[
I
⋂
T −tQ

]
≥
∑
m∈N

χRη(R
m
α,α′(x1))λ(Im,δ)

≥
M(I)∑
j=1

χRη(R
N1+j
α,α′ (x1))λ(IN1+j ,δ)

≥ (1 − 5ε′) δ

9fN1 |I
|I |

M(I)∑
j=1

χRη(R
N1+j
α,α′ (x1))

≥ (1 − 5ε′)
δ

9fN1 |I
|I |(1 − ε′)2M(I)µ(R)

≥ (1 − 5ε′)2(1 − ε′)2δµ(R)|I |.

If we took ε′ such that (1 − 5ε′)2(1 − ε′)2 ≥ 1 − ε this would exactly be the inequality
of Lemma 1. Proposition 1 is thus proved. ✷

In the light of Lemma 2 on uniform stretch for smooth functions, we restate the
fundamental proposition using the first and second derivatives of the Birkhoff sums
fm(x, y). Here f is considered to be of class at least C2.

PROPOSITION 2. Let ηt = {C(t)i }, ε(t) and k(t) be as in the statement of Proposition 1.
If, depending on t , at least one of the following conditions holds:
(i) for anym ∈ [ 1

2 t, 2t], for any y0 ∈ T1 and all C(t)i ,

• inf
x∈C(t)i

∣∣∣∣∂fm(x, y0)

∂x

∣∣∣∣ |C(t)i | ≥ k(t)

• sup
x∈C(t)i

∣∣∣∣∂2fm(x, y0)

∂x2

∣∣∣∣|C(t)i | ≤ ε(t) inf
x∈C(t)i

∣∣∣∣∂fm(x, y0)

∂x

∣∣∣∣;
(ii) for anym ∈ [ 1

2 t, 2t], for any x0 ∈ T1 and all C(t)i ,

• inf
y∈C(t)i

∣∣∣∣∂fm(y, x0)

∂y

∣∣∣∣ |C(t)i | ≥ k(t)
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• sup
y∈C(t)i

∣∣∣∣∂2fm(y, x0)

∂y2

∣∣∣∣|C(t)i | ≤ ε(t) inf
y∈C(t)i

∣∣∣∣∂fm(y, x0)

∂x

∣∣∣∣;
then the flow {T t } is mixing.

As we stated in the introduction, the way to obtain mixing with the mechanism
introduced by Yoccoz was an alternating occurrence of uniform stretch for the Birkhoff
sums ϕm: in the x direction when t is far from qn and in the y direction when t
is far from q ′n. So the alternation between the validity of the conditions in the latter
propositions is known. We state now a sufficient criterion for mixing that takes into account
this particular game of rotation and that involves only the Birkhoff sums of the ceiling
function f (time no longer appears explicitly in the conditions).

PROPOSITION 3. (Mixing criterion) Let {T t } be a special flow over an ergodic translation
of the torus T2 with a ceiling function f > 0 of class at least C2. If there exist sequences
of real numbers τn, kn, εn such that

τn → ∞, εn → 0, kn → ∞,
and a sequence of partial partitions ηn = {C(n)i } where the C(n)i are intervals such that

sup
C
(n)
i ∈ηn

|C(n)i | −→ 0,

∑
C
(n)
i ∈ηn

|C(n)i | −→ 1,

satisfying
(i) for anym ∈ [ 1

2τ2n, 2τ2n+1], for all y0 ∈ T1 and all C(2n)i ∈ η2n,

• inf
x∈C(2n)i

∣∣∣∣∂fm(x, y0)

∂x

∣∣∣∣ |C(2n)i | ≥ k2n,

• sup
x∈C(2n)i

∣∣∣∣∂2fm(x, y0)

∂x2

∣∣∣∣|C(2n)i | ≤ ε2n inf
x∈C(2n)i

∣∣∣∣∂fm(x, y0)

∂x

∣∣∣∣;
and
(ii) for anym ∈ [ 1

2τ2n+1, 2τ2n+2], for all x0 ∈ T1 and all C(2n+1)
i ∈ η2n+1,

• inf
y∈C(2n+1)

i

∣∣∣∣∂fm(y, x0)

∂y

∣∣∣∣ |C(2n+1)
i | ≥ k2n+1,

• sup
y∈C(2n+1)

i

∣∣∣∣∂2fm(y, x0)

∂y2

∣∣∣∣|C(2n+1)
i | ≤ ε2n+1 inf

y∈C(2n+1)
i

∣∣∣∣∂fm(y, x0)

∂x

∣∣∣∣;
then {T t } is mixing.

Proof. For every t ∈ [τ2n, τ2n+1] take for ηt the partial partition η2n and for k(t) and ε(t)
take k2n and ε2n.

For t ∈ [τ2n+1, τ2n+2] take for ηt the partial partition η2n+1 and for k(t) and ε(t) take
k2n+1 and ε2n+1.

The partition ηt and the functions k(t) and ε(t) clearly satisfy the conditions of
Proposition 2. ✷



454 B. R. Fayad

3.3. The Birkhoff sums of ϕ. In this subsection, we will consider a special flow
constructed over a translation of the two-torus of vector (α, α′) ∈ Y and under the ceiling
function ϕ (the set Y and the ceiling function ϕ are those defined in the introduction).
To prove Theorem 1, we will check that the Birkhoff sums of ϕ related to Rα,α′ satisfy the
hypothesis of Proposition 3.

For any m ∈ N, we have

ϕm(x, y) = m+ Re

( ∞∑
k=1

X(m, k)

ek
ei2πkx +

∞∑
k=1

Y (m, k)

ek
ei2πky

)
,

where

X(m, k) = 1 − ei2πmkα
1 − ei2πkα ,

Y (m, k) = 1 − ei2πmkα′
1 − ei2πkα′ .

We will need the following inequalities.

LEMMA 3.

For all k ∈ N∗, m ∈ N, |X(m, k)| ≤ m; (12)

for all n ∈ N, k < qn, m ∈ N, |X(m, k)| ≤ qn; (13)

for all n ∈ N, k ∈ ]qn, 2qn[, m ∈ N, |X(m, k)| ≤ 2qn; (14)

and for anym ≤ qn+1/2,

|X(m, qn)| ≥ 2

π
m, (15)

|arg(X(m, qn))| ≤ π (m− 1)

qn+1
. (16)

Proof. We have

X(m, k) =
m−1∑
j=0

ei2πjkα,

so the first inequality is trivial. For the other inequalities remember that by the definition
of the best approximations, qn is such that

‖qn−1α‖ ≤ ‖kα‖, ∀k < qn, (17)

and we also have
1

2qn+1
≤ 1

qn + qn+1
≤ ‖qnα‖ < 1

qn+1
. (18)

For inequality (13) write

|X(m, k)| ≤ 2

|1 − ei2πkα| ,
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then using the inequality sin(πu) ≥ 2u, when 0 ≤ u ≤ 1
2 , we have

2

|1 − ei2πkα| =
1

sinπ‖kα‖ ≤ 1

2‖kα‖ ,

since k < qn, we have from (17) and the left-hand side in (18), that this last term is bounded
by qn, and (13) is proved.

When k ∈ ]qn, 2qn[ , writing k under the form qn + q , with 0 < q < qn, we obtain

‖kα‖ ≥ 1

2qn
− 1

qn+1

≥ 1

4qn
.

(Obviously qn+1 ≥ 4qn since qn+1 ≥ e3eqn by definition of the set Y .) With this, (14)
follows in a similar way as (13).

Assume nowm ≤ qn+1/2, and write

X(m, qn) = e±iπ(m−1)‖qnα‖ sinπm‖qnα‖
sinπ‖qnα‖ ,

from the right-hand side in (18) one has πm‖qnα‖ ≤ 1
2π , so

|X(m, qn)| ≥ 2m‖qnα‖
sin(π‖qnα‖) ≥

2

π
m.

Finally, with the same hypothesis onm, one clearly has

0 ≤ |arg(X(m, qn))| = π(m− 1)‖qnα‖ ≤ π (m− 1)

qn+1
. ✷

Remark. There are of course analogous inequalities for Y (m, k).

We can state now the central estimation of ϕm that will imply uniform stretch in the x
direction.

First define, for n ∈ N, the set

In =
{
x ∈ T1/{qnx} ∈

[
1

n
,

1

2
− 1

n

]⋃[
1

2
+ 1

n
, 1 − 1

n

]}
.

Then for any integer n we have the following.

PROPOSITION 4. For any y ∈ T1, for any x ∈ In, for any m ∈ [ 1
2e

2qn, 2e2q ′n], the
following holds ∣∣∣∣∂ϕm∂x (x, y)

∣∣∣∣ ≥ m

eqn

qn

n
. (19)

The proposition clearly has a counterpart in the y direction.
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Proof. We have

∂ϕm

∂x
(x, y) = Re

( ∞∑
k=1

i2πk
X(m, k)

ek
ei2πkx

)

= Re

(
i2πqn

|X(m, qn)|
eqn

ei2πqnx
)
+ Re

( qn−1∑
k=1

i2πk
X(m, k)

ek
ei2πkx

)

+ Re

( 2qn−1∑
k=qn+1

i2πk
X(m, k)

ek
ei2πkx

)
+ Re

( ∞∑
k=2qn

i2πk
X(m, k)

ek
ei2πkx

)

+ Re

(
i2πqn

X(m, qn)− |X(m, qn)|
eqn

ei2πqnx
)
.

As we stated in the introduction, it is the first term of this expression that will prevail as
long asm lies between qn and qn+1, far from both of them as is the case here. To prove the
proposition we will thus bound the absolute value of the first term from below, and bound
the absolute values of the others from above.

First we have∣∣∣∣Re

(
i2πqn

|X(m, n)|
eqn

ei2πqnx
)∣∣∣∣ = |X(m, n)|

eqn
2πqn|sin(2πqnx)|;

since m ∈ [ 1
2e

2qn, 2e2q ′n], one has m ≤ qn+1/2 (by definition of the set Y ), so equation
(15) is valid, while the fact that x ∈ In, implies

|sin(2πqnx)| ≥ 4

n
.

Hence, ∣∣∣∣Re

(
i2πqn

|X(m, n)|
eqn

ei2πqnx
)∣∣∣∣ ≥ 16

m

eqn

qn

n
.

Next, and for anym, using (13) we have

∣∣∣∣Re

( qn−1∑
k=1

i2πk
X(m, k)

ek
ei2πkx

)∣∣∣∣ ≤ 2π
qn−1∑
k=1

k
|X(m, k)|
ek

≤ 2π
qn−1∑
k=1

qnk

ek

≤ 2πq2
n.

Similarly, ∣∣∣∣Re

( 2qn−1∑
k=qn+1

i2πk
X(m, k)

ek
ei2πkx

)∣∣∣∣ ≤ 4πq2
n.
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Furthermore, from (12), one has∣∣∣∣Re

( ∞∑
k=2qn

i2πk
X(m, k)

ek
ei2πkx

)∣∣∣∣ ≤ 2π
∞∑

k=2qn

k
|X(m, k)|
eqk

≤ 2πm
∞∑

k=2qn

k

ek

≤ 2π

e3/2qn
m.

Finally, from (16) and (12), we easily obtain

|X(m, qn)− |X(m, qn)|| ≤ 2|X(m, qn)|arg(X(m, qn)),

≤ 2π
(m− 1)

qn+1
m;

since m ≤ e2q ′n , and qn+1 ≥ e3q ′n , this implies∣∣∣∣Re

(
i2πqn

|X(m, qn)| −X(m, qn)
eqn

ei2πqnx
)∣∣∣∣ ≤ 4π2e−q ′nqn

m

eqn
.

Combining all these bounds, with the fact that m ≥ e2qn , it follows that∣∣∣∣∂ϕm∂x (x, y)
∣∣∣∣ ≥ 16

m

eqn

qn

n
− 2πqn2 − 4πqn2 − 2π

m

e3qn/2
− 4π2e−q ′nqn

m

eqn

≥ 15
m

eqn

qn

n
. ✷

For the second derivatives a straightforward bound is enough here.

PROPOSITION 5. There is a constant C such that for any integer m and any (x, y) ∈ T2,
one has ∣∣∣∣∣∂

2ϕm

∂x2 (x, y)

∣∣∣∣∣ ≤ Cm.
The proof is direct because ϕ is C2.

Proof of Theorem 1. We are going to prove for ϕ the validity of the mixing criterion given
by Proposition 3. Take for {τn} the sequence

τ2n = e2qn, τ2n+1 = e2q ′n.

For η2n take a partition of the set In defined above with intervalsC(2n)i , of lengths bounded
between e−qn and 2e−qn . Because λ(In) ≥ 1 − (4/n), η2n satisfies the conditions of
Proposition 3.

Moreover, from Propositions 4 and 5, for any m ∈ [ 1
2τ2n, 2τ2n+1], for all C(2n)i ∈ η2n,

and all y0 ∈ T1, one has

inf
x∈C(2n)i

∣∣∣∣∂ϕm(x, y0)

∂x

∣∣∣∣ |C(2n)i | ≥ 1

2

qn

n
,
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and

sup
{x∈C(2n)i }

∣∣∣∣∣∂
2ϕm(x, y0)

∂x2

∣∣∣∣∣ |C(2n)i | ≤ 2Cme−qn

≤ 2C
n

qn
inf

x∈C(2n)i

∣∣∣∣∂fm(x, y0)

∂x

∣∣∣∣ .
Hence, condition (i) of Proposition 3 is satisfied once we take k2n = 1

2 (qn/n) and
ε2n = 2C(n/qn). These sequences obviously go to infinity and to zero respectively when
n goes to infinity as required in the criterion.

The checking of the criterion in the y direction (condition (ii)), when m ∈
[ 1

2τ2n+1, 2τ2n+2], is exactly similar.
The proof of Theorem 1 is complete. ✷

4. Mixing reparametrizations of irrational flows on T3

In this section we consider irrational flows on T3 of vector (α, α′, 1) in R3, where
(α, α′) ∈ R2 is such that Rα,α′ is a minimal translation on T2:


dx/dt = α,
dy/dt = α′,
dz/dt = 1.

It is not hard to see that the reparametrization of such a flow by a strictly positive smooth
function 1/φ can be interpreted as a special flow overRα,α′ on T2 with the ceiling function
defined by

ϕα,α′(x, y) =
∫ 1

0
φ(x + sα, y + sα′, s) ds.

And conversely, given a special flow {Rα,α′, ϕα,α′ }, if there is a smooth and strictly
positive function φ on T3 satisfying this linear equation, the flow can be viewed as a
reparametrization of {T t

(α,α′,1)} with velocity 1/φ.
Before we prove Corollary 1 we will derive from Theorem 1 the following weaker

result.

PROPOSITION 6. For any irrational vector (α, α′) ∈ R2/Q2, there exists a strictly positive
real analytic function on T3, φα,α′ such that

ϕ(x, y) =
∫ 1

0
φα,α′(x + sα, y + sα′, s) ds,

where ϕ is the real analytic function we used in the main proposition. In particular, if
(α, α′) ∈ Y , the reparametrization of the irrational flow Rt(α,α′,1) by the function 1/φα,α′
is mixing.

Remark. Eventually, to make sure that the solution φα,α′ is positive, we will need to take
away from ϕ the first terms of its Fourier series.
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Proof. The easiest way to find a solution φα,α′ for the previous equation is to look for it
under the special form

φα,α′(x, y, z) = 1 + Re

( ∞∑
k=1

dk,lke
i2πkxei2πlkz

)
+ Re

( ∞∑
k=1

bk,l′ke
i2πkyei2πl

′
kz

)
,

where lk and l′k will be chosen later in Z, following the lines of [13]. We have∫ 1

0
φα,α′(x + sα, y + sα′, s) ds = 1 + Re

(∑
k>1

dk,lk
ei2π(kα+lk) − 1

i2π(kα + lk) e
i2πkx

)

+ Re

(∑
k>1

bk,l′k
ei2π(kα

′+l′k) − 1

i2π(kα′ + l′k)
ei2πky

)
,

and φα,α′ is formally a solution of the linear equation if we take

dk,lk =
i2π(kα + lk)
ei2π(kα+lk) − 1

e−k,

bk,l′k =
i2π(kα + l′k)
ei2π(kα

′+l′k) − 1
e−k,

which is possible to do because α and α′ are irrational. In this case,

|dk,lk | =
π |kα + lk|

|sin(π(kα + lk))|e
−k,

|bk,l′k | =
π |kα′ + l′k|

|sin(π(kα′ + l′k))|
e−k.

So, if we choose lk to be the closest relative integer to −kα, we will have

|kα + lk| ≤ 1
2 ,

hence, |kα + lk|
|sin(π(kα + lk))| ≤

1

2
,

moreover, with this choice of lk , |lk| ≤ |α|k + 1, therefore

|dk,lk | ≤
π

2
e−k

≤ π

2
e−(1/|α|+2)(k+|lk|).

We make a similar choice of l′k , and the function φ̃α we obtain will thus be analytic and
strictly positive. The proposition is proved. ✷

Proof of Corollary 1. Let (α, α′) ∈ Y be fixed for the moment. Consider the special flow
over Rα,α′ with a ceiling function

ϕα,α′(x, y) = 1 + Re

( ∞∑
k=1

dke
i2πkx +

∞∑
k=1

bke
i2πky

)
.

We see from the proof of the main theorem that a sufficient condition for the flow to be
mixing is that the coefficients dk and bk satisfy the following criteria:
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(c1) for any k ∈ N large enough,

|dk| ≤ e−k, |bk| ≤ e−k;
(c2) for any n ∈ N large enough,

|dqn| ≥ e−2qn, |bq ′n| ≥ e−2q ′n .

Now define on T3

φ(x, y, z) := 1 + Re

( ∞∑
k=1

∑
|l|≤k

e−k

k
(ei2πkxei2πlz + ei2πkyei2πlz)

)
. (20)

Corollary 1 will then follow from the previous remark.

PROPOSITION 7. For any vector (α, α′) ∈ Y ⋂ [−1, 1]2 it is true that the analytic function

ϕα,α′(x, y) =
∫ 1

0
φ(x + sα, y + sα′, s) ds,

satisfies both (c1) and (c2).

Proof. As in the proof of Proposition 6, a direct computation gives

ϕα,α′(x, y) = 1 + Re

( ∞∑
k=1

dke
i2πkx +

∞∑
k=1

bke
i2πky

)

with

ak = e−k

k

∑
|l|≤k

sin(π(kα + lk))
π(kα + l)

and a similar expression for bk. Clearly |dk| ≤ e−k and (c1) is satisfied. Now, since
|α| ≤ 1, if we consider the closest integer lqn to −qnα, it satisfies |lqn | ≤ qn. Next, note that

|sin(π(qnα + lqn))|
π |qnα + lqn |

≥ 2

π
,

while, for any l ∈ Z − {lqn},
|sin(π(qnα + l))|
π |qnα + l| ≤ 2

π
|sin(πqnα)| = O

(
1

qn+1

)
,

and (c2) now follows. ✷

5. Absence of mixing in the ‘general’ case
This section is devoted to the proof of Theorem 2.

Proof of Theorem 2. We will designate byG the set of vectors (α, α′) ∈ R2 for which there
is a sequence of integers rn such that for any ϕ ∈ C4(T2) with

∫
T2 ϕdµ = 1, the following

holds:
(G1) ϕrn − rn converges uniformly to 0 when n tends to infinity; and
(G2) Rrn(α, α′) −−−→

n→∞ IdT2 .
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This fact obviously implies that T rn → IdMϕ when n→ ∞, where {T t } is the special flow
overRα,α′ and under ϕ. In this case, we say the flow is rigid, and we call the rn the rigidity
times. Clearly, rigidity impedes mixing.

First we remark that the set G contains the set of vectors such that given any function
ϕ ∈ C4(T2) of integral 1, the linearized equation ϕ− 1 = ψ ◦Rα,α′ −ψ , has a continuous
solution (measurable would be enough). But we can prove, using Fourier analysis, that
the latter set, consisting of somehow ‘badly approximated’ vectors, is of total Lebesgue
measure [3, in the appendix].

Next, we will prove that G contains a dense Gδ . For this we will prove the following
lemmas.

LEMMA 4. There exists a Gδ dense set Ĝ ∈ R2 such that for any (α, α′) ∈ Ĝ there exist
infinitely many triplets (p, p′, q) ∈ Z × Z × N such that:

(a)

∣∣∣∣α − p

q

∣∣∣∣ < 1

eq
, p ∧ q = 1;

(a′)
∣∣∣∣α′ − p′

q + 1

∣∣∣∣ < 1

eq
, p′ ∧ (q + 1) = 1.

Here p ∧ q = 1 stands for p and q relatively prime.

LEMMA 5. The set Ĝ is included in G.

Clearly, with these lemmas and the definition of the set G the proof of the theorem will
follow.

Proof of Lemma 4. Denote by Oq the set of vectors of R2 for which (a) and (a′) are
realizable with q . It is an open set and for any integer n,

⋃
q≥nOq is open and dense

because it contains the points (p/q, p′/(q + 1)), q ≥ n. Hence, Ĝ =⋂
n∈N

⋃
q≥nOq is a

residual subset (denseGδ), and the lemma is proved. ✷

Proof of Lemma 5. Take (α, α′) ∈ Ĝ. Choose a sequence (pn, p′n, qn) satisfying (a) and
(a′). Clearly (G2) is satisfied for the sequence rn = qn(qn + 1). Moreover, we can write
the Fourier series of ϕ:

ϕ(x, y) = 1 +
∑

(k,l)∈Z2−{0,0}
dk,le

i2πkxei2πly,

since ϕ is of class C4 we have

|dk,l| = o
(

1

|k|4 + |l|4
)
.

For any m ∈ N, write

ϕm(x, y) = m+
∑

(k,l)∈N2−{0,0}
dk,l

1 − ei2πm(kα+lα′)
1 − ei2π(kα+lα′) e

i2πkxei2πlz.

We will check that ϕrn − rn converges uniformly to zero, with rn = qn(qn + 1). For any
k, l, |k|, |l| < qn we have

kα + lα′ = k pn
qn

+ l p′n
qn + 1

+O
( qn
eqn

)
,
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since qn ∧ (qn + 1)pn = 1, this implies

|||kα + lα′||| ≥ 1

2qn(qn + 1)
,

where ||| · ||| is the distance to the closest integer. Meanwhile, (a) and (a′) imply

|||rn(kα + lα′)||| = O
(
q2
n

eqn

)
.

Hence, for k, l, |k|, |l| < qn, one has∣∣∣∣1 − ei2πrn(kα+lα′)
1 − ei2π(kα+lα′)

∣∣∣∣ = O
(
q4
n

eqn

)

and ∑
|k|,|l|<qn,kl  =0

|dk,l|
∣∣∣∣1 − ei2πrn(kα+lα′)

1 − ei2π(kα+lα′)
∣∣∣∣ = o(1).

In contrast,

∑
|k|+|l|≥qn

|dk,l|
∣∣∣∣1 − ei2πrn(kα+lα′)

1 − ei2π(kα+lα′)
∣∣∣∣ ≤ rn ∑

|k|+|l|≥qn
|dk,l|

= rn
∑

|k|+|l|≥qn
o

(
1

|k|4 + |l|4
)

= o(1).
We showed that (G2) holds for the sequence rn and the lemma is proved. ✷

6. Generalization and application
Let {T ,M, ρ} be a dynamical system and consider the product transformation T × Rα,α′
on T2 × M , with (α, α′) ∈ Y . This transformation preserves the product measure of ρ
with the Haar measure on T2, µ. Now consider special flows over T ×Rα,α′ with a ceiling
function that depends only on the variables of T2 and that we take it to be equal to ϕ of the
main theorem. We will denote this special flow by {T ×Rα,α′, ϕ}. Reasoning exactly as in
the proof of the main theorem we obtain the following.

THEOREM 3. If T × Rα,α′ is uniquely ergodic then {T × Rα,α′, ϕ} is mixing (for the
invariant measure ρ × µ).

This theorem permits us to generalize Theorem 1 to higher-dimensional tori.

COROLLARY 3. (Higher dimension) If β ∈ Rk is such that the translationRα,α′,β on Tk+2

is irrational, then {R(α,α′,β), ϕ} is mixing. This special flow can also be viewed as a mixing
analytic reparametrization of the irrational flow {T t

(α,α′,β,1)} on Tk+3.

Corollary 1 on mixing reparametrizations can be stated in a slightly more general way.
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THEOREM 4. There is a dense and uncountable subset B ⊂ R3 and a dense subset
F ⊂ Cw1/2π(T

3,R+,∗), such that, any reparametrization of an irrational translation on

T3 with vector β ∈ B by 1/φ, φ ∈ F , is mixing.

We will apply this corollary to the cubic billiard. A cubic billiard is the dynamical
system obtained when we consider the uniform motion of a point mass inside a cube C in
the Euclidean space R3, with the usual laws of reflection when the point hits a side. For
the moment, the velocity is taken to be constant and equal to unity. The phase space of this
dynamical system which we call M is obtained from the direct product C × S2, where S2

is the sphere of unit velocities, by identifying pairs of the form (ξ, v), (ξ, v′) for ξ ∈ ∂C,
v and v′ ∈ S2 and v − v′ = 2(n(ξ), v)n(ξ); n(ξ) being the unit exterior normal to ∂C
at the point ξ . We denote by {T t } the corresponding phase flow. It preserves the measure
induced on M by the volume measure on C × S2, dξdv. Actually, in this description
we have neglected the elements (ξ, v) ∈ M that might meet the vertices of the cube, this
exceptional set being of volume zero. Given a direction v = (α, β, γ ), α2 + β2 + γ 2 = 1,
αβγ  = 0, where the coordinate axes are given by the vertices of C, we denote by C(v) the
‘cube’ C× v in the phase space. The trajectory of a point (c, v) ∈ M will be a straight line
in C(v) until it hits one side of the cube. After reflection the point goes into C(v′) where
v′ is obtained from v by just changing the sign of one of the coordinates α, β, γ of v,
depending on the side the point hits. So, the union of those eight cubes, that we callMv , is
an invariant subset of the phase space under the flow action. To visualize the motion onMv
we put the cubes C(v) and C(v′) side by side in R3 (along the incidence side) and we can
view the trajectory of the point before and after the reflection not as a broken line but rather
as a straight one that crosses from C(v) to C(v′). By gluing the eight components of Mv
in this fashion we obtain a cube in R3 on which the flow is the translation with direction v.
So as for the general planar polygon billiard with rational angles (see [15]), we have the
density of the trajectories in the configuration space for almost every initial direction.

Assume now as before that the motion in the cube is rectilinear with an elastic reflection
on the boundary, but suppose that the modulus of the velocity depends on the position ξ
in an analytic way, the point going faster or slower than unity speed but never stopping or
changing direction unless it hits a side of the cube. If the velocity distribution is given by a
function 1/φ where φ is in the dense space F ⊂ Cw1/2π(T3,R+,∗) of Theorem 4, then there
is an uncountable dense set of initial directions (v ∈ B) for which the corresponding flow
on the configuration space is a mixing flow. This turns out to be impossible to do in the case
of a polygonal billiard with rationally related angles since by a result from Katok [5], any
special flow over an interval exchange transformation built under a function of bounded
variation is not a mixing flow.

7. A mixing special flow over a diophantine irrational translation on T2

We say that α̂ ∈ Rn satisfies a diophantine condition with exponent β, if there exist a
positive constant C such that for any vector k ∈ Zn − {0} we have

|||〈k, α̂〉||| ≥ C

|k|n+β ; (21)
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where 〈·, ·〉 is the canonical scalar product on Rn and | · | its associated norm, while ||| · |||
is the distance to the closest integer.

In the previous section we constructed a mixing special flow built over an irrational
translation of the two-torus and under an analytic ceiling function. But the vector of the
translation we used had very good rational approximations, i.e. infinitely many vectors
k ∈ Zn − {0} such that

|||〈k, α̂〉||| ≤ 1

e|k|
.

Indeed, if the vector of the translation on the basis is diophantine, and the ceiling function
is regular enough the flow will be conjugate to an irrational flow†. So, one might look, for
a Diophantine vector, what happens with less regular ceiling functions.

Here we give an example of a mixing special flow over an irrational translation of T2

with a C2 ceiling function; the vector of the translation, α̂, being (2 + ε)-diophantine for
any ε > 0.

From what has been stated about the cohomological equation in the footnotes, note that
under this diophantine condition on α̂, any special flow over Rα̂ with a ceiling function of
class Cr , r > 4, is conjugate to an irrational flow on T3. However, for a β-diophantine
translation vector on the torus Tn (and for this one in particular), we do not know whether
it is possible to realize the best one can expect, that is a Cn+β−ε ceiling function for which
the flow is mixing. (In the case of weak mixing the question is fully answered in [2].)

We will first choose properly the vector α̂ ∈ R2, then we will give the expression of the
ceiling function ϕ under which the special flow over Rα̂ is mixing. We prove mixing using
the same criterion given by the fundamental proposition in the analytic case.

7.1. Construction of α̂. First recall that any irrational number α ∈ R−Q can be written
as a continued fraction:

α = [a0, a1, a2, . . . ] = a0 + 1/(a1 + 1/(a2 + · · · )),
where {ai}i≥1 is a sequence of integers ≥ 1, a0 = [α]. Conversely any sequence {ai}i∈N
corresponds to a unique number α. The convergents of α are given by the ai in the
following way:

pn = anpn−1 + pn−2 for n ≥ 2, p0 = a0, p1 = a0a1 + 1,

qn = anqn−1 + qn−2 for n ≥ 2, q0 = 1, q1 = a1.

In our construction of α̂ = (α, α′), we will keep in mind the mechanism that allowed
us to obtain mixing in the analytic case, namely the alternation between the denominators
of the convergents of α and those of α′. Although here we cannot space them too much
because if we want the vector (α, α′) to be diophantine, α and α′ should be at least so
individually. To avoid good approximations also, we will ask that the convergents of α

† See footnote on page 439. The precise result in [3], is the following: assume α is β diophantine and let
θ = d +β (when β = 0 take θ = d + ε). Then if r > θ , and ϕ ∈ Cr(Td ), there exists ψ ∈ Cr−θ (Td ) satisfying
the cohomological equation (∗) if r − θ is not integer; if r − θ is integer then the solution ψ is Cr−θ−1 and
‘smooth in the sense of Zygmund’.
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and α′ should be relatively prime. The arithmetic properties we need are summarized and
proven to be realizable in the following proposition.

PROPOSITION 8. One can choose two real numbers α and α′ rationally independent in
[0, 1] such that, for any n,

n4q ′2n−1 ≤ qn ≤ 2n4q ′2n−1, (22)

n4q2
n ≤ q ′n ≤ 2n4q2

n (23)

and

qn ∧ q ′n−1 = 1, (24)

q ′n ∧ qn = 1. (25)

Here, qn ∧ q ′n−1 = 1 stands for qn and q ′n−1 are relatively prime.

Proof. We will construct by induction the sequences {an}n≥1 and {a′n}n≥1 corresponding
to α and α′. Assume the ai and a′i , i ≤ n−1, are chosen such that (22)–(25) hold until step
n− 1. Since qn−1 and q ′n−1 are relatively prime there exists an integer τn < q ′n−1 such that

τnqn−1 ≡ −qn−2[q ′n−1];

meaning that q ′n−1 divides τnqn−1 + qn−2. Now, choose an = τn + ρn where ρn is such
that

ρn ∧ q ′n−1 = 1 and n4q ′2n−1 ≤ ρnqn−1 ≤ 3
2n

4q ′2n−1.

In this case

qn = anqn−1 + qn−2 = ρnqn−1 + τnqn−1 + qn−2,

since τn ≤ q ′n−1 we have clearly n4q ′2n−1 ≤ qn ≤ 2n4q ′2n−1, and (22) is verified at step n.
However, from the recurrence hypothesis qn−1 ∧ q ′n−1 = 1 and from our choice of ρn, it
follows that ρnqn−1 ∧ q ′n−1 = 1, while by definition τnqn−1 + qn−2 is a multiple of q ′n−1.
Consequently qn ∧ q ′n−1 = 1 and (24) is true at step n.

We follow the same lines in the construction of a′n in order to implement (23) and (25):
take a′n = τ ′n + ρ′n such that qn divides τ ′nq ′n−1 + q ′n−2, while ρ′n ∧ qn = 1 and (23) holds.
Then we use (24) which we implemented before to prove (25) at step n. ✷

This proposition will allow us to prove the following on α̂ = (α, α′).
PROPOSITION 9. The vector α̂ is 2 + ε-diophantine for any ε > 0.

Proof. Fix ε > 0. We have to show that for any (k, l) ∈ Z2, (k, l)  = (0, 0), |k| + |l|
sufficiently large

|||kα + lα′||| ≥ 1

(|k| + |l|)4+ε . (26)
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We will first treat of the case when kl = 0. Assume l = 0, and take n such that
qn−1 ≤ k < qn. First note that (22) and (23) imply

q ′n ≤ 8n12q ′4n−1, (27)

qn ≤ 8n12q4
n−1, (28)

since pn/qn, n ∈ N are the best approximations of α, one has, for k < qn,

|||kα||| ≥ 1

2qn
,

≥ 1

16n12q4
n−1

,

since k ≥ qn−1 when n is sufficiently large this leads to

|||kα||| ≥ 1

|k|4+ε .

Using (28) we can obtain the same result when it is k that vanishes.
Now suppose that both k and l are unequal to 0. There exists n ∈ N such that

q ′n−1 ≤ |k| + |l| < q ′n.
We will separate the two cases:
(i) q ′n−1 ≤ |k| + |l| < qn;
(ii) qn ≤ |k| + |l| < q ′n.

Case (i). Recall that

α = pn

qn
− 1

qnqn+1
+ h.o.t.

α′ = p′n−1

q ′n−1
− 1

q ′n−1q
′
n

+ h.o.t.

where the h.o.t. are less than 1/q ′n+2. As |k| < qn, and |l| < qn one has, using (22) and
(23), ∣∣∣∣∣kα + lα′ − k pn

qn
− l p

′
n−1

q ′n−1

∣∣∣∣∣ ≤ 1

qn+1
+ qn

q ′n−1q
′
n

+ h.o.t.

≤ 1

qn4
+ 1

n4qnq
′
n−1

+ h.o.t.

= o
(

1

q ′n−1qn

)
.

However, because qn ∧ q ′n−1 = 1 and qn ∧ pn = 1, k < qn implies that∥∥∥∥∥k pnqn − l p
′
n−1

q ′n−1

∥∥∥∥∥ ≥ 1

q ′n−1qn
.
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With the previous estimation this implies

‖kα + lα′‖ ≥ 1

2q ′n−1qn
,

and if we use (22) one more time

‖kα + lα′‖ ≥ 1

2n4q ′3n−1

≥ 1

q ′4n−1

≥ 1

(|k| + |l|)4 .

Case (ii). This time, we write

α = pn

qn
− 1

qnqn+1
+ h.o.t.

α′ = p′n
q ′n

− 1

q ′nq ′n+1
+ h.o.t.

and the same computations give

‖kα + lα′‖ ≥ 1

2q ′nqn

≥ 1

2n4q ′3n

≥ 1

q ′4n

≥ 1

(|k| + |l|)4 . ✷

Now define

ϕ(x, y) = 1 + Re

( ∞∑
k=1

ei2πqkx

k2qk2
+

∞∑
k=1

ei2πqk
′y

k2q ′k
2

)
;

then, clearly ϕ is C2, and we have Theorem 5.

THEOREM 5. The special flow over Rα̂ with the ceiling function ϕ is mixing.

The proof of this theorem is similar to the one given in the analytic case. Indeed, we
can easily check the criterion of Proposition 3 in §3.2:
• when t is in [n3q2

n, n
3q ′2n ], uniform stretch is proved in the x direction; and

• when t is in [n3q ′2n , n3q2
n+1] uniform stretch is proved in the y direction.
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pp. 332–344.


