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Abstract. We construct, over some minimal translations of the two torus,
special flows under a differentiable ceiling function that combine the prop-
erties of mixing and rank one.

1. Introduction

1.1. Rank one and mixing. Rank one and mixing transformations or flows
display the strong ergodic property of having minimal self joinings of all
orders, a property which in turn implies many features for the transformation
or flow such as having a trivial centralizer and having no factors [12,13,
20,22]. Rank one and mixing transformations or flows are also mixing of
any order [7,18]. The very few known examples of transformations or flows
combining the rank one property and mixing were all produced in the same
abstract frame of pure measure theory with cutting and stacking methods
(see Sect. 1.3) inspired by some works of Chacon and Ornstein [2,16]. While
Chacon’s seminal examples of cutting and stacking constructions were only
weak mixing, Ornstein was the first to prove the existence of mixing rank
one transformations. His existence result is based on probabilistic cutting
and stacking constructions with random spacers (stochastic constructions of
mixing rank one flows were obtained by Prikhod’ko). Later, explicit cutting
and stacking constructions were proven to be of rank one and mixing [1].

In this paper we give a differentiable realization of rank one and mixing
in the case of flows. More precisely, we will define in Sect. 3 (following
[21]) an uncountable dense subset Y ⊂ R2, for which we will prove the
following

Theorem 1.1. For any (α, α′) ∈ Y, there exists a strictly positive real
function ϕ defined on T2 of class C1 such that the special flow built over
Rα,α′ with the ceiling function ϕ is of rank one and mixing (with respect to
its unique invariant measure).
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The exact definitions of special flows, mixing and rank one for trans-
formations and for flows are given in Sect. 2. Roughly, a measure pre-
serving transformation or flow on (X,A, ν) is said to be of rank one if it
has a sequence of towers that asymptotically generate the σ -algebra A (see
Sect. 2.2). The property of rank one essentially reflects the existence of some
cyclic approximations for the flow; and clearly, cyclic approximations do
not favor mixing. For instance, studying cyclic approximations as defined
by Katok and Stepin shows that the speed of approximation required to
guarantee a simple spectrum (a weaker property than rank one) implies the
absence of mixing [10].

On the other hand, we know, since the work of Katok, Stepin and
Shklover, that special flows over Liouvillean irrational rotations of the torus,
even with analytic ceiling functions, can combine fast cyclic approxima-
tions (implying rank one) [9] as well as some mixing features, namely weak
mixing [8,15,19]. Using Baire category arguments, rank one and weak mix-
ing can also be derived for most of the time-maps of these special flows [3].
But these examples of weak mixing special flows and transformations are
nevertheless rigid, in the sense that T tn → IdT2 for some sequence tn → ∞.
Rigidity of smooth special flows over irrational rotations of the circle is due
to an improved Denjoy-Koksma inequality involving the Birkhoff sums of
the ceiling function over the rotation.

1.2. Uniform stretch mixing for special flows over translations. To ob-
tain mixing special flows over translations one can either consider special
flows over circular rotations and under ceiling functions with singulari-
ties [14,11,5] or turn to some minimal translations on higher dimensional
tori for which the Denjoy-Koksma inequality does not hold [21] and over
which it is possible to construct mixing special flows with real analytic
ceiling functions [4]. In both cases, the key underlying mixing is the uni-
form stretch at all times of the Birkhoff sums of the ceiling function (see
Sect. 2.3.3 below). Under this stretch, the image of a small interval on the
base becomes as time goes to infinity increasingly and uniformly expanded
along the fibers of the special flow hence tending to be equally distributed
in the space by unique ergodicity of the translation on the base. However,
all these examples most likely fail to be of finite rank. Indeed, as we will
observe later, the uniform stretch property at all times “plays against” the
rank one property.

1.3. The cutting and stacking techniques. In the construction of rank
one transformations by the cutting and stacking techniques the space and
the transformation are obtained in the same time by considering successive
towers of intervals as towers for the transformation (see Sect. 2.2). Each
tower Cn+1 is obtained by cutting the tower Cn into rn subcolumns of equal
width and adding some number ln,i of spacers above every i th subcolumn
before stacking over it the (i + 1)st subcolumn for i = 1, ..., rn − 1.
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With the latter cutting and stacking construction, it is possible to avoid
the cyclic approximations and obtain mixing transformations by actually
blowing up the top levels of the successive rank one towers. But in this case,
as long as the levels of the towers are thought of as intervals, it appears
difficult to adapt the constructions into a differentiable frame.

One of the crucial points in our construction is the following elementary
fact: small measure in dimension 2 is not equivalent to small diameter.
More precisely, assume we are stacking in a column n2 disjoint squares
of equal area 1/n2, doing so in an isometric way until we reach the top
n

3
2 squares, and then applying uniform stretch of magnitude 1/n

4
3 on each

of the last n
3
2 levels (clearly this can be done with small derivatives since

1/n
4
3 = o(1/n)); we will thus reach the top of the tower with a cumulated

stretch amounting to n
3
2 − 4

3 which is large while the total measure of the
squares where the stretch was applied is n

3
2 −2 = o(1).

1.4. Combining uniform stretch and cutting and stacking. The con-
struction we will present here of a mixing rank one flow combines the
uniform stretch and the cutting and stacking techniques.

Let us first give a brief description of the mixing special flows constructed
in [4]: They are special flows above a minimal translation Rα,α′ of T2 and
under a ceiling function given by

ϕ(x, y) = 1 +
∞∑

n=2

cos(2πqnx)

eqn
+ cos(2πq′

n y)

eq′
n

where {qn}n∈N and {q′
n}n∈N are the sequences of denominators of the conver-

gents of α and α′. If these sequences are such that q′
n ≥ e3qn and qn+1 ≥ e3q′

n

for all n ∈ N, then due to the term cos(2πqnx)/eqn we obtain that Smϕ(x, y)
is uniformly stretching in the x direction for m ∈ [e2qn , e2q′

n ] while the
term cos(2πq′

n y)/eq′
n is responsible for uniform stretch in the y direction of

Smϕ(x, y) for m ∈ [e2q′
n , e2qn+1]. Since the latter intervals cover a neighbor-

hood of infinity [n0,∞) ⊂ N we deduce that the special flow is mixing.
Here, we will use essentially the same translations on the base but ϕ

must be modified in order to gain the property of rank one for the spe-
cial flow without losing the mixing property. The modification is done
in the C1 topology but can be made smoother on higher dimensional
tori.

First of all, a criterion that guarantees the rank one property for a special
flow over a rank one transformation is given: Starting with a rank one
sequence of towers of the transformation on the base (see Sect. 2.2), the
idea of the criterion is that under a condition of flatness of the Birkhoff sums
of the ceiling function computed over the base of the successive towers, it is
possible to lift these towers into rank one towers for the special flow. Hence,
we first choose for the translation on the base a particular sequence of rank
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one towers that we want to lift into rank one towers for the special flow and
construct the ceiling function subsequently.

Next, starting with the function ϕ as above, when the uniform stretch
of a term like cos(2πqnx)/eqn or cos(2πq′

nx)/eq′
n jeopardizes the rank one

property, we have to change it. We do this as follows:

• We can change the cosine by a function that is essentially flat everywhere
except over the top steps of the rank one towers that we want to lift,
confining thus the uniform stretch to the top levels of the towers. This
can be done smoothly as was explained above.

• We can replace the cosine by a staircase-like function constant on the
levels of the rank one towers and smoothened-up with bump functions.

By the first procedure, rigidity times due to fast cyclic approximations
are precluded and replaced by mixing sequences of time due to the uniform
stretch. However before reaching the top levels of a tower of a translation
there are intermediate rigidity times that will also be rigidity times for the
special flow due to the flatness of the Birkhoff sums.

By the second procedure, uniform stretch of the Birkhoff sums that
provided mixing via uniform continuous stretch of intervals gives way
to non-uniform stretch, i.e. staircase stretch of intervals similar to the one
obtained on the top of each column in the cutting and stacking constructions.
Subsequently, the proof of mixing involves arithmetically spaced Birkhoff
averages under the action of the flow. These averages are shown to converge
using the mixing times obtained previously from uniform stretch.

1.5. Plan of the construction. In the next section we introduce some def-
initions and notations and we state a criterion that guarantees the rank one
property for a special flow over a rank one transformation. We also recall
the criterion that yields mixing for the special flow from uniform stretching
of the Birkhoff sums of the ceiling function.

Section 3 is reserved to the choice of the translation Rα,α′ and to the
description of a special rank one sequence of towers for Rα,α′ that we will
want to lift into a rank one sequence of towers for the flow.

In Sects. 4 and 5, we list the properties required on the functions
Xn(x, y) and Yn(x, y) that will substitute the terms cos(2πqnx)/eqn and
cos(2πq′

n y)/eq′
n in the expression of the ceiling function. The effective con-

struction of these functions is done in the last sections 8 and 9.
In Sects. 6 and 7 respectively, we prove that the special flow built over

Rα,α′ and under the function ϕ = ϕ0 + ∑
n≥n0

Xn + Yn is of rank one and
mixing, where ϕ0 ∈ R and n0 ∈ N are chosen so that ϕ is strictly positive
and of mean value 1.

1.6. Question. Rank one flows have a simple spectrum, and since the flows
we construct are also mixing, it would be interesting to understand the nature
of their maximal spectral measure.
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2. Preliminaries

2.1. Special flows. Let (M, T, µ) be a dynamical system. Given a real
function ϕ ∈ L1(M, µ) such that ϕ ≥ c > 0, we define the special flow
constructed over T and under the ceiling function ϕ to be the quotient
flow of the action M × R → M × R : (z, s) → (z, s + t) by the relation
(z, s + ϕ(z)) ∼ (Tz, s). This flow acts on the manifold MT,ϕ obtained
from the subset of M × R: Mϕ = {(z, s) ∈ M × R / 0 ≤ s < ϕ(z)} by
identifying pairs (z, ϕ(z)) and (Tz, 0). It preserves the normalized product
measure on MT,ϕ, i.e. the product of the measure µ on the base with the
Lebesgue measure on the fibers divided by

∫
M ϕ(z)dµ(z). Moreover, if the

transformation T is uniquely ergodic then so is the special flow. We denote
by T t

T,ϕ the special flow above a transformation T and under the ceiling
function ϕ. The Birkhoff sums of ϕ over the iterates by T of a point z ∈ M
are denoted by Smϕ(z) = ∑m−1

i=0 ϕ(T iz).

Definition 2.1. For (z, s) ∈ MT,ϕ and t ∈ R+ we introduce the notation
m(z, s, t) for the only m ∈ N that satisfies

0 ≤ s + t − Smϕ(z) ≤ ϕ(T mz).

With this definition of m = m(z, s, t) we get

T t(z, s) = (
T mz, s + t − Smϕ(z)

)
.

For a point z ∈ M we sometimes use the notation z and m(z, t) for
(z, 0) ∈ MT,ϕ and m(z, 0, t).

2.2. The rank one property

2.2.1. Rank one transformations. Let (M, T, µ) be a dynamical system.
Given a measurable set A ⊂ M and an integer h such that A, T(A), ...,T h−1 A
are disjoint we say that A	TA	 ...	T h−1 A is a tower of T and denote it by
T (A, h). The set A is called the base of the tower and h its height. Every
T k(A), k ≤ h − 1, is called a level of the tower. The measure of the tower
is hµ(A). Rokhlin lemma insures that if the set of periodic points of T is of
measure zero then for any ε > 0 and any h ∈ N∗ there exists a tower of T
with height h and measure greater than 1 − ε.

Given a measurable partition P of M and an ε > 0, we say that a mea-
surable set A is ε− monochromatic with respect to P if all but a proportion
less than ε of the set A is included in one atom of P . We say that a tower
of T with base A and height h is ε− monochromatic with respect to P if
all but a proportion less than ε of its levels (i.e. less than hε levels) are ε−
monochromatic with respect to P .

Definition 2.2. We say that a dynamical system (M, T, µ) is of rank one or
has the rank one property if for any finite measurable partition P of M and
for any ε > 0 there exists a tower for T that has measure greater than 1 − ε
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and is ε− monochromatic with respect to P . In other words, (M, T, µ) is of
rank one if there exists a sequence of towers for T that generates the sigma
algebra of finite partitions of (M, µ).

2.2.2. Rank one flows. Let (M, T t, µ) be an ergodic flow. For any positive
real number H and any ε > 0, we can represent {T t}t∈R as a special flow
over a system (X, T, ν) with a ceiling function ϕ such that:

(i) ϕ(x) ≤ H for every x in X,
(ii) ϕ(x) = H on a subset B ⊂ X of measure ν(B) ≥ 1 − ε.

This flow version of Rokhlin’s lemma was first introduced by Ornstein in
[17]. We call

⋃H
t=0 T t B a tower of {T t}t∈R with base B and height H . Every

T t(B), t ≤ H , is a horizontal level of the tower. The measure of the tower
is Hν(B)/

∫
X ϕ(x)dν(x) ≥ ν(B) ≥ 1 − ε.

Given a finite measurable partition P of (M, µ) and an ε > 0, we
say that a horizontal level T s B, s ≤ H of the tower is ε-monochromatic
with respect to P if a proportion not less than 1 − ε of the T s∗ν-measure
of this horizontal level is included in one of the atoms of P . We say that
a tower above B of height H is ε-monochromatic with respect to P if all
but a proportion less than ε of its horizontal levels (proportion measured
with respect to the Lebesgue measure on [0, H]) are ε-monochromatic with
respect to P .

Like the Rokhlin lemma, the definition of rank one can also be stated
for flows as in [22]

Definition 2.3. Let (M, T t, µ) be a dynamical system. We say that the flow
{T t}t∈R is of rank one if for any finite measurable partition P of M and for
every ε > 0, there is a tower for {T t}t∈R of measure greater than 1 − ε that
is ε−monochromatic with respect to P .

2.2.3. A criterion that guarantees the property of rank one for special flows
over rank one transformations. The criterion involves the Birkhoff-sums
of the ceiling function and allows us to “lift” rank one towers of the trans-
formation on the base to rank one towers of the flow.

Let (M, T, ν) be a dynamical system of rank one. We call a sequence of
towers of T , {T (Bn, hn)}n∈N, a rank one sequence of towers for T if given
any ε > 0 and any finite measurable partition P of M, there exists n0 such
that for every n ≥ n0, the tower T (Bn, hn) has measure greater than 1 − ε
and is ε-monochromatic with respect to P .

Proposition 2.4 (Criterion for rank one). Let (M, T, ν) be a dynamical
system of rank one and T t

T,ϕ be a special flow constructed over T with
a ceiling function satisfying 0 < c ≤ ϕ ≤ C < ∞. If there exists a rank one
sequence of towers, {T (Bn, hn)}n∈N of T such that

sup
m≤hn

sup
z,z′∈Bn

|Smϕ(z′) − Smϕ(z)| −→
n→∞ 0, (2.1)

then the flow T t
T,ϕ is of rank one.
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Proof. Since infz∈M ϕ(z) ≥ c > 0, (2.1) implies that for sufficiently large
n there exists Hn ∈ R such that supz∈Bn

Shn−1ϕ(z) < Hn < infz∈Bn Shnϕ(z).
Hence in Definition 2.1 we have for any z ∈ Bn m(z, Hn) = hn−1, therefore⋃Hn

t=0 T t Bn is a tower of the special flow since T (Bn, hn) is a tower of T .
Moreover since the measure of the tower on the base T (Bn, hn−1) is greater
than 1 − ε − ν(Bn) we get that the measure of the flow tower

⋃Hn
t=0 T t Bn is

greater than 1 − (ν(Bn) + ε) supz∈M ϕ(z)/
∫

M ϕ(z)dν(z).
On the other hand fix an arbitrary measurable set A ⊂ M. From (2.1) we

have that as the levels of the towers T (Bn, hn) of T become increasingly
monochromatic with respect to the set A then the levels of the flow towers⋃Hn

t=0 T t Bn become increasingly monochromatic with respect to
⋃s0+s1

t=s0
A

where s0, s1 ∈ R. Since any finite measurable partition of MT,ϕ can be
approximated by sets of the latter form the proof of rank one for the flow
follows. �	

2.3. The mixing property

2.3.1. Mixing sequences of time. We recall that a dynamical system
(M, T t, µ) is said to be mixing if for any measurable sets A, B ⊂ M one has

lim
t→∞ µ(T −t A ∩ B) = µ(A)µ(B). (2.2)

Definition 2.5. We say that a sequence tn → ∞ is a mixing sequence for
the flow {T t}t∈R if (2.2) holds along the sequence tn as n goes to infinity.
A sequence of subsets of R, {In}n∈N is called a mixing sequence of sets for
the flow {T t}t∈R if any sequence tn ∈ In is a mixing sequence.

Clearly, if a neighborhood of ∞ can be covered by a finite union of
mixing sequences of sets, e.g. for some a ∈ R, [a,∞) ⊂ ⋃ j0

j=1

⋃
n∈N I j,n,

where each {I j,n}n∈N is a mixing sequence of sets then the flow is mixing.

2.3.2. Good sequences of partial partitions. We denote by a partial partition
of (M, µ) a finite collection of disjoint measurable sets in M. In the case
M = MRα,α′ ,ϕ we also call partial partitions collections of disjoint sets of M
of the form I × {y, s}, (y, s) ∈ T × R, I interval on T, or collections of
disjoints sets of the form R × {s}, s ∈ R, R rectangle in T2.

Definition 2.6. Let {Ωt}t∈R (or t ∈ N) be a family of partial partitions of
(M, µ). We say that Ωt tends to the partition into points as t goes to infinity
and write Ωt → ε if every measurable subset of M becomes arbitrarily well
approximated in measure by unions of sets in Ωt as t goes to infinity.

Definition 2.7. Let (M, T, µ) be a dynamical system. Let {tn}n∈N be a se-
quence of real numbers and A a measurable subset of M. We say that
a family of partial partitions {Ωn}n∈N is good for the sequence {tn}n∈N and
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for A if for any ε > 0 there exists n0 ∈ N such that for any integer n ≥ n0,
for any atom ξ ∈ Ωn

∣∣µ(ξ ∩ T −tn A) − µ(ξ)µ(A)
∣∣ ≤ εµ(ξ). (2.3)

If for a sequence {tn}n∈N, we have for any measurable set A a sequence
Ωn(A) → ε that is good then {tn}n∈N is a mixing sequence for the flow
{T t}t∈R.

In the case of partial collections Ωn of M = MRα,α′ ,ϕ with positive
codimension sets we will also say that Ωn is good for {tn}n∈N and for
a measurable set A ⊂ M if for any ε > 0 there exists n0 ∈ N such that for
any integer n ≥ n0, for any atom ξ ∈ Ωn we have

∣∣λ(i)(ξ ∩ T −tn A) − λ(i)(ξ)µ(A)
∣∣ ≤ ελ(i)(ξ), (2.4)

where λ(1) = λ is the Lebesgue measure on the line and λ(2) = λ × λ and
i = 1, 2 depending on the dimension of ξ . A Fubini argument then gives
the same conclusions related to mixing as above.

Remark 2.8. In the case of a metric space M and a Borelian measure µ,
mixing for a sequence {tn}n∈N follows if we check the conditions of Defin-
ition 2.7 for any ball A ⊂ M.

Along the line of the definitions above, we have that if for any measurable
set A there exists a family of partial partitions {Ωt}t∈R such that Ωt → ε
and that {Ωtn}n∈N is good for A and {tn}n∈N as long as tn → ∞ then the
system (M, T t, µ) is mixing.

2.3.3. Uniform stretch. One of the tools we will use to derive mixing is
uniform stretch. We recall the definition for a real function on a segment
[a, b] ⊂ R (see [14,4])

Definition 2.9. Let ε > 0 and K > 0. We say that a real function g defined
on an interval [a, b] is (ε, K )-uniformly stretching on [a, b] if

sup
[a,b]

g − inf[a,b] g ≥ K,

and if for any inf[a,b] g ≤ u ≤ v ≤ sup[a,b] g, the set

Iu,v = {x ∈ [a, b] / u ≤ g(x) ≤ v},
has Lebesgue measure

(1 − ε)
v − u

|g(b) − g(a)|(b − a) ≤ λ(Iu,v) ≤ (1 + ε)
v − u

|g(b) − g(a)|(b − a).

We assume now that g is at least two times differentiable and we recall
the following straightforward but useful criterion on the derivatives of g
insuring its uniform stretch on the segment [a, b]:
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Lemma 2.10 (A Criterion for uniform stretch). If

inf
x∈[a,b] |g

′(x)||b − a| ≥ K

and sup
x∈[a,b]

|g′′(x)||b − a| ≤ ε inf
x∈[a,b] |g

′(x)|

then g is (ε, K )-uniformly stretching on [a, b].
The following proposition derives mixing from uniform stretch for a spe-

cial flow above a minimal translation of the two torus T2 = R2/Z2. Its proof
can be found in [4].

Proposition 2.11 (Criterion for a mixing sequence). Let T t
Rα,α′ ,ϕ be the

special flow constructed over some minimal translation Rα,α′ of T2 and
under a strictly positive continuous function ϕ two times differentiable in
the x direction. Let {tn}n∈N be a sequence of real numbers. If {Ωn}n∈N is
a sequence of partial partitions of the circle in intervals and if there exist
sequences Kn → ∞ and νn → 0 such that

• For any interval I ∈ Ωn, for any y ∈ T, for m = m(x, y, tn) for some
x ∈ I , Smϕ(., y) is (Kn, νn)-uniformly stretching on I × {y},

then any sequence of partial partitions of MRα,α′ ,ϕ with sets of the form
ξ × {y, s} , ξ ∈ Ωn is good for {tn}n∈N (and for any measurable set A).
Therefore, if in addition {Ωn}n∈N → ε then {tn}n∈N is a mixing sequence for
the special flow.

2.4. Notations

2.4.1. For d ∈ N∗ let Td = Rd/Zd. For k ∈ N ∪ {+∞} we denote by
Ck(Td,R) the set of real functions on Rd of class Ck and Zd-periodic.
By Ck(Td,R∗+) we will denote the subset of Ck(Td,R) of strictly positive
functions. We will use the notation ‖ϕ‖ := supz∈Td |ϕ(z)|. For r ∈ N, the
notation Dr

xϕ is used for the derivative of order r of ϕ with respect to x and
the norm on Ck(Td,R) we consider is ‖ϕ‖Ck := ∑

r+p=k ‖Dr
x Dp

y ϕ‖.

2.4.2. Let x be a real number; we denote by:

– [x] the integer part of x,
– {x} = x − [x] its fractional part,
– |||x||| = min({x}, 1 − {x}) the distance of x to the closest integer.

2.4.3. We recall some facts about the best approximations of an irrational
number by rational ones. When we write p

q ∈ Q we assume that q ∈ N,
q ≥ 1, p ∈ Z and that p and q are relatively prime. To each α ∈ R \ Q,
there exists a sequence of rationals {pn/qn}n∈N called the convergents of α,
such that:

|||qn−1α||| < |||qα||| for every 0 < q < qn, q �= qn−1 (2.5)
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and for any n ∈ N
1

qn(qn + qn+1)
≤ (−1)n

(
α − pn

qn

)
≤ 1

qnqn+1
. (2.6)

Let α′ ∈ R \Q and assume that α′ − p′
n−1

q′
n−1

> 0 then we have

∣∣∣∣α
′ − p′

n−1

q′
n−1

− 1

q′
n−1q′

n

∣∣∣∣ <
1

q′
nq′

n+1

. (2.7)

Remark 2.12. In all the paper we will always assume a fixed parity for n,

say n odd, so that α′ − p′
n−1

q′
n−1

> 0. The constructions we would have to make

at step n if n is even being similar to the ones we will make assuming n is
odd.

3. The translation on the base T2

3.1. The choice of the translation Rα,α′ . Following [21] we introduce

Definition 3.1. Let Y be the set of couples (α, α′) ∈ R2 \Q2
such that

the sequences of denominators of the convergents of α and α′, {qn}n∈N and
{q′

n}n∈N respectively, satisfy the following: there exists n0 ∈ N such that, for
any n ≥ n0

q′
n ≥ e3qn , (3.1)

qn+1 ≥ e3q′
n , (3.2)

qn ∧ q′
n−1 = 1, and qn ∧ q′

n = 1. (3.3)

Here p ∧ q = 1 stands for p and q relatively prime.
The importance of (3.1) and (3.2) in the choice of (α, α′) was mentioned

in the introduction: it is the mechanism of alternation between the qn and q′
n

that is behind uniform stretch for all m ∈ N of the Birkhoff sums Smϕ of an
adequately chosen ceiling function ϕ. In addition to the first two, the third
condition is useful to obtain rank one towers for the translation Rα,α′ . It is
easy to prove the existence of an uncountable and dense set of couples inR2

satisfying (3.1)–(3.3) (see [21] and [6]).

3.2. A special tower for Rα,α′ . Let (α, α′) ∈ Y and consider on T2 the
translation Rα,α′ of vector (α, α′).

Definition 3.2. For 0 ≤ j ≤ qnq′
n−1 − 1, define on T2 the rectangles

R j
n :=

(
j

pn

qn
, j

pn

qn
+ 1

qn

)
×
(

j
p′

n−1

q′
n−1

, j
p′

n−1

q′
n−1

+ 1

q′
n−1

)
.
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Lemma 3.3. The rectangles R j
n , 0 ≤ j ≤ qnq′

n−1 −1, are disjoint and their
union is of full Haar measure on T2.

Proof. Suppose j and j ′ are such that

j
pn

qn
− j ′

pn

qn
∈ Z,

j
p′

n−1

q′
n−1

− j ′
p′

n−1

q′
n−1

∈ Z.

Because qn and pn are relatively prime qn divides j − j ′, and we have the
same for q′

n−1 but since we assumed that qn and q′
n−1 are relatively prime

qnq′
n−1 has to divide j − j ′ and j − j ′ ≥ qnq′

n−1. Hence, up to qnq′
n−1 − 1

the R j
n are indeed disjoint. �	

The rational translation R(pn/qn, p′
n−1/q′

n−1)
approximates the translation

Rα,α′ (equation (2.6)), and the tower of the rational translation, R0
n ,...,

R
qnq′

n−1−1
n , is almost a tower for the irrational one. To this difference that

the rectangle R0
n is periodic under the action of R(pn/qn, p′

n−1/q′
n−1)

while its
first return on itself under the action of Rα,α′ is shifted to the right on the
y-axis by |||qnq′

n−1α
′||| ∼ qn/q′

n (from (2.7)). In the x direction, the shift
of the first return is far smaller since |||qnq′

n−1α||| ∼ q′
n−1/qn+1. This will

allow us to select a special tower for Rα,α′ with base essentially the rectan-
gle [0, 1/qn] × [0, qn/q′

n]. The stacking of the levels of the corresponding
tower, from left to right in each R j

n , 0 ≤ j ≤ qnq′
n−1 − 1, displays a clear

analogy with what happens for an irrational rotation on the circle as well as
in the cutting and stacking constructions and will be behind the cumulation
of staircase stretch by the Birkhoff sums of the ceiling function that we will
later consider over Rα,α′ (see Property (X.3) in Sect. 4).

3.2.1. Description of the tower. We give now a precise description of the
tower we want to consider.

Definition 3.4. Denote by [.] the integer part and let

rn :=
[

q′
n

qnq′
n−1

]
− 1,

and

hn :=
[(

1 − 2

n

)
rn

]
qnq′

n−1.

Define the rectangle

B0
n :=

[
1

nqn
,

(
1 − 1

n

)
1

qn

]
×
[

1qn

nq′
n

,

(
1 − 1

n

)
qn

q′
n

]
,

and denote by Bh
n its image under h iterations of Rα,α′ .



316 B. Fayad

One of the goals of this section is to prove the following

Proposition 3.5. The translation Rα,α′ is rank one by rectangles: the se-
quence of towers {T (B0

n, hn)}n∈N is a rank one sequence for Rα,α′ .

Remark 3.6. A more exhaustive tower over B0
n for Rα,α′ would be the one

with rnqnq′
n−1 ∼ q′

n levels. The term (1 − 2
n ) in the expression of hn is used

to put aside the top levels over B0
n that will not lift to monochromatic levels

for the flow but will rather carry uniform stretch (Compare Properties (Y.2)
and (Y.3)-(Y.3’) in Sect. 5).

Definition 3.7 (The rational rotation). For every 0 ≤ i ≤ rn define the
disjoint subsets of R0

n

D
iqnq′

n−1
n :=

[
1

n2

1

qn
,

(
1 − 1

n2

)
1

qn

]
×
[

i
qn

q′
n

+ qn

n2q′
n

, (i + 1)
qn

q′
n

− 1

n2

qn

q′
n

]
.

For every 1 ≤ j ≤ qnq′
n−1 − 1 define the disjoint subsets of R j

n

D
j+iqnq′

n−1
n := R j

pn
qn

,
p′
n−1

q′
n−1

(
D

iqnq′
n−1

n
)
.

Definition 3.8. Let

R
0
n :=

[
1

nqn
,

(
1 − 1

n

)
1

qn

]
×
[

0,

(
1 − 1

n

)
1

q′
n−1

]
⊂ R0

n,

and for every 0 ≤ j ≤ qnq′
n−1 − 1 let

R
j
n := R j

α,α′
(

R
0
n

)
.

y

x

R0
n

D
rn qnq′

n−1
n

D0
n D

qnq′
n−1

n ...

R j
n

D j
n D

j+qnq′
n−1

n ... D
j+rnqnq′

n−1
n

.

Fig. 1. The rational rotation
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x

y

R
0
n

R
j
n

B0
n B

q2nq′
2n−1

n ...

βn, j

B j
n B

j+q2nq′
2n−1

n ...

Fig. 2. The special tower of Rα,α′

The following lemma encloses the facts that we will need about the
combinatorics of Rα,α′ at step n. Recall that we have assumed that n is odd

so that α′ − p′
n−1

q′
n−1

> 0.

Lemma 3.9. For any 0 ≤ j ≤ qnq′
n−1 − 1, we have

R
j
n ⊂ R j

n. (3.4)

Furthermore, for each 0 ≤ j ≤ qnq′
n−1 − 1, there is a real number

0 ≤ βn, j ≤ qn/q′
n, such that for any 0 ≤ i ≤ rn − 1, one has

T0,−βn, j

(
B

j+iqnq′
n−1

n

)
⊂ Dn, j+iqnq′

n−1
, (3.5)

where T0,β is the translation of vector (0, β).

An immediate corollary of the above lemma is that the sets Bh
n are

disjoint for 0 ≤ h ≤ hn. Since in addition hnλ
(2)(B0

n) ∼ (1 − 2
n )

3
the

Proposition 3.5 follows. The above lemma also shows how to construct
a function that is constant on the levels of the tower over B0

n.

Corollary 3.10. If a real function κ defined on the torus is constant on

D
j+iqnq′

n−1
n for some i ≤ rn − 1 and some 0 ≤ j ≤ qnq′

n−1 − 1, then

the function κ ◦ T0,−βn, j is constant on B
j+iqnq′

n−1
n . In particular, if κ is

(1/qn, 1/q′
n−1) periodic and constant on D

iqnq′
n−1

n ⊂ R0
n, then for any 0 ≤

j ≤ qnq′
n−1 − 1 we have that κ ◦ T0,−βn, j is constant on B

j+iqnq′
n−1

n .

Proof of Lemma 3.9. We will only prove (3.5) that actually implies (3.4) if
we take i = 0. We will proceed separately for the x and the y direction. Take
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a couple (i, j) of integers such that 0 ≤ j ≤ qnq′
n−1 − 1 and 0 ≤ i ≤ rn .

Take (x, y) ∈ B
j+iqnq′

n−1
n , hence

1

nqn
≤ {x − jα − iqnq′

n−1α} ≤
(

1 − 1

n

)
1

qn
.

From (2.6) we have

|iqnq′
n−1α − iq′

n−1 pn | ≤ i
q′

n−1

qn+1
≤ q′

n

qnqn+1
= o

(
1

nqn

)
,

and ∣∣∣∣ jα − j
pn

qn

∣∣∣∣ ≤ j

qn+1
≤ qnq′

n−1

qn+1
= o

(
1

nqn

)
,

therefore

1

n2qn
≤
{

x − j
pn

qn

}
≤ 1

qn
− 1

n2qn
. (3.6)

For the coordinate y we have that (x, y) ∈ B
j+iqnq′

n−1
n implies

1

n

qn

q′
n

≤ {y − jα′ − iqnq′
n−1α

′} ≤ qn

q′
n

− 1

n

qn

q′
n

.

From (2.7) we have

{
iqnq′

n−1α
′ − i

qn

q′
n

}
≤ iqnq′

n−1

q′
nq′

n+1

= o

(
qn

nq′
n

)
,

again from (2.7) we have

∣∣∣∣ jα′ − j
p′

n−1

q′
n−1

− j

q′
n−1q′

n

∣∣∣∣ <
j

q′
nq′

n+1

= o

(
qn

nq′
n

)
.

It follows that if we take βn, j to be j/q′
n−1q′

n ≤ qn/q′
n , we will have

1

n2

qn

q′
n

≤
{

y − j
p′

n−1

q′
n−1

− i
qn

q′
n

− βn, j

}
≤ qn

q′
n

− 1

n2

qn

q′
n

. (3.7)

The lemma follows from (3.6) and (3.7). �	
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4. The properties of the function Xn

The function Xn will be essentially a staircase function over every R j
n

almost constant on each level of the tower T (B0
n, hn) (see Sect. 3.2). It will

also be a trigonometric polynomial so that the derivatives of its Birkhoff
sums over Rα,α′ must be uniformly bounded (in m). We will list here the
properties required of Xn and postpone its effective construction to Sect. 8.
Set

εn := (q′
n−1)

7

q′
n

. (4.1)

Proposition 4.1. There exists a sequence of functions Xn ∈ C∞(T2,R)
with the following properties,

(X.1) For any r ≥ 1, there exists a constant c(r) such that ‖Dr
x Xn‖ ≤

c(r)n2r+2qr
nεn.

(X.2) There exists a constant c such that ‖Xn‖ + ‖Dy Xn‖ ≤ cn4 q′
n

qn
εn.

(X.3) Let B0
n and rn be as in Definition 3.4. For every j ≤ q′

n−1qn − 1 and

every i ≤ (1 − 2
n )rn, we have for (x, y) ∈ B

j+iqnq′
n−1

n ,

|Xn(x, y) − iεn| ≤ 1

qnq′
n

.

(X.4) For r ≥ 1, for n large enough we have for every m ∈ N
∥∥∥∥∥Dr

x Sm

∑

l≤n

Xl

∥∥∥∥∥ ≤ qn+1

eqn
.

(X.5) For p ≥ 1, for n large enough we have for every m ∈ N
∥∥∥∥∥Dp

y Sm

∑

l≤n

Xl

∥∥∥∥∥ ≤ q′
n
(p+4)

.

Remark 4.2 (Choice of εn). Due to (3.1) and (3.2) and our choice of εn
in (4.1) we have that (X.1) yields ‖Dr

x Xn‖ ≤ 1/
√

q′
n and (X.2) yields

‖Xn‖ +‖Dy Xn‖ ≤ 1/
√

qn . On the other hand, with this choice of εn, (X.3)
insures that already from qn/n2 the Birkhoff sums of Xn are stretching
in the y direction above intervals of length 1/(q′

n−1)
6 (see (7.7)) while

(X.5) implies that the lower order terms are almost constant above such
intervals.
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5. The properties of the function Y n

The function Yn is obtained from cos(2πqnx)/eqn multiplied by a bump
function essentially equal to 0 over the rectangles R

j
n ⊂ R j

n of Definition 3.8
(i.e. over the first hn levels of the tower T (B0

n, hn) and equal to 1 on the
last 1/n proportion of the rectangles R j

n (to produce uniform stretch when
this end part of R j

n is visited). In addition Yn is taken to be a trigonometric
polynomial in order for its Birkhoff sums over Rα,α′ to be uniformly bounded
(in m). We will list here the properties required of Yn and postpone its
effective construction to Sect. 9.

Proposition 5.1. There exists a sequence of functions Yn ∈ C∞(T2,R) with
the following properties,

(Y.1) For r, p ∈ N, there exists a constant c′(r, p) such that we have

∥∥Dr
x Dp

y Yn

∥∥ ≤ c′(r, p)n3p(q′
n−1)

p qr
n

eqn
.

(Y.2) For hn and B0
n as in Sect. 3.2 we have

sup
m≤hn

sup
z∈B0

n

|SmYn(z)| ≤ 1

q′
n

.

(Y.3) For n sufficiently large, for m ∈ [q′
n, 2qn+1/(n + 1)2], for x such that

{qnx} ∈ [ 1
n , 1

2 − 1
n ] ∪ [ 1

2 + 1
n , 1 − 1

n ] and for any y ∈ T we have

|Dx SmYn(x, y)| ≥ π

2n2

qn

eqn
m,

∥∥D2
x SmYn

∥∥ ≤ 5π2 q2
n

eqn
m.

(Y.3′) For any η > 0, we have for n sufficiently large, for m ∈ [q′
n/2n2, q′

n],
for x such that {qnx} ∈ [ 1

n , 1
2 − 1

n ] ∪ [ 1
2 + 1

n , 1 − 1
n ] and for y ∈ T

such that 1 − m/q′
n + η ≤ {q′

n−1 y} ≤ 1 − η

|Dx SmYn(x, y)| ≥ π

2n2

qn

eqn
m,

∥∥D2
x SmYn

∥∥ ≤ 5π2 q2
n

eqn
m.

(Y.4) For r ≥ 1, for n large enough we have for any m ∈ N
∥∥∥∥∥Dr

x Sm

∑

l≤n

Yl

∥∥∥∥∥ ≤ qn+1

e
1
2 qn

.
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(Y.5) For p ≥ 1, for n large enough we have for any m ∈ N
∥∥∥∥∥Dp

y Sm

∑

l≤n

Yl

∥∥∥∥∥ ≤ q′
n

e
1
2 qn

.

Remark. We stated (Y.3) and (Y.3’) separately because they will be used at
different places in the proof, (Y.3) corresponding to a scale of time where
uniform stretch in the x direction is enough to yield mixing while (Y.3’) is
used at a scale of time where it yields mixing only on “part” of the space as
will be explained in Sect. 7.3.

Define now

ϕ(x, y) := ϕ0 +
∑

n≥n0

Xn(x, y) + Yn(x, y),

where ϕ0 ∈ R and n0 are chosen such that ϕ is strictly positive and has mean
value one. From (X.1), (X.2) and (Y.1) we get that ϕ is of class C1 on T2

and is C∞ in the x variable. With (α, α′) ∈ Y and with the above properties
on Xn and Yn we will prove in the next two sections the following

Theorem 5.2. The special flow T t
Rα,α′ ,ϕ is of rank one and mixing.

6. Proof of the rank one property

We want to check Criterion 2.4 for T t
Rα,α′ ,ϕ. More precisely, given hn and B0

n

as in Definition 3.4 and having Proposition 3.5, we want to show that

lim
n→∞ sup

m≤hn

sup
z,z′∈B0

n

|Smϕ(z′) − Smϕ(z)| = 0. (6.1)

Due to to the Properties (3.1) and (3.2) of the sequences {qn}n∈N and
{q′

n}n∈N we have for n large enough:

• (X.2) (Remark 4.2) implies that

sup
m≤hn

∥∥∥∥∥Sm

(
∑

l≥n+1

Xl

)∥∥∥∥∥ ≤ hn

∑

l≥n+1

1√
ql

≤ q′
n

∑

l≥n+1

1√
ql

≤ 2
q′

n√
qn+1

,

• (Y.1) implies that

sup
m≤hn

∥∥∥∥∥Sm

(
∑

l≥n+1

Yl

)∥∥∥∥∥ ≤ c′(0, 0)q′
n

∑

l≥n+1

1

eql
≤ 2c′(0, 0)

q′
n

eqn+1
,
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• (X.4) and (X.5) imply that

sup
m≤hn

sup
z,z′∈B0

n

∣∣∣∣∣Sm

∑

l≤n−1

Xl(z
′) − Sm

∑

l≤n−1

Xl(z)

∣∣∣∣∣ ≤ 1

eqn−1
+ (q′

n−1)
5 qn

q′
n

,

• (Y.4) and (Y.5) imply that

sup
m≤hn

sup
z,z′∈B0

n

∣∣∣∣∣Sm

∑

l≤n−1

Yl(z
′) − Sm

∑

l≤n−1

Yl(z)

∣∣∣∣∣ ≤ 1

e
1
2 qn−1

+ q′
n−1

e
1
2 qn−1

qn

q′
n

,

• (X.3) implies that

sup
m≤hn

sup
z,z′∈B0

n

|Sm Xn(z
′) − Sm Xn(z)| ≤ 2

qn
.

Together with (Y.2) the above estimations yield the required (6.1). �	

7. Proof of mixing

We will prove mixing in three steps depending on the range of t ∈ R. In
Step 1, mixing is obtained for some range of time due to uniform stretch of
the Birkhoff sums of Yn (Property (Y.3)). In Step 2 mixing is obtained for
another range of time due to staircase stretch of the Birkhoff sums of Xn
(Property (X.3)). For the remaining times mixing is established in Step 3
due to a combination of uniform stretch and staircase stretch mechanisms.
The proof of mixing in Steps 2 and 3 uses the existence of mixing intervals
of time established in Step 1.

7.1. Step 1. Uniform stretch. We will prove in this step that the sequence
of intervals [2q′

n, qn+1/(n + 1)2] is mixing for the special flow T t
Rα,α′ ,ϕ as in

Definition 2.5.

Definition 7.1. Let Ωn be a partition of the set

Jn :=
{

x ∈ T / {qnx} ∈
[

1

n
,

1

2
− 1

n

]
∪
[

1

2
+ 1

n
, 1 − 1

n

]}

in intervals of length between 1
2e−qn and e−qn . Clearly Ωn converges to the

partition into points of T as n → 0.

We want to apply Criterion 2.11 to the sequence {Ωn}n∈N and show that
any sequence tn ∈ [2q′

n, qn+1/(n + 1)2] is mixing. Since ϕ is continuous and
has mean value 1 we have by unique ergodicity of Rα,α′ that for sufficiently
large n, for any t ∈ [2q′

n, qn+1/(n + 1)2], for any (x, y) ∈ T2

m(x, y, t) ∈ [
q′

n, 2qn+1/(n + 1)2]



Rank one and mixing differentiable flows 323

where m(x, y, t) is as in Definition 2.1. Hence Step 1 will follow from
Criterion 2.11 if we prove that for any interval I ∈ Ωn and any y ∈ T we
have for m ∈ [q′

n, 2qn+1/(n + 1)2]
Smϕ(., y) is (Kn, νn) − uniformly stretching on I × {y}, (7.1)

for some sequences Kn → ∞ and νn → 0.
To get this we deduce from the properties of Xn and Yn the following

estimates for i = 1, 2 and for n large enough:

• (X.4) and (Y.4) imply that

sup
m∈N

∥∥∥∥∥Di
x Sm

∑

l≤n−1

(Xl + Yl)

∥∥∥∥∥ ≤ 2qne− 1
2 qn−1,

• (X.1) implies that
∥∥Di

x Sm(
∑

l≥n Xl)
∥∥ ≤ m 2√

q′
n
,

• (Y.1) implies that
∥∥Di

x Sm
( ∑

l≥n+1

Yl
)∥∥ ≤ m

1

e
1
2 qn+1

.

The above quantities being negligible with respect to mqn/n2eqn if m ∈
[q′

n, 2qn+1/(n + 1)2], we deduce from (Y.3) that for this range of m and
for n large enough we have for x ∈ Jn, y ∈ T

|Dx Smϕ(x, y)| ≥ π

3n2

qn

eqn
m,

‖D2
x Smϕ‖ ≤ 6π2 q2

n

eqn
m.

Hence (3.1) implies that for any interval I ∈ Ωn (Definition 7.1) we
have for m as above and any y ∈ T

inf
x∈I

|Dx Smϕ(x, y)||I | ≥ πqn

6n2

m

e2qn

≥ πqn

6n2
eqn ,

and since |I | ≤ e−qn we get

∥∥D2
x Smϕ

∥∥|I | ≤ 18πn2qn

eqn
inf
x∈I

|Dx Smϕ(x, y)|,

and the desired (7.1) follows from Lemma 2.10 with Kn = πqn
6n2 eqn and

νn = 18πn2qn
eqn . �	

7.2. Step 2. Staircase stretch. We will prove in this step that the sequence
of intervals [qn/n2, q′

n/n2] is mixing for the special flow T t
Rα,α′ ,ϕ as in Defin-

ition 2.5. From now on we will assume that A is a fixed ball in MRα,α′ ,ϕ.
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7.2.1. Consequence of Step 1. We begin with a preliminary lemma that is
due to the existence of mixing intervals obtained in Step 1 and that will be
useful in establishing mixing in this Step 2.

Lemma 7.2. There exists a sequence of positive numbers ε1,l → 0 such
that if δ > 0 and H ∈ N satisfy δH ∈ [3(l + 1)q′

l, ql+1/(l + 1)2] and
H ≥ l2 then there exists a set U(H, δ) ⊂ MRα,α′ ,ϕ with µ(U) ≥ 1 − ε1,l

such that for any z ∈ U we have
∣∣∣∣∣

1

H

H−1∑

i=0

χA(T −iδz) − µ(A)

∣∣∣∣∣ < ε1,l

where C is a constant.

Proof. Given f, g ∈ L2(MRα,α′ ,ϕ,R), we define the scalar product

< f/g >:=
∫

MR
α,α′ ,ϕ

f(z)g(z)dµ(z).

The lemma clearly follows if we prove that there exists a sequence εl → 0
such that for any f ∈ L2(MRα,α′ ,ϕ,R) with

∫
MRα,α′ ,ϕ

f(z)dµ(z) = 0 we have

∥∥∥∥∥
1

H

H−1∑

i=0

f ◦ T −iδ

∥∥∥∥∥
L2

≤ C( f )εl. (7.2)

It follows from Step 1 that there exists θl → 0 such that for any τ ∈
[2q′

l , ql+1/(l + 1)2] we have

| < f ◦ T −τ/ f > | ≤ C( f )θl.

Hence we define

H ′ =
[

H

l + 1

]
,

τ = H ′δ,

and we see that since τ ∈ [2q′
l , ql+1/(l + 1)3], we have for any 1 ≤ j ≤ l,

| < f ◦ T − jτ/ f > | ≤ C( f )θl, then




∥∥∥∥∥∥

l∑

j=0

f ◦ T − jτ

∥∥∥∥∥∥
L2




2

≤ (l + 1)‖ f ‖2
L2 + (l2 + l)C( f )θl,

which gives
∥∥∥∥∥∥

1

l + 1

l∑

j=0

f ◦ T − jτ

∥∥∥∥∥∥
L2

≤ 1√
l + 1

‖ f ‖L2 + C( f )
1
2 θ

1
2

l ,
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and since the measure µ is invariant by the flow we have
∥∥∥∥∥∥

1

H ′(l + 1)

H ′(l+1)−1∑

i=0

f ◦ T −iδ

∥∥∥∥∥∥
L2

=
∥∥∥∥∥∥

1

H ′(l + 1)

H ′−1∑

p=0

l∑

j=0

f ◦ T − jτ−pδ

∥∥∥∥∥∥
L2

≤ 1√
l + 1

‖ f ‖L2 + C( f )
1
2 θ

1
2

l .

We conclude observing that
∥∥∥∥∥

1

H

H−1∑

i=0

f ◦ T −iδ

∥∥∥∥∥
L2

≤
∥∥∥∥∥∥

1

H ′(l + 1)

H ′(l+1)−1∑

i=0

f ◦ T −iδ

∥∥∥∥∥∥
L2

+ l + 1

H
‖ f ‖L2

and using the hypothesis H ≥ l2. �	

7.2.2. Good partial partitions at time t. Recall from Sect. 2.3.2 that to
prove that [qn/n2, q′

n/n2] is an interval of mixing it is enough to show that
for any t ∈ [qn/n2, q′

n/n2] there exists a sequence of partial partitions Ωt

with sets of the form ξ = R × {s}, R ⊂ T2, such that Ωt converges to the
partition into points of MRα,α′ ,ϕ as t → ∞ and such that for any ε > 0 we
have for n large enough (2.4) for any set ξ ∈ Ωt , that is

∣∣λ(2)(ξ ∩ T −tn A) − λ(2)(ξ)µ(A)
∣∣ ≤ ελ(2)(ξ),

In all this section we will assume t ∈ [qn/n2, q′
n/n2] is fixed. In relation

with Lemma 7.2 we give the following

Definition 7.3. Given εn as in (4.1) let

M := [t]
δ := Mεn

H :=






[
q′

n−2
8

δ

]
if M ≤ eqn

[
(q′

n−1)
8

δ

]
if M > eqn .

Remark 7.4. It is easy to see that in both cases we have H ≥ n2 and hence
that we can apply Lemma 7.2 to the couple (δ, H) with l = n −2 if M ≤ eqn

and l = n − 1 if M > eqn . It is also clear that H ≤ q′
n

qn(q′
n−1)

6 . The latter will

be crucial when we will want to prove that, for m comparable to t and above
the sets of “length” H (Definition 7.5), only the Birkhoff sums of Sm Xn are
responsible for the variations of Smϕ (see Lemma 7.7).
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Definition 7.5. With the notations of Definitions 3.4 and 7.3, we will call
a set ξ × {s} ⊂ MRα,α′ ,ϕ (ξ ⊂ T2 and 0 ≤ s ≤ inf(x,y)∈ξ ϕ(x, y)) good if

ξ := B
j+i0qnq′

n−1
n ∪ B

j+(i0+1)qnq′
n−1

n ∪ ...B
j+(i0+H−1)qnq′

n−1
n (7.3)

where 0 ≤ j ≤ qnq′
n−1 − 1 and i0 ∈ N satisfies

i0 + H <

(
1 − 4

n

)
rn (7.4)

and if there exists a point z0 ∈ B
j+i0qnq′

n−1
n × {s} such that

z0 ∈ T −tU (7.5)

where U = U(δ, H) is the set obtained in Lemma 7.2 (with l = n − 2 if
M ≤ eqn and l = n − 1 if M > eqn ).

From the fact that for n large H is negligible with respect to rn (see
Remark 7.4) and the fact that the measure of U can be made arbitrarily
close to 0, and from what was said in Sect. 7.2.2 we will finish if we prove
(2.4) for any good set ξ × {s}.

A set ξ × {s} being given we denote it for simplicity by ξ and denote

the sets B
j+(i0+i)qnq′

n−1
n by B(i) for 0 ≤ i ≤ H − 1. We can also assume that

s = 0 since this does not alter the proof.
Fix hereafter ε > 0. Fix also two balls in MRα,α′ ,ϕ, A+ and A− such that

A ⊂ int(A+) and A− ⊂ int(A) and such that

(1 − ε2)µ(A+) ≤ µ(A) ≤ (1 + ε2)µ(A−). (7.6)

The following proposition encloses the essential consequence of the
staircase stretch displayed by the Birkhoff sums of ϕ due to our definition
of Xn and Yn.

Proposition 7.6. There exists n0 ∈ N such that given any time t ∈ [qn/n2,
q′

n/n2] and any good set ξ (see Definition 7.5), we have for any 0 ≤ i ≤ H−1
and any z0 ∈ B(0)

• If T t−iδ(z0) ∈ A− then T t(B(i)) ⊂ A.
• If T t(B(i)) ∩ A �= ∅ then T t−iδ(z0) ∈ A+.

Before proving this proposition we show how to derive (2.4) from it. For
n ≥ n0 and z0 ∈ B(0) we have

H−1∑

i=0

χA−
(
T t−iδ(z0)

)
λ(2)(B(0)) ≤ λ(2)

(
ξ ∩ T −t A

)

≤
H−1∑

i=0

χA+
(
T t−iδ(z0)

)
λ(2)(B(0)).
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Lemma 7.2 is applicable due to Remark 7.4, hence considering the latter
equation for z0 ∈ B(0)∩ T −tU (see (7.5)) we obtain if ε1,n−2 and ε1,n−1 are
sufficiently small that

(1−ε2)Hµ(A−)λ(2)(B(0)) ≤ λ(2)
(
ξ ∩ T −t A

)≤ (1+ε2)Hµ(A+)λ(2)(B(0)).

Since Hλ(2)(B(0)) = λ(2)(ξ) this last inequality and (7.6) lead to (2.4) if
ε ≤ 1

4 . �	
In our proof of Proposition 7.6 we will need the following lemma

Lemma 7.7. There exists a sequence ε2,n → 0 such that if 0 ≤ i1 ≤ i2 ≤
(1 − 4

n )rn and i2 − i1 ≤ q′
n/(qn(q′

n−1)
6
) and m ≤ 2q′

n/n2 then for any

0 ≤ j ≤ qnq′
n−1 − 1 we have for any z1 ∈ B j+i1qnq′

n−1 and z2 ∈ B j+i2qnq′
n−1

|Smϕ(z2) − Smϕ(z1) − (i2 − i1)mεn| ≤ ε2,n. (7.7)

Proof. For j, i1, i2, and m as above we have for every l ≤ m that j +
i1qnq′

n−1 + l ≤ j + i2qnq′
n−1 + l ≤ (1 − 3

n )rnqnq′
n−1 hence (X.3) implies

that

∣∣Xn
(
Rl

α,α′ z2
)− Xn

(
Rl

α,α′ z1
)− (i2 − i1)εn

∣∣ ≤ 1

qnq′
n

hence

|Sm Xn(z2) − Sm Xn(z1) − (i2 − i1)mεn| ≤ 2

n2qn
. (7.8)

We still have to bound |Sm(ϕ − Xn)(z2) − Sm(ϕ − Xn)(z1)|. The condition
i2 −i1 ≤ q′

n/(qn(q′
n−1)

6
) implies that the distance between the y coordinates

of z2 and z1 is less than 1/(q′
n−1)

6 (see Definition 3.4). Therefore (X.4)
and (X.5) imply that |Sm

∑
l≤n−1 Xl(z2) − Sm

∑
l≤n−1 Xl(z1)| ≤ 1/eqn−1 +

1/q′
n−1.
The control of the other terms in Smϕ is similar to the one obtained in

the proof of the rank one property in Sect. 6. �	

7.2.3. Proof of Proposition 7.6. We will prove the first point in the propo-
sition, the second one being obtained similarly. Let 0 ≤ i ≤ H − 1 and
denote by zi some arbitrarily fixed point in B(i). Define V ∈ R by

V := t − SMϕ(zi). (7.9)

We will need in the sequel an upper bound on |V |:
Lemma 7.8. For n sufficiently large, we have for any m ∈ N and any z ∈ T2

|Smϕ(z) − m| ≤ 6
m√
qn

+ 2
qn

e
1
2 qn−1

+ 2(q′
n−1)

5
.
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In particular since M = [t] we have

• If qn

n2 ≤ M ≤ eqn then |V | ≤ M

e
q′
n−2

,

• If eqn ≤ M ≤ q′
n

n2 then |V | ≤ M

e
q′
n−1

.

We will prove this lemma at the end of the section.
Define now

U := t − iδ − SMϕ(z0). (7.10)

By definition of a special flow we have from (7.10) and (7.9)

T t−iδ(z0) = T U
(
RM

α,α′ z0
)
,

T t(zi) = T V
(
RM

α,α′ zi
)
.

But from Lemma 7.7 and Remark 7.4 it follows that as n goes to ∞
|U − V | → 0,

hence if we consider a ball A−′ strictly included in A and strictly including
A− (i.e. A−′ ⊂ intA, A− ⊂ intA−′) we have for sufficiently large n that if
as in the statement of the Proposition T U(RM

α,α′ z0) = T t−iδ(z0) ∈ A− then

T V
(
RM

α,α′ z0
) ∈ A−′

. (7.11)

To finish we must prove that for sufficiently large n the latter implies that

T V
(
RM

α,α′ zi
) ∈ A. (7.12)

For this it is enough to show that as n goes to infinity

sup
m≤2|V |

∣∣Smϕ
(
RM

α,α′ zi
)− Smϕ

(
RM

α,α′ z0
)∣∣ → 0. (7.13)

Since 2|V | + M ≤ 2q′
n/n2 we have by Lemma 7.7 again that for any

m ≤ 2|V |
∣∣Smϕ

(
RM

α,α′ zi
)− Smϕ

(
RM

α,α′ z0
)− imεn

∣∣ ≤ ε3,n,

hence to get (7.13) and finish we just have to check that

|V |Hεn → 0.

In light of the Definition 7.3 of H and Lemma 7.8 we have two cases: If
M ≤ eqn , then |V |Hεn = |V |q′

n−2
8
/M ≤ q′

n−2
8
/eq′

n−2 ; If M > eqn then
|V |Hεn = |V |(q′

n−1)
8
/M ≤ (q′

n−1)
8
/eq′

n−1 .
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It only remains to give the

Proof of Lemma 7.8. As in the proof of the rank one property in Sect. 6, it
follows from Propositions 4.1 and 5.1 that for n sufficiently large we have
for any m ∈ N ∥∥∥∥∥Sm

∑

l≥n

(Xl + Yl)

∥∥∥∥∥ ≤ 3
m√
qn

,

while ∥∥∥∥∥Dx Sm

∑

l≤n−1

(Xl + Yl)

∥∥∥∥∥ ≤ 2
qn

e
1
2 qn−1

,

and ∥∥∥∥∥Dy Sm

∑

l≤n−1

(Xl + Yl)

∥∥∥∥∥ ≤ 2(q′
n−1)

5
,

which yields for any z, z′ ∈ T
∣∣Smϕ(z) − Smϕ(z′)

∣∣ ≤ 6
m√
qn

+ 2
qn

e
1
2 qn−1

+ 2(q′
n−1)

5
,

integrating along z′ we get

|Smϕ(z) − m| ≤ 6
m√
qn

+ 2
qn

e
1
2 qn−1

+ 2(q′
n−1)

5
,

from which Lemma 7.8 easily follows due to the inequalities (3.1) and (3.2)
between the denominators of the best approximations of α and α′. �	

7.3. Step 3. Combining staircase stretch and uniform stretch. In this
step we want to complete the proof of mixing by showing that the intervals
[q′

n/n2, 2q′
n] form a sequence of mixing intervals of time for the special

flow. In this range of time, both mechanisms of mixing displayed in Step 1
and Step 2 enter into play and imply mixing for sets lying in different parts
of MRα,α′ ,ϕ. In all this section we assume t ∈ [q′

n/n2, 2q′
n] is fixed and

introduce

θ := t

q′
n

. (7.14)

With the definition of m(z, t) given in Sect. 2.1, observe that by unique er-
godicity of Rα,α′ and continuity of ϕ and since we chose

∫
T2 ϕ(x, y)dxdy = 1

then for η > 0 arbitrarily small there exists t0 ≥ 0 such that for any t ≥ t0
and any z ∈ MRα,α′ ,ϕ we have

(1 − η2)t ≤ m(z, t) ≤ (1 + η2)t. (7.15)
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Introduce the subsets of MRα,α′ ,ϕ corresponding to uniform stretch and stair-
case stretch respectively

Mu(θ, η) :=
{
(x, y, s) ∈ MRα,α′ ,ϕ / 1 − θ + η ≤ {q′

n−1 y} ≤ 1 − η
}

Ms(θ, η) :=
{
(x, y, s) ∈ MRα,α′ ,ϕ / {q′

n−1 y} ≤ 1 − θ − η
}

,

where for instance if θ ≥ 1 − η we have Ms = ∅.
We see now how the combination of uniform and staircase stretch occurs:

• Due to (Y.3’) we can repeat exactly the arguments of Step 1 and define in
Mu(θ, η) a collection Ωu(t) consisting of intervals in the x direction as in
Definition 7.1 covering all but an arbitrarily small proportion (as n → ∞)
of Mu(θ, η) for which due to uniform stretch (2.4) holds at time t (for an
arbitrary ball A and an arbitrary precision ε provided n is large enough).
• For any z ∈ Ms(θ, η), for any u ≤ t we have T u(z) ∈ Ms(0,

η

2 ) (follows
from the arithmetics of α) hence all the calculations of Step 2 are still valid
at this time t for the points in Ms(θ, η). Hence we can consider a collection
Ωs(t) consisting of good sets as in Definition 7.5, covering all but an ar-
bitrarily small measure of Ms(θ, η), for which (2.4) holds (for an arbitrary
ball A and an arbitrary precision ε provided n is large enough).

Since the measure of the set of MRα,α′ ,ϕ that is not included in Ms(θ, η)∪
Mu(θ, η) converges to 0 as η → 0 the partial partition Ωu(t) ∪ Ωs(t)
converges to the partition into points of MRα,α′ ,ϕ as η → 0 and n → ∞ and
Step 3 is thus completed. �	

8. Construction of Xn

8.1. Construction of a first function X̃n . Let θ be a C∞ increasing func-
tion on R such that,

θ(s) = 0 for s ≤ 0,

θ(s) = 1 for s ≥ 1.

With rn as in Sect. 3.2 and εn as in (4.1), consider on [0, 1
q′

n−1
] the

following function

κn(y) =
(

rn∑

l=1

εnθ

(
n2 q′

n

qn

(
y − l

qn

q′
n

)))(
1 − θ

(
nq′

n−1 y − n + 2
))

(8.1)

extended to a C∞ function onT2 independent of the variable x and of period
1/q′

n−1 in the variable y. This is possible because the left hand side in the
above expression is identically zero when y ≤ qn/q′

n, while the right hand
side is identically zero for y ≥ (1 − 1

n )1/q′
n−1.

In relation with (X.1), (X.2) and (X.3) we will need the following lemmas
on κn
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Lemma 8.1. With rn and D
iqnq′

n−1
n as in Definitions 3.4 and 3.7 we have for

every i ≤ (1 − 2
n )rn that κn is constant on D

iqnq′
n−1

n . More precisely

κn |Diqn q′
n−1

n

≡ iεn.

Proof. When i ≤ (1 − 2
n )rn , (x, y) ∈ D

iqnq′
n−1

n implies that 0 ≤ y ≤
(1 − 2

n ) 1
q′

n−1
, in this case the right hand side in the expression of κn is equal

to 1 and

κn(y) =
rn∑

l=1

εnθ

(
n2 q′

n

qn

(
y − l

qn

q′
n

))
,

but for every l, θ
(
n2q′

n/qn(y − lqn/q′
n)
)

is constant equal to 0 when y ≤
lqn/q′

n , and constant equal to 1 when y ≥ lqn/q′
n + 1

n2 qn/q′
n . Hence every

term in the sum above is constant on D
iqnq′

n−1
n , equal to εn if l ≤ i and to 0

if l > i and the proposition follows. �	
Since for every y at most one of the functions θ

(
n2q′

n/qn(y − iqn/q′
n)
)

is not locally constant we obtain the following straightforward estimates
for κn:

Lemma 8.2. For any p ≥ 1, we have

‖κn‖ ≤ rnεn (8.2)

‖κn‖C p ≤ 2‖θ‖C pn2p

(
q′

n

qn

)p

εn. (8.3)

To complete our construction of the function Xn , we still have to adjust κn

in order to have a function that satisfies (X.3) not only on the sets B
iqnq′

n−1
n ⊂

D
iqnq′

n−1
n ⊂ R0

n , but on all the levels Bh
n of the tower T (B0

n, hn) (see the
definitions in Sect. 3.2). Define on the real line the functions

νn(x) = θ
(
n2qnx

)− θ

(
n2qn

(
x − 1

qn
+ 2

n2qn

))
, (8.4)

υn(y) = θ
(
n2q′

n−1 y + 2
)− θ

(
n2q′

n−1

(
y − 1

q′
n−1

+ 3

n2q′
n−1

))
. (8.5)

We then have

νn(x) = 0 for x ≤ 0, and x ≥ 1

qn
− 1

n2qn
,

νn(x) = 1 for
1

n2qn
≤ x ≤ 1

qn
− 2

n2qn
,
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and

υn(y) = 0 for y ≤ − 2

n2q′
n−1

, and y ≥ 1

q′
n−1

− 2

n2q′
n−1

,

υn(y) = 1 for − 1

n2q′
n−1

≤ y ≤ 1

q′
n−1

− 3

n2q′
n−1

.

Hence we can consider the restriction of the function νn(x)υn(y) on the
rectangle [0, 1/qn] × [−2/n2q′

n−1, 1/q′
n−1 − 2/n2q′

n−1] and extend it by 0
to a C∞ function on the two torus. With R

0
n as in Definition 3.8 we have

that the latter function is constant equal to 1 on R
0
n and to 0 on all the

other R
j
n , 1 ≤ j ≤ qnq′

n−1 − 1. It is also easy to see that the functions
νn(x − l pn/qn)υn(y − l p′

n−1/q′
n−1) are equal to 1 on R

l
n and to 0 on all the

other R
j
n , 0 ≤ j ≤ qnq′

n−1 − 1.
Having Corollary 3.10 in mind and the definition of βn, j in Lemma 3.9,

we set

X̃n(x, y) :=
qnq′

n−1−1∑

j=0

κn(y − βn, j)νn

(
x − j

pn

qn

)
υn

(
y − j

p′
n−1

q′
n−1

)
(8.6)

where κn , νn and υn are defined in (8.1), (8.4) and (8.5). The latter function is
of class C∞ on T2 and is equal to κn(y −βn, j) on R

j
n. Hence, Corollary 3.10

and Lemma 8.1 imply that

Proposition 8.3. With hn and B p
n as in Definition 3.4, the function X̃n is

constant on every B p
n , for all p ≤ hn. More precisely, for every 0 ≤ j ≤

qnq′
n−1 − 1, for every i ≤ (1 − 2

n )rn, we have

X̃n
|B j+iqn q′

n−1
n

≡ iεn. (8.7)

The following estimates follow immediately from (8.2)–(8.6)

Proposition 8.4. We have for n large enough

‖X̃n‖ ≤ rnεn, (8.8)

and for (r, p) �= (0, 0) we have for some constant c(r, p)

∥∥Dr
x Dp

y X̃n

∥∥ ≤ c(r, p)n2r+2pqr
n

(
q′

n

qn

)p

εn. (8.9)
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8.2. The function Xn. Propositions 8.3 and 8.4 enclose the properties
(X.1), (X.2) and (X.3) required for Xn . Nevertheless the function X̃n may
fail to satisfy the uniform bounds required in (X.4) and (X.5). The presence
of high frequencies in the Fourier expansion of X̃n may indeed put in
jeopardy such control. To overcome this problem we turn to truncations.
The function X̃n defined in (8.6) being of class C∞ we consider its Fourier
coefficients Xn

l, j and define

Xn(x, y) :=
∑

l2+ j2≤q′
n

4;(l, j)/∈(Zqn,Z∗q′
n)

Xn
l, jχl, j , (8.10)

where for (l, j) ∈ Z2

χl, j(x, y) := ei2π(lx+ jy).

It is for the function Xn that we want to check the properties of Proposi-
tion 4.1.

Lemma 8.5. For any r ≥ 1, we have for n sufficiently large

‖Xn − X̃n‖ ≤ 1

qnq′
n

, (8.11)

‖Dy(Xn − X̃n)‖ ≤ 1

q2
n

, (8.12)
∥∥Dr

x(Xn − X̃n)
∥∥ ≤ qr−1

n εn. (8.13)

Proof. By definition

X̃n − Xn =
∑

l2+ j2>q′
n

4

Xn
l, jχl, j +

∑

l2+ j2≤q′
n

4

(l, j)∈(Z∗qn,Z∗q′
n)

Xn
l, jχl, j +

∑

0<|p|≤q′
n

Xn
0,pq′

n
χ0,pq′

n
,

we will denote in this proof by A, B, C the first, second and third term in
the latter expression of X̃n − Xn .

Since (l2 + j2)
2|Xn

l, j | ≤ ‖X̃n‖C4 and (pq′
n)

2|X0,pq′
n
| ≤ ‖X̃n‖C2 we have

‖A + C‖ ≤ ‖X̃n‖C4

∑

l2+ j2>q′
n

4

1

(l2 + j2)
2 + ‖X̃n‖C2

q′
n

2

∑

0<|p|≤q′
n

1

p2

≤ c1
‖X̃n‖C4

q′
n

4 + c2
‖X̃n‖C2

q′
n

2

= o

(
1

qnq′
n

)
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from Proposition 8.4 and our choice of εn in (4.1). Likewise

‖B‖ ≤
∑

(l, j)∈(Z∗qn,Z∗q′
n)

∥∥D2
x D2

y X̃n

∥∥

l2 j2

≤ C

q2
nq′

n
2

∥∥D2
x D2

y X̃n

∥∥

= o

(
1

qnq′
n

)

again from Proposition 8.4 and our choice of εn in (4.1). We have proved
(8.11).

In the same way as above we have

‖Dy(X̃n − Xn)‖ ≤ c3

∥∥X̃n

∥∥
C5

q′
n

4 + c4
‖D2

x D3
y X̃n‖

q2
nq′

n
2 + c5

‖X̃n‖C3

q′
n

2

= o

(
1

q2
n

)
.

Finally, for any r ≥ 1 we have

∥∥Dr
x(A)

∥∥ ≤ c5

∥∥Dr
x X̃n

∥∥
C4

q′
n

4

= o
(
qr−1

n εn
)

from Proposition 8.4 and our choice of εn in (4.1), while we also have

∥∥Dr
x(B)

∥∥ ≤ c6

∥∥Dr+2
x D2

y X̃n

∥∥

q2
nq′

n
2

= o
(
qr−1

n εn
)
. �	

8.3. Checking the properties of Proposition 4.1 for Xn. In light of
Lemma 8.5, the Propositions 8.3 and 8.4 yield (X.3), (X.1) and (X.2).
It remains to give the

Proof of (X.4) and (X.5). We will need the following lemma

Lemma 8.6. We have for any m ∈ N

‖Smχl, j‖ ≤ inf

(
m,

1

2|||lα + jα′|||
)

(8.14)

where |||.||| denotes the distance to the closest integer.
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Proof. We have
Smχl, j (x, y) = Ul, j,mχl, j (x, y),

where

Ul, j,m = 1 − ei2πm(lα+ jα′)

1 − ei2π(lα+ jα′) .

Clearly

|Ul, j,m| =
∣∣∣∣
sin(πm(lα + jα′))
sin(π(lα + jα′))

∣∣∣∣

≤ 1

| sin(π(lα + jα′))| ,

but | sin(π(lα + jα′)| = | sin(π(|||lα + jα′|||)| ≥ 2|||lα + jα′|||. �	
We have

Sm Xn(x, y) =
∑

l2+ j2≤q′
n

4;(l, j)/∈(Zqn,Z∗q′
n)

Xn
l, j Smχl, j

=
∑

l2+ j2≤q′
n

4;(l, j)/∈(Zqn,Zq′
n)

Xn
l, j Smχl, j +

∑

|l|≤ q′
n

2

qn

Smχlqn ,0.

From (2.7) in Sect. 2.4 and Properties (3.1)–(3.3) in our choice of α, α′
in Sect. 3.1 we deduce that

• For |l| ≤ q′
n

2 and | j| ≤ q′
n

2 such that | j| /∈ Nq′
n or |l| /∈ Nqn we have

|||lα + jα′||| ≥ 1

2qnq′
n

. (8.15)

• For |l| < qn+1

|||lα||| ≥ 1

2qn+1
. (8.16)

Using Lemma 8.6 we hence get for r ≥ 1
∥∥Dr

x Sm Xn(x, y)
∥∥ ≤ qnq′

n

∑

l2+ j2≤q′
n

4

(2π|l|)r
∣∣Xn

l, j

∣∣

+qn+1

∑

0<|l|≤q′
n

2

(2π|l|)r
∣∣Xn

l,0

∣∣

≤ cqnq′
n

5∥∥Dr
x X̃n

∥∥+ qn+1

∥∥Dr+2
x X̃n

∥∥ ∑

0<|l|≤q′
n

2

1

l2
,

which yields (X.4) of Proposition 4.1 due to Proposition 8.4.
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Similarly, to get (X.5) we write for p ≥ 1
∥∥Dp

y Sm Xn(x, y)
∥∥ ≤ qnq′

n

∑

l2+ j2≤q′
n

4

(2π| j|)p
∣∣Xn

l, j

∣∣

≤ qnq′
n

5∥∥Dp
y X̃n

∥∥

which implies (X.5) due to Proposition 8.4. �	

9. Construction of Yn

9.1. Construction of a first function Ỹn. Define, for y ∈ [0, 1
q′

n−1
] the

following function

φ̃n(y) := θ
(
n3q′

n−1 y − n3 + n2)− θ
(
n3q′

n−1 y − n3 + n
)
.

Since θ is increasing and θ(s) = 0 for s ≤ 0, and θ(s) = 1 for s ≥ 1, it is
easy to check that

0 ≤ φ̃n(y) ≤ 1, (9.1)

and that

φ̃n(y) = 0, if y ∈
[

0,

(
1 − 1

n

)
1

q′
n−1

]
∪
[(

1 − 1

n3

)
1

q′
n−1

,
1

q′
n−1

]
, (9.2)

while

φ̃n(y) = 1, if y ∈
[(

1 − 1

n
+ 1

n2

)
1

q′
n−1

,

(
1 − 1

n2

)
1

q′
n−1

]
. (9.3)

Due to (9.2) it is possible to extend φ̃n to the circle as a C∞ periodic
function with period 1/q′

n−1 with the following estimate for any p ∈ N
∥∥Dp

y φ̃n

∥∥ = ‖θ‖C pn3p(q′
n−1)

p
. (9.4)

Define now on the two torus the function

Ỹn(x, y) := − cos(2πqnx)

eqn
φ̃n(y).

The function Ỹn is of class C∞, and satisfies

Proposition 9.1. For r, p ∈ N, we have

∥∥Dr
x Dp

y Ỹn

∥∥ = ‖θ‖C p(2π)rn3p(q′
n−1)

p qr
n

eqn
.

In preparation for (Y.3) and (Y.3’) we have
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Proposition 9.2. For x such that {qnx} ∈ [ 1
n , 1

2 − 1
n ] ∪ [ 1

2 + 1
n , 1 − 1

n ], and
m ∈ [q′

n, 2qn+1/(n + 1)2], we have
∣∣Dx SmỸn(x, y)

∣∣ ≥ π

n2

qn

eqn
m,

∥∥D2
x SmỸn

∥∥ ≤ 4π2 q2
n

eqn
m.

Given η > 0, the same inequalities above hold for sufficiently large n for
m ∈ [q′

n/2n2, q′
n] if we restrict y to 1 − m/q′

n + η ≤ {q′
n−1 y} ≤ 1 − η.

Proof. We have

DxỸn(x, y) = 2πqn
sin(2πqnx)

eqn
φ̃n(y).

Assume that {qnx} ∈ [ 1
n , 1

2 − 1
n ], the other case being similar. For k ≤ m ≤

2qn+1/(n + 1)2 (2.6) implies that

{qn(x + kα)} ∈
[

1

2n
,

1

2
− 1

2n

]
,

hence, sin(2πqn(x +kα)) ≥ sin(π/n) ≥ 2/n and because φ̃n is positive this
implies

DxỸn(x + kα, y + kα′) ≥ φ̃n(y + kα′)
4πqn

neqn
≥ 0.

In light of (9.3), we will finish if we prove that for every y and for every
m ≥ q′

n there is more than m/4n integers k ≤ m such that {q′
n−1(y+kα′)} ∈[

1 − 1
n + 1

n2 , 1 − 1
n2

]
. The latter follows if for every y, there is at least q′

n
2n

integers k ≤ q′
n satisfying the desired property. This in turn follows from the

good approximation of Rα′ by Rp′
n /q′

n
. The proof in the case m ∈ [q′

n/2n2, q′
n]

follows in the same way.
To obtain the inequality involving the second derivative we just bound

the cosine by 1 and use ‖φ̃n‖ ≤ 1. �	
In preparation for (Y.2) we have

Proposition 9.3. With hn and B0
n as in Definition 3.4 we have for any

m ≤ hn that SmỸ n is identically zero on B0
n.

Proof. Given h ≤ m ≤ hn, let i ≤ (1 − 2/n)rn and 0 ≤ j ≤ qnq′
n−1 − 1

be such that h = j + iqnq′
n−1. From (3.5) in Sect. 3.2 we have that for

(x, y) ∈ Rh
α,α′(B0

n)

y ∈
[

j
p′

n−1

q′
n−1

, j
p′

n−1

q′
n−1

+ (i + 2)
qn

q′
n

]

⊂
[

j
p′

n−1

q′
n−1

, j
p′

n−1

q′
n−1

+
(

1 − 1

n

)
1

q′
n−1

]
,

hence φ̃n(x, y) = 0 from (9.2). �	
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9.2. The function Yn. The function Ỹn has all the required properties by
Proposition 5.1 except for the uniform bounds on the Birkhoff sums of the
derivatives. As we did in the last section we replace φ̃n by

φn(y) =
q′

n−1∑

j=−q′
n+1

φn
j e

i2π jy,

where the φn
j are the Fourier coefficient of φ̃n . We then let

Yn(x, y) := −cos(2πqnx)

eqn
φn(y).

The truncation here is less delicate than in the definition of Xn due to the
fact that the sequence Yn converges to zero in the C∞ norm.

9.3. Checking the properties of Proposition 5.1 for Yn. From (9.4) it is
easy to see that for any p ∈ N, we have for n large enough

‖φ̃n − φn‖C p ≤
∑

| j|≥q′
n

(2π| j|)p
∣∣φn

j

∣∣

≤ ‖φ̃‖C p+4

∑

| j|≥q′
n

1

j4

= o

(
1

q′
n

2

)
.

Combined with Propositions 9.1, 9.2 and 9.3 the above yields (Y.1), (Y.2),
(Y.3) and (Y.3’) for Yn. It remains to give the

Proof of (Y.4) and (Y.5). The proof is similar yet easier than that for Xn: For
any m ∈ N we have

SmYn(x, y) =
∑

| j|<q′
n

φn
j

2eqn
Sm(χqn, j + χ−qn , j).

Since |||qnα||| < 1/qn+1 while ||| jα′||| > 1/2q′
n for any 0 < | j| < q′

n then
for such j we have ||| ± qnα + jα′||| ≥ 1/4q′

n , hence Lemma 8.6 implies

∥∥Dp
y SmYn(x, y)

∥∥ ≤ 2
q′

n

eqn

∑

0<| j|<q′
n

(2π| j|)p
∣∣φn

j

∣∣

≤ C
q′

n

eqn
‖φ̃n‖C p+2

which yields (Y.5) due to (9.4).
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For r ∈ N we have

Dr
x SmYn(x, y) =

∑

0<| j|<q′
n

φn
j

2eqn
(i2πqn)

r Sm(χqn, j + χ−qn , j)

+ φn
0

2eqn
(i2πqn)

r Sm(χqn ,0 + χ−qn ,0).

As in our proof of (Y.5) the first term is uniformly bounded away from q′
n;

while the second term is bounded by qn+1(2πqn)
r/eqn since 0 ≤ φn

0 ≤
‖φ̃n‖ ≤ 1 and ‖Smχ±qn ,0‖ ≤ 1/(2|||qnα|||) ≤ qn+1. Hence (Y.4) is proved.

�	
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