Rigidity times for weakly mixing dynamical system which are not rigidity times for any irrational rotation

Bassam Fayad and Adam Kanigowski

1st July 2014

Abstract

We construct an increasing sequence of natural numbers $\left(m_{n}\right)_{n=1}^{+\infty}$ with the property that $\left(m_{n} \theta[1]\right)_{n \geqslant 1}$ is dense in \mathbb{T} for any $\theta \in \mathbb{R} \backslash \mathbb{Q}$, and a continuous measure on the circle μ such that $\lim _{n \rightarrow+\infty} \int_{\mathbb{T}}\left\|m_{n} \theta\right\| d \mu(\theta)=0$. Moreover, for every fixed $k \in \mathbb{N}$, the set $\left\{n \in \mathbb{N}: k \nmid m_{n}\right\}$ is infinite.

This is a sufficient condition for the existence of a rigid, weakly mixing dynamical system whose rigidity time is not a rigidity time for any system with a discrete part in its spectrum.

1 Introduction

Let \mathbb{T} denote the circle group with addition $\bmod 1$. For $\eta \in \mathbb{R}$ we denote by $\eta[1]$ the fractional part of η and $\|\eta\|$ its distance to integers. It follows that $\|\eta\|=$ $\min (\eta[1],(1-\eta)[1])$. Therefore for any $\eta \in \mathbb{R},\|\eta\| \leqslant \frac{1}{2}$.

In this note, we prove the following two results.
Theorem 1. Fix rationally independent numbers $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}} \in \mathbb{T} \mathbb{1}$ There exists an increasing sequence $\left(m_{n}\right)_{n=1}^{+\infty}$ such that $\left(m_{n} \theta[1]\right)_{n \geqslant 1}$ is dense in \mathbb{T} for every irrational θ, and for every $\epsilon>0$ and $k \in \mathbb{N}$ there exists $N_{0} \in \mathbb{N}$ such that for every $n \geqslant N_{0}$ we have $\left\|m_{n} \alpha_{i}\right\|<\epsilon$ for at least $k-1$ choices of $i \in\{1, \ldots, k\}$. Moreover for every $k \in \mathbb{N}$ the set $\left\{n \in \mathbb{N}: k \nmid m_{n}\right\}$ is infinite.

Theorem 2. Fix rationally independent numbers $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}} \in \mathbb{T}$ and let $\left(m_{n}\right)_{n \geqslant 1}$ be the corresponding sequence from Theorem 1. There exists a continuous probability measure μ on \mathbb{T} such that

$$
\lim _{n \rightarrow+\infty} \int_{\mathbb{T}}\left\|m_{n} \theta\right\| d \mu(\theta)=0
$$

[^0]Theorem 1 gives us an increasing sequence of natural numbers $\left(m_{n}\right)_{n=1}^{+\infty}$ which is not a rigidity time for any system with a discrete part in its spectrum. Indeed, if the system has an irrational eigenvalue then it has the irrational rotation as a factor. If it has a rational eigenvalue then it has a shift on a finite group as a factor. But a rigidity time for a dynamical system is also a rigidity time for its factors, and a sequence as in Theorem cannot be a rigidity sequence for any rational or irrational rotation.

From Theorem 2, by the Gaussian measure space construction (see [3]), we deduce that there exists a weakly mixing dynamical system whose rigidity times contain the constructed sequence $\left(m_{n}\right)_{n=1}^{+\infty}$. This gives a full answer to the question stated in [2] of whether a rigidity times sequence of a system with discrete spectrum is a rigidity time for some weakly mixing and conversely whether a rigidity times sequence of a system with continuous spectrum is a rigidity times sequence for some discrete spectrum system. The first direction was established in [1] and later in 4, namely, any rigidity time of a system with discrete spectrum is also a rigidity time for some weakly mixing dynamical system.

Our approach is inspired by the completely spectral approach adopted in [4]. First we prove the existence of a sequence m_{n} which is not a rigidity time for any circle rotation, but still satisfies that $\left\|m_{n} \alpha_{i}\right\|$ is small for most of the indices i of a family of rationally independent numbers $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}} \in \mathbb{T}$ (see precise statement in Theorem (1).

This allows to construct a continuous probability measure on \mathbb{T}, that is a weak limit of discrete measures each supported on some finite set connected with the numbers $\alpha_{1}, \alpha_{2}, \ldots$, with a Fourier transform converging to 1 along this sequence.

The auhors would like to thank to Jean-Paul Thouvenot for his meaningful input in solving this problem.

2 Proof of Theorem 1

Let there be given a family of rationally independent numbers $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}} \in \mathbb{T}$. We will first state a lemma, which is a generalisation of Lemma 1 in [4].

Definition 3. 4] For an interval $I \subset \mathbb{T}$ and fixed $\epsilon>0$ one says that $\theta \in$ $\mathcal{A}\left(N_{1}, N_{2}, \epsilon, I, k\right)$ if for every $m \in\left[N_{1}, N_{2}\right]$ such that $\left\|m \alpha_{i}\right\|<\epsilon$ for $i=1, \ldots, k$, we have $m \theta[1] \notin I$.

Lemma 4. For every $l \geqslant 2$ there exists $L(l) \in \mathbb{N}$ such that for every $0<\epsilon<\frac{1}{2 l^{2}}$, for every $v>0$, for every k, there exist $K(\epsilon) \in \mathbb{N}$ and $N^{\prime}=N^{\prime}(l, \epsilon, v, N, k) \in \mathbb{N}$ such that $\theta \in \mathcal{A}\left(N_{1}, N^{\prime}, I, \epsilon, k\right)$ for some interval I of size $\frac{1}{l}$, implies that $\| \sum_{i=1}^{k} r_{i} \alpha_{i}-$ $l^{\prime} \theta \|<v$ for some $\left|r_{1}\right|, \ldots,\left|r_{k}\right|<K(k, \epsilon)$ and some $\left|l^{\prime}\right|<L(l)$.

The proof is a repetition of the proof of Lemma 1 in [4]. Instead of considering $\phi_{\epsilon}: \mathbb{T} \rightarrow \mathbb{R}$ one needs to consider $\phi_{\epsilon}^{k}: \mathbb{T}^{k} \rightarrow \mathbb{R}$. It follows by the proof that the number $L\left(l,\left\{\alpha_{i}\right\}_{i=1}^{k}\right)$ does not depend on the numbers $\left\{\alpha_{i}\right\}_{i=1}^{k}$ and that is why we just had $L(l)$ in the statement. Indeed, similarly to Lemma 1 in [4, one considers a polynomial $\varphi_{l}: \mathbb{T} \rightarrow \mathbb{R}, \varphi_{l}(y):=\sum_{0<|k|<L(l)} \hat{\varphi}_{k} e^{i 2 \pi k y}$, where $L(l)$ is such that

- $\varphi_{l}(y)>1$ for every $y \notin\left[0, \frac{1}{l}\right]$
- $\left|\varphi_{l}(y)\right|<l^{2}$ for every $y \in \mathbb{T}$.

Therefore $L(l) \in \mathbb{N}$ does not depend on $\left\{\alpha_{i}\right\}_{i=1}^{k}$.
Remark 5. Consider an ergodic rotation $T: T^{j} \rightarrow T^{j}, T\left(x_{1}, \ldots, x_{j}\right)=\left(x_{1}+\right.$ $\left.\gamma_{1}, \ldots, x_{j}+\gamma_{j}\right)$, for $\gamma_{1}, \ldots, \gamma_{j} \in \mathbb{T}$. It follows that for every $k \in \mathbb{N}$ and every $\epsilon>0$, there exist (infinitely many) $m \in \mathbb{N}$ such that $\left\|m \gamma_{i}\right\|<\epsilon$ for $i=1, \ldots, j$ and $k \nmid m$. Indeed, for every fixed $k \in \mathbb{N}$ there exist a sequence $\left(r_{n}\right)_{n \geqslant 1}$ such that $T^{r_{n}}(0) \rightarrow \frac{1}{k} T(0)$.

Proposition 6. Fix rationally independent numbers $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}} \in \mathbb{T}$. There exists a sequence $\left(s_{n}\right)$ such that $\lim _{n \rightarrow+\infty}\left\|s_{n} \alpha_{i}\right\|=0$ for $i=1, \ldots$ and $\left(s_{n} \theta[1]\right)_{n \geqslant 1}$ is dense in \mathbb{T} if and only if $\theta \notin \mathbb{Q}+\mathbb{Q} \alpha_{1}+$.. 2 .

Proof.
We will use Lemma 4 for $k=1,2, \ldots$. Define for $n \geqslant 1$ the sequence $l_{n}=n+1$. Let $\epsilon_{n}=\frac{1}{2(n+1)^{2}}$ and $K_{n}:=K\left(n, \epsilon_{n}\right)$. Define $v_{n}=\frac{1}{n} \inf _{0 \leqslant\left|k_{1}\right|, \ldots,\left|k_{n+1}\right| \leqslant K_{n+1}}\left\|\sum_{i=1}^{n+1} k_{i} \alpha_{i}\right\|$. Take $N_{0}=0$ and apply Lemma 4 with $k=1, l=l_{1}, \epsilon=\epsilon_{1}, N=N_{0}, v=v_{1}$. Denote $N_{1}=N^{\prime}\left(l_{1}, \epsilon_{1}, v_{1}, N_{0}, 1\right)$. We apply Lemma 4 inductively for $k=n, l=l_{n}, \epsilon=$ $\epsilon_{n}, N=N_{n}, v=v_{n}$ and choose $N_{n+1}>N^{\prime}\left(l_{n}, \epsilon_{n}, v_{n}, N_{n}, n\right)$ sufficiently large. Then we define an increasing sequence $\left(s_{n}\right)_{n=1}^{+\infty}$ by taking, for every $i \in \mathbb{N}$, all integers $s \in\left[N_{i}, N_{i+1}\right]$ such that $\left\|s \alpha_{t}\right\|<\epsilon_{i}$ for every $t=1, \ldots, i$ (we can choose N_{i+1} so that such $s \in\left[N_{i}, N_{i+1}\right]$ exists). Moreover by Remark 5 we can choose N_{i+1} so that for every $r=1, \ldots, i$ there exists $s_{r} \in\left[N_{i}, N_{i+1}\right]$ with $r \nmid s_{r}$.

Notice first that for every $r \in \mathbb{N}, \lim _{n \rightarrow+\infty}\left\|s_{n} \alpha_{r}\right\|=0$. Indeed, for every $j>r$ and every $t \in \mathbb{N}$ such that $s_{t} \in\left[N_{j}, N_{j+1}\right]$ we have $\left\|s_{t} \alpha_{r}\right\|<\epsilon_{j}$.

Now, let $\theta \in \mathbb{T}$ be such that $s_{n} \theta[1]$ is not dense in \mathbb{T}. Then there exists $I \subset \mathbb{T}$, $|I|=\frac{1}{l_{s}}$ for some s such that $s_{n} \theta[1] \notin I$. By the definition of the sequence $\left(s_{n}\right)_{n=1}^{+\infty}$ it follows that there exists n_{0} such that $\theta \in \mathcal{A}\left(N_{n}, N_{n+1}, I, \epsilon, n\right)$ for every $n \geqslant n_{0}$. Therefore, by Lemma 4 it follows that there are integers $k_{1}^{n}, \ldots, k_{n}^{n}$ with $\left|k_{i}^{n}\right|<K_{n}$ for every $i=1, \ldots, n$ such that $\left\|\sum_{i=1}^{n} k_{i}^{n} \alpha_{i}-l^{\prime} \theta\right\|<v_{n}$ for some $\left|l^{\prime}\right|<L=L\left(l_{s}\right)$. Therefore, $\left\|\sum_{i=1}^{n} h_{i}^{n} \alpha_{i}-L!\theta\right\|<L!v_{n}$, for some numbers $h_{1}^{n}, \ldots, h_{n}^{n} \in \mathbb{N}$ with $\left|h_{i}^{n}\right|<$ $L!K_{n}$. It follows by triangle inequality that $\left\|\sum_{i=1}^{n+1} h_{i}^{n+1} \alpha_{i}-\sum_{i=1}^{n} h_{i}^{n} \alpha_{i}\right\|<L!v_{n}+$ $L!v_{n+1}<2 L!v_{n}$. By the definition of v_{n}, we get that there exists $n_{1} \in \mathbb{N}$ such that for $n \geqslant n_{1}$, these two combinations are equal. Therefore $\mid \sum_{i=1}^{n_{1}} h_{i}^{n_{1}} \alpha_{i}-L!\theta \|<L!v_{n}$ for every $n \geqslant n_{1}$. But $v_{n} \leqslant \frac{1}{n} \rightarrow 0$ and consequently $\theta \in \mathbb{Q}+\mathbb{Q} \alpha_{1}+\ldots+\mathbb{Q} \alpha_{n_{1}}$.

On the other hand, it follows by construction of $\left(s_{n}\right)_{n \geqslant 1}$ that $\left(s_{n} \theta[1]\right)_{n \geqslant 1}$ is not dense in \mathbb{T} if $\theta \in \mathbb{Q}+\mathbb{Q} \alpha_{1}+\ldots$.

Proof of Theorem 1 . For every $i \in \mathbb{N}$, let $\left\{s_{n}^{(i)}\right\}_{n \in \mathbb{N}}$ be a sequence as in Proposition I made 6 applied to the family of rationally independent numbers $\left\{\alpha_{j}\right\}_{j \in \mathbb{N}, j \neq i} \in \mathbb{T}$. Let some $\left(N_{s}(i)\right)_{s \geqslant 1}$ be the corresponding sequence of natural numbers given in the proof explanaof Proposition 6, that is $\left\|s_{t}^{(i)} \alpha_{r}\right\|<\frac{1}{2(j+1)^{2}}$ for every $t \geqslant N_{j}(i)$ (this implies that tion. $\left.s_{t}>N_{j}(i)\right)$ and every $r<j$. Then define the sequence $\tilde{s}_{n}^{(i)}:=s_{n+N_{i}(i)}^{(i)}$

[^1]Then define m_{n} to be the sequence $\tilde{s}_{1}^{(1)}, \tilde{s}_{2}^{(1)}, \tilde{s}_{1}^{(2)}, \tilde{s}_{3}^{(1)}, \tilde{s}_{2}^{(2)}, \tilde{s}_{1}^{(3)}, \tilde{s}_{4}^{(1)}, \tilde{s}_{3}^{(2)}, \tilde{s}_{2}^{(3)}, \tilde{s}_{1}^{(4)}, \ldots$. The sequence m_{n} satisfies the conditions of Theorem [1. Indeed, first note that for any irrational θ there exists i such that $\theta \notin \bigcup_{i=1}^{+\infty}\left(\mathbb{Q}+\ldots+\mathbb{Q} \alpha_{i-1}+\mathbb{Q} \alpha_{i+1}+\ldots\right)$, hence $\left(m_{n} \theta[1]\right)_{n \geqslant 1}$ is dense by just considering the subsequence $\tilde{s}_{l}^{(i)}$. Secondly fix $\epsilon>0$ and $k \in \mathbb{N}$. Let $r \in \mathbb{N}$ be such that $\frac{1}{2(r+1)^{2}}<\epsilon$. Define $N_{0}:=\left(\max \left\{N_{r}(1), \ldots, N_{r}(r)\right\}\right)^{2}$. Then, by definition of the sequence $\left(m_{n}\right)_{n \geqslant 1},\left\|m_{n} \alpha_{i}\right\|<\frac{1}{2(r+1)^{2}}<\epsilon$, for every $n>N_{0}$ and every $i \in\{1, \ldots, k\}$ except for at most one i that satisfies $m_{n}=\tilde{s}_{l_{n}}^{(i)}$.
Remark 7. It follows that for every $\epsilon>0, i \in \mathbb{N}$ there exist $n_{0} \in \mathbb{N}$ such that for every $n \geqslant n_{0}, \sum_{s=1}^{i}\left\|m_{n} \alpha_{s}\right\|<\frac{1}{2}+\epsilon$.

3 Proof of Theorem 2.

Fix rationally independent numbers $\left(\alpha_{i}\right)_{i \geqslant 1} \in \mathbb{T}$ and let $\left(m_{n}\right)_{n=1}^{+\infty}$ be the corresponding sequence given by Theorem [1.
For the construction of the measure μ we will proceed similary to [4] (and we borrow notation from there). For a probability measure ν on \mathbb{T} we denote by $\nu^{n}=\left|\int_{\mathbb{T}}\right|\left|m_{n} \theta \| d \mu(\theta)\right|$. We will define inductively a sequence $\left(k_{n}\right)_{n \geqslant 1}$ so that the measure μ will be a weak limit of discrete measures $\mu_{p}:=\frac{1}{2^{p}} \sum_{i=1}^{2^{p}} \delta_{k_{i} \alpha_{i}}$ for some numbers $k_{i} \in \mathbb{N}$ such that there exists a sequence $\left(N_{p}\right)_{p=1}^{+\infty}$ for which
(i) For every $p \geqslant 1$, for every $j \in[1, p-1]$, for every $n \in\left[N_{j}, N_{j+1}\right], \mu_{p}^{n}<\frac{1}{2^{j-1}}$ (for $j=0 \mu_{p}^{n}<1$).
(ii) For $p_{0} \in \mathbb{N}$ denote by $\eta_{p_{0}}=\frac{1}{4} \inf _{1 \leqslant i<j \leqslant 2^{p_{0}}}\left\|k_{i} \alpha_{i}-k_{j} \alpha_{j}\right\|$. Then for every $l \in \mathbb{N}$ and every $r \in\left[1,2^{p_{0}}\right],\left\|k_{l 2^{p_{0}}+r} \alpha_{l 2^{p_{0}}+r}-k_{r} \alpha_{r}\right\|<\eta_{p_{0}}$.

In fact, similarly to [4], we get that any weak limit μ of a sequence μ_{p} as above, satisfies the conclusion of Theorem 2, Indeed, by (i) $\mu^{n} \rightarrow 0$. By (ii) it follows that for each p_{0}, the intervals $I_{r}=\left[-\eta_{p_{0}}+k_{r} \alpha_{r}, \eta_{p_{0}}+k_{r} \alpha_{r}\right], r=1, \ldots, 2^{p_{0}}$ are disjoint and $\mu_{p}\left(I_{r}\right)=\frac{1}{2^{p_{0}}}$ for every $p \geqslant p_{0}$ and therefore the limit measure μ is continuous.

Therefore, we just have to construct the measures μ_{p} as in (i) and (ii). We will do an inductive construction, in which we will additionally require that for every p

$$
\begin{equation*}
\mu_{p}^{n}<\frac{1}{2^{p+1}}+\frac{1}{2^{p+3}} \text { for } n \geqslant N_{p} \tag{1}
\end{equation*}
$$

For $p=0$ let $k_{1}=1$, then μ is the Dirac measure at α_{1}. Let $N_{0}=0$. For $p=1$, $k_{2}=1$, then μ_{1} is the average of Dirac measures at α_{1} and α_{2}. We choose $N_{1}=1$. This satisfies (i) and (11) for $p=1$.
Assume that we have constructed k_{i} for $i=1, \ldots, 2^{p}, N_{l}$ for $1 \leqslant l \leqslant 2^{p}$ such that (i) and (1) is satisfied up to p and (ii) is satisfied for every $p_{0} \leqslant p$ and $0 \leqslant l \leqslant 2^{p-p_{0}}-1$. We now choose $k_{2^{p}+1}$ so that $k_{2^{p}+1} \alpha_{2^{p}+1}$ is sufficiently close to $k_{1} \alpha_{1}$ so that

$$
\nu_{p, 1}=\frac{1}{2^{p}} \sum_{i=1}^{2^{p}} \delta_{k_{i} \alpha_{i}}+\frac{1}{2^{p+1}}\left(\delta_{k_{2^{p}+1}} \alpha_{2^{p}+1}-\delta_{k_{1} \alpha_{1}}\right)
$$

satisfies $\nu_{p, 1}^{n}<\frac{1}{2^{j-1}}$ for $n \in\left[N_{j}, N_{j+1}\right]$ and $j \in[0, p-1]\left(\nu_{p, 1}^{n}=\mu_{p}^{n}+\frac{1}{2^{p+1}}\left(\| m_{n} k_{2^{p}+1} \alpha_{2^{p}+1}-\right.\right.$ $\left.m_{n} k_{1} \alpha_{1} \|\right)$). Moreover it follows that for $n \geqslant N_{p}$ we have $\nu_{p, 1}^{n}<\mu_{p}^{n}+\frac{1}{2^{p+1}}<$ $\frac{1}{2^{p+1}}+\frac{1}{2^{p+3}}+\frac{1}{2^{p+1}}<\frac{1}{2^{p-1}}$. Let $N_{p, 1}>N_{p}$ be sufficiently large so that $\nu_{p, 1}^{n}<\frac{1}{2^{p}}$ for $n \geqslant N_{p, 1}\left(\nu_{p, 1}^{n}<\mu_{p}^{n}+\frac{1}{2^{p+1}}\right.$ and μ_{p}^{n} can be arbitrary close to $\frac{1}{2^{p+1}}$ by Remark (7). Now construct idnuctively for $s=1, \ldots, 2^{p}$ the numbers $k_{2^{p}+s}, N_{p, s} \in \mathbb{N}$ for the measures $\nu_{p, s}$ given by $\nu_{p, s}=\mu_{p}+\frac{1}{2^{p+1}}\left(\sum_{i=1}^{s}\left(\delta_{k_{2 p+i} \alpha_{2 p+i}}-\delta_{k_{i} \alpha_{i}}\right)\right)$. It follows that by choosing $k_{2^{p}+s}$ so that $k_{2^{p}+s} \alpha_{2^{p}+s}$ is sufficiently close to $k_{s} \alpha_{s}$ and $N_{p, s}$ large enough, we can insure that
A. $\nu_{p, s}^{n}<\frac{1}{2^{j-1}}$ for every $n \in\left[N_{j}, N_{j+1]}\right.$, and $j \leqslant p-1$.
B. $\nu_{p, s}^{n}<\frac{1}{2^{p-1}}$ for $n \geqslant N_{p}$.
C. $\nu_{p, s}^{n}<\frac{1}{2^{p}}$ for $n \geqslant N_{p, s}$.

Indeed, for $s=1$ the above conditions are satisfied, assume that for some $s \geqslant 1$, they hold. We will prove that they hold for $s+1$. First note that $v_{p, s}-v_{p, s-1}=$ $\frac{1}{2^{p+1}}\left(\delta_{k_{2 p+s} \alpha_{2 p+s}}-\delta_{k_{s} \alpha_{s}}\right)$. Therefore by choosing $k_{2^{p}+s}$ so that $k_{2^{p}+s} \alpha_{2^{p}+s}$ is sufficienlty close to $k_{s} \alpha_{s}$ and by induction hypothesis, we get that $\nu_{p, s}^{n}<\frac{1}{2^{j-1}}$ for every $n \in$ $\left[N_{j}, N_{j+1}\right]$ with $j \leqslant p-1$. The same arguments gives us $\nu_{p, s}^{n}<\frac{1}{2^{p-1}}$ for $N_{p, s-1} \geqslant$ $n \geqslant N_{p}$. For $n>N_{p, s-1}$ we use the fact that $\nu_{p, s-1}^{n}<\frac{1}{2^{p}}$ to get $\nu_{p, s}^{n}<\nu_{p, s-1}^{n}+\frac{1}{2^{p+1}}<$ $\frac{1}{2^{p}}+\frac{1}{2^{p}}=\frac{1}{2^{p-1}}$. For the third point we use the fact that for n sufficiently large, $\left\|m_{n} \alpha_{i}\right\|$ is arbitrary small for all but one $i \in\left\{1, \ldots, 2^{p}+s\right\}$ (compare with Remark (7), to get that for $N_{p, s}$ large enough, $\nu_{p, s}^{n}<\frac{1}{2^{p+1}}+\frac{1}{2^{p+2}}+\frac{1}{2^{p+2}}=\frac{1}{2^{p}}$, for $n \geqslant N_{p, s}$.

Finally we define $\mu_{p+1}=\nu_{p, 2^{p}}$ and observe that μ_{p+1} satisfies (i). Moreover, by definition $\mu_{p+1}=\frac{1}{2^{p+1}} \sum_{i=1}^{2^{p+1}} \delta_{k_{i} \alpha_{i}}$ and using the properties of the sequence $\left(m_{n}\right)_{n \geqslant 1}$ $\left(\left\|m_{n} \alpha_{i}\right\|\right.$ is arbitrary small for all but one $i=1, \ldots, 2^{p+1}$, see also Remark 7) we get that if N_{p+1} is sufficiently large, then (11) is satisfied for μ_{p+1}.

Moreover, for $l=2^{p-p_{0}}+l^{\prime}-1$ we have $\left\|k_{l 2^{p_{0}+r}} \alpha_{l 2^{p_{0}+r}}-k_{r} \alpha_{r}\right\| \leqslant \| k_{l 2^{p_{0}+r}} \alpha_{l 2^{p_{0}+r}}-$ $k_{l^{\prime} 2^{p_{0}+r}} \alpha_{l^{\prime} 2^{p_{0}+r}}\|+\| k_{l^{\prime} 2^{p_{0}+r}} \alpha_{l^{\prime} 2^{p_{0}+r}}-k_{r} \alpha_{r} \|<\eta_{p_{0}}$ By induction hypothesis and the choice of $k_{l 2^{p_{0}+r}}$. Therefore (ii) is satisfied for $p+1$ and every $l \leqslant 2^{p+1}$. This finishes the proof.

References

[1] T. Adams, Tower multiplexing and slow weak mixing, arXiv:1301.0791.
[2] V. Bergelson, A. Del Junco, M. Lemanczyk, J. Rosenblatt, Rigidity and nonrecurrence along sequences, Ergodic Theory and Dynamical Systems, First View Article (2013), 1-39.
[3] I.P. Cornfield, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.
[4] B. Fayad, J-P. Thouvenot, On the convergence to 0 of $m_{n} \zeta[1]$., to appear in Acta Arithmetica.

[^0]: ${ }^{1}$ By this we mean that every finite collection is rationally independent.

[^1]: ${ }^{2}$ By this we mean that there does not exist n_{0} such that $\theta \in \mathbb{Q}+\mathbb{Q} \alpha_{1}+\ldots+\mathbb{Q} \alpha_{n_{0}}$.

