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Abstract

We construct an increasing sequence of natural numbers (mn)
+∞
n=1 with the

property that (mnθ[1])n>1 is dense in T for any θ ∈ R \ Q, and a continuous

measure on the circle µ such that limn→+∞

∫
T ‖mnθ‖dµ(θ) = 0. Moreover, for

every fixed k ∈ N, the set {n ∈ N : k ∤ mn} is infinite.

This is a sufficient condition for the existence of a rigid, weakly mixing

dynamical system whose rigidity time is not a rigidity time for any system

with a discrete part in its spectrum.

1 Introduction

Let T denote the circle group with addition mod1. For η ∈ R we denote by η[1]
the fractional part of η and ‖η‖ its distance to integers. It follows that ‖η‖ =
min(η[1], (1− η)[1]). Therefore for any η ∈ R, ‖η‖ 6 1

2
.

In this note, we prove the following two results.

Theorem 1. Fix rationally independent numbers {αi}i∈N ∈ T.1 There exists an

increasing sequence (mn)
+∞
n=1 such that (mnθ[1])n>1 is dense in T for every irrational

θ, and for every ǫ > 0 and k ∈ N there exists N0 ∈ N such that for every n > N0

we have ‖mnαi‖ < ǫ for at least k − 1 choices of i ∈ {1, ..., k}. Moreover for every

k ∈ N the set {n ∈ N : k ∤ mn} is infinite.

Theorem 2. Fix rationally independent numbers {αi}i∈N ∈ T and let (mn)n>1 be

the corresponding sequence from Theorem 1. There exists a continuous probability

measure µ on T such that

lim
n→+∞

∫
T

‖mnθ‖dµ(θ) = 0.

1By this we mean that every finite collection is rationally independent.
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Theorem 1 gives us an increasing sequence of natural numbers (mn)
+∞
n=1 which is

not a rigidity time for any system with a discrete part in its spectrum. Indeed, if the
system has an irrational eigenvalue then it has the irrational rotation as a factor.
If it has a rational eigenvalue then it has a shift on a finite group as a factor. But
a rigidity time for a dynamical system is also a rigidity time for its factors, and a
sequence as in Theorem 1 cannot be a rigidity sequence for any rational or irrational
rotation.

From Theorem 2, by the Gaussian measure space construction (see [3]), we de-
duce that there exists a weakly mixing dynamical system whose rigidity times con-
tain the constructed sequence (mn)

+∞
n=1. This gives a full answer to the question

stated in [2] of whether a rigidity times sequence of a system with discrete spectrum
is a rigidity time for some weakly mixing and conversely whether a rigidity times
sequence of a system with continuous spectrum is a rigidity times sequence for some
discrete spectrum system. The first direction was established in [1] and later in [4],
namely, any rigidity time of a system with discrete spectrum is also a rigidity time
for some weakly mixing dynamical system.

Our approach is inspired by the completely spectral approach adopted in [4].
First we prove the existence of a sequence mn which is not a rigidity time for any
circle rotation, but still satisfies that ‖mnαi‖ is small for most of the indices i of
a family of rationally independent numbers {αi}i∈N ∈ T (see precise statement in
Theorem 1).

This allows to construct a continuous probability measure on T, that is a weak
limit of discrete measures each supported on some finite set connected with the
numbers α1, α2, . . ., with a Fourier transform converging to 1 along this sequence.

The auhors would like to thank to Jean-Paul Thouvenot for his meaningful input
in solving this problem.

2 Proof of Theorem 1

Let there be given a family of rationally independent numbers {αi}i∈N ∈ T. We will
first state a lemma, which is a generalisation of Lemma 1 in [4].

Definition 3. [4] For an interval I ⊂ T and fixed ǫ > 0 one says that θ ∈
A(N1, N2, ǫ, I, k) if for every m ∈ [N1, N2] such that ‖mαi‖ < ǫ for i = 1, ..., k,
we have mθ[1] /∈ I.

Lemma 4. For every l > 2 there exists L(l) ∈ N such that for every 0 < ǫ < 1
2l2

, for

every v > 0, for every k, there exist K(ǫ) ∈ N and N ′ = N ′(l, ǫ, v, N, k) ∈ N such

that θ ∈ A(N1, N
′, I, ǫ, k) for some interval I of size 1

l
, implies that ‖

∑k

i=1 riαi −
l′θ‖ < v for some |r1|, ..., |rk| < K(k, ǫ) and some |l′| < L(l).

The proof is a repetition of the proof of Lemma 1 in [4]. Instead of considering
φǫ : T → R one needs to consider φk

ǫ : Tk → R. It follows by the proof that the
number L(l, {αi}

k
i=1) does not depend on the numbers {αi}

k
i=1 and that is why we

just had L(l) in the statement. Indeed, similarly to Lemma 1 in [4], one considers a
polynomial ϕl : T → R, ϕl(y) :=

∑
0<|k|<L(l) ϕ̂ke

i2πky, where L(l) is such that
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• ϕl(y) > 1 for every y /∈ [0, 1
l
]

• |ϕl(y)| < l2 for every y ∈ T.

Therefore L(l) ∈ N does not depend on {αi}
k
i=1.

Remark 5. Consider an ergodic rotation T : T j → T j, T (x1, ..., xj) = (x1 +
γ1, ..., xj+γj), for γ1, ..., γj ∈ T. It follows that for every k ∈ N and every ǫ > 0, there
exist (infinitely many) m ∈ N such that ‖mγi‖ < ǫ for i = 1, ..., j and k ∤ m. Indeed,
for every fixed k ∈ N there exist a sequence (rn)n>1 such that T rn(0) → 1

k
T (0).

Proposition 6. Fix rationally independent numbers {αi}i∈N ∈ T. There exists a

sequence (sn) such that limn→+∞ ‖snαi‖ = 0 for i = 1, ... and (snθ[1])n>1 is dense in

T if and only if θ /∈ Q+Qα1 + ...2.

Proof.

We will use Lemma 4 for k = 1, 2, .... Define for n > 1 the sequence ln = n+1. Let
ǫn = 1

2(n+1)2
and Kn := K(n, ǫn). Define vn = 1

n
inf06|k1|,...,|kn+1|6Kn+1

‖
∑n+1

i=1 kiαi‖.

Take N0 = 0 and apply Lemma 4 with k = 1, l = l1, ǫ = ǫ1, N = N0, v = v1. Denote
N1 = N ′(l1, ǫ1, v1, N0, 1). We apply Lemma 4 inductively for k = n, l = ln, ǫ =
ǫn, N = Nn, v = vn and choose Nn+1 > N ′(ln, ǫn, vn, Nn, n) sufficiently large. Then
we define an increasing sequence (sn)

+∞
n=1 by taking, for every i ∈ N, all integers

s ∈ [Ni, Ni+1] such that ‖sαt‖ < ǫi for every t = 1, ..., i (we can choose Ni+1 so that
such s ∈ [Ni, Ni+1] exists). Moreover by Remark 5 we can choose Ni+1 so that for
every r = 1, ..., i there exists sr ∈ [Ni, Ni+1] with r ∤ sr.

Notice first that for every r ∈ N, limn→+∞ ‖snαr‖ = 0. Indeed, for every j > r
and every t ∈ N such that st ∈ [Nj , Nj+1] we have ‖stαr‖ < ǫj.

Now, let θ ∈ T be such that snθ[1] is not dense in T. Then there exists I ⊂ T,
|I| = 1

ls
for some s such that snθ[1] /∈ I. By the definition of the sequence (sn)

+∞
n=1

it follows that there exists n0 such that θ ∈ A(Nn, Nn+1, I, ǫ, n) for every n > n0.
Therefore, by Lemma 4 it follows that there are integers kn

1 , ..., k
n
n with |kn

i | < Kn

for every i = 1, ..., n such that ‖
∑n

i=1 k
n
i αi − l′θ‖ < vn for some |l′| < L = L(ls).

Therefore, ‖
∑n

i=1 h
n
i αi − L!θ‖ < L!vn, for some numbers hn

1 , ..., h
n
n ∈ N with |hn

i | <

L!Kn. It follows by triangle inequality that ‖
∑n+1

i=1 hn+1
i αi −

∑n

i=1 h
n
i αi‖ < L!vn +

L!vn+1 < 2L!vn. By the definition of vn, we get that there exists n1 ∈ N such that
for n > n1, these two combinations are equal. Therefore |

∑n1

i=1 h
n1

i αi −L!θ‖ < L!vn
for every n > n1. But vn 6 1

n
→ 0 and consequently θ ∈ Q+Qα1 + ...+Qαn1

.
On the other hand, it follows by construction of (sn)n>1 that (snθ[1])n>1 is not

dense in T if θ ∈ Q+Qα1 + ....

Proof of Theorem 1. For every i ∈ N, let {s
(i)
n }n∈N be a sequence as in Proposition I made

some

explana-

tion.

6 applied to the family of rationally independent numbers {αj}j∈N,j 6=i ∈ T. Let
(Ns(i))s>1 be the corresponding sequence of natural numbers given in the proof

of Proposition 6, that is ‖s
(i)
t αr‖ < 1

2(j+1)2
for every t > Nj(i) (this implies that

st > Nj(i)) and every r < j. Then define the sequence s̃
(i)
n := s

(i)
n+Ni(i)

2By this we mean that there does not exist n0 such that θ ∈ Q+Qα1 + ...+Qαn0
.
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Then define mn to be the sequence s̃
(1)
1 , s̃

(1)
2 , s̃

(2)
1 , s̃

(1)
3 , s̃

(2)
2 , s̃

(3)
1 , s̃

(1)
4 , s̃

(2)
3 , s̃

(3)
2 , s̃

(4)
1 , . . ..

The sequence mn satisfies the conditions of Theorem 1. Indeed, first note that for
any irrational θ there exists i such that θ /∈

⋃+∞
i=1 (Q+ ...+Qαi−1+Qαi+1+ ...), hence

(mnθ[1])n>1 is dense by just considering the subsequence s̃
(i)
l . Secondly fix ǫ > 0 and

k ∈ N. Let r ∈ N be such that 1
2(r+1)2

< ǫ. Define N0 := (max{Nr(1), ..., Nr(r)})
2.

Then, by definition of the sequence (mn)n>1, ‖mnαi‖ < 1
2(r+1)2

< ǫ, for every n > N0

and every i ∈ {1, ..., k} except for at most one i that satisfies mn = s̃
(i)
ln

. ✷

Remark 7. It follows that for every ǫ > 0, i ∈ N there exist n0 ∈ N such that for
every n > n0,

∑i

s=1 ‖mnαs‖ < 1
2
+ ǫ.

3 Proof of Theorem 2.

Fix rationally independent numbers (αi)i>1 ∈ T and let (mn)
+∞
n=1 be the correspond-

ing sequence given by Theorem 1.
For the construction of the measure µ we will proceed similary to [4] (and we
borrow notation from there). For a probability measure ν on T we denote by
νn = |

∫
T
‖mnθ‖dµ(θ)|. We will define inductively a sequence (kn)n>1 so that the

measure µ will be a weak limit of discrete measures µp := 1
2p

∑2p

i=1 δkiαi
for some

numbers ki ∈ N such that there exists a sequence (Np)
+∞
p=1 for which

(i) For every p > 1, for every j ∈ [1, p − 1], for every n ∈ [Nj , Nj+1], µ
n
p < 1

2j−1

(for j = 0 µn
p < 1).

(ii) For p0 ∈ N denote by ηp0 =
1
4
inf16i<j62p0 ‖kiαi − kjαj‖. Then for every l ∈ N

and every r ∈ [1, 2p0], ‖kl2p0+rαl2p0+r − krαr‖ < ηp0.

In fact, similarly to [4], we get that any weak limit µ of a sequence µp as above,
satisfies the conclusion of Theorem 2. Indeed, by (i) µn → 0. By (ii) it follows that
for each p0, the intervals Ir = [−ηp0 +krαr, ηp0 +krαr], r = 1, ..., 2p0 are disjoint and
µp(Ir) =

1
2p0

for every p > p0 and therefore the limit measure µ is continuous.
Therefore, we just have to construct the measures µp as in (i) and (ii). We will

do an inductive construction, in which we will additionally require that for every p

µn
p <

1

2p+1
+

1

2p+3
for n > Np. (1)

For p = 0 let k1 = 1, then µ is the Dirac measure at α1. Let N0 = 0. For p = 1,
k2 = 1, then µ1 is the average of Dirac measures at α1 and α2. We choose N1 = 1.
This satisfies (i) and (1) for p = 1.
Assume that we have constructed ki for i = 1, ..., 2p, Nl for 1 6 l 6 2p such that (i)
and (1) is satisfied up to p and (ii) is satisfied for every p0 6 p and 0 6 l 6 2p−p0−1.
We now choose k2p+1 so that k2p+1α2p+1 is sufficiently close to k1α1 so that

νp,1 =
1

2p

2p∑
i=1

δkiαi
+

1

2p+1
(δk2p+1

α2p+1 − δk1α1
)
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satisfies νn
p,1 <

1
2j−1 for n ∈ [Nj , Nj+1] and j ∈ [0, p−1] (νn

p,1 = µn
p+

1
2p+1 (‖mnk2p+1α2p+1−

mnk1α1‖)). Moreover it follows that for n > Np we have νn
p,1 < µn

p + 1
2p+1 <

1
2p+1 + 1

2p+3 + 1
2p+1 < 1

2p−1 . Let Np,1 > Np be sufficiently large so that νn
p,1 < 1

2p
for

n > Np,1 (νn
p,1 < µn

p +
1

2p+1 and µn
p can be arbitrary close to 1

2p+1 by Remark 7).
Now construct idnuctively for s = 1, ..., 2p the numbers k2p+s, Np,s ∈ N for the
measures νp,s given by νp,s = µp +

1
2p+1 (

∑s

i=1(δk2p+iα2p+i
− δkiαi

)). It follows that by
choosing k2p+s so that k2p+sα2p+s is sufficiently close to ksαs and Np,s large enough,
we can insure that

A. νn
p,s <

1
2j−1 for every n ∈ [Nj, Nj+1], and j 6 p− 1.

B. νn
p,s <

1
2p−1 for n > Np.

C. νn
p,s <

1
2p

for n > Np,s.

Indeed, for s = 1 the above conditions are satisfied, assume that for some s > 1,
they hold. We will prove that they hold for s + 1. First note that vp,s − vp,s−1 =
1

2p+1 (δk2p+sα2p+s
−δksαs

). Therefore by choosing k2p+s so that k2p+sα2p+s is sufficienlty

close to ksαs and by induction hypothesis, we get that νn
p,s < 1

2j−1 for every n ∈

[Nj , Nj+1] with j 6 p − 1. The same arguments gives us νn
p,s < 1

2p−1 for Np,s−1 >

n > Np. For n > Np,s−1 we use the fact that νn
p,s−1 <

1
2p

to get νn
p,s < νn

p,s−1+
1

2p+1 <
1
2p

+ 1
2p

= 1
2p−1 . For the third point we use the fact that for n sufficiently large,

‖mnαi‖ is arbitrary small for all but one i ∈ {1, ..., 2p + s} (compare with Remark
7), to get that for Np,s large enough, νn

p,s <
1

2p+1 +
1

2p+2 +
1

2p+2 = 1
2p

, for n > Np,s.
Finally we define µp+1 = νp,2p and observe that µp+1 satisfies (i). Moreover, by

definition µp+1 =
1

2p+1

∑2p+1

i=1 δkiαi
and using the properties of the sequence (mn)n>1

(‖mnαi‖ is arbitrary small for all but one i = 1, ..., 2p+1, see also Remark 7) we get
that if Np+1 is sufficiently large, then (1) is satisfied for µp+1.

Moreover, for l = 2p−p0+l′−1 we have ‖kl2p0+rαl2p0+r−krαr‖ 6 ‖kl2p0+rαl2p0+r−
kl′2p0+rαl′2p0+r‖ + ‖kl′2p0+rαl′2p0+r − krαr‖ < ηp0 By induction hypothesis and the
choice of kl2p0+r. Therefore (ii) is satisfied for p+1 and every l 6 2p+1. This finishes
the proof. �

References

[1] T. Adams, Tower multiplexing and slow weak mixing, arXiv:1301.0791.

[2] V. Bergelson, A. Del Junco, M. Lemanczyk, J. Rosenblatt, Rigidity and non-

recurrence along sequences, Ergodic Theory and Dynamical Systems, First View
Article (2013), 1-39.

[3] I.P. Cornfield, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag, New
York, 1982.

[4] B. Fayad, J-P. Thouvenot, On the convergence to 0 of mnζ [1]., to appear in Acta
Arithmetica.

http://arxiv.org/abs/1301.0791

	1 Introduction
	2 Proof of Theorem ??
	3 Proof of Theorem ??.

