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Abstract
We give a geometric criterion that implies a singular maximal spectral type for a
dynamical system on a Riemannian manifold. The criterion, which is based on the
existence of fairly rich but localized periodic approximations, is compatible with
mixing. Indeed, we check it for an ad hoc class of smooth mixing flows on T3 obtained
from linear flows by time change and thus providing natural examples of mixing
smooth diffeomorphisms and flows with purely singular spectra.

1. Introduction

1.1
Mixing is one of the principal characteristics of the stochastic behavior of dynamical
systems. It is a spectral property, and in the great majority of studied cases it is a
consequence of much-stronger properties of the system, such as the K-property or
fast correlation decay, which imply a Lebesgue spectrum for the associated unitary
operator.

The only previously known examples where mixing of the system was accom-
panied by a singular spectrum of the associated unitary operator were obtained in
an abstract measure-theoretical or probabilistic frame, such as Gaussian and related
systems that by their nature do not come from differentiable dynamics, or rank-one
and mixing constructions that do not yet have C∞-realizations. In this article we solve
the problem of smooth realizations of mixing with a singular spectrum by proving the
following.

THEOREM

There exist on Td , d ≥ 3, volume-preserving flows of class C∞ which are mixing and
have purely singular spectra.
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This article has two parts. In the first one, we introduce an abstract criterion that
implies the singularity of the spectrum for a discrete-time dynamical system on a
Riemannian manifold. The criterion, which is based on the existence of fairly rich
families of almost-periodic sets, is still compatible with mixing, albeit at a slow rate.
We state the criterion in Section 1.2 and prove it in Section 2.

In the second part of this article, Section 3, we rely on this criterion, and on
the mechanism of mixing used in [1], to obtain smooth mixing reparametrizations of
some Liouvillean linear flows on T3 which display a purely singular spectrum. It is
a general fact that in this case the flow itself must have a purely singular spectrum.
Further, as a by-product, we observe by Host’s theorem in [8] that the latter mixing
reparametrizations, because they have a purely singular spectrum, are actually mixing
of all orders. Finally, apart from giving a positive answer to the problem of smooth
realizations we have posed, our constructions shed some new light on the study of
reparametrizations of linear flows on tori of which we give a brief historical account
in Section 1.3.

1.2. Periodic approximations and singular spectra
We consider dynamical systems (T ,M, µ) which are given by a Lebesgue space
(M,µ) and an automorphism T on it, that is, a bimeasurable µ-preserving bijection
of M . The unitary operator UT associated to the system (T , M,µ) acts on the Hilbert
space H = L2(M,µ, C) by UT f = f ◦ T −1. Since the operator UT always has
an eigenvalue equal to 1 represented by the contant functions, we usually mean by
the spectral properties of T those properties of UT when restricted on the subspace
H0 = L2

0(M,µ, C) of functions with zero integral. This applies, in particular, to the
notion of a countable Lebesgue spectrum mentioned in the introduction.

We recall that to every f ∈ H is associated a (spectral) measure σf defined on
the circle S via the Fourier transform

(Un
T f, f ) =

∫
S

ei2πθ dσf
(θ).

The maximal spectral type of T is the supremum of the types of all the measures
σf for all f ∈ H , or all f ∈ H0 if we want to discard the constant functions as
explained above. Regardless to this distinction, T is said to have a purely singular
spectrum if its maximal spectral type is singular. Since every type that is absolutely
continuous with respect to the maximal spectral type appears as the type of a measure
σf for some f ∈ H , T has a purely singular spectrum if there is no function with
an absolutely continuous spectral measure (with respect to the Lebesgue measure on
the circle). Since constant functions contribute only with a Dirac mass at zero, it is
enough to consider only f ∈ H0.
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A basic property implying the singularity of the spectrum of (T , M,µ) is rigidity,
that is, the existence of a sequence of times tn such that for any measurable set A ⊂ M

it holds that µ(T tnA�A) → 0, where the notation A�B stands for the symmetric
difference between the sets A and B. For known smooth systems, the latter property
is often obtained as a consequence of a stronger one, namely, the existence of good
cyclic approximations in the sense of Katok and Stepin; a system (T ,M, µ) is said to
have good cyclic approximations if there exist a sequence ξqn

of partitions of (M,µ)
into sets of equal measure Ci

n, i = 1, . . . , qn, and cyclic permutations Sqn
of these sets

such that

qn∑
i=1

µ(T Ci
qn

�Sqn
Ci

qn
) = o

( 1

qn

)
.

If T admits good cyclic approximation, then T is ergodic and rigid (see, e.g., the
original article [12], or [11], for a definitive account of the general concept of peri-
odic approximations and its application to the study of various ergodic and spectral
properties).

Rigidity of (T ,M, µ) is clearly not compatible with mixing. To get a criterion
that guarantees a singular spectrum without precluding mixing, we relax the concept
of periodic approximations to that of having strongly periodic towers with nice levels
(balls) such that on one hand the total measure of the levels in a given tower might tend
to zero, but on the other hand any measurable set can be approximated by unions of
levels from possibly different towers. Such localized (as opposed to exhaustive above)
periodic approximations are not incompatible with mixing.

Definition (Slowly coalescent periodic approximations)
Let T be an ergodic transformation of a Riemannian manifold M preserving a volume
µ. We say that the dynamical system (T ,M, µ) displays slowly coalescent periodic
approximations (SCPA), if there exist a sequence of integers kn ∈ N∗ and a sequence
εn of positive numbers with

∑
εn < +∞, such that for every n ∈ N there exists a

sequence

Cn =
⋃
i∈N

Bn,i,

where the Bn,i , i = 0, . . . , are balls of M satisfying
(i) supi∈N r(Bn,i) −→

n−→∞ 0,

(ii) µ(T knBn,i�Bn,i) ≤ εnµ(Bn,i),
(iii) µ

( ⋂
m∈N

⋃
n≥m Cn

) = 1.

In Section 2 we prove the following theorem.
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THEOREM (Criterion for the singularity of the spectrum)
A dynamical system (T ,M,µ) displaying slowly coalescent periodic approximations
has a purely singular spectral type.

Remark 1
In general, µ(Cn) need not converge to zero. For a rotation of the circle, for example,
it can be chosen so that it tends on the contrary to 1. For a mixing system (T , M,µ),
however, (ii) implies that µ(Cn) → 0, and this∗ is what we refer to by coalescent. The
terminology slowly coalescent is then used to refer to property (iii), which is the key
property in guaranteeing a purely singular spectrum.

Remark 2
The condition

∑
εn < +∞ can be viewed as a condition on the speed of the localized

periodic approximations. It is crucial in the proof of the theorem, namely, in combining
Proposition 2.2 and Lemma 2.5.

Remark 3
If the sets Cn satisfy adequate independence conditions, (iii) follows from the Borel-
Cantelli lemma if

∑
n∈N

µ(Cn) = +∞.

1.3. Spectral type of reparametrized linear flows
The problem of understanding the ergodic and spectral properties of reparametrizations
of linear flows on tori was raised by A. N. Kolmogorov in his International Congress of
Mathematicians address of 1954 (see [16]). Since then, and starting with the work
of Kolmogorov himself, this problem has been intensively studied and a surprisingly
rich variety of behaviors were discovered to be possible for the reparametrized flows.
We say surprisingly because at the time when Kolmogorov raised the problem, some
strong restrictions on the spectral type of the reparametrized flow were expected to
hold, at least in the case of real-analytic reparametrizations (see [16], as well as the
appendix by Fomin to the Russian version of the book by Halmos [6] on ergodic theory,
where the absence of mixed spectrum was conjectured for smooth reparametrizations
of linear flows).

∗It is not true, in general, that for a mixing system and a sequence of measurable sets Cn such that T kn Cn�Cn → 0,
we would have µ(Cn) → 0 or µ(Cn) → 1. But in our case, Cn is a union of balls with radii converging uniformly
to zero; hence if lim sup µ(Cn) > ε > 0 and if we fix p = [

2
ε

]
disjoint open subsets in M , M1, . . . , Mp , of equal

measure 1/p, there is at least one (say, M1) that must intersect Cn, for infinitely many n, in a set of measure
greater than ε/p which is almost a union of balls Bn,i so as to force lim sup µ(T kn M1 ∩ M1) ≥ ε/p > µ(M1)2,
which contradicts the mixing property.
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We denote by Rt
α the linear flow on the torus Tn given by

dx

dt
= α,

where x ∈ Tn and α is a vector of Rn. Given a continuous function φ : Tn → R∗
+, we

define the reparametrization flow T t
α,φ by

dx

dt
= α

φ(x)
.

If the coordinates of α are rationally independent, then the linear flow Rt
α is

uniquely ergodic and so is T t
α,φ , which preserves the measure with density φ. Other

properties of the linear flow may change under reparametrization. While the linear
flow has a pure discrete spectrum with the group of eigenvalues isomorphic to Zn, a
continuous time change may yield a wide variety of spectral properties. This follows
from the theory of monotone (or Kakutani) equivalence (see [10]) and the fact that
every monotone measurable time change is cohomologous to a continuous one (see
[18]). However, for sufficiently smooth reparametrizations the possibilities are more
limited, and they depend on the arithmetic properties of the vector α.

If α is Diophantine and the function φ is C∞, then the reparametrized flow is
smoothly isomorphic to a linear flow. This was first noticed by A. N. Kolmogorov [16].
Herman found in [7] sharp results of that kind for the finite regularity case. Kolmogorov
also showed that for a Liouville vector α a smooth reparametrization may be weak
mixing, or equivalently, the associated unitary operator to the reparametrized flow
may have a continuous spectrum.

M. D. Šklover proved in [19] the existence of real-analytic weak mixing
reparametrizations of some Liouvillean linear flows on T2; his result being opti-
mal in that he showed that for any real-analytic reparametrization φ other than a
trigonometric polynomial there is α such that T t

α,φ is weak mixing. In [2], it was
shown that for any Liouvillean translation flow Rt

α on the torus Tn, n ≥ 2, the generic
C∞-reparametrization of Rt

α is weak mixing.
Continuous and discrete spectra are not the only possibilities. In [3] it was proved

that for every α ∈ R2 with a Liouvillean slope there exists a strictly positive C∞-
function φ such that the flow T t

α,φ on T2 has a mixed spectrum since it has a discrete
part generated by only one eigenvalue. They also constructed real-analytic examples
for a more restricted class of Liouvillean α. Recently, M. Guenais and F. Parreau [5]
achieved real-analytic reparametrizations of linear flows on T2 which have an arbitrary
number of eigenvalues. They also constructed an example of a reparametrization of a
linear flow on T2 which is isomorphic to a linear flow on T2 with “exotic” eigenvalues,
that is, not in the span of the eigenvalues of the original linear flow. Finally, there exist
real-analytic functions φ which are not trigonometric polynomials and for which a
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mixed spectrum is precluded for the flow T t
α,φ for any choice of α. Indeed, it was

proved in [4] that for a class of functions satisfying some regularity conditions on
their Fourier coefficients, the following dichotomy holds; T t

α,φ either has a continuous
spectrum or is L2-isomorphic to a constant time suspension.

Reparametrizations and mixing
In [9], Katok showed that any reparametrization of an irrational flow on the two-torus
with a function of class C5 has a simple spectrum and a singular maximal spectral type,
and thus, it cannot be mixing. Absence of mixing was extended by A. V. Kočergin
to Lipschitz reparametrizations in [13]. The argument relies on a Denjoy-Koksma-
type estimate that was proved to fail in higher dimension by Yoccoz [20]. Based on
the latter fact, we showed in [1] that there exist α ∈ R3 and a real-analytic strictly
positive function φ defined on T3 such that the reparametrized flow T t

α,φ is mixing.
The construction easily extends to higher-dimensional tori (see [1, Theorem 3]).

The mixing examples obtained by reparametrizations of linear flows belong to a
variety of fairly slow mixing systems, also including the mixing flows with singularities
constructed on surfaces by Kočergin in the 1970s (see [14]), for which the type and
the multiplicity of the spectrum remain undetermined.

Modifying the reparametrizations of [1, Theorems 1, 3], it is possible to maintain
mixing while the time-one map of the reparametrized flow is forced to satisfy the
SCPA criterion stated above. But the singularity of the maximal spectral type of any
time map implies that of the flow and thus yields the following.

THEOREM

For d ≥ 3, there exist α ∈ Rd and a strictly positive function φ over Td of class C∞

such that the reparametrized flow T t
α,φ is mixing and has a singular maximal spectral

type with respect to the Lebesgue measure.

A dynamical system (T ,M, µ) (or flow (T t , M, µ)) is said to be mixing of order l ≥ 2
if, for any sequence (u(1)

n , . . . , u(l−1)
n ){n∈N}, where for i = 1, . . . , l − 1 the (u(i)

n ){n∈N}
are sequences of integers (or real numbers) such that lim n→∞u(i)

n = ∞, and for any
l-uple (A1, . . . , Al) of measurable subsets of M , we have

lim
n→∞ µ(T −u

(1)
n −···−u

(l−1)
n Al ∩ · · · ∩ T −u

(1)
n A2 ∩ A1) = µ(Al−1) · · ·µ(A1).

The general definition of mixing corresponds to mixing of order 2. A system is
said to be mixing of all orders if it is mixing of order l for any l ≥ 2. Host’s theorem
in [8] asserts that a mixing system with a singular spectrum is a mixing of all orders;
hence we get the following.
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COROLLARY

For d ≥ 3, there exist α ∈ Rd and a strictly positive function φ over Td of class C∞

such that the reparametrized flow T t
α,φ is mixing of all orders.

2. Slowly coalescent periodic approximations
In this section we prove Theorem 1.2.

2.1
We state now a general criterion that guarantees a singular spectrum for (T ,M, µ).
Although this is not the criterion that we use to prove that systems having SCPA have
a singular spectrum, it is of interest by itself and is similar, yet more general, to the ad
hoc one that we use and that is stated in Section 2.2.

PROPOSITION

Let (T , M,µ) be a dynamical system. If for any complex nonzero function f ∈
L2

0(M,µ) (i.e.,
∫
M

f (x) dµ(x) = 0), there exists a measurable set E ⊂ M with
µ(E) > 0, and a strictly increasing sequence ln, such that for every x ∈ E we have

lim sup
n→∞

1

n

∣∣∣
n−1∑
i=0

f (T li x)
∣∣∣ > 0, (2.1)

then the maximal spectral type of the unitary operator associated to (T , M,µ) is
singular.

Proof
Assume that T has an absolutely continuous component in its spectrum. Then there
exists f ∈ L2

0(M, µ) such that the spectral measure corresponding to f on the circle
S can be written as σf (dx) = g(x) dx, where g ∈ L1(S, R+, dx) is bounded. With the
notation

Snf (x) =
n−1∑
i=0

f
(
T li (x)

)
,

we write spectrally

∥∥∥Snf

n

∥∥∥
2

L2
= 1

n2

∫
S

∣∣∣
n−1∑
i=0

zli

∣∣∣2
g(z) dz

≤ supz∈S
g(z)

n2

∫
S

∣∣∣
n−1∑
i=0

zli

∣∣∣2
dz

≤ supz∈S
g(z)

n
.
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From this we deduce that Sn2f/n2 converges to zero for a.e. x ∈ M . Likewise,
we have for n2 ≤ l ≤ (n + 1)2 − 1 that

∥∥∥1

l
(Slf − Sn2f )

∥∥∥
2

L2
≤ sup

z∈S

g(z)
l − n2

l2
,

and hence,

∑
n≥0

(n+1)2−1∑
l=n2

∥∥∥1

l
(Slf − Sn2f )

∥∥∥
2

L2
< +∞.

By Fatou’s lemma we conclude that for a.e. x ∈ M we have Snf (x)/n −→
n→∞ 0, in

contradiction with (2.1).∗ �

2.2
Even simpler than Proposition 2.1 and yet more adapted to our purpose is the following.

PROPOSITION

Let (T , M,µ) be a dynamical system. If, for any complex nonzero function f ∈
L2

0(M, µ), there exist a measurable set E ⊂ M with µ(E) > 0, a sequence kn ∈ N∗,
and a sequence τn ∈ N∗ with

∑
(1/τn) < +∞ such that for every x ∈ E we have

lim sup
n→∞

1

τn

∣∣∣
τn−1∑
i=0

f (T iknx)
∣∣∣ > 0, (2.2)

then the maximal spectral type of the unitary operator associated to (T ,M, µ) is
singular.

Proof

If σf has a bounded density, then
∥∥∑τn−1

i=0 f ◦ T ikn

∥∥2

L2 ≤ Cτn. The fact that
∑

(1/τn) <

+∞ then gives a contradiction with (2.2). �

Remark 4
Clearly, it is enough to prove the preceding proposition for all real-valued functions
f ∈ L2

0(M, µ).

2.3
In the sequel we assume that (T ,M, µ) satisfies (i) – (iii) of Definition 1.2. We fix
hereafter a sequence τn of integers such that εnτn → 0 while

∑
(1/τn) < +∞. (This

∗The proof of this proposition is similar to the proof of the strong law of large numbers in the case of independent
random variables with bounded L2-norms.
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is possible since
∑

εn < +∞.) We fix an arbitrary nonzero real-valued function
f ∈ L2

0(M,µ). For ε > 0, we define the set

Dε = {
x ∈ M

∣∣ f (x) ≥ 2ε
}
.

Since f ∈ L2
0(M,µ) is not null, there exists ε0 > 0 such that µ(Dε0 ) > 0. From

Proposition 2.2, Theorem 1.2 will hold as proved if we show the following.

PROPOSITION

For µ-a.e. point x ∈ Dε0 , there exist infinitely many integers n such that

1

τn

τn−1∑
i=0

f (T iknx) ≥ ε0. (2.3)

2.4
The following proposition states that for every N > 0, the set of x ∈ Dε0 for which
(2.3) fails for all n ≥ N has zero measure, which implies Proposition 2.3.

PROPOSITION

For every N > 0 and every measurable set D ⊂ Dε0 with µ(D) > 0, there exist
n ≥ N and x ∈ D such that (2.3) holds.

2.5
To prove the proposition, we need the following lemma, where we let f0 =
min(f, 2ε0).

LEMMA

There exists N0 such that if n ≥ N0 and Bn is a set satisfying Definition 1.2(ii) and
∫

Bn

f0(x) dµ(x) ≥ 3

2
ε0µ(Bn),

then there exists a set Bn ⊂ Bn with µ(Bn) ≥ µ(Bn)/5 such that (2.3) holds with n

for every x ∈ Bn.

Proof
Let Bn and kn be as in Definition 1.2(ii). For x ∈ M , we use in this proof the notation

Snf (x) :=
τn−1∑
i=0

f (T iknx).
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Define

B̃n =
τn−1⋃
i=0

T −iknBn, B̂n =
τn−1⋂
i=0

T −iknBn.

Clearly, B̂n ⊂ Bn ⊂ B̃n. Notice that if x ∈ B̃n\B̂n, then x ∈ (T −iknBn)�(T −(i+1)knBn)
for some i, 0 ≤ i < τn. From (ii) we get

µ(B̃n�B̂n) ≤ τnεnµ(Bn), (2.4)

but τnεn → 0, so that µ(B̃n�Bn)/µ(Bn) → 0.
Define f̃ 0 = f0 on Bn and equal to zero otherwise. We then have

∫
B̃n

Snf̃ 0(x)

τn

dµ(x) =
∫

M

Snf̃ 0(x)

τn

dµ(x) =
∫

M

f̃ 0(x) dµ(x) =
∫

Bn

f0 dµ(x),

and hence, from our hypothesis,

∫
B̃n

Snf̃ 0(x)

τn

dµ(x) ≥ 3

2
ε0µ(Bn). (2.5)

On the other hand, since f̃ 0 ≤ 2ε0, we get

∫
B̃n

Snf̃ 0(x)

τn

dµ(x) ≤ µ(B̃n)ε0 + 2µ
({

x ∈ B̃n

∣∣∣ Snf̃ 0(x)

τn

≥ ε0

})
ε0,

which in light of (2.4) (with n sufficiently large, so that τnεn ≤ 1/100) and (2.5) leads
to

µ
({

x ∈ B̃n

∣∣∣ Snf̃ 0(x)

τn

≥ ε0

})
≥

(1

4
− 1

200

)
µ(Bn),

which using (2.4) again yields

µ
({

x ∈ B̂n

∣∣∣ Snf̃ 0(x)

τn

≥ ε0

})
≥ 1

5
µ(Bn),

which is the desired inequality since Snf̃ 0 and Snf0 coincide on B̂n ⊂ Bn. �

2.6. Proof of Proposition 2.4
Fix a measurable set D ⊂ Dε0 such that µ(D) > 0. Fix N ∈ N, and let N =
sup(N0, N), where N0 is as in Lemma 2.5.
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By Vitali’s lemma and Definition 1.2(i), (iii), there exists a constant 0 < ϑ < 1
such that, given any ball B in M , we can find a family of balls Bni

⊂ B such that
(P1) the Bni

are disjoint;
(P2) every Bni

belongs to some Cn with n ≥ N ;
(P3) µ

(⋃
Bni

) ≥ ϑµ(B).
For x ∈ D ⊂ Dε0 , we have f0 = 2ε0. Considering a Lebesgue density point, we

obtain, for any ε > 0, a ball B ⊂ M such that
(B1) µ(B ∩ D) ≥ (1 − ε)µ(B);
(B2)

∫
B

f0(x) dµ(x) ≥ (2 − ε)ε0µ(B).
We can now choose ε > 0 arbitrarily small in (B1), (B2) and then apply

(P1) – (P3) to the above ball B. Indeed, as ε is made closer to zero, (B1) implies
that most of the balls given by (P1) – (P3) must satisfy µ(Bn ∩D) ≥ (1−1/10)µ(Bn).
Similarly, (B2) and the fact that f0 ≤ 2ε0 imply that most of the balls given by
(P1) – (P3) must satisfy

∫
Bn

f0(x) dµ(x) ≥ (3/2)ε0µ(Bn). We can hence obtain a

ball Bn ∈ Cn with n ≥ N satisfying both µ(Bn ∩ D) ≥ (1 − 1/10)µ(Bn) and∫
Bn

f0(x) dµ(x) ≥ (3/2)ε0µ(Bn). We then conclude the proof using Lemma 2.5. �

Thus Theorem 1.2 is proved. �

3. Application: Slow mixing and a singular spectrum
This section is devoted to the proof of Theorem 1.3.

3.1. Reduction to special flows
Definition (Special flows)
Given a Lebesgue space L, a measure-preserving transformation T on L, and an
integrable strictly positive real function defined on L, we define the special flow over
T and under the ceiling function ϕ by inducing on M(L, T , ϕ) = L × R/ ∼, where
∼ is the identification (x, s + ϕ(x)) ∼ (T (x), s), the action of

L × R → L × R,

(x, s) → (x, s + t).

If T preserves a unique probability measure λ, then the special flow will preserve a
unique probability measure µ which is the normalized product measure of λ on the
base and the Lebesgue measure on the fibers.

We are interested in special flows above minimal translations Rα,α′ of the two-
torus and under smooth functions ϕ(x, y) ∈ C∞(T2, R∗

+) which we denote by T t
α,α′,ϕ .

For r ∈ N ∪ {+∞}, we denote by Cr (T2, R) the set of real functions on R2 of class
Cr and Z2-periodic. We denote by Cr (T2, R∗

+) the set of strictly positive functions in
Cr (T2, R).
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In all of the sequel we use the following notation; for m ∈ N,

Smϕ(x, y) =
m−1∑
l=0

ϕ(x + lα, y + lα′). (3.1)

With this notation, given t ∈ R+ we have for z ∈ T2,

T t (z, 0) = (
R

N(t,z)
α,α′ (z), t − SN(t,z)ϕ(z)

)
,

where N(t, z) is the largest integer m such that t − Smϕ(x) ≥ 0, that is, the number of
fibers covered by z during its motion under the action of the flow until time t .

By the equivalence between special flows and reparametrizations, Theorem 1.3,
in the case of the three-torus, follows if we prove the next theorem.

THEOREM

There exist a vector (α, α′) ∈ R2 and ϕ ∈ C∞(T2, R∗
+) such that the special flow

T t
α,α′,ϕ is mixing and satisfies Definition 1.2(i) – (iii), which implies that the spectral

type of the flow is purely singular.

The equivalence between this theorem and Theorem 1.3 is standard and can be found
in [1, Section 4]. The generalization to any dimension d ≥ 3 of the construction that
is described on the three-torus is straightforward.

In the construction of the special flow T t
α,α′,ϕ , we first choose a special translation

vector on T2; then we give two criteria on the Birkhoff sums of the special function ϕ

above Rα,α′ which guarantees mixing and SCPA. Finally, we build a smooth function
ϕ satisfying these criteria.

3.2. Choice of the translation on T2

Given a real number u, we use the following notation; [u] indicates the integer part of
u, {u} its fractional part, and |||u||| its closest distance to integers. Let α be an irrational
real number; then there exists a sequence of rationals

{
pn

qn

}
n∈N

, called the best rational
approximations of α, which satisfy

|||qn−1α||| ≤ |||kα|||, ∀k < qn, (3.2)

and for any n ∈ N,

1

qn(qn + qn+1)
≤ (−1)n

(
α − pn

qn

)
≤ 1

qnqn+1
. (3.3)

The numbers qn are called the approximation denominators of α. We also recall that
any irrational number α ∈ R−Q can be written as a continued fraction, where {ai}i≥1
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is a sequence of integers greater than or equal to 1, a0 = [α]. Conversely, any sequence
{ai}i∈N corresponds to a unique number α. The best approximations of α are given by
the ai in the following way:

pn = anpn−1 + pn−2 for n ≥ 2, p0 = a0, p1 = a0a1 + 1;

qn = anqn−1 + qn−2 for n ≥ 2, q0 = 1, q1 = a1.

Following [20] and as in [1], we take α and α′ with their approximation denomi-
nators qn and q ′

n satisfying for all n ≥ 1,

q ′
n ≥ e3qn , (3.4)

qn+1 ≥ e3q ′
n . (3.5)

Vectors (α, α′) ∈ R2 satisfying (3.4) and (3.5) are obtained by a suitable inductive
choice of the sequences an and a′

n in their continued fraction expansions, respectively.
Moreover, it is easy to see that the set of vectors (α, α′) ∈ R2 satisfying (3.4) and (3.5)
is a continuum (see [20, Appendix 1]).

3.3. Mixing criterion
We consider special flows T t

α,α′,ϕ above Rα,α′ and use the same criterion implying
mixing which we used in [1]. It is based on the uniform stretch of the Birkhoff
sums Smϕ (given by (3.1) of the ceiling function above the x- or the y-direction
alternatively depending on whether m is far from qn or from q ′

n). In [1, Proposition 3],
the key property underlying mixing, namely, the alternated uniform stretch of Smϕ, is
expressed in terms of properties of the first two derivatives of Smϕ, properties that are in
their turn derived from simpler ones on the first derivatives (see [1, Proposition 4]) and
on the second derivatives (see [1, Proposition 5]). The property required in the latter
is simply a linear bound |DxxSmϕ(x, y)| ≤ Cm (as well as |DyySmϕ(x, y)| ≤ Cm),
which trivially follows from the fact that ϕ is of class C2. It remains to state [1,
Proposition 4] and later to check it for the ceiling function that we consider.

PROPOSITION (Mixing criterion)
Let (α, α′) be as in (3.4) and (3.5), and let ϕ ∈ C2(T2, R∗

+). If for every n ∈ N

sufficiently large, we have two sets In and I ′
n, each one being equal to the circle minus

two intervals whose lengths converge to zero, and if
• for any y ∈ T, any x such that {qnx} ∈ In, and any m ∈ [e2qn/2, 2e2q ′

n], we
have

|DxSmϕ(x, y)| ≥ m

eqn

qn

n
,
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• for any x ∈ T, any y such that {q ′
ny} ∈ I ′

n, and any m ∈ [e2q ′
n/2, 2e2qn+1 ], we

have

|DySmϕ(x, y)| ≥ m

eq ′
n

q ′
n

n
,

then the special flow T t
α,α′,ϕ is mixing.

Remark 5
In the proof of mixing given in [1], the factor qn/n appears in the lower bound of
|DxSmϕ| due to the specific form of the function ϕ considered there (see Section 3.5),
but it is not used in the proof of mixing. The same is true for its counterpart in the
y-direction. However, we keep them here since this does not require any additional
difficulty in the construction of ϕ.

3.4. Criterion for the existence of slowly coalescent periodic approximations
We now give a condition on the Birkhoff sums of ϕ above Rα,α′ which is sufficient to
ensure SCPA for the time-one map of the flow T t

α,α′,ϕ on M = M(T2, Rα,α′, ϕ).

PROPOSITION

If for n sufficiently large, we have for any x such that 1/2 − 1/(2n) + 1/n2 ≤ {qnx} ≤
1/2 + 1/(2n) − 1/n2 and for any y ∈ T,

|Sqnq ′
n
ϕ(x, y) − qnq

′
n| ≤ 1

eqn
, (3.6)

then the time-one map of the special flow T t
α,α′,ϕ has slowly coalescent periodic

approximations as in Definition 1.2.

Proof
Let Cn be the set of points (x, y, s) ∈ M satisfying 1/2 − 1/(2n) + 2/n2 ≤ {qnx} ≤
1/2 + 1/(2n) − 2/n2. It follows from the definition of special flows and (3.6) that for
(x, y, s) ∈ M such that 1/2 − 1/(2n) + 1/n2 ≤ {qnx} ≤ 1/2 + 1/(2n) − 1/n2 we
have

T qnq
′
n(x, y, s) = (

x + qnq
′
nα, y + qnq

′
nα

′, s + Sqnq ′
n
ϕ(x, y) − qnq

′
n

)
,

but from (3.3) we have that |||qnq
′
nα||| ≤ q ′

n/qn+1 = o(e−qn) as well as |||qnq
′
nα

′||| ≤
qn/q

′
n+1 = o(e−qn). Therefore, (3.6) implies that d(T qnq

′
n(x, y, s), (x, y, s)) ≤ 2e−qn .

It is therefore possible to cover Cn with a collection of balls Cn such that each ball
B ∈ Cn has radius less than 1/(nqn) and satisfies µ(T qnq

′
nB�B) ≤ e−nµ(B), which

yields conditions (i) and (ii) of Definition 1.2.
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The key fact in the statement of the criterion is that the sets Cn are not too small;
indeed,

µ(Cn) ≥ 1

2n
inf

(x,y)∈T2
ϕ(x, y).

Next, due to the difference of scale between the successive terms of the sequence qn,
it is easy to see that for any k ∈ N, we have for n sufficiently large

µ
(
Cn ∩

n−1⋂
j=k

Cc
j

)
≥ 1

2
µ(Cn)µ

( n−1⋂
j=k

Cc
j

)
,

which implies due to a variant of the Borel-Cantelli lemma (see [17, Chapter IV,
Proposition 4.4]) that µ(lim sup Cn) = 1, and thus, condition (iii) is satisfied. �

3.5. Choice of the ceiling function ϕ

Let (α, α′) ∈ R2 be as in Section 3.2, and define

f (x, y) = 1 +
∑
n≥2

Xn(x) + Yn(y),

where

Xn(x) = 1

eqn
cos(2πqnx), (3.7)

Yn(y) = 1

eq ′
n

cos(2πq ′
ny). (3.8)

Relying on Proposition-Criterion 3.3, it is possible to prove as in [1] that the
flow T t

α,α′,f is mixing. The fact that f satisfies Proposition-Criterion 3.3 is explained
in the beginning of the proof of Theorem 3.1 in Section 3.6. In order to keep the
mixing criterion valid but have, in addition, the conditions of the SCPA Proposition-
Criterion 3.4 satisfied, we modify the ceiling function in the following ways.
• We keep Yn(y) unchanged.
• We replace Xn(x) by a trigonometric polynomial X̃n with integral zero, which

is essentially equal to zero for {qnx} ∈ [1/2 − 1/(2n), 1/2 + 1/(2n)] and
whose derivative has its absolute value bounded from below by e−qn for
{qnx} ∈ [0, 1/2 − 1/n] ∪ [1/2 + 2/n, 1]. The first listed properties of X̃n

yield Proposition-Criterion 3.4, while the lower bound on the absolute value
of its derivative ensures Proposition-Criterion 3.3.

More precisely, the following proposition enumerates some properties that we
require on X̃n and its Birkhoff sums which are sufficient for our purposes and which
we realize with a specific construction at the end of Section 3.
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PROPOSITION

Let (α, α′) be as in Section 3.2. There exists a sequence of trigonometric polynomials
X̃n(x) satisfying the following.
(1) We have

∫
T

X̃n(x) dx = 0.
(2) For any r ∈ N, there exists N(r) ∈ N such that for every n ≥ N(r),

‖X̃n‖Cr ≤ 1/eqn/2.
(3) For {qnx} ∈ [1/2 − 1/(2n), 1/2 + 1/(2n)], |X̃n(x)| ≤ 1/q ′

n

2.
(4) For {qnx} ∈ [0, 1/2 − 2/n] ∪ [1/2 + 2/n, 1], X̃′

n(x) ≥ q2
n/e

qn .
(5) For n ∈ N sufficiently large,

∥∥Sqn

∑
l≤n−1 X̃l

∥∥ ≤ 1/q ′
n

2.
(6) For n ∈ N sufficiently large, we have for any m ∈ N,

∥∥Sm

∑
l≤n−1 X̃′

l

∥∥ ≤ qn.

Before we prove this proposition, let us show how it allows us to produce the example
of Theorem 3.1.

3.6. Proof of Theorem 3.1
Define for some n0 ∈ N,

ϕ(x, y) = 1 +
∞∑

n=n0

X̃n(x) + Yn(y), (3.9)

where Yn is as in (3.8) and X̃n is as in Proposition 3.5. From (3.8) and property (2)
of X̃n, we have that ϕ ∈ C∞(T, R). Also, from (3.8) and (2), we can choose n0

sufficiently large, so that ϕ is strictly positive. We then have the following.

THEOREM

Let (α, α′) ∈ R2 be as in Section 3.2, and let ϕ be given by (3.9). Then the special flow
T t

α,α′,ϕ satisfies the conditions of Propositions 3.3 and 3.4 and is therefore mixing with
a singular maximal spectral type.

Proof
The second part of Proposition 3.3 is valid exactly as in [1] since Yn has not been
modified. Briefly, the reason is that due to (3.3) – (3.5), we have Y ′

n(y + lα′) ∼ Y ′
n(y)

for every l ≤ m � q ′
n+1, so that |SmY ′

n| is large, as required for m ∈ [e2q ′
n/2, 2eqn+1 ]

and {q ′
ny} ∈ [1/n, 1/2 − 1/n] ∪ [1/2 + 1/n, 1 − 1/n]. Meanwhile, Sm

∑
k<n Y ′

k is
much smaller because these lower frequencies behave as controlled coboundaries for
this range of m. (We can write Yk(y) = hk(y + α′) − hk(y) with ‖ hk ‖Cr = o(q ′

k+1).)
As for Sm

∑
k>n Y ′

k , it is still very small since m � eq ′
n+1 . These phenomena are further

explicated as similar ones are used in the sequel.
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Let m ∈ [e2qn/2, 2e2q ′
n], and define In := [1/n, 1/2−3/n]∪[1/2+3/n, 1−1/n].

It follows from (3.3) that for x such that {qnx} ∈ [1/n, 1/2 − 3/n] and for any l ≤ m,
0 ≤ {qn(x + lα)} ≤ 1/2 − 2/n. Hence, by property (4) of X̃n,

SmX̃′
n(x) ≥ mq2

n

eqn
.

On the other hand, properties (2) and (6) imply that

‖DxSmϕ − SmX̃′
n‖ ≤

∥∥∥Sm

∑
l<n

X̃′
l

∥∥∥ +
∥∥∥Sm

∑
l>n

X̃′
l

∥∥∥

≤ qn + m
∑

l≥n+1

1

eql/2

≤ qn + 2m

e(qn+1)/2

= o
( m

eqn

)

for the current range of m. With an exactly similar computation for the other part of
In, the criterion of Proposition 3.3 holds as proved.

Now, let x be as in Proposition 3.4; that is, let 1/2 − 1/(2n) + 1/n2 ≤ {qnx} ≤
1/2 + 1/(2n) − 1/n2. From (3.2) we have for any l ≤ qnq

′
n that 1/2 − 1/(2n) ≤

{qn(x + lα)} ≤ 1/2 + 1/(2n); hence property (3) implies

|Sqnq ′
n
X̃n(x)| ≤ qn

q ′
n

, (3.10)

the latter being very small compared to 1/eqn since q ′
n ≥ e3qn . From properties (5) and

(2) we get, for n sufficiently large,

∥∥∥Sqnq ′
n

∑
l �=n

X̃l

∥∥∥ ≤ 1

q ′
n

+ qnq
′
n

∑
l≥n+1

1

eql/2

≤ 2

q ′
n

. (3.11)

On the other hand, it follows from (3.2) and (3.3) that for any y ∈ T and any
|l| < q ′

n, we have

|Sq ′
n
ei2πly | =

∣∣∣ sin(πlq ′
nα

′)
sin(πlα′)

∣∣∣

≤ πlq ′
n

q ′
n+1

, (3.12)
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which yields for Yl as in (3.8),

∥∥∥Sq ′
n

∑
l<n

Yl

∥∥∥ = o
( 1

eq ′
n

)
, (3.13)

while clearly,

∥∥∥Sq ′
n

∑
l≥n

Yl

∥∥∥ = o
( 1

eq ′
n/2

)
. (3.14)

In conclusion, (3.6) follows from definition (3.9) of ϕ and (3.10), (3.11), (3.13),
and (3.14). �

It remains to construct X̃n satisfying (1) – (6).

3.7. Proof of Proposition 3.5
3.7.1
For n ∈ N, we define for x ∈ R the function ξn equal to 2q2

ne
−qnx on (−1/(2qn) +

1/(nqn), 1/(2qn) − 1/(nqn)) and identically zero outside this interval.
Consider on R a C∞ and positive even function K equal to zero outside the

interval (−1, 1) and such that
∫

R
K(x) dx = 1. Define Kn(x) = n2qnK(n2qnx).

We then consider the (odd) function ξ̂n = ξn 
 Kn, which satisfies the following:
•

∫
R

ξ̂n(x) dx = 0;
• for any r ∈ N, we have, for n sufficiently large, ‖ξ̂n‖Cr ≤ 1/e3qn/4;
• ξ̂n(x) = 0 for x ∈ (−∞, −1/(2qn) + 1(2nqn)) ∪ (1/(2qn) − 1/(2nqn),+∞);
• ξ̂ ′

n(x) = 2q2
n/e

qn for x ∈ [−1/(2qn) + 2/(nqn), 1/(2qn) − 2/(nqn)].
Clearly, we can restrict ξn to the interval (−1/(2qn), 1/(2qn)) and then extend it to

R as a smooth periodic function with period 1/qn, and finally we consider the resulting
function as a function X̂n defined on the torus. As a consequence of the properties
proved for ξ̂n, X̂n satisfies properties (1) – (4) required in Proposition 3.5. To obtain
the other two properties, we need to replace X̂n by a trigonometric polynomial.

3.7.2
We consider the Fourier series of X̂n(x) = ∑

k∈Z
X̂n,ke

i2πkx , and we let

X̃n :=
qn+1−1∑

k=−qn+1+1

X̂n,ke
i2πkx.

The Fourier coefficients fk of a function f ∈ C∞(T, R) satisfy, for any k ∈ Z,

(2π)r−1|k|r |fk| ≤ ‖f ‖Cr ≤ sup
k∈N

(2π |k|)r+2|fk|. (3.15)
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Hence we have, for any r ∈ N,

‖X̃n − X̂n‖Cr ≤
∑

|k|≥qn+1

(2πk)r |X̂n,k|

≤ 1

2π
‖X̂n‖Cr+2

∑
|k|≥qn+1

1

k2

= o
( 1

q ′
n

2

)
,

which allows us to check (1) – (4) for X̃n from the properties of X̂n.

Proof of properties (5) and (6) of Proposition 3.5
We have, due to our truncation,

X̃n(x) = ψn(x + α) − ψn(x), (3.16)

where

ψn(x) =
qn+1−1∑

k=−qn+1+1

ψn,ke
i2πkx

with

ψn,0 = 0 and, for k �= 0, ψn,k = X̂n,k

ei2πkα − 1
.

Since |k| < qn+1, it follows from (3.2) that

|ψn,k| ≤ qn+1|X̂n,k|,

which with (3.15) implies

‖ψn‖Cr ≤ 2πqn+1‖X̂n‖Cr+2

≤ 2π
qn+1

e3qn/4

for sufficiently large n. Hence, from (3.16) and (3.3), we get

∥∥∥Sqn

∑
l≤n−1

X̃l

∥∥∥ ≤ 1

qn+1

∑
l≤n−1

‖ψl‖C1

≤ 1

qn+1

∑
l≤n−1

ql+1

e3ql/4

≤ qn

qn+1
,
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so that property (5) of Proposition 3.5 follows. Similarly, property (6) holds true since
we have, for sufficiently large n,

∥∥∥Sm

∑
l≤n−1

X̃′
l

∥∥∥ ≤ 2
∑

l≤n−1

‖ψl‖C1

≤ qn. �

Thus Theorem 1.3 is proved. �

Acknowledgments. I am grateful to Jean-Paul Thouvenot for several enlightening
discussions in spectral theory which helped me find Criterion 1.2 for a singular
spectrum and to Anatole Katok and the referee for helping me state it in its actual
general form. I also thank Arthur Avila, Raphaël Krikorian, and François Ledrappier
for useful conversations. I am indebted to the referee for the many improvements
that were suggested. Part of this work was done during my stay at the Center for
Advanced Mathematical Sciences of the American University of Beirut, and I thank
this institution for its warm hospitality.

References

[1] B. R. FAYAD, Analytic mixing reparametrizations of irrational flows, Ergodic Theory
Dynam. Systems 22 (2002), 437 – 468. MR 1898799 372, 376, 382, 383, 384,
385, 386

[2] ———, Weak mixing for reparameterized linear flows on the torus, Ergodic Theory
Dynam. Systems 22 (2002), 187 – 201. MR 1889570 375

[3] B. FAYAD, A. KATOK, and A. WINDSOR, Mixed spectrum reparameterizations of linear
flows on T2, Mosc. Math. J. 1 (2001), 521 – 537. MR 1901073 375

[4] B. FAYAD and A. WINDSOR, A dichotomy between discrete and continuous spectrum for
a class of special flows over rotations, preprint, arXiv:math.DS/0501203 376

[5] M. GUENAIS and F. PARREAU, Valeurs propres de transformations liées aux rotations
irrationnelles et aux fonctions en escalier, preprint, 2005. 375

[6] P. R. HALMOS, Lectures on Ergodic Theory, Chelsea, New York, 1960. MR 0111817
374

[7] M.-R. HERMAN, Exemples de flots hamiltoniens dont aucune perturbation en topologie
C∞ n’a d’orbites périodiques sur un ouvert de surfaces d’́energies, C. R. Acad.
Sci. Paris Sér. I Math. 312 (1991), 989 – 994. MR 1113091 375

[8] B. HOST, Mixing of all orders and pairwise independent joinings of systems with
singular spectrum, Israel J. Math. 76 (1991), 289 – 298. MR 1177346 372, 376

[9] A. B. KATOK, Spectral properties of dynamical systems with an integral invariant on
the torus (in Russian), Funkcional. Anal. i Priložen. 1, no. 4 (1967), 46 – 56.
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Département de Mathematiques, Institut Galilee, Université Paris 13, CNRS 7539, Villetaneuse
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