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ABSTRACT. We give an example of an analytic transformation on
T° that conserves the Haar measure, that is minimal and topolog-
ically mixing, but is not ergodic.

In [2], Furstenberg constructed an analytic diffeomorphism of T? that
preserves the Haar measure and is minimal but not ergodic. The diffeo-
morphism [ he produces is not topologically mixing since there exists a
sequence of integers k,, — oo such that F*» — Idp» uniformly as n goes
to infinity (this rigidity obviously eliminates topological mixing). We
will use the construction of Furstenberg and the techniques developed
in [1] of reparametrizations of irrational flows on the torus in dimension
higher than 3, to construct an example on T® of a diffeomorphism that
has all the properties of the Furstenberg map but that is in addition
topologically mixing.

—An essential ingredient of our construction will be the construction by
J-C. Yoccoz in an appendix to his thesis [4], of a minimal translation on
T? and a real-analytic complex function ¢ of T? that give a counterex-
ample to the Denjoy-Koksma inequality in dimension 2. Following [4],
we take o and o’ rationally independent such that the denominators
of their convergents, ¢, and ¢, satisfy for n > ng

(1) an > e3q;_1’
(2) q, > e
Define then
o0 ei?ﬂqnaz e 67327”1411/
@(x,y)=1+Re<Z s >+Re<z o )
n=ngo n=no

Assume nyq is such that % < p(z,y) < %, for any (z,y) € T?. We will
denote the Birkhoff sums of ¢ with respect to R, o by

m—1

om(z.y) == > @ (RE (2.1)) .

ol

The stretching (important partial derivatives) of the Birkhoff sums ¢,,

for all large m will be central for topological mixing as we will explain
1
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later. For the moment we just state the only property of the sums ¢,,
that we will need:

Proposition 1 (Stretch). Let be given a rectangle R on T?. There
exists an interval J x {yo} C R of length more than 1/q,*, such that

for any m € [62%, 2¢24n] and any x € J, we have

0Pm m

(3) E(x"%) > P

A similar statement involving %’%(wo, y) holds for m € [62%, 2e2an+1],

This proposition follows from a direct computation of the ¢,,’s, and
its proof can be found in [1]' or implicitly in [4]. The essential thing

to notice is that the intervals [£a~, 2e], €% 2¢%in+1] cover N when

n runs through the integers, hence the derivatives of ¢,, will always be
stretching either in one or in the other direction z and y (or in both).

—As we mentioned, the other ingredient of our construction will be
Furstenberg’s example. Choose 3 an irrational number such that the
translation on T?, R, . s be minimal, and such that the sequence of
denominators of the convergents of (3, ¢, satisfy for n > ny

qn Z eqnfl.

Let ¢ be the following real analytic function on T!:

o

sin 27,0
o(0) = —_—
( ) ; NQqn+1

Next, define on T* the following skew product, denoted by 7T :
T — T4
(2,9,0,2) — (z+a,y+a,0+08,2+¢0)).

What will be relevant for 7" is the following

Proposition 2. The diffeomorphism T is minimal and nonergodic.

!The exact statement in [1] is: Define, for n € N, the set

11 1 1 1 1
I, = T! / [q ==l Jr+=1==
= {reT /gl €5 - U5+ 01 - 21k
then we have the following
Proposition 3.4. For any y € T, for any z € I,,, for any

me [62;" , 2€240],

@) 2o )| 2

A similar inequality on ag%(:r, y) holds when m € [62;" , 2e%an+1],
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Proof. This proposition is due to Furstenberg |2|, and follows from our
choice of ¢ (wild coboundary). The idea is that if the equation

(E) $(6) — (0 + B) = 6(0),

admits a measurable solution ¥ but does not admit a continuous one,
then the skew product T is nonergodic but is minimal (Cf [2], or [3],
Propositions 4.2.5 and 4.2.6). Here, the solution ¢ of the equation (E)
one finds using Fourier expansions is:

< 1 1 127 Gn
Y(6) = Re <_2 ; 1 — e2m@nf mjnﬂe > '
But we have
1 Dn 1
— < (-1 " ﬁ ——) < — )
Qn(Qn + Qn—I—l) ( ) ( Qn) dndn+1
hence 3 3
gn+1 1 dn+1 i
2 T |1 — B T 2 k

from the right hand side of this inequality we deduce that 1 is L. From
the left hand side, it appears that the series is not absolutely conver-
gent. Since it is a lacunar series (the ¢,’s increase exponentially), a
theorem by Zygmund states that it is not continuous [5]. O

~Finally, the last step of our construction is to let {7} be the spe-
cial flow constructed over 7" with the ceiling function ¢ (that depends
only on the variables x and y). We recall rapidly the definition: The
flow {1} is obtained by inducing on T* x R/ ~, where ~ is the iden-
tification (2,9, 0, 25 + @(z,y)) ~ (T(2,4,0. 2), s), the action

™xR — T xR
('%'7 y7 07 Z7 S) - ('CE7 y7 0’ Z7s+t)'

The flow {T"}, thus obtained, is analytic and preserves the normalized
Lebesgue measure on My, = T* x R/ ~, i.e. the product of the Haar
measure on the basis T with the Lebesgue measure on the fibers .
This is the flow we will work with and the theorem we want to prove
is the following:

Theorem 1. The flow {T"} is minimal and topologically mizing, and
s not ergodic.

First, the flow is minimal and nonergodic because 7" is minimal non-
ergodic. We only have to prove topological mixing.

In the sequel, we will use the following notations: By rectangle on
T? we designate a direct product of intervals of the circle. If R C T?
and V' C T? are such rectangles, R x V x {0} designates a set of
codimension 1 of the space My, situated on the basis T%. In this
expression, R encloses the coordinates = and y while V' contains 6 and
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z. By u we will denote a couple of coordinates (6, z), and the variable
r will be used to denote coordinates (z,y).

We will prove the following proposition that implies more than topo-
logical mixing:

Proposition 3. Given R, R', V C T? rectangles, and u a point of T?;
then there exists ty such that, for any t > t,

(5) T (R x {u} x {O})ﬂR’xVx {0} # 0.

The sets involved in the proposition are taken to be on the basis T*.
But the same equation (5) would clearly be true when ¢ is large enough,
for any couple of sets 7° (R x {u} x {0}) and T* (R’ x V x {0}), s,s" €
R. Since any two open sets of the space M7, contain sets of the prece-
dent type, this proposition implies topological mixing for the flow.
Remark. We said that the property is stronger than topological mixing
because the sets that intersect are respectively of dimension 2 and 4 in
the five dimensional space where the flow acts.

The mechanism producing topological mixing is the following: be-
cause the Birkhoff sums of ¢ are always stretching when m is large
(in one or in the other direction z and y); for large ¢, the image of
R x {u} x {0} by the flow at time ¢ contains a union of almost vertical
strips whose projection on the basis follows the trajectory under T of
R x {u}. So, by minimality of 7" one of the base points of these strips
intersects the set R/ x V' x {0}. Since this is valid for all ¢ large enough,
topological mixing is proved. We go now to the detail of the proof.

Definition 1. For any r € T?, and any positive time t, there is a unique
integer m, such that

m—1
0<t—=Y ¢ (RE (r) <e(RI.r).
k=0
We denote this number m, by N(r,t).

Note that because 3 < ¢ < 2, N(r,t) € [£,2t] for any . By definition
of the special flow:
T'(r,u,0) = (RS (1), FYCO(w).t = oxn (1))
So, if m is such that ¢ — ¢, (r) = 0, then m = N(r,t) and
T(r,u,0) = (R o (r), F™(u).0) .
The stretch property of the Birkhoff sums of ¢ implies

Lemma 1 (Consequence of stretch). Given a rectangle R, there ex-

ists to such that for any t > ty, we can find an mg > L with the

2
following property:



TOPOLOGICALLY MIXING AND MINIMAL BUT NOT ERGODIC... 5

For all m € [mgy, mo + moi], there is an r,, € R such that

Om(rm) = 1.

Proof. We will assume ¢ is in an interval of the type [¢%%, €], for some
integer n (the case t € [¢%n, e24n+1] being similar). By the Proposition
1 there is an interval J = [j1, 2] X {yo} of R such that (3) holds
on J X {yo}. Let my = N(j2,%0,t). In Definition 1, we saw that

mg € [£,2t] C [625” ,2¢%®], By definition also we have
: - 3
(6) 0 <t — @my (J2,%0) < @ (R (G2, %)) < 3

Now, because ¢ > I, we obtain from the right hand side in (6), for any
k>3

(7) t — Qma+k(J2, Y0) < 0.

Next, if we look at the left extremity of J X {yo}, we have due to the
left hand side in (6)

t— Pma (jlv yO)

t — ©my (92, Y0) + ©ms (J2, Y0) — Pms (J15 Y0)

> Oy (J2:Y0) — Pms (J1, Yo)
dp
> . f mo
> inf = (@, o)
ma
Z qTQLe‘In
621111

from (3). Because my > the last inequality implies

2

1
t— ‘sz(jlayo) > 3m§a

since ¢ < 2, we conclude that for any k < MMy

(8) t = Oma+k(J1:%0) 2 0.
We take now mg = mg + 3 and we deduce Lemma 1 from (7) and (8)
using the intermediate value theorem on the interval J x {yo}. O

The fact that the diffeomorphism 7" on T* is minimal enables us to
state the following lemma, the proof of which is direct by compacity:

Lemma 2 (Minimality). Given two rectangles R and V, and any
point (r,u) in T*, there erists A € N such that: For any mo > A,

there exists m € [mgy, mo + mo%] satisfying

(R™ (1), F™(u)) € R x V.

Proof of Proposition 3. We can assume that R is very small and take
a rectangle R’ C R’ such that for any m, if an r € R satisfies

Ry o (r) € R,
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then
Rgfa/ (R) C R.

Now, let A be the number given by Lemma 2 and assume t > 2A. By
Lemma 1, there exists an my > % > A such that the set

T" (R x {u} x {0}) contains the points (R, (rm), F™(u),0) for every
m € [mg, mg —l—moi]. On the other hand by Lemma 2, applied to (r¢, u)
where 79 € R is arbitrarily chosen, we have for some m € [mg, mg +
mot], that (R, (ro), F™(u)) € R x V. Hence (R7,(R), F™(u)) C
R’ x V, and in particular (R?,, (rm), F™(u)) € R’ x V. O

a,af

Conclusion. To conclude we want to derive from Theorem 1 the fol-
lowing

Theorem 2. There exists an analytic diffeomorphism of T° that pre-
serve the Haar measure, that is minimal and topologically mizing, but
not ergodic.

Any time ty map of the flow we studied is conjugate to an analytic
diffeomorphism of T° that preserves the Haar measure. From Theo-
rem 1 we have that 7" is topologically mixing and nonergodic. We can
obtain Theorem 2 from Theorem 1 if we prove the following general fact

Proposition. Let {T"} be a minimal flow on a compact metric space
M, then for a dense Gy set of t in R, the time-t map of the flow is
minimal.

Proof. The proof we will give of this proposition is standard. We
remind first the definitions: A flow {7"} on M is minimal if and only
if the only closed sets X C M such that

T'X)=X, forallt € R,

are M or the empty set (). A diffeomorphism 7" of M is minimal if and
only if the only closed sets X C M such that

T(X) = X,

are M or the empty set (.

Assume now {7} is a minimal flow on a compact metric space M.
Clearly, the flow is transitive, i.e. for any open sets O and V of M we

have
U 7o)V #0.

teR4+

We will first show that for a dense G5 set of t € R, the time-t map of
the flow is transitive. Let {O;} be a countable basis of open sets of M.
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Define
Tjm={teR/ |J T"0;)[)0; = 0}.
k>m

The set T; ., is closed and has an empty interior: Indeed, if t € T; ; ,,,
then pt € T ;,, for any p € IN*; therefore if 7; ;,, contains an interval
it will contain [a, 4+00| for some a € R which obviously contradicts the
transitivity of the flow. Besides T; ;,, is closed because its complement
is clearly open.

The complement of J; ;e Zi,jm is exactly the set of times such that

the map T" is transitive. From what was underlined above it is a dense
G§ in R.

Knowing that {7"} is in fact minimal we will show that: the same
parameters t for which T is transitive are such that T" is minimal.
Let t; € R such that 7% is transitive and let X C M be a closed
nonempty set such that 7% (X) = X. For t € R, define

X = |J m(x).
s€[0,t]
The closed set X;, is invariant by the flow. Since the flow is minimal,
we have X, = M.
On the other hand, since for any t € R

Tto (Xt> - Xt,

we have by transitivity of 7% that either X; = M or X; has an empty
interior. In particular, for n € N*, X o is either M or has an empty

interior. Since |J;_ ST X o= = X3, = M, it follows that X o = = M.
But this holds for every 1nteger n > 0, hence X = M. O
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