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Abstract

In this note we investigate the exponential growth of products of
two matrices A,B ∈ SL(2,R). We prove, assuming A is a fixed hyper-
bolic matrix, that for Lebesgue almost every B, products of length n
involving less than nα, 0 ≤ α < 1/2 matrices B are uniformly bounded
from below by γn for some γ > 1.

Throughout this note we denote by µ the Haar measure on SL(2,R), the
group of 2 × 2 matrices with real entries and with determinant 1 and by λ
the Lebesgue measure on R.

In [5] the following problem was posed

Problem 1. Describe the pairs of matrices A0, A1 ∈ SL(2,R), with A0

hyperbolic (i.e. |TrA0| > 2) and A1 elliptic (i.e. |TrA1| < 2) for which the
following is true : there exist constants 0 < p < 1 and γ > 1 such that, for
every word w ∈ {0, 1}N which satisfies the following frequency condition

#
{
j ∈ {1, . . . , k}; wj = 1

}
≤ pk, (1)

we have for any k ∈ N

‖Aw1Aw2 · · ·Awk‖ > γk ?

Furthermore, is it true that given any hyperbolic matrix A0 ∈ SL(2,R), the
set of matrices A1 ∈ SL(2,R) for which the above holds for some constants
0 < p < 1 and γ > 1 is a set of full Lebesgue measure?

The same question can of course be asked when A1 can take a finite
number d ≥ 1 of values in SL(2,R).

Observe that a positive answer to Problem 1 would have the following
dynamical consequence : given a measurabe map A : X = [0, 1]→ {A0, A1}
that assumes the value A0 on a set of measure greater than p, then given
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any ergodic automorphism T of X, the Lyapunov exponent of the cocycle
TA : X × SL(2,R) → X × SL(2,R), (x, y) 7→ (Tx,A(x)y), is bounded from
below by γ.

In this note, we give a positive answer to the above question but under
the much restrictive frequency condition stating that the number of the
unkown matrices A1 in a product of length n is less than nα, α < 1/2. We
conjecture that the same statement of Theorem 2 below should be true for
0 ≤ α < 1 but our method, that avoids any kind of combinatorics on words,
requires in an essential way α < 1/2. A positive answer to Problem 1,
that correpsonds to the case α = 1 plus a frequency condition, is naturally
harder to conjecture since as we said before it would have a strong dynamical
consequence.

Definition 1. Let Cn = {0, 1}n. For every α ∈ [0, 1] we define the set
Cαn ⊂ Cn given by the words W = {w1, . . . , wn} satisfying

#
{
j ∈ {1, . . . , k}; wj = 1

}
≤ nα. (2)

Given two matrices A and B in SL(2,R), we denote for W ∈ Cn, W (A,B)
the product Aw1 . . . Awn , with Awj = A if wj = 0 and Awj = B if wj = 1.

Definition 2 (α-hyperbolic pairs). We say that a pair (A,B) is α-hyperbolic
with exponent γ > 1 if there exists a constant C > 0 such that for any integer
n, and any W ∈ Cαn we have

‖W (A,B)‖ ≥ Cγn.

We will prove the following

Theorem 2. Let α < 1/2 and H be a hyperbolic matrix in SL(2,R), that is
Tr(H) > 2. Then for any 1 < γ < Tr(H)/2 we have that for µ-almost every
B ∈ SL(2,R) the pair (H,B) is α-hyperbolic with exponent γ.

Remark 1. From the proof it will be clear that the same conclusion holds if
we consider products of H and a finite number of matrices B1, · · · , Bl if the
frequency of each of the matrices Bi is less than nα, α < 1/2.

Remark 2. Problem 1 can also be posed in the frame of one-dimensional
Schrödinger operators in l2(Z),

(H(Vn)u)
n

= un+1 + un−1 + Vnun
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where Vn is the potential at site n. The SL(2,R) matrices involved in the
study of the state (H(Vn)u)

n
= E(u)n (the so-called Schrödinger matrices)

are then of the form

AVn(E) =
(
Vn − E 1
−1 0

)
In this context, Problem 1 corresponds to taking Vn in a finite set of

values {v0, . . . , vd}, fix E such that |v0 − E| > 2, and see whether almost
surely in v1, . . . , vd the conclusion of Problem 1 holds. A stronger version of
Problem 1 (we call this Problem 1’) in this setting is the following. Given
v0, v1, . . . , vd, is it true that for almost every E such that |v0 − E| > 2, the
set {Av0(E), . . . , Avd(E)}, satisfies the conclusion of Problem 1? Although
Schrödinger matrices form a zero measure set in SL(2,R), it will be clear
from our proof of Theorem 2 that given a finite number of values vi ∈ R,
and if we consider the products of the matrices

Ai(E) =
(
vi − E 1
−1 0

)
where in a product of size n every matrix other than A0(E) appears less
then nα times, α < 1/2, then for almost every energy E such that γ0 =
|v0 − E| > 2, these products will be hyperbolic with exponent γ0/2.

In the dynamical case, that is when Vn is of the form V (Tnw) where
T : (Ω, µ) → (Ω, µ) (T∗µ = µ) is a measurable dynamics on the probability
space (Ω, µ), V ∈ L∞(Ω) assumes a finite number of values and ω ∈ Ω is
in a set of µ-measure 1, a classical and natural counterpart of dynamical
nature to Problems 1’ is the problem of positivity of Lyapunov exponent of
the corresponding cocycle for Lebesgue a.e. energy E ∈ R, which is solved
by a celebrated theorem of Kotani [7] (see also [2]). Kotani’s result, which
applies under some aperiodicity condition on the cocycle, has, as usual in
the theory, consequences on the spectrum Σ of the operator H(Vn) (Vn =
V (Tnω)) : its almost absolutely continuous part Σac is empty. In some cases
one can even prove that the spectrum Σ itself is of zero Lebesgue measure
and that the corresponding Schrödinger cocycle is uniformly hyperbolic.
For potentials given by evaluation of certain finite valued functions over an
irrational rotation on the circle this has been proved by Damanik and Lenz
[3], [4]. We refer the reader to the survey paper by Damanik [1] for further
informations and references.

We now prove Theorem 2.
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We first observe that up to conjugating we can always assume that H is
of the form

H =
(
a 1
−1 0

)
, a > 2. (3)

On the other hand it is easy to check that any matrix B ∈ SL(2,R) such
that

B =
(
r s
t u

)
, u 6= 0,

can be written as a product

B = B(b1, b2, b3) =
(
b1 1
−1 0

)(
b2 1
−1 0

)(
b3 1
−1 0

)
(4)

with

b1 = −(s+ 1)/u, b2 = −u, b3 = (t− 1)/u (5)

The matrices in SL(2,R) that cannot be represented as above, that is
with u = 0, have zero Haar measure. Moreover, zero Lebesgue measure sets
in R3 of (b1, b2, b3) correspond by (5) to zero Haar measure sets in SL(2,R).
Theorem 2 hence follows from the following

Theorem 3. Let α < 1/2, a > 2 and H be given by (3). Then for any
1 < γ < a/2 we have that for any (θ, θ′) ∈ R2, for Lebesgue-almost every
b ∈ R the pair (H,B(b, b+ θ, b+ θ′)) is α-hyperbolic with exponent γ.

Proof. Fix (θ, θ′) ∈ R2, and let M be an arbitrarilly large number. Define
for W ∈ Cαn

EW =
{
b ∈ [−M,M ] | ‖W (H,B(b, b+ θ, b+ θ′))‖ ≤ γn

}
,

En =
⋃

W∈Cαn

EW .

By the Borel-Cantelli lemma, we finish if we prove that∑
n∈N

λ(En) <∞.

The latter follows if we prove that∑
n∈N

#(Cαn ) max
W∈Cαn

λ(EW ) <∞ (6)
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which we will show holds if α < 1/2.
FixW ∈ Cn. Letm = #{j ∈ {1, . . . , k}; wj = 0}+3#{j ∈ {1, . . . , k}; wj =

1}. In the sequel we will only need to remember that m ≥ n. It is an easily
checkable classical fact that for W = W (H,B(b, b+ θ, b+ θ′))

W =
(

∆(W, b, θ, θ′) ∗
∗ ∗

)
with

∆(W, b, θ, θ′) = det



z1 1 0 0
1 z2 1 0 0

0 0 1 zm−1 1
0 0 1 zm

 (7)

and zi = a corresponds to the appearance of a letter H in W while a string
zi = b, zi+1 = b + θ, zi+2 = b + θ′ corresponds to the appearance of a letter
B. In particular

‖W (H,B(b, b+ θ, b+ θ′))‖ ≥ |∆(W, b, θ, θ′)|. (8)

Observe that for fixed θ and θ′

PW (b) := a−m∆(W, b, θ, θ′) (9)

is a polynomial of degree 3#{j ∈ {1, . . . , k}; wj = 1} ≤ 3nα if W ∈ Cαn .
The following simple computational lemma is useful :

Lemma 4. Let l ≥ 1 and

∆l = det



d1 1/a 0 0
1/a d2 1/a 0 0

0 0 1/a dl−1 1/a
0 0 1/a dl


and assume that a ≥ 2 and for every i = 1, . . . , l, di ≥ 1. Then

∆l ≥
1
2l
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Proof. Denote by ∆l the previous l × l determinant. It is a classical easy
fact that for l ≥ 2, ∆l = dl∆l−1− (1/a)2∆l−2 (setting ∆0 = 1). Introducing
ul = ∆l/∆l−1 and using the fact that a ≥ 2 and di ≥ 1 (i ≥ 1), we get
ul ≥ 1 − 1/(4ul−1). Since u1 ≥ 1/2 we have by induction ul ≥ 1/2 and
consequently ∆l = ul · · ·u1 ≥ (1/2)l.

Applying this lemma to (7) we get

Corollary 5. For PW of (9) we have

PW (a+ |θ|+ |θ′|) ≥ 1
2m

.

Now we need the following

Proposition 6 ([6], Prop. 3.2). Let P (x) be a polynomial of degree ≤ n.
For I ⊂ R, denote by ‖P‖I := maxx∈I |P (x)|. Then for any open interval I
and any ε > 0 we have

λ ({x ∈ I : |P (x)| ≤ ε}) ≤ 2n(n+ 1)1/n
(

ε

‖P‖I

)1/n

λ(I).

Without loss of generality, we can assume that M ≥ a+ |θ|+ |θ′| and we
deduce from Corollary 5 and Proposition 6 that for ε > 0

λ
({
b ∈ [−M,M ] | |PW (b)| < ε

})
≤ 24Mnα(2mε)

1
3nα . (10)

Finally, we pose
ε =

(γ
a

)m
.

Applying (10), we get

λ(EW ) ≤ 24Mnα
(

2γ
a

) m
3nα

≤ 24Mnατn
1−α

, (11)

where we used m ≥ n and τ = (2γ/a)1/3 < 1. But clearly #(Cαn ) ≤ nαnn
α

while ∑
n∈N

n2αnn
α
τn

1−α
<∞

as soon as α < 1/2 which gives (6) and ends the proof of Theorem 3.
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