TOPOLOGICALLY MIXING FLOWS WITH PURE
POINT SPECTRUM.

ABSTRACT. We are interested in the relationship between the mea-
sure theoretical behavior and the topological behavior of a smooth
volume preserving system on a compact connected Riemannian
manifold. The paper has two parts. In the first one, we give an
overview of some old and new constructions showing how loose can
this relationship be. The general approach in all the constructions
is to start with linear Liouvillian translations or flows and perturb
them using group extensions, reparametrizations or the successive
conjugations techniques.

In the second part, we give a complete and selfcontained con-
struction of smooth volume preserving flows on the torus that are
topologically mixing and isomorphic to translation flows.

1. INTRODUCTION

In these notes we address the following question: How far can the
measure-theoretical behavior of a volume preserving diffeomorphism be
from its topological behavior?

We will ask this question for diffeomorphisms of compact connected
smooth Riemannian manifolds that preserve a smooth measure p, i.e.,
a measure which is smoothly equivalent to the Riemannian volume.
We will denote such a dynamical system by (f, M, ).

The ergodic properties that we will examine will range between dis-
crete spectrum and Bernoulli and we will study their relationship with
topological properties such as transitivity, minimality, topological mix-
ing and orbit growth. In the first section we recall some definitions
as well as some classical consequences of the ergodic properties on the
topological ones, such as ergodicity implies transitivity, mixing implies
topological mixing, etc.

Dynamicists might just skip this section and go directly to the fol-
lowing one where we overview some old and recent examples of systems
with contrasting ergodic and topological properties, more precisely, sys-
tems whose ergodic features are weaker than their topological ones.

The overview is not in any means exhaustive and is rather focused
on Liouvillian constructions, i.e. systems elaborated from transla-
tion maps or flows with Liouvillian frequencies via group extensions,
reparametrizations or more generally via the successive conjugations
techniques introduced in [1].

The constructions we outline display in general an elliptic behavior

in the sense that their derivatives grow sublinearly, unlike the parabolic
1
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and hyperbolic paradigms for which ||Df"|| grow linearly or polyno-
mially for the first and exponentially for the second. The latter sys-
tems are best represented by the horocycle flows and the Anosov maps
for which it is known that the topological behavior and the measure-
theoretical one are intimatly related. However, some of our construc-
tions, namely the mixing or topologically mixing ones, stand at the
borderline between the elliptic and the parabolic paradigm. Indeed,
even if the derivatives grow sublinearly the growth of orbit segments
of length n that can be distinguished with a fixed precision € can be
polynomial due to the dimension of the space.

Some of the recent examples are provided by reparametrizations of
linear flows or by successive conjugations constructions in dimension
greater than three. Placing ourselves in high dimensions, on one hand
opens the way to obtaining the mixing properties (Cf. §3.2) and on
the other hand leaves more space to the coexistence of exceptional sets
of positive or full measure on which the topological properties can be
violated (Cf. §3.4). To this respect, section 4 is a good example where
both these advantages of working in high dimension are used to obtain
a topologically mixing reparametrization of an irrational flow that is
isomorphic to the original linear flow.

Content of the article. In section 2 we give the necessary notations
and the definitons of the properties we will be interested in as well
as the immediate implications between them. In section 3 we will
review the following volume preserving constructions that were or will
be published elsewhere and of which we only give brief outlines:

—Analytic minimal non-ergodic skew products over a Liouvillian rota-
tion of the circle (Furstenberg’s example).

—Analytic minimal and mixing flows obtained by reparametrization of
irrational flows on T%.

—Analytic minimal and topologically mixing non-ergodic flows on T°
obtained by combining the two constructions above.

—Smooth transitive systems with a positive measure set of nondense
orbits obtained using the successive conjugations techniques applied to
the map on T*: (z,y,2) = (x + «,y,2) where a is some Liouvillian
number.

—~Partially hyperbolic systems with the property of topological accessi-
bility and not essential accessibility obtained by perturbing the direct
product of the latter construction with a hyperbolic automorphism of
T2.

—A minimal flow on T® with a rotation set not reduced to a point
obtained (almost straightforwardly) considering a special flow above
a minimal volume preserving map on T? with exactly two absolutely
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continuous ergodic components. The latter example was constructed
in [16] using the successive conjugations techniques.

~Two isomorphic maps on T? with different rotation sets. This is ob-
tained considering a skew product over a Liuovillian rotation of the cir-
cle R, whith a function ¢ such that ¢+ is a multiplicative coboundary
for some 8 ¢ Za+7Z [ ¢.

In §3.6, starting again from the map of [16], we construct a diffeo-
morphism of T® with two intermingled attractors.

Section 4 contains a complete proof of a new construction involving
two properties at the opposite extremities in the spectrum of complex-
ity for a dynamical system: topological mixing on one hand and pure
point spectrum on the other hand. We will prove the following

THEOREM. For any r € N, there exists d € N such that there exists on
T¢ a volume preserving diffeomorphism of class C" that is topologically
mixing and isomorphic to a minimal translation on T¢.

This gives an answer in finite differentiability to the following ques-
tion of Katok (|9] §8.2.e): Is it possible to have a topologically mixing
nonstandard smooth realization of some rotations or some linear flows
on the torus?

It would be interesting to answer Katok’s question in the real analytic
or in the C* frame (r = +oo or w in the beginning of the above
statment), which should also be related to acheiving the isomorphism
to rotations of the circle (d = 1 at te end of the statement).

2. NOTATIONS AND DEFINITIONS.

2.1. In all the text we will consider diffeomorphisms or flows on com-
pact Riemannian manifolds. We will say that a diffeomorphism is vol-
ume preserving if it preserves a measure which is smoothly equivalent
to the Riemannian volume.

2.2. Topological tarnsitivity. The dynamical system (f, M) is said to
be topologically transitive if f has a dense orbit, i.e., if there exists
x € M such that for any y € M there is a sequence k, — oo such
that f*»(x) — y. We recall that for complete separable metric spaces
topological transitivity is equivalent to the fact that for any pair of
non-empty open sets U and V' of M, there exists an integer N such
that fN(U)(V # 0, or equivalently if any open set invariant by f is
dense.

2.3. Minimality. The dynamical system (f, M) is said to be minimal
if the orbit of any point in M is dense, or equivalently if the only
non-empty closed set invariant by f is M itself.

Transitivity and minimality are both, in ascending order, properties
of irreducibility in topological dynamics. In a transitive system we can
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not isolate the orbit of an open set and in the minimal system we can
not isolate the orbit of any given point.
A strengthening of topological mixing is the following property

2.4. Topological mixing. The dynamical system (f, M) is said to be
topologically mixing if for any pair of non-empty open sets U and V
there exists an integer N such that f"(U)(V # 0 for every n > N.

Both minimality and topological mixing are strengthening properties
of transitivity but none of them implies the other as shown by the exam-
ples of minimal rotations on the circle that are not topologically mixing
since they are isometries, and by hyperbolic linear automorphisms on
the torus that are topologically mixing but clearly not minimal since
they have periodic orbits.

2.5. Ergodicity. A system (f, M, u) is said to be ergodic if every mea-
surable invariant set is either of zero measure or of full measure. Ergod-
icity is a notion of irreducibility and in our case of volume preserving
maps it implies topological transitivity (any open invariant set must
have full measure and is hence dense).

Both minimality and ergodicity are strengthenings of transitivity but
neither one of them implies the other. Hyperboliqu automorphisms on
the torus are ergodic for the Haar measure but are not minimal while
minimal maps can have invariant sets of positive and not full measure
as long as these sets are dense in the space (Cf. §3.1). However when p
is the only probability measure on M invariant by f the system is said
to be uniquely ergodic and is minimal on the support of u (otherwise
one would be able starting from the Dirac measure of a point and
iterating it to construct an invariant measure distinct from p). Hence,
when p is a volume, unique ergodicity implies minimality on the whole
space, while in general this is not true as shown by the example of an
irrational linear flow on the torus slowed down drastically at a single
point: the only invariant measure is the Dirac measure at this point
but the flow is clearly not minimal.

2.6. Mixing. A system (f, M, p) is said to be mixing if and only if given
any two measurable sets A and B we have
lim p(A(\T™"B) = u(A)p(B)

n—r00
with n € N for diffeomorphisms and n € R for flows. Clearly mixing
implies ergodicity and for volume preserving systems it also implies
topological mixing. Topological mixing does not imply mixing and
we will even see in §3.3 that topologically mixing volume preserving
systems might be non-ergodic.

A stronger notion than mixing is Bernoullicity for which the limit
above becomes a plain equality as n is large enough for pairs (A, B)
taken from some dense collection of sets. A Bernoulli system being a
system isomorphic to an independent shift on a finite alphabet.
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A weaker notion than mixing is that of weak mixing when for any
pair (A, B) the limit above is required to hold along a subsequence of
full density in N or R.

2.7. Isomorphism. Two dynamical systems (f, M, u) and (g, N, v) are
said to be metrically isomorphic if there exists an isomorphism A :
(M, p) — (N,v) such that foh = hog. In the same way, two flows are
said to be isomorphic if ffo h = ho g' for every t € R.

Two isomorphic systems have the same ergodic properties. Never-
theless, unless A is a conjugacy (bicontinuous bijection), the topological
properties of two isomorphic systems might be different. Isomorphisms
that are not conjugacies are a source of systems with contrasting er-
godic and topological properties as will be seen in the sequel.

2.8. Special flows and reparametrizations. If Ry, is a translation flow
on T" and ¢ is a strictly positive smooth real function on T", we define
the reparametrization of Ry, with velocity ¢ as the flow given by the
vector field ¢(x)a, that is, by the system

dx

= bla)a.
The new flow has the same orbits as R;, and preserves a measure
equivalent to the Haar measure given by the density % Moreover, if
Ry, is ergodic then so is the reparametrized flow.

Given a dynamical system (f, M,p) and a function ¢ € L'(M),

@ > ¢ > 0, the special flow constructed over the diffeomorphism f and
under the function ¢ is the quotient flow of the action

MxR — MxR
(x,s) — (x,s+1)

by the relation (z,s+¢(x)) ~ (f(z), s). This flow acts on the manifold
M;, =T" xR/ ~, and preserves the normalized Lebesgue measure on
M; ,, i.e. the product of the invariant measure on the base p with the
Lebesgue measure on the fibers divided by the constant [, ¢(z)du(z).
The function ¢, that measures the time needed by a point on the base
to return to it, is called the ceiling function. We will denote the special
flow over f and under ¢ by T} .

As an example, one can view the flow Ry, 1) as a special flow over
the translation R, and under the constant function equal to one. There
is a natural correspondance between reparametrizations of translation
flows and special flows over discrete translations (see for example 2]
Chapter 16).

2.9. The successive conjugations techniques |1|. We give very briefly
and in a particular frame the general scheme of the thechnique in-
troduced in [1]: M is a manifold admitting a circle action S?, « is a
Liouvillian number and we consider the map fy equal to S®. Then
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we construct inductively a sequence of diffeomorphisms A, such that
hy o fo o h ! converges to some diffeomorphism f in the C* topology
while the fact that the sequence h,, itself does not converge allows f to
have an exotic behavior.

Applied to the rotation R, on the circle this technique provides with
examples of smooth diffeomorphisms of the circle with rotation number
a with almost every possible degree of regularity of the conjugacy to
R, (Cf. [12] Chapter 6).

Applied on a general compact manifold M admitting a circle action
(for example the disc) with a choice of volume preserving conjugacies
h,, one can obtain volume preserving diffeomorphisms f of M with pre-
selected metric behavior such as ergodicity or more specifically isomor-
phism to irrational translations on tori (with arbitrarilly fixed number
of frequencies, even 0o) or weak mixing (Cf. [1]).

In relation with our subject, observe that the latter constructions
show that the relation can be loose between the metric behavior of a
diffeomorphism and the topological type of the manifold. Moreover, by
the same techniques it was shown in [8] that on any smooth compact
manifold admitting a non trivial circle action there exists a weak mixing
diffeomorphism preserving a measurable Riemannian metric and a C'*°
measure.

Using the method of alternation of stretch of [5] one can now apply
the successive conjugations techniques on manifolds admitting a T?
action and get smooth volume preserving diffeomorphisms that are
mixing (Cf. §3.2).

3. SOME EXAMPLES.

3.1. Minimal non-ergodic systems. We describe in this paragraph the
classical example of Furstenberg of a minimal non-ergodic skew product
on T2. Denote by p the Haar measure on T?. Given a function ¢ : T! —
R, we consider the dynamical system (S, ,, T?, u) given by S, (2, y) =
(x4 a,y+p(x)). It is clear that the system (S0, T2, ) is not ergodic.
If o is irrational then the restriction of S, ,=¢ to any circle y = y,
is uniquely ergodic. In general, if p(z) = ¢¥(z + a) — ¢(x) for some
measurable function 1 : T' — R then one can easily check that h :
T? — T?, h(z,y) = (z,y+v(z)) is an isomorphism between (S 0, T2, 1)
and (Sa,p, T2, p). It then follows that the latter system is not ergodic
and that its invariant ergodic measures are supported on the graphs of
Y + 1o for yo € R. Hence, to insure that S, , is minimal one needs to
check that h sends each circle y = v, into a dense subset of T?. This
can be achieved if ¢ is highly discontinuous, sending for instance any
interval in T' into a dense set of R. Such a solution % to the above
linear equation is sometimes called a wild coboundary (Cf. [7] or [12]
Propositions 4.2.5, 4.2.6).



TOPOLOGICALLY MIXING FLOWS WITH PURE POINT SPECTRUM. 7

THEOREM. Let o be an irrational number exponentially well approx-
imated by rationals. Then there exists a real-analytic function ¢ over
the circle with mean value zero such that the equation

o(r) = P(r + o) — Y(z)

admits a solution 1 that is measurable but not continuous.
In this case the skew product S, : (z,y) = (z + o,y + ¢(z)) is
minimal and isomorphic to Sy hence non-ergodic.

Since S, , is a skew product over an isometry it is clearly not topo-
logically mixing. It is easy to see that S, is even rigid, in the sense
that SZ», — Idy2 uniformly along somme sequence g, going to infin-
ity (one can check that the sequence ¢, of denominators of the best
approximations of « is a rigidity sequence whenever ¢ is of class C!).

3.2. Minimality and mixing. There are not too many examples of sys-
tems combining minimality and topological mixing. One can mention
the classical examples of Horocyclic flows on homogeneous spaces and
more recently some special reparametrizations of Liouvillian transla-
tion flows on T¢, d > 3 [5]. Both these examples are volume preserving
and uniquely ergodic.

The following is an open problem: Does there exist a diffeomorphism
of class C™ (> 1) on T? that is minimal and topologically mixing?

A harder and even more interesting problem is to find examples of
diffeomorphisms on T? that preserve the Haar measure, are uniquely
ergodic and have the mixing property (Cf §2.6).

Mixing features can be gained by a transitive system if we consider
special flows above the system. Even when the initial system is rigid it
is possible that for the special flow a vertical shear appears and intro-
duces mixing properties if the base is ergodic and topological mixing
properties if the base is only transitive. Rigidity on the base becomes
itself responsible for accumulation of shear in the vertical direction
as time runs to infinity and large multiples of rigidity times of the
map on the base become times of mixing for the special flow. In fact
any rigid ergodic diffeomorphism admits a smooth weak mixing spe-
cial flow above it (Cf. [11]). Nevertheless, the special flows over rigid
transformations tend to conserve the rigidity property, which is not
incompatible with being weak mixing (both rigidity and weak mixing
are ° properties) Cf. [3], [11], [14] and Theorem 2 in [5].

More has to be satisfied by the map on the base if one requires
mixing of the special flow. For a translation Rg s on T? we can choose
(8, B") such that strong rigidity times alternate and never overlap in
one and the other direction on T2, then by an adequate choice of the

ceiling function 1 it is possible to obtain a mixing special flow T}EB ¥

(Cf. [17], [5]). Such a special flows can be viewed as a real-analytic
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time-change of the irrational linear flow Ry g 1) on T°. Summarizing,
we have

THEOREM. There exists real-analytic uniquely ergodic volume pre-
serving mixing flows on T3.

3.3. Minimal and topologically mixing non-ergodic systems. In order
to obtain a minimal and topologically mixing non-ergodic system it is
hence natural to consider suspensions over minimal non-ergodic sys-
tems. Such systems are provided by Furstenberg’s skew products S,
described in §3.1. With the fact that mixing special flows over min-
imal translations are also available (see the above section) our task
becomes easier. Indeed one considers the direct product of S, , with
a minimal translation on T? of vector 3, chosen as above with the
additional property of being independent with « over Q. The prod-
uct f = S, X Rgp will then be minimal and not ergodic as well as
the special flow T;ﬂp where 9 depends only on two variables and is
chosen as in [5] to guarantee that the flow is topologically mixing [4].
Summarizing, we have

THEOREM. There exists a real-analytic volume preserving minimal
and non-ergodic topologically mixing flow on T°.

3.4. Transitive systems with a positive measure set of nondense orbits.
If f is topologically transitive on a complete separable metric space
M it is easy to see that the set of points with a dense orbit is a set
of first category, i.e. a dense G?, call it T(f). On the other hand,
if a volume preserving system (f, M, u) is ergodic then T(f) has full
measure. It is thus a natural question to ask how small can the measure
of T(f) be for a non-ergodic volume preserving topologically transitive
system. To answer this question, in a work in preparation with A.
Windsor we use the techniques of successive conjugations introduced
by |1] on a manifold where the transverse direction to the circle action
has dimension greater than 2. In particular, it is possible to show the
following

THEOREM. For any € > 0, there exists a measure preserving diffeomor-
phism on T® that is topologically transitive and such that the measure
of the set of points with a dense orbit is less than e.

We think that with the same techniques of successive conjugations, it
should be possible to produce a topoligcally transitive diffeomorphism
such that p(T(f)) = 0.

Examples of transitive maps with a set T(f) of zero measure were
known to exist for diffeomorphisms that do not presevre volume

3.5. Topological accessibility without essential accessibility for par-
tially hyperbolic systems. In this paragraph, we sketch an application
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of the foregoing construction 3.4 to the theory of partially hyperbolic
systems.

A system (f, M) is said to be partially hyperbolic if there is a df-
invariant continuous splitting of the tangent bundle of M: T,M =
E*(z) + E¢(x) + E*(x), such that the map df is uniformly contracting
in E?, uniformly expanding in £* and E° is uniformly dominated by
E* and E*, i.e., for every € M and all unit vectors vs; € E*(z), v, €
E¢(z), and v, € E"(z), we have

defvs|| < ||defovell < ||dzfuull-

For each point x € M, there are stable W#(z) and unstable W*(x)
manifolds that are tangent respectively to E*(z) and E“(z) and such
that the forward orbit of a point on W*(x) approaches exponentially
the forward orbit of z while the backward orbit of a point on W*(x)
approaches the backward orbit of the point z. These manifold form
the so called stable and unstable foliations which are invariant under
f. A point z € M is said to be accessible from a point x € M if there
is a sequence ¥ = xg, Z1, ..., L, = z such that for every n we have z; €
W*(z;—1) or z; € W¥(x;—1). Accessibility is an equivalence relation and
a partially hyperbolic system is said to have the accessibility property
if there is only one class of accessibility (any point is accessible from
any other point) and is said to have the essential accessibility property
if there is a class of accessibiltiy of full measure. We will say that f has
the topological accessibility property if there is a class of accessibility
that is dense (given any two open sets we can access some point of one
from some point of the other).

It is a highlight of the ergodic theory of volume preserving partially
hyperbolic systems that under some restrictions on the central bundle
E* an accessibility class is up to a null set contained in a single ergodic
component In particular, a topologically accessible volume preserving
partially hyperbolic system is transitive.

Starting from a direct product of the map described in §3.4 and that
we will denote by f with a hyperbolic automorphism of the torus A and
applying a local perturbation that creates accessibility in some small
open set of T° we get a partially hyperbolic system that has an open
and dense class of accessibility due to the transitivity of f but is not
ergodic since f is not. The same technique can yield an example of a
volume preserving diffeomorphism having an open and dense ergodic
component of measure less than € on which it is Bernoulli and has all
its Lyapunov exponents non zero. We call such an ergodic component,
a non uniformly hyperbolic one. We just mention here, without proof,
the following

THEOREM. Given any € > 0, there exists a partially hyperbolic volume
preserving system on T® that is topologically accessible and has an open
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and dense non uniformly hyperbolic ergodic component of measure less
than e.

3.6. Intermingled attractors. Given a system (f, M, u), we call a set A
an attractor for f if the set B(A) = {# € M/w(x) = A} has positive
measure (the w-limit set of = being the set of accumulation points of
the forward orbit of the point z).

Two sets B and B’ are said to be intermingled if their union has full
measure and if any open set of M contains a Lebesgue density point of
each of B and A.

A system is said to have two intermingled attractors A and A’ if their
basins of attraction B(A) and B(A') are intermingled [15]. Attractors
with intermingled basins were constructed in [10].

Based on the existence of a measure preserving diffeomorphism on
T? with exactly two intermingled absolutely continuous ergodic com-
ponents (Cf. [16]) we will deduce an easy construction of a system
having two intermingled attractors. Recall from [16]

THEOREM. There exists a minimal diffeomorphism of T? preserving
Haar measure which decomposes into exactly two absolutely continuous
ergodic components.

Consider now a function A € C®(T? R) with average zero with re-
spect to Haar measure and with distinct averages on the above ergodic
decomposition iy and p,. Clearly [, A(2)du () [12 AM(z)dps(z) < 0.

Let A : T2 — SL(2,R) be the diagonal matrix function A(z) =
Az)
€ 0 6_(/\)@ and consider on T? x R? the fibered diffeomorphism

F associated to this matrix and to the map S coming from the above
proposition: (z,v) — (Sz,A(z)v). Since SL(2,R) — PSL(2,R) acts
canonically on P, (R?) from the left we can associate to the skew product
F the following diffeomorphism f of T2 xP; (R?): (z,60) — (S(z), A(z)0).
Then we will have two points on P;(R?) S and N such that

THEOREM. The map S\ has two intermingled attractors: T? x {S}
and T? x {N}.

The reason is that for any 6 € P, (R?) and for y;-a.e. z € T? we have
w(z,) = T? x {0} and a similar fact for uy and T? x {1/2}.

Remark. It is not excluded that for some choice of A the map f might
in addition be transitive.

3.7. Rotation set. Assume f is a map on the torus T¢ homotopic to
identity. A topological invariant of f is its rotation set or more precisely
all the accumulation points in R? of 1/n(f"(x) —x) as x € T¢ and f is
a lift of f to R?.

3.7.1. It is known that a minimal diffeomorphism on T? must have its
rotation set included in an interval but it is an open question whether
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it should be reduced to a single point or not. In this paragraph we
sketch a construction of a minimal flow on T® whose rotation set in R3
is not reduced to a single point. Like the foregoing construction, it is
based on the existence of a volume preserving diffeomorphism S on T?
with exactly two absolutely continuous ergodic components [16]. This
time we consider a special flow above S with the same function A used
in §3.6 and obtain the following

THEOREM. There exists a minimal flow on T® with a rotation set not
reduced to a point in R3.

In fact the rotation set of the special flow Tg,)\ contains an interval
of the type [(, 0, [ A(z)dp (2)), (@, 0, [z AM(@)dpo(z))], where (e, 0) is
the unique rotation vector of the map S (S has a unique rotation vector
because it is rigid since it is obtained via the successive conjugations
techniques applied to a circle action as in [1]).

3.7.2. The rotation set is invariant under topological conjugacy but
can vary under isomorphism. This can be observed using the following
construction by Fayad Katok and Windsor (to appear as a sequel for

[6])
THEOREM. There exists « € R — Q and ¢ € C*®(T,R) and § ¢
Zo+ 7 [ p(z)dx such that the equation

DDy 0) = (o + )
has a measurable solution 1 : T — C.

Considering the skew product S, , on T? : (z,y) = (z+ o, y+¢(z)),
we get the following

COROLLARY. The diffeomorphism S, ,, whose rotation set is reduced
to a single vector (e, [ ¢(x)dz), is isomorphic to the minimal transla-
tion on T? R, p.

4. TOPOLOGICALLY MIXING REALIZATIONS OF LINEAR FLOWS.

A prototype example where the topological structure of a dynamical
system determines its ergodic properties that appears in hyperbolic
dynamics is the following: A volume preserving smooth Anosov flow
that is topologically mixing is Bernoulli. We will show how this
is no longer true in the elliptic frame by constructing a topologically
mixing volume preserving flow of the torus that is uniquely ergodic and
isomorphic to a linear translation flow.

The flow we will construct is a special flow T} , over a minimal
translation R, on a d—dimensional torus and under a function ¢ with
any given regularity r. The dimension d required by the construction
is of the order of rInr. The flow Tf%a,¢ will result to be isomorphic
to the translation flow szag because we choose o and ¢ such that ¢
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is cohomologous to 1 above R, (ie. ¢(z) —1 = ¢¥(z + a) — ¥(z),
with a transfer function ¢ € L?(T¢,R). On the opposite hand, the flow
will be topologically mixing because we choose a and ¢ such that the
Birkhoff sums over Ry, Spé(x) := ¢(z) + ¢(z+ @)... + p(z + (m— 1))
are stretching as m — oo, for all m € N. Roughly speaking, we say
that S,,¢ are stretching on a subset M C N if as m — oo, m € I,
we have that S,,¢ display large oscillations over an increasingly dense
collection J,,, of small open sets of T¢. We can then show that M is
a subset of topological mixing times of the flow thza,¢a obtaining thus
topologically mixing if M = N. Naturally, the total measure of the sets
in J,,, must go to zero as m goes to infinity since ¢ is an L? coboundary;
but this does not preclude topological mixing which is in this particular
construction quite invisible from the metric point of vue.

4.0.3. Plan of the construction. We first fix the regularity r € N of
the examples we want to construct. The construction is split into two
parts. In the first part, we fix a class of irrational numbers « for which
we are able to construct a function ¢ over the circle such that: (i)
¢ € C"(T,R); (ii) ¢ is an L? coboundary over R,; (iii)The Birkhoff
sums over R, S,,p are stretching on |J M,,, where M,, is an increasing
sequence of intervals of integers (the sequence being necessarily lacu-
nary since we are working in dimension 1). The function ¢ is chosen so
that the increasing stretch as m C M,,, n — oo occurs only on sets with
relative measure going to zero. The class of a considered essentially
consists of irrationals for which the sequence of denominators g, of their
best approximations geometric with an exponent chosen such that the

intervals M, in (iii) be the largest possible under the constraints (i)
and (ii).

4.1. Notations. Let T = R?/Z¢ and r € N|J{+oco}. We denote by
C™(T¢,R) the set of real functions defined on R¢ and Z¢ periodic, of
class C". By ||.||o» we denote a norm on C"(T%, R). By ||.||,» we denote

the L? norm ([ \(p(:c)|2dx)%.
For a real number x we denote by:
—[x] the integer part of «,
—{z} = x — [z] its fractional part,
—|||z||| = min({z},1 — {z}) the distance of x to the closest integer.

When we write IE) € Q, we assume that ¢ € N, ¢ > 1, p € Z and that
p and ¢ are relatively prime.

For any irrational real number « there exists a sequence of rationals
{82} | called the convergents of o defined by ¢o = 1 and
dn “ neN

(1) lgnel] < [[kalll, for all k < gny1.
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For any n we have
1 1
(2) < (-D)a- ) < ——.
qn (Qn + QR+1) qn dndn+1

Furthermore, if we assume that n is even and that in this case o —
£2 > 0 then we must have

1 1
(3) o Pn_ < .
qn qndn+1 dn+19n+2

4.2. Wild coboundaries above rotations of the circle.

In this section we assume that that the class of differentiability r in
which we want to build our example is fixed, » > 4, and that « is an
irrationnal number with its sequence of rational approximations py,/gn
satisfying

(4)

The goal of the section is to prove the following

5

2r+3-0.1 2r+
o < dn+1 < dn ?

4.2.1. PROPOSITION. Under condition (4) on «, there exists a func-
tion ¢ € C"(T!,R) satisfying:
i) There exists a solution v € L?>(T",R) to the equation

o(x) = ¥(z + o) — P().
i1) There exists a sequence of positive numbers K, — oo such that
for every m € [gZr 1101, q%’+3/2‘°'2] and every interval I, = [k/q, +

1/4¢2,k/q, + 1/2¢2), k < ¢, — 1, we have for every x € I,

1
S’ () [ Ink| = Smgo'(x)@ > K.

4.2.2. Construction of the function . Let § be a smooth real function
defined on R with the following properties:

(5) f(z) =0 for z € (—o0,0] U [1, 00),
(6) 0 (zx)=1forx € [é, 2],

(7) /O p(x)dz = 0,

For every n € N, define

1

¢n(z) = Wo(qix)

for z € [0, 1) that we extend by periodicity to a function ¢, € C*°(T*, R).
The factor g2 will be explained in §4.2.3.
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Let

p(z) = pul2).

A straightforward derivation gives ||¢n||o < e 2"||6]|, which im-
plies that ¢ € C"(T',R). The rest of this section is devoted to prove
that ¢ satisifies Proposition 4.2.1.

4.2.3. Plan of the proof. The right hand side of (4), which is a Dio-
phantine condition on «, and the fact that ¢, € C*°(T*, R) imply that
there exists a solution v, € C*°(T*,R) to

(8) QDn(.’L') = lﬁn(ﬂf + a) - wn(aj)

The factor ¢2 in the expression of ¢, allows to localize the oscillations
of the Birkhoff sums S,,¢, on essentially g, intervals of length 1/¢2,
hence on a set of relative measure 1/g,. With this choice for ¢,, the
arithmetic condition (4) will allow to have an upper bound on ||, ]| -
that will imply (7) of Proposition 4.2.1 together with an optimal range
of stretch.

We set 1,(0) = 0. To bound ||¢),||;., one might turn to Fourier
expansions and try to use (4) but the nature of the construction is such
that ¢ is at the boundary of being L? since we required that the sums
Sm¢ have large oscillations for large intervals of time (condition (77)).
For example, a direct and rough estimation of the Fourier coefficient

qzrn (gn) gives

. 1 X
Yn(gn)| = 1 — ei2manal |@n(gn)]
< Guprg, "

which using (4) does not even imply that |, (g,)| is small.

Instead, we will use the fact that i, (ma) = Sp,¢,(0). With the
shape of ¢, it will be easy to estimate the latter sums by hand up to
m = ¢u+1 (Lemma 4.2.6). Since the first ¢,,1 points of the orbit of 0
under R, give a subdivision of the circle with essentially intervals of size
1/gn+1 (Cf. (11)) we can then interpolate to estimate v, over all the
circle (Proposition 4.2.7) using the fact that ||1, || is bounded away
from ¢,.1, a fact that easily follows this time from Fourier expansions
(Ctf. §4.2.4).

To prove (7i) we will first obtain a lower bound on S,,¢!, on the corre-
sponding intervals I, ; and for the corresponding range on m (Lemma
4.2.8). This will again be obtained by hand using the shape of ¢, and
(11). At this level the higher frequencies S,,¢), { > n are still small
and we only need to avoid interferences with the lower frequencies S, ¢
! < n. For this, we use the bound on |[¢;||,: obtained in §4.2.4 which
clearly implies a uniform bound (independent on m) of ||Sn¢il|o1-
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4.2.4. LEMMA. For every n large enough, we have

n+1
||1/)n||01S 22 :

n

Proof. Using Fourier expansions

[Ynllr <Y 2 lkea(k)

k€eZ
2mlk|
< Z‘l 6Z27Tk0“ (k)‘
keZ
< Z ak + Z Ok,
k| <gn+1 |k[>gn+1
where ay, : %| on (k).

For k < gns1, (1) and (2) imply |||kall| > [[|gnall| > 5, hence

S a < 2mge S IKIGak)

|k|<@n+1 |k|<gn+1
(9) < CQn+1HQ0nH(Jaa

where C' is some constant independent on n.
For k > ¢,41, we use the Diophantine condition in (4) that implies
for every k € N

|kal|| > [k[~@+2),

hence
T+ A
Soow <Y Akl galk)
|k[>gn+1 |k|>qnat
ﬂ- A
< D k()]
|k‘ZQn+1| ‘2
, 1
(10) < C §||90n||c2r+6a
(Qn+1)2

where C' is some constant independent on n.
By definition of ¢, we have ||¢u||n < e 2¢2~?"||6]|. Hence (9)
and (10) together with (4) imply

_ o ——2—|— —0.1
nller < Cnsre 228 2 |16]|os+C'gnsre 2 g% 20 2@ 370D 16] | o6

which implies the bound on |[[¢,||, claimed in the Lemma since we
took r > 4. O
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4.2.5. We will always assume n even, the other case being similar.
From (3) we have for any m < ¢,41, if we write m = lg, + 7, j < qn

.Pn
(11) [[[ma
dn Qn-i—l
Define
2 2
Cn = [_ )
Qn—l—l dn+1
J J
o= UL+
i<qn—1 dn Qn qn
J 1 741
Rn = U [_+_2a ]
LEMMA. We have
(12) L.c |J By
OSmSQn+1/Qn
and
(13) R, C U R™(C.,).
Qn+1/qn§mSQn+l

Proof. From (11) we have
pn/tn + 1/ tns1 — 1/@ns1, 500/ @n + 1/ i1 + 1/@nia] C RZI"H(Cn)
C []pn/Qn + Z/Qn+1 - 3/Qn+1: ]pn/qn + ZQnJrl + 3/qn+1]7

and the lemma easily follows. O

4.2.6. LEMMA. For n large enough, we have
For any m € N,

m —4N ., — LT
(14) |Smpn(0)] < (q— + e g, (16| co
For any %+ < m < gu1,
(15) 1Smen(0)] < e g2 [[0]]cx < e

Proof. Since ¢, is identically zero outside the segment [0,1/¢2], the
first equation follows from the fact that if {k;a} € [0,1/¢2], fori = 1,2,
then |ky — ko| > ¢, since |||lal|| > 1/2¢, if | < gy.

Using (5) and (11) again, we get that o, (ma) = 0 for any ¢, 11/¢, <
m < gny1, hence Sp,(0) = Sy, 00 (0).
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But Denjoy-Koksma inequality implies that
Suvesnl0) = s [ ale)da| < lnllcn
T

and (15) follows since [r. ¢ (z)dz = 0. O

4.2.7. We can give now the proof of
PROPOSITION. For every n large enough we have

(16) |4l < €7

Recall the definition of L, and R, in Lemma 4.2.5. We have
CLAIM.

1
(17) [pn(z)] < 2e 2"g2 for every x € Ly,
(18) pa(z)] < e for every x € R,,.
Proof of the claim. From Lemma 4.2.4 we have for x € R}'C),
4
(19) [¥n(2) = Yn(ma)| < —|l¢hnllcr < -
n+1 qy
Recall that since we took 1,,(0) = 0 we have
(20) n(ma) = Spmpn(0).

Now, if z € L,, we know from (12) that x € RP(C,) for some
m < ¢u+1/Gn, and (14) then implies

gn+1 — — _ 1
[Yn(ma)| < (5= + 1)e”"q; > |[0]|co < 7",
n

hence with (19) we get (17).
If x € R, (13) implies that z € R}(C,) for some ¢,+1/¢, < m <
Gn+1, then (15) implies

[¢n(ma)| < e"qz ™" [|0]|cr = o(e™"),

which yields (18) due again to (19). O
Proof of Proposition 4.2.7. Since L, U R, = T', we have

a2 = / Rz = [ @@yt [ R)ds
T Ly Ry

4
_4674nqn + 6*47L
qn

< 17e7*,

IN

O
We now turn to assessing the stretching of S, on the intervals

Iy = [k/qﬂ + 1/4(1121: k/Qn + 1/2q'r21]a k<g,—1
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4.2.8. LEMMA. For m < %qnﬂ/qn, and z € I, we have

(21) Smtfly(z) > (QT — 1)e g2,

n

Proof. For every m = lgn+J < 754n+1/qn, 1-€. | < 75qn41/42, it follows
from (11) that
jpmtk 1 otk 3

an 82" n 4q;

From the definition of ¢, in §4.2.2 we have that the derivative of

(o, is constant equal to e72"¢2~2" on the interval [#, %] and equal to

(22) R)IL, . C

zero outside the interval [0, 2] Hence, (22) implies that for z € I, ,

¢! (z + ma) is equal to e ~n, fl 27 if jp, + k is a multiple of g, and to

0 if not, which yields (21). a

4.2.9. PROPOSITION For every m € [¢2 1101 &g, 11/qy], for every
x € I, 1, we have for n large enough

(23) Sn () > Ze g2

Proof. In (21), m > ¢* 101 implies

(24) Smn(x) > e7qnt — e
But on the one hand, since ¢;(z) = ¥i(x + ) — ¢y (z), Lemma 4.2.4
implies for any [,m € N

q
ISmeillen < 20|l < 2 ;“,
l

hence for any m € N we have
Ql+1
(25) > 1Smpillen < 3 275
1<n—1 1<n—1
and on the other hand the direct estimation of ||¢;||,: gives
(26) D Smerller <m Y e g |10]]er = 0(1)
1>n+1 I>n+1
for m < gnq1-

The proof of (23) follows from (24)—(26). O
4.2.10. Proof of Proposition 4.2.1. Point (i) follows from Proposition
4.2.7 since ¢ := Y\ ¥y is then an L? solution to ¢ (z + a) — ¢(z) =
(). Since (4) implies that ¢ ™/*7%% < < <5Gn+1/an, point (ii) follows
from Proposition 4.2.9 if we let K, := 1 e g0t O

4.3. High dimensional tori and alternation of stretch.
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4.3.1. A criterion for topologically mixing. Consider a special flow T, 4
constructed over a minimal translation R, of T¢, d > 2 and under a
function ¢ € C*(T% R".). We will give a criterion involving the Birkhoff
sums of ¢ above the translation R, that guaranties topological mixing
for the flow T, 4. It is a mild version of the one used in [5] to guarantee
mixing. Likewise, it is based on a mechanism of alternating stretch of
the Birkhoff sums of the function ¢, i.e., on the existence of a covering
of N by intervals on each one of which at least one of the quantities
0S,,¢/0x; is large. The altrenation of stretch is necessary to obtain
topological mixing since the Denjoy Koksma inequality implies that a
special flow built over over an irrational rotation of the circle and under
a function of bounded distortion is not mixing [13].

PROPOSITION. If there exist sequences u; and K; going to infinity, such
that for every | = nd+1, 1 < i < d there exists a familly J; of intervals
of [0, 1) satisfying
i) Given any interval J € [0, 1), there exists for every | large enough
I €7, such that I C J.
ii) For every m € [%ul,QulH], for every (Zi,...,Ti_1,Tit1, ., Lq) €
T¢! and for every I € J, we have for any = € I
|35m¢
vai
then T, 4 is topologically mixing.

(@1, ey Tim1, T, Tiy1, Ta) | [ L] > K

Proof. The flow T, 4 is topologically mixing if given any two open sets
O and V in My, there exists ¢y such that for every ¢ > %, Té’d)(.‘) NV #.
Let t € [Ungti, Ungrir1] and assume i is equal to 1, the other cases being
similar. From i) and ii), if n is large enough there exist an interval
I C0,1), (z2,....,24) € T, and s € R such that the interval T :=
I x {xo,...,74, s} satisfies T € O and for every m € [unas1/2, 2Unatal,
for every x € 1
\aa—xl(x,xz, o Za) || > Knat1-

We will finish if we prove that if ¢ is large enough (or equivalently n)
then T} ,(I)(V is not empty.

Since I = T°I x {3, ..., 74,0} we can put s = 0 in our proof. Recall
that for a point (y,0) € T¢ we have

(27) T5.4(y,0) = (Rg'y,t — Sné(y))

for the unique integer m such that 0 < t—S5,,6(y) < ¢(y+ma). We call
this integer m(y, t). The following lemma is an immediate consequence
of the unique ergodicty of R, and the fact that ¢ is assumed to be
continuous

LEMMA For t large enough, we have for every y € T¢, m(y,t) €
[t/2,2t].
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An immediate consequence of this lemma is that when n is large
enough and ¢ € [Undii, Unatit1] then m(y,t) € [Sunati, 2unarit1] for
any point y € T?. This holds in particular for the endpoints of I that
we denote by yo and y;. We will assume that 05y, /07 is negative,
the other case being exactly similar.

We claim that m(y1,t) — m(yo,t) > CKpar1 where C is a constant
depending only on ||¢||. Indeed, by definition of m(y,t) we have

|Sm(yo,t)¢(y0) - Sm(yl,t)¢(yl)| < 2||¢||a
which implies

|Sim(yo,t) @ (Y0) — Smyo,t) D(Y1) = Smays ,)-miyo )@ (Yo + M (Yo, t)) | < 2{[8]],
but m(yo, t) € [$Unat1, 2Unata), so (ii) implies

|Sm(yot)@(Y0) — Sm(yo,) (Y1) > Knay1,
hence
Sty t)-m(yot) @Yo + M (Yo, t)a) > Kpa1 — 2|[¢],
and finally

1
m(y1,t) — m(yo,t) > wKnd—f—l -2

as claimed.
For every m € N denote by

L,={yeTl:m(yt)=m}.
By (27) we have that T}, ,I;, if I, is not empty is an arc that lies over

R™(I,,) C R™I on the base. For every m € [m(yo,t), m(y1,t)] the set
I,,, is not empty, furthermore for every m(yo,t) < m < m(yi,t) we have
that the arc T}, , over Ry’ connects the base to the ceiling function (it
is an almost vertical arc as t goes to infinity). Since from our claim
m(y1,t) —m(yo,t) — 00 as t — oo and since the rotation on the base is
minimal one of these arcs will intersect U whenever ¢ (or equivalently
n) is large enough. O

4.3.2. Choosing the dimension of the torus.

To complete the construction the idea is the following: Assume
a = (i, ..., _d) is a d-dimensional vector with all its coordinates sat-
isfying (4). Then we can use the precedent section to construct above
each «; a function ¢, that is an L? coboundary and that guarantees
topological mixing for ¢ € [[g,(c)]™, [gn(c:)]"™] (71 < 72 being given by
Proposition 4.2) of the special flow over R, and under ¢ = ¢, +...4+¢q, -
All we need is that the union of the above intervals cover R. One
way is to require that [g,(a;41)]™ < [gn(c;)]” with the convetion that

o \d
@n(@411) = gni1(). But then we will have g,11(a;) < [Qn(%’)](%) and
the dimension d have to be chosen such that the latter is compatible
with (4).
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LEMMA. For r large enough, there exists d € N and o € R such that

2r+32-0.2
28 1< <—2 =
(28) 7 Sy Fisol
5 5
(29) 2r + 3~ 0.09 < o <2r+ 3

Moreover d and o can be chosen such that

(30) d < 400rInr.

Proof. Take o := 1+ 0.01/2r. It is easy to check that 1 < o <

(2r +2)/(2r + 5 — 0.09) and that this is enough for the existence of d.
Then we have

In(2r + 5)

S -~ @ 47

< 400rIn 7.
Ino

O

In all the section we consider r > 4 fixed and d € N such that (28)
and (29) are satisfied.

4.3.3. Choosing a translation on T¢. Given a vector o = (v, ..., o) €
R?¢, and for every 1 < i < d, we denote by ¢, (o), n € N, the sequence
of denominators of the convergents of ;.

PROPOSITION There exists a vector in oo € R? such that for every n

(31) Sl (0] < alex) < an(os)]°
for 2 <i<d, and
(32) L (0)]” < g (00) < ga(00)]

Moreover, under these conditions and (29) it will follow that for every
n large enough

r+2 0. r+ 5
(33) (4 ()] 727 < gy (4) < [gn(0a)] 2
for every i =1, ..., d.
Proof. We will define the irrational numbers «; from their sequence

of convergents a,(c;), n € N. We recall that the denominators of the
convergents of o; are given by

(34)  gnt1(cu) = angn(i) + gn1(ci), g-1(ci) = go(c) = 1.

Using this, we choose ag(c) arbitrarilly and construct the sequence
(an(2), ...y (), ani1(cy)) inductively so that (31) and (32) be sat-
isfied. Assuming that the inequalities hold at step n we choose in light
of (34) ans1(2), ..; ny1(q), anio(ar) successively in order to keep the



22 TOPOLOGICALLY MIXING FLOWS WITH PURE POINT SPECTRUM.

inequalities true at step n + 1. Now the right hand side in (31) and
(32) imply that

qn+1(a1) S [qn(ad)]o S [qn(adfl)]a2 S S [qn(al)]ad S [Qn(al)]QH—g

In the same way, using now the left hand side in (31) and (32) we
get

1 o
qn+1 (al) 2 21+0-+0-2+.“+0-d—1 [qn(al)]

1 2r+2-0.09
2 9l+o+o2+..+od-1 [gn ()] T

2 [qn(al)]QT—l—g—O.l

for n large enough. We have hence proved (33) for i = 1. The proof
for ¢ > 1 is identical. a

4.3.4. Consider now the special flow over R, with the ceiling function

A(x1, oy Ta) =1+ Pay (@1) + oo + Pay (24),

where each of the p,, is defined as ¢ in Section 4.2 with g, (;) instead
of ¢,. Indeed, Proposition 4.2.1 does apply since each «; satisfies the
condition (4). We will prove the following

THEOREM The special flow T, 4 constructed over R, and under the

function ¢ is topologically mixing and L? isomorphic to the linear flow
Rt(a,l) on Td+1.

4.3.5. Isomorphism. Since every ¢,, is an L? coboundary then so is
¢ — 1. We recall the following well known result, the proof of which
can be found for example in [12], Chapter 4:

PROPOSITION. If there exists an L? solution to ¢(x) — 1 = ¢(x + ) —
Y(xz), where z,ac € T¢ then the special flow T, 4 is L* isomorphic to
the linear flow Ry, 1)-

4.3.6. Toplogical mixing. It remains to prove that Ty, 4 is topologically
mixing. We will check that the criterion in Proposition 4.3.1 holds.
Proposition 4.2.1 implies that

for any m € [[qn(ai)]2r+1+o.1’ [Qn(ai)]2r+3/2_0'2

stretching over the intervals [k/gn (az)+1/4[gn (0:) 1%, k/Gn (i) +1/2[gn (ci)]?]-
Therefore, define

, the sums S,,p,, are

Und+i ‘= 2[qn(ai)]2r+1.1a 1<i<d.
For 1 < i < d, (31) states that ¢,(ci+1) < [gn(0;)]”, hence

Undtitl = Q[qn(ai_i_l)]ZT—l—l.l < 2[qn(ai)]a(2'r+1.l)’
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which in light of (28) yields for large n

1

[§und+i> 2Ungyiv1) C [[Qn(a’i

Likewise, using (32) this time, we get

)]27"+1+0.1 )]27‘+3/2—0.2i|

’ [Qn (a/i

1 r : r+3/2-0.
[ naas 2ugus ) € [[ga(@a) 0 (o) 707

4.3.7. End of the proof of Theorem 4.3.4. We are ready now to check
the conditions of Proposition 4.3.1 that guarantee topological mixing.
Let u; be the sequence defined above and define

Knavi = [ga(c:)]”!, 1<i<d.

For each [ =nd+1, 1 <1 < d, define J; to be the familly of intervals
k 1 k 1

(@) " Mgl 1) 2gu(a)]

Clearly, we have that given any interval J € T! and any [ large
enough there exists I € J; such that I C J. On the other hand Propo-
sition 4.2.1 applied to each ¢,, implies that (i4) in Proposition 4.3.1
holds for ¢ =) ¢,, with our choice of u;, K; and J,. O

, 0<k < qulay)—1.

Ind—l—i,k =
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