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Chapitre 1

Arithmetics in Quasi-Periodic
Dynamics. The Diophantine and
Liouville phenomena

1.1 Introduction

The dynamics of a minimal translation on the torus give the simplest
example of ergodic transformations. These are called quasi-periodic dynamics
and are denoted by Tα where α ∈ Rd/Zd is the translation vector. The
dynamics of a minimal translation Tα are simple yet rich : two points remain
always at equal distance so that there is no mixing or dependance on initial
conditions, while every orbit is dense and in fact equi-distributed on the
torus with respect to the Haar measure (unique ergodicity). In addition, any
translation can be perturbed into a translation with a rational translation
vector, that is into periodic dynamics. In fact there exists a sequence of times
tn ∈ Z∗ such that T tnα → Id uniformly on the torus Td.

Beyond their paradigmatic importance, quasi-periodic systems are central
to the study of dynamical systems due to their ubiquity in many situations
where they persist after small perturbations, either on all of the space or on
some part of it. In fact a single minimal translation can of course be per-
turbed in a way that makes it lose all its properties, from uniquely ergodic
it becomes periodic, then mixing, then "chaotic", etc. But the fact is that
in many situation and most importantly in many dynamics coming from
classical mechanics or statistical mechanics they show some robustness after
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perturbation. One of the most far reaching and remarkable such phenomenon
is the case of a completely integrable hamiltonian system that displays after
perturbation a collection of invariant tori on which the dynamics are conju-
gated to minimal translations. A collection that fills most of the phase space
as the perturbation is taken sufficiently small. This is essentially the content
of the celebrated KAM (Kolmogorov Arnol’d Moser) theorem discovered in
the midst of the 20th century.

In other systems too, such as circle diffeomorphisms, holomorphic germs,
skew-products above translation, time-change of translation flows on the to-
rus, billiards inside convex bodies, outer billiards, as well as Schrödinger co-
cycles and other SL(n,R) cocylces above total translations, the quasi-periodic
behavior appears to be persistent. We will call such systems elliptic dynamical
systems.

One goal of our course is to show the persistence of quasi-periodic dyna-
mics in the study of the Schrödinger operator (Diophantine influence), and
to show on the other hand how these dynamics can bifurcate into completely
different types of behavior (Liouville phenomena).

We define in this chapter Diophantine and Liouville vectors and we illus-
trate how, already in the frame of irrational rotations of the circle, they give
rise to very sharply contrasting behaviors.

The most important ingredient in the study of elliptic dynamics is the
simple yet fundamental analysis of the linear cohomological equation given
in Section 1.6. We then give an application in the study of the ergodicity of
the skew product applications : T2 → T2, (x, y) 7→ (x+ α, y + ϕ(x)).

1.2 Notations and definitions

• We will denote by Td the torus Rd/Zd

• For r ∈ R+
⋃
{+∞}, we denote by Cr(Td,R) the set of real functions on

Rd of class Cr and Zd-periodic. The set Cr(Td,R) is hence a Baire space for
the Cr topology. If there is no ambiguity we might just denote these spaces
by Cr and we will denote their norms by ‖ · ‖r. We use similar notations for
the Bare subset Cr

β(Td,R) ⊂ Cr(Td,R) of functions having average β ∈ R.
• For x ∈ R we denote e(x) = ei2πx
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• Given a map T on a space X and a function ϕ defined on X we denote

STNϕ(x) =
N−1∑
n=0

ϕ(T nx)

if N ≥ 0, and if N < 0

STNϕ(x) =
−1∑
n=N

ϕ(T nx).

1.3 Irrational translations and their arithme-
tics

If Tα is a translation of vector α on the torus, Tα(x) = x+ α mod(1), we
use the notation SαN = STαN , and when there is no ambiguity on the translation
frequency we simply use the notation SNϕ.
• For k = (k1, ..., kd) ∈ Zd and α = (α1, ..., αd) ∈ Rd we will use the following
notations

(k, α) =
d∑
i=1

kiαi,

|k| = sup
i
|ki|,

‖x‖ = inf
p∈Z
|x+ p|,

{x} = x− [x].

• We will say that a vector α ∈ Rd is irrational if the translation on Td with
frequency α is minimal, that is if (k, α)+ l = 0 for some l ∈ Z, k ∈ Zd implies
that k1 = . . . = kd = l = 0.
• Given a vector α ∈ Rd, we say it is τ Diophantine if there exists a constant
γ > 0 such that for every k ∈ Zd − {0} we have :

‖(k, α)‖ ≥ γ

‖k‖d+τ
.

In this case we say that α is Diophantine or satisfies a Diophantine condi-
tion, and denote DC(τ, γ) the set of such vectors α. We denote DC(τ) =
∪γ>0DC(τ, γ).
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If there is a constant γ > 0 such that α verifies the above condition with
τ = 0 we say that α is of constant type.
• We recall the arithmetic decomposition of Rd = DC t L t Q, where Q
designates the vectors with rationally dependent coordinates, DC the Dio-
phantine vectors, and L the Liouvillian vectors (vectors that do not satisfy
any Diophantine condition and are not in Q). For commodity in stating some
results, we will use the notation α "is not +∞ Diophantine" for Liouvillian
vectors.

Exercise 1.3.1 For α ∈ Rd, show that the following are equivalent
(i) The translation Tα is transtivie
(ii) The translation Tα is minimal
(iii) The translation Tα is uniquely ergodic

Here are some exercises that show that Diophantine vectors are prevalent
from the point of view of measure theory while Liouville vectors are prevalent
from the point of view of topology. This duality of prevalence has fundamental
consequences on the duality of behavior of elliptic systems depending on
wether they are studied from point of view of measure or topology.

Exercise 1.3.2 a. (Dirichlet principle) Show that for every α ∈ R there
exists infinitely many p, q such that |α − p/q| ≤ 1/q2. Show that for any
d ≥ 1, there exists Cd > 0 such that if α ∈ Rd is such that Tα is a minimal
translation, then there exists infinitely many k ∈ Zd such that ‖(k, α)‖ <
Cd/|k|d.

b. Show that for every τ > 0, DC(τ) has full Lebesgue measure in Rd, i.e.
its complement has zero measure.

c. Show that DC(0) is a dense set that has zero Lebesgue measure.

Exercise 1.3.3 Show that the set of Liouville vectors is a Gδ dense set in
Rd.

Exercise 1.3.4 For α ∈ R, we say that α is of Roth type if α ∈ ∩τ>0DC(τ).
Show that numbers of Roth type have full measure in R.
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1.4 Continued fraction algorithm
In the one dimensional case, there is a very powerful tool to study the

arithmetics of real numbers. It is called the continued fraction algorithm and
is related to the Gauss map Let G : (0, 1)→ (0, 1)θ 7→ {1

θ
}.

For α ∈ (0, 1) we write

α = [a1, a2, . . .] =
1

a1 + 1
a2+ 1

...

We let αn = [a1, . . . , an].
For α ∈ R−Q, we denote βn = Gn(α).
We define pn/qn to be the sequence of best approximations or convergents

of α as follows :

‖qnα‖ < ‖kα‖ ∀0 < k < qn+1, k 6= qn

Proposition 1.4.1 Let α ∈ R−Q, α ∈ (0, 1
2
). The sequence of convergents

of α satisfies

1.
pn
qn

= αn

2. |α− αn| <
1

qnqn+1

and

3. qn+1 = an+1qn + qn−1, pn+1 = an+1pn + pn−1, q0 = 1, p0 = 0, q1 = a1, p1 = 1

4. ‖qnα‖ = β0 . . . βn

5. Let In = (0, ‖qnα‖) if n is even and In = (−‖qnα‖, 0) if n is odd. Then
the intervals Ri

α(In), i = 0, . . . , qn+1− 1 and Ri
α(In+1), i = 0, . . . , qn− 1

are all disjoint and their union cover the circle minus a finite number
of points. We call this union a dynamical partition of the circle with
two towers.

6. It holds that
1

qn + qn+1

≤ ‖qnα‖ ≤
1

qn+1

Proof. First of all, let pn and qn be defined as in 3). We use the relation
(that can be proved inductively on n)

[a1, . . . , an−1, t] =
tpn−1 + pn−2

tqn−1 + qn−2
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and apply it to t = an to conclude that 1 holds. It also follows by induction
that pnqn−1−qnpn−1 = (−1)n+1 which yields αn+1−αn = (−1)n+1

qnqn+1
which yields

2) by summation of αn+1 − αn.
Now we will show that the sequence of best denominators q′n is actually

equal to qn. From 2) this we will then also have that αn is the sequence of
best rational approximations to α.

Observe first that in the circle ordering 0 falls between α and q′1α other-
wise (q′1 − 1)α would be closer to the integers than α which contradicts the
definition of q′1. In the same way one shows that 0 falls between q′n−1α and
q′nα for every n.

Next, q′1 is the number of adjacent intervals (0, α), (α, 2α),. . . that can fit
on the circle before we cross 0, that is q′1 = [1/α] = a1 = q1 and ‖q1α‖ =
1− [1/α]α = {1/α}α = β1β0.

Now q′2 is obtained as follows. Let â2 be the number of intervals ((q1 +
1)α, α), ((2q1 + 1)α, (q1 + 1)α), . . . , ((â2q1 + 1)α, ((â2 − 1)q1 + 1)α) fit inside
(0, α). We have that â2 = [α/‖q1α‖] = [1/β1] = a2. Hence q′2 = a2q1 + 1 = q2,
and ‖q2α‖ = α − a2‖q1α‖ = α(1 − [1/β1]β1) = αβ1{1/α1} = β0β1β2. This
proves 3) for n = 2. The proof of 3) for n ≥ 2 follows exactly the same lines.

By definition of q1 = [1/α], we have that the disjoint union of Ri
α(I0), i =

0, . . . , q1−1 fills the circle minus the interval I1 : this is 4) for n = 0. Next ob-
serve that the disjoint union ((q1 +1)α, α), ((2q1 +1)α, (q1 +1)α), . . . , ((a2q1 +
1)α, ((a2−1)q1 +1)α) fills (0, α) minus the interval (0, q2α). Similarly, for any
j ≤ q1−1, the disjoint union ((q1+j)α, α), ((2q1+j)α, (q1+j)α), . . . , ((a2q1+
j)α, ((a2 − 1)q1 + j)α) fills ((j − 1)α, jα) minus Rj

α(0, q2α). This is exactly
4) for n = 1. The proof of 4) for n ≥ 2 follows exactly the same lines.

From 4) we deduce that qn+1‖qnα‖+qn‖qn+1α‖ = 1 from which 5) follows
immediately. 2

Exercise 1.4.1 Complete the inductive proof of Proposition 1.4.1.

Corollary 1.4.1 One has the following relations between the sequence of
convergents of α ∈ R−Q and the Diophantine properties of α

1. α ∈ DC(τ) if and only if there exists C > 0 such that qn+1 ≤ Cq1+τ
n

2. α is Liouville if and only if for any aj →∞, there exists a subsequence
qnj such that qnj+1 ≥ q

aj
nj

Proof. 1) and 2) follow immediately from the fact that 1
qn+qn+1

≤ ‖qnα‖ ≤
1

qn+1
and the definition of best approximations. 2
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The Gauss map G is ergodic for the probability measure with density
1

ln 2(1+x)
(see for example the Book Introduction to modern dynamical systems

by Katok Hasselblatt). This fact has important consequences on the measure
theory of arithmetical properties of irrationals. For example one can show the
following

Corollary 1.4.2 For every γ > 1, we have that for almost every α ∈ R,
there exists a constant C(α) such that for every n, qn+1 ≤ nγqn.

Proof. Since qn+1/qn is of the order of ‖qnα‖/‖qn−1α‖ = βn = Gn(α)
we see that Leb{α : qn+1(α)/qn(α) ≥ nγ} = O(n−γ). Hence Borel Cantelli
Lemma implies that for almost every α one has only finitely many n such
that qn+1(α)/qn(α) ≥ nγ which yields 3). 2

Exercise 1.4.2 Give a proof of exercises 1.3.2–1.3.4 for d = 1 using the
continued fractions and Gauss map.

1.5 Discrepancies of the sequence {nα}
If a real number α is irrational the sequence nα[1] is uniformly distributed

on the circle. This follows for example from unique ergodicity of Rα. One
can further push the study of statistical properties of the sequence nα[1]
by evaluating the deviations from the average of the number of points of
the sequence that belong to some fixed interval on the circle. We will see in
this section how these deviations are intimately related to the Diophantine
properties of α.

Define the discrepancy function

∆(α, I, x,N) = SαNχI(x)−N |I|

where χI(x) = 1 if x ∈ I and χI(x) = 0 otherwise.

Proposition 1.5.1 If α ∈ DC(0), then there exists C that only depends on
α and the length of I such that

|∆(α, I, x,N)| ≤ C lnN.

If α ∈ DC(τ), with τ > 0, then there exists C that only depends on α and
the length of I such that

|∆(α, I, x,N)| ≤ CN
τ
τ+1 lnN.
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For every ε > 0 and almost every α ∈ R, there exists C that only depends on
ε and α and the length of I such that

|∆(α, I, x,N)| ≤ C(lnN)2+ε.

Proof. Observe first that for every p/q, p∧q = 1 such that |α−p/q| ≤ 1/q2

we have that ∆(α, I, x, q) ≤ 2.
Next, for α ∈ R−Q and its sequence pn/qn of convergents, any integer N

writes as N =
∑

0≤s≤S bsqs with S such that qS ≤ N ≤ qS+1 and bs ≤ qs+1/qs
and bS ≤ N/qS.

From corollary 1.4.1, we have that α ∈ DC(0) iff there exists C > 0
such that qn+1 ≤ Cqn. Hence ∆(α, I, x,N) ≤ 2CS. But for every n, qn+2 =
an+2qn+1 + qn ≥ 2qn hence S ≤ 2 lnN which implies that ∆(α, I, x,N) ≤
4C lnN .

Similarly, if α ∈ DC(τ) we observe that since bs ≤ qs+1/qs ≤ Cqτs , then

∆(α, I, x,N) ≤
∑

0≤s≤S

2bs ≤ 2C
∑

0≤s≤S

(bsqs)
τ/(1+τ)

≤ 2CSmax
s≤S

(bsqs)
τ/(1+τ) ≤ C lnNN τ/(1+τ)

Fix γ = 1 + ε. Corollary 1.4.1 implies that for a.e. α

∆(α, I, x,N) ≤ C
S∑
s=0

sγ ≤ C ′Sγ+1 ≤ C̄(lnN)2+ε.

2

Proposition 1.5.2 For any η : R → R+ such that limx→+∞ η(x) = 0 there
exist α and I such that

lim sup
N∈N
|∆(α, I, 0, N)| ≥ Nη(N)

Proof. Suppose the continued fraction of α is known up to an. By choosing
an+1 sufficiently large we can insure that 1/qn ≥ 4η(qn+1/10) (it suffices to
take 4η(an+1/10) ≤ 1/qn). Let qnj be a subsequence with the latter property.
Up to extracting a subsequence from nj we can assume that there exists
β be such that for all j, 1/(4qnj) < β − pj/qnj < 3/(4qnj) for some pj.
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For a ≤ qnj+1/(10qnj) we have that ∆(α, [0, β], 0, aqnj) = apj − aqnjβ. Take
Nj = [qnj+1/10]. Then

∆(α, [0, β], 0, Nj) = [qnj+1/(10qnj)]pj −Njβ

= Njθj, with θj ≤ −1/(4qnj)

≤ −Njη(Nj)

2

Exercise 1.5.1 Let α ∈ (0, 1
2
). Let Ik = [0, ‖kα‖], and define χIk such that

χIk(x) = 1 if x ∈ Ik and χIk(x) = 0 if x /∈ Ik.
– Assume k = 1. Show that the function ψ1(x) = x− [x] satisfies χI1(x)−
α = ψ1(x− α)− ψ1(x).

– Show that for any k, there exists ψk defined and differentiable except
at finitely many points and with constant derivative such that χI(x)−
‖kα‖ = ψk(x+ α)− ψk(x)

– What do you conclude for the discrepancy function ∆(α, Ik, N, ·)

1.6 The linear cohomological equation

Given ϕ ∈ Cr(Td,R) and α ∈ Td we call cohomological equation above
Tα the search of solutions ψ ∈ Cs(Td,R) to the equation

ϕ(x)−
∫
Td
ϕ(x)dx = ψ(x+ α)− ψ(x) (1.1)

Exercise 1.6.1 Show that if ϕ is a trigonometric polynomial then (1.1) has
a trigonometrical polynomial solution.

Exercise 1.6.2 For which functions in C∞(T,R) does equation (1.1) have
a solution in C∞(T,R) when α = p/q is rational ?

Theorm 1.6.1 If α ∈ Td is a Diophantine vector then equation (1.1) has a
solution in C∞(Td,R) for every ϕ ∈ C∞(Td,R)

Proof. Let f be a measurable function defined on Td. Then f ∈ C∞(Td,R)
if and only if f̂k =

∫
Td f(x)e(−(k, x))dx satisfies ‖f̂k‖ = O(‖k‖−r) for any

r ∈ N.
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If we look for a solution to (1.1) under the form
∑

k∈Z∗ ψ̂ke((k, x)) we get
that

ψ̂k =
ϕ̂k

e((k, α))− 1

= e(
1

2
(k, α) +

1

4
)

ϕ̂k
2 sin(π(k, α))

Since sin(x) ≥ π
x
for x ∈ (0, π/2) we conclude that

|ψ̂k| ≤
|ϕ̂k|
‖(k, α)‖

so that if α is a Diophantine vector and ϕ ∈ C∞(Td,R) we get that ‖ψ̂k‖ =
O(‖k‖−r) for any r ∈ N, and thus that ψ ∈ C∞(Td,R).

2

Exercise 1.6.3 Let r ≥ 3. Assume that α ∈ DC(τ, γ) ⊂ R for some 0 ≤ τ <
r− 2, τ /∈ N. Show that if ϕ ∈ Cr(T,R), then there exists ψ ∈ C [r−τ ]−1(T,R)
such that

ψ(x+ α)− ψ(x) = ϕ(x)−
∫
T
ϕ(θ)dθ

and
‖ψ‖C[r−τ ]−1 ≤

C

γ
‖ϕ‖Cr

where C is a universal constant. What can you say if τ ∈ N ?

Theorm 1.6.2 If α ∈ Rd is a Liouville vector then for a set of functions
that contains a Gδ dense set of ϕ ∈ C∞(Td,R) equation (1.1) has no solution
in L2(Td,R)

Proof. Since α is a Liouville vector, there exists a sequence kn ∈ Zd be
such that ‖(kn, α)‖ ≤ ‖kn‖−3n. Fix r ∈ N.

Let

E(N,M, r) =

{
f ∈ Cr(Td,R) : ‖SαN(f −

∫
Td
f)‖L2 > M

}
We have that E(N,M, r) is an open set in the Cr topology. Since ϕ ∈⋂

M∈N∗
⋃
N∈NE(N,M, r) satisfies supN∈N ‖SαN(ϕ −

∫
Td ϕ)‖L2 = ∞ equation
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(1.1) has no solution in L2(Td,R) for the function ϕ. Since r was arbitrary,
we finish if we prove that ∪N∈NE(N,M, r) is dense in the Cr topology.

Let ε > 0 and ϕ0 ∈ Cr(Td,R). We first approximate ϕ0 by a trigono-
metrical polynomial P (x) =

∑
|j|/leqJ P̂je((j, x)) such that ‖P − ϕ0‖r ≤ ε/2.

Then we consider the sequence ϕn = P (x) + ‖kn‖−nRe(e((kn, x))) for n ≥ 1.
For n sufficiently large we have ‖‖kn‖−nRe(e((kn, x)))‖r ≤ ε/2 and thus
‖ϕn − ϕ0‖r ≤ ε.

On the other hand we claim that limn→∞ ‖SαNn(ϕn −
∫
Td ϕn)‖L2 = ∞,

where Nn = ‖kn‖2n. Therefore ϕn ∈ E(Nn,M, r) for n sufficiently large.
The proof of the claim comes from two observations. The first one is

that P (x) −
∫
Td P = Q(x + α) − Q(x) for a trigonometric polynomial Q

so that ‖SαN(P −
∫
Td P )‖L2 < 2‖Q‖L2 . The other observation is that up to

m � 1/‖(kn, α)‖ iterations by Tα the sinusoid Re(e((kn, x))) is essentially
constant (Liouville phenomenon !). Namely

SαmRe(e((kn, x))) = Xn,mRe(e((kn, x)))

with

Xn,m =
1− e(m‖(kn, α)‖)
1− e(‖(kn, α)‖)

= e((m− 1)‖(kn, α)‖/2)
sin(πm‖(kn, α)‖)
sin(π‖(kn, α)‖)

Since sin(x) ≤ x, sin(x) ≥ π
x
for x ∈ (0, π/2) we get that for m‖(kn, α)‖ ≤

1/2

|Xn,m| ≥
m

π
.

Finally the kth
n Fourier coefficient akn of SαNnϕn satisfies |akn| ≥

‖kn‖n
π

and
the claim follows.

2

Exercise 1.6.4 Show that for α ∈ Rd irrational and ϕ ∈ Cr(Td,R) equation
(1.1) has a Cs solution with s ≤ r if and only if supN∈Z ‖SαNϕ‖r < +∞ (use
Gottshalk Hedlund theorem).

Show that for any ϕ ∈ C∞(T,R) that is not a polynomial, there exists a
dense Gδ set of α ∈ R such that supN∈Z ‖SαNϕ‖C0 = +∞.
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1.7 Ergodicity of skew products above rotations
In this chapter, we study the display of ergodicity by skew products on

the torus T2. For α ∈ R and ϕ ∈ C∞(T,R), we define the skew product

Wα,ϕ : T2 → T2 : Wα,ϕ(x, y) = (x+ α, y + ϕ(x))

We show that if the rotation angle α is Diophantine thenWα,ϕ is smoothly
conjugated to Wα,β, β =

∫
T ϕ(θ)dθ. In particular, if

∫
T ϕ(θ)dθ = 0 then Wα,ϕ

is not ergodic for Lebesgue measure. In contrast we show that if α is Liouville,
then for a residual set (in the C∞ topology) of functions ϕ with zero Lebesgue
average, the skew product SW,α is ergodic for Lebesgue. This will be based
on the analysis of the linear cohomological equation studied in section 1.6.

For the sequel we will use the notation Cr
β(T,R) to denote the subset of

Cr(T,R) of functions with Lebesgue average equal to β. When we say that
Wα,ϕ is ergodic we always mean with respect to Haar measure on T2.

Theorm 1.7.1 Assume α ∈ R is Liouville. Then, for any r ∈ N, the set of
ϕ ∈ Cr

0(T,R) such that Wα,ϕ is ergodic is a dense Gδ subset of Cr
0(T,R). The

same conclusion is true in the sets Cr(T,R) and Cr
β(T,R) for any β ∈ R.

The result is the best one can have as shown by the following

Theorm 1.7.2 Assume α ∈ R is Diophantine. Then for any ϕ ∈ C∞(T,R)
we have thatWα,ϕ is C∞-conjugated toWα,β, β =

∫
T ϕ(θ)dθ. As a consequence

Wα,ϕ is ergodic if and only if (α, β) are rationally independent.

We recall that two maps (M1, f1) and (M2, f2) are said to be Cr- conju-
gated if there exists a homeomorphism h of class Cr from M1 onto M2 such
that h ◦ f1(x) = f2 ◦ h(x) for any x ∈M1.

Proof of Theorem 2.1.2. From Theorem 1.6.1 we know that there exists ψ ∈
C∞(/T,R) such that

ψ(x+ α)− ψ(x) = ϕ(x)− β

Define the smooth diffeomorphism h : T2 → T2 : h(x, y) = (x, y − ψ(x)).
Observe that h ◦Wα,ϕ(x, y) = (x+α, y+ϕ(x)−ψ(x+α)) = (x+α, y+ β−
ψ(x)) = Wα,β ◦ h(x, y). 2

Note that if β = 0 for example then each graph (x, y0 − ψ(x)) forms
an invariant ergodic component for the decomposition of the Haar measure
under the action of Wα,ϕ.
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The rest of this section is dedicated to the proof of Theorem 2.1.2.
We first give a general argument that shows that the set of ϕ such that

Wα,ϕ is ergodic is Gδ.

Proposition 1.7.1 Given any β ∈ T, the set of ϕ ∈ Cr
β(T,R) such that

Wα,ϕ is ergodic is a Gδ subset of Cr
β(T,R).

Proof. Let fj be a countable dense subset of C0
0(T2,C). Then for r, j, N, k ∈

N we define the set

Ar(i, j, N, k) =

{
ϕ ∈ Cr

β(T,R) : | 1
N

∫
T2

Sα,ϕN fi(θ)fj(θ)dθ| < 1/k

}
where Sα,ϕN f denotes the Birkhoff sums of f above the map Wα,ϕ. Observe
that Ar(i, j, N, k) is an open set in Cr

β(T,R) since the quantity estimated is
continuous in ϕ. On the other hand ϕ ∈ Cr

β(T,R) is such thatWα,ϕ is ergodic
if and only if

ϕ ∈ A :=
⋂
i

⋂
j

⋂
k

⋃
N

Ar(i, j, N, k).

To prove the latter assertion suppose first that Wα,ϕ is ergodic then by Bir-
khoff theorem we see that 1

N
Sα,ϕN fi converges almost surely to 0 as N → ∞

therefore | 1
N

∫
T2 S

α,ϕ
N fi(θ)fj(θ)dθ| converges to 0 hence ϕ ∈ A. Conversely

suppose that ϕ ∈ A and assume that f ◦ Wα,ϕ = f almost surely and
1
N
Sα,ϕN f = f and approaching f by linear combinations of the fi’s we ob-

tain that
∫
T2 f(θ)fj(θ) = 0 for every j which implies that f = 0. 2

Exercise 1.7.1 Show that the set of (α, ϕ) ∈ T × Cr(T,R) such that Wα,ϕ

is ergodic is a Gδ set.

Exercise 1.7.2 Show that for any fixed ϕ ∈ ×Cr(T,R) the set of α ∈ R
such that Wα,ϕ is ergodic is a Gδ set.

From Proposition 2.2.2 the only thing left to prove to get Theorem 2.1.1
is density of ϕ ∈ Cr

β(T,R) such that Wα,ϕ is ergodic.
To do this we start with a criterion on ϕ that implies ergodicity of Wα,ϕ.

Lemma 1.7.1 The skew product Wα,ϕ is ergodic if and only for any λ ∈ Z
the equation

h(x+ α) = ei2πλϕ(x)h(x) (1.2)

does not have a non constant measurable complex solution h.
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Proof. Assume that (2.7) has a measurable solution h for some choice of
λ ∈ Z. Let H(x, y) = h(x)e(−λy). Then H(Wα,ϕ(x, y)) = H(x, y) which
implies that Wα,ϕ is not ergodic. Conversely, note that the subspaces Vk of
functions of the form g(x)e(ky) with g measurable are invariant under the
action ofWα,ϕ, hence the existence of a nontrivial eigenvalue forWα,ϕ implies
that there is a nontrivial solution to (2.7). 2

Now we translate this criterion into a criterion on the Birkhoff sums of ϕ
above Rα.

Lemma 1.7.2 (Criterion for ergodicity) If for every k ∈ Z and for every
λ in Z∗, we have

inf
m∈N

∣∣∣∣∫
Td
e(λSmϕ(θ))e(kθ)dθ

∣∣∣∣ = 0,

then Wα,ϕ is ergodic.

Proof of Lemma 2.2.2. We must show that (2.7) has no non constant
measurable solutions. The case λ = 0 is easy since Tα is ergodic. Also since
Tα is ergodic any measurable solution of (2.7) has constant modulus and is
therefore in L2. Suppose h is a solution of (2.7), we have

h(θ +mα) = e(λSmϕ(θ))h(θ)

and for any k ∈ Z

e(−mkα)

∫
T
h(θ)e(kθ)dθ =

∫
T
h(θ +mα)e(kθ)dθ,

=

∫
T
e(λSmϕ(θ))h(θ)e(kθ)dθ.

Should the condition of the Lemma be satisfied we would have from the fact
that the characters e(kθ) form an L2 basis that

inf
m∈N

∣∣∣∣∫
T
e(λSmϕ(θ))h(θ)e(kθ)dθ

∣∣∣∣ = 0.

Which implies that
∫
Td h(θ)e(kθ)dθ = 0 for any k ∈ Z, hence h is zero. 2
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In all the rest r will be an arbitrary integer. Given α, β ∈ T define

Ar(α, β) ={
ϕ ∈ Cr

β(T,R)|∀λ ∈ Z∗, ∀k ∈ N, infm∈N
∣∣∫

T e(λSmϕ(θ))e(kθ)dθ
∣∣ = 0

}
.

In light of lemma 2.2.2 density in theorem 2.1.1 will follow from

Proposition 1.7.2 Fix r ∈ N and β ∈ T. If α is Liouville then Ar(α, β) is
a Gδ dense subset of Cr

β(T,R).

Proof of proposition 2.2.3. For j, λ, n, k ∈ N4, define

Ar
j,λ,k,n(α, β) = {ϕ ∈ Cr

β(T,R) :

∣∣∣∣∫
T
e(λSnϕ(θ))e(kθ)dθ

∣∣∣∣ < 1

j
}.

We have
Ar(α, β) =

⋂
j∈N

⋂
λ∈N

⋂
k∈N

⋃
n∈N

Ar
j,λ,k,n(α, β).

The set Ar
j,λ,k,n(α, β) is obviously open and we just have to prove that

∪n∈NAr
j,λ,k,n(α, β) is dense, which will be the goal of the rest of the section.

First we express the fact that α is not Diophantine :
There exists a sequence kn ∈ N with limn→∞ kn = +∞ such that

‖knα‖ <
1

k3n
n

. (1.3)

We introduce now a sequence of real functions on T

ψ(n)(θ) =
cos(2πknθ)

knn
.

Finally let mn = |kn|2n. The essential fact about mn is that |kn|n � mn �
‖knα‖−1.

We will need the following lemmas (the first one is direct from the defi-
nition of ψ(n))

Lemma 1.7.3 For any r ∈ N we have

|ψ(n)|r −→
n→∞

0.
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Lemma 1.7.4 Let ψ̃(n) = cos(2πknθ). Then we have for any m such that
m‖knα‖ < 1/2

Smψ̃
(n)(θ) = Xn,m cos (2πknθ + φn,m) ,

where Xn,m ≥ 2
π
m and φn,m ∈ [0, 2π).

Proof of Lemma 2.2.4. We have

Smnψ̃
(n)(θ) = Re

(
1− ei2πmnknαei2πknθ

)
,

= Re

(
eiπ(mn−1)knα

sin (πmnknα)

sin (πknα)
ei2πknθ

)
,

= Xn,m cos (2πknθ + φn,m) ,

if we let
Xn,m =

sin (πmknα)

sin (πknα)
.

Since m‖(kn, α)‖ < 1/2, we have sin(πm(kn, α)) = sin(πm‖(kn, α)‖) ≥
2m‖knα‖ while sin(π(kn, α)) = sin(π‖(kn, α)‖) ≤ π‖knα‖ hence

Xn,m ≥
2

π
m

2

Remark : The functions ψ(n) we introduced are "α" periodic (in the sense
that ψ(n)(x + jα) ∼ ψ(n)(x)) as long as the number of iteration of Tα, is
such that m‖knα‖ = o(1). Consequently, the Birkhoff sums of ψ(n) up to mn

will look like mnψ
(n). If mn is moreover such that mn

Dn
→∞, where Dn is the

denominator in the expression of ψ(n), then ψ(n)
mn will have great oscillations.

This essential phenomenon will allow us to check the criterion of lemma 2.2.2
by means of the stationnary phase method. The idea next, is to perturb a
given function by adding to it a function ψ(n) that will "produce ergodicity"
up to time mn.

From the estimation in lemma 2.2.4 and a basic fact on stationnary phase,
we have the following crucial result.

Lemma 1.7.5 Fix g ∈ C∞(Td,R) and p > 0, and assume that λ ∈ [1/p, p].
There exists a constant C(g, p) > 0 such that∣∣∣∣∫

Td
eiλSmnψ

(n)(θ)g(θ)dθ

∣∣∣∣ ≤ CY −1/8
n
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where Yn = |kn|n.

Exercise 1.7.3 Give a proof of lemma 2.2.5. Hint : Cut the integral into
intervals where the derivative of ψ(n)

mn is larger than Y −1/4
n and intervals where

the derivative is less than Y −1/4
n then majorize the integral on each of these

intervals.

Now, we are ready to prove that ∪n∈NAr
j,λ,k,n(α, β) is dense in Cr

β(Td,R).
Fix a function ϕ ∈ Cr

β(Td,R) and take ε > 0 arbitrarily small.. We let P
be a trigonometrical polynomial with average β and such that |ϕ− P |r < ε.
We let Q be the zero average solution of the linear cohomological solution
associated to P , that is P (x)− β = Q(x+ α)−Q(x).

Then for n ∈ N we define

ϕ(n) = P + ψ(n).

Now, if we take n large enough, we will have, from Lemma 2.2.3 :

|ϕ− ϕ(n)|r < 2ε. (1.4)

On the other hand, up to extracting a subsequence from mn, we can assume
that mnβ converges to some number β̄ and thus that SmnP converges to β̄.
Indeed Q(x+mnα)−Q(x) converges in Cr norm to 0.

Then, applying lemma 2.2.5 we have∫
Td
e(λSmnϕ

(n)(θ))χj(θ)dθ =

∫
Td
e(λSmnψ

(n)(θ))e(λSmnP (θ))e(jθ)dθ −→
n→∞

0.

(We used lemma 2.2.5 for g(θ) = e(jθ), and the fact that e(λSmnP (θ))
converges to a constant when n goes to infinity.)

So when n is sufficiently large, we have that ϕ(n) ∈ Ar
j,λ,k,mn)(α, β). The

real number ε being arbitrarily small this completes the proof of density of
∪n∈NAr

j,λ,k,n(α, β). Proposition 2.2.3 is thus proved. 2

Proof of theorem 2.1.1. In light of lemma 2.2.2, Proposition 2.2.3 implies
that for any r ∈ N, the set of ϕ ∈ Cr

β(T,R) for whichWα,ϕ is ergodic contains
a Gδ dense subset of Cr

β(T,R). Together with Proposition 2.2.2, this proves
theorem 2.1.1. 2

Exercise 1.7.4 Generalize the results of Theorems 2.1.1 and 2.1.2 to skew
products above d dimensional irrational translation of Td, i.e. to the maps
Wα,ϕ : Td × T→ Td × T : Wα,ϕ(θ, y) = (θ + α, y + ϕ(θ)).
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Chapitre 2

Reparametrization of irrational
flows on the torus

In this chapter, we study the display of weak mixing by reparametrized
linear flows on the torus Td, d ≥ 2. We show that if the vector of the transla-
tion flow is Liouville (i.e. well approximated by rationals), then for a residual
set (in the C∞ topology) of time change functions, the reparametrized flow is
weak mixing. If the vector of the linear flow is Diophantine, we will show that
any C∞ reparametrization of the flow is C∞ conjugated to a linear flow. This
will be based on the existence of smooth solutions to the linear cohomological
equation studied in chapter ??.

In the case d = 2 we show that the reparametrized flows are rigid, in the
sense that they converge to identity in the C∞ norm along a subsequence of
time.

2.1 Weak mixing and linearizability of repara-
metrized flows

Assume Tα is a minimal translation on Td and consider on Td+1 the
irrational translation flow :

dx

dt
= (1, α).

This flow is minimal and uniquely ergodic for the Haar measure on Td+1.
Given φ ∈ Cr(Td+1,R∗+), r ≥ 1, we define the reparametrization, or smooth

23
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time change, of this translation flow, with speed 1
φ
, to be the flow given by

dθ

dt
=

α

φ(θ, s)
,

ds

dt
=

1

φ(θ, s)
.

The reparametrized flow is strictly ergodic (minimal and uniquely ergodic)
and the invariant measure is φ(x)dx, where dx denotes the Haar measure on
Td+1 (see exercise 2.1.1). We denote this reparametrized flow by by T t(α,1),φ−1 .

Considering a Poincaré section, such a flow can be viewed as a suspen-
sion flow constructed from Tα on Td and a suspension function ϕ with the
same regularity Cr than φ. This is called a special flow with base Tα and cei-
ling function ϕ. To obtain results on time change for flows, it is often more
convenient to work with special flows that are easier to handle, and then
transfer the properties to reparametrizations. The exact definition of spe-
cial flows will be given in Section 2.2 and the natural correspondence with
reparametrization will be explained in Section 2.3.

Exercise 2.1.1 Consider the reparametrized flow T t(α,1),φ−1 . Take a line seg-
ment ` of size ε in the direction of the vector (α, 1) and consider its image by
an infinitesimal iteration of the reparametrized flow ˜̀= T dt(α,1),φ−1`. Compute
the length of ˜̀ up to first order in dt and ε and deduce that φ(x)dx is an
invariant density for T t(α,1),φ−1 . Deduce unique ergodicity of T t(α,1),φ−1 .

We recall first the definition of weak mixing for flows and we introduce
some notations.
-A measure preserving flow {T t} on (L, µ) is said to be weak mixing if for all
f, g ∈ L2(L, µ) we have

lim
t→∞

1

t

∫ t

0

∣∣∣∣∫
L

f(T ux)g(x)dµ−
∫
L

fdµ

∫
L

gdµ

∣∣∣∣ du = 0. (2.1)

An equivalent definition is that for all measurable sets A and B

µ(T−tA
⋂

B) −→ µ(A)µ(B), (2.2)

when |t| goes to infinity on a set of density one over R.
One can also prove that a flow {T t} is weak mixing if and only if it does not
have an eigenfunction, i.e. a measurable function h, not constant, such that
h (T tx) = eiλth (x) , for some eigenvalue λ ∈ R.
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For the equivalence between the definitions, we refer to the book of Parry :
Introduction to Ergodic theory, or the book Introduction to Ergodic theory of
Confeld, Fomin and Sinai.

We can now state the results of this chapter. Let d ∈ N, d ≥ 1.

Theorm 2.1.1 Assume the irrational vector α in Rd is Liouville. Then, for
any r ∈ N, the set of φ ∈ Cr(Td+1,R∗+) such that T t(α,1),φ−1 is weak mixing is
a dense Gδ subset of Cr(Td+1,R∗+).

The result is the best one can have as shown by the following proposi-
tion due to Kolmogorov (in dimension 2, i.e. d = 1) and generalized to any
dimension by Herman :

Theorm 2.1.2 Assume the irrational vector α ∈ Td is Diophantine. Then
for any φ ∈ C∞(Td+1,R∗+) we have that T t(α,1),φ−1 is C∞ conjugate to a
translation flow on Td+1.

We recall that two flows (M1, T
t
1) and (M2, T

t
2) are said to be Cr- conju-

gated if there exists a homeomorphism h of class Cr from M1 onto M2 such
that h ◦ T t1(x) = T t2 ◦ h(x) for any x ∈M1.

The dichotomy is therefore complete between weak mixing and conjuga-
tion to translation flows and we have the following combined statement of
theorems 2.1.1 and 2.1.2 :

Corollary 2.1.1 Let Tα be a minimal translation on Td. Then either one of
two possibilities hold :
(i) The vector α is Diophantine. Then, for any φ ∈ C∞(Td+1,R∗+), T t(α,1),φ−1

is C∞ conjugated to a translation flow on Td+1.
(ii) The vector α is Liouville. Then, for a dense Gδ of φ ∈ C∞(Td+1,R∗+),
T t(α,1),φ−1 is weak mixing (for its unique invariant measure).

The rest of this chapter is dedicated to the proofs of theorems 2.1.1 and
2.1.2. The essential results are obtained in Section 2.2 where we prove ana-
logous theorems for special flows.

It is possible to obtain weak mixing as defined in (2.2), with a direct and
geometrical method, but it is easier to prove the equivalent spectral charac-
terization of weak mixing, i.e. the non-existence of eigenfunctions. This is the
approach that we will adopt. In Lemma 2.2.2, we state a central criterion on
the Birkhoff-sums of the ceiling function of a special flow that guarantees the
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non-existence of eigenfunctions. Then we will use Baire category arguments
and the stationary phase method to study when this criterion is fulfilled in
relation with the arithmetics of α and the regularity of the ceiling function
ϕ. In Section 2.3 we derive the results for reparametrizations.

2.2 Special Flows above toral translations.

We recall the definition of a special flow : Given a Lebesgue space L, a
measure preserving transformation T on L and an integrable strictly positive
real function defined on L we define the special flow over T and under the
ceiling function ϕ by inducing on L× R/ ∼, where ∼ is the identification
(x, s+ ϕ(x)) ∼ (T (x), s),the action of

L× R → L× R
(x, s) → (x, s+ t).

Exercise 2.2.1 Show that if T preserves a unique probability measure µ then
the special flow will preserve a unique probability measure that is the norma-
lized product measure of µ on the base and the Lebesgue measure on the fibers
diveded by the integral of ϕ.

In this section α is an irrational vector in Rd, d ≥ 1, and we consider
special flows constructed over the translation Tα of the torus Td with a ceiling
function ϕ. We denote these flows by T tα,ϕ. We will prove the following :

Theorm 2.2.1 If the vector α ∈ Rd is Liouville then for any r ∈ N there
exists a dense Gδ (for the Cr topology) of functions ϕ ∈ Cr(Td,R∗+), such
that the special flow T tα,ϕ is weak mixing for its unique invariant measure.

To prove optimality of theorem 2.2.1 we need the counterpart statement
for Diophantine frequencies.

Theorm 2.2.2 If the vector α ∈ Rd is Diophantine then for every ϕ ∈
C∞(Td,R∗+), the special flow T tα,ϕ is C∞ conjugated to the linear flow T t

(α/
∫
ϕ,1/

∫
ϕ)
.

Proof of theorem 2.2.2. The proof is based on the existence of solutions
to the linear cohomological equation above Diophantine vectors. There is a
general fact about conjugacies of special flows that states as follows.
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Proposition 2.2.1 If ϕ1, ϕ2 ∈ C∞(Td,R∗+) are such that there exists χ ∈
C∞(Td,R) such that

ϕ1(θ)− ϕ2(θ) = χ(θ + α)− χ(θ) (2.3)

then the special flows T tα,ϕ1
and T tα,ϕ2

are C∞ conjugated.

On the other hand we saw in chapter 1 that the linear cohomological
equation

ϕ(θ)−
∫
Td
ϕ = χ(θ + α)− χ(θ), (2.4)

has a C∞ solution χ if α is Diophantine and ϕ is of call C∞, hence the
special flow T tα,ϕ is C∞ conjugate to the special flow T t

α,
∫
ϕ
which is nothing

but T t
(α/

∫
ϕ,1/

∫
ϕ)
.

We still need to give a proof of proposition 2.2.1. Let Mi be the spaces
where T tα,ϕi act for i = 1, 2. That isMi = T×R/ ∼i where (x, s+varphii(x)) ∼i
(x + α, s). Define h : M1 → M2 : (x, s) 7→ (x, s + χ(x)). To see that h is a
well defined C∞ diffeomorphism we just need to check that h(x, s+ϕ1(x)) =
h(x + α, s) for any (x, s) ∈ M1. But h(x, s + ϕ1(x)) = (x, s + ϕ1(x) + χ(x))
and due to (2.3) we have that h(x + α, s) = (x + α, s + χ(x + α)) =
(x+α, s+χ(x) +ϕ1(x)−ϕ2(x)) = (x, s+χ(x) +ϕ1(x)), and the proposition
follows.

2

We start the proof of theorems 2.1.1 and 2.2.1 with a very general fact
about weak mixing applied in our particular context.

Proposition 2.2.2 Let α ∈ Rd and r ∈ N, The set of φ ∈ Cr(Td+1,R∗+) such
that T t(α,1),φ−1 is weak mixing for its unique invariant probability measure is
a Gδ set. Similarly, the set of ϕ ∈ Cr(Td,R∗+) such that T tα,ϕ is weak mixing
for its unique invariant probability measure is a Gδ set.

Proof. We use the following characterization of weak mixing. An ergodic
flow (T t,M, µ) is weak mixing if and only if for any f ∈ L2

0(M,µ) we have

lim inf
t→∞

1

t

∫ t

0

∣∣∣∣∫
M

f(T ux)f̄(x)dµ

∣∣∣∣ du = 0. (2.5)

Indeed if T t is weak mixing the above follows from the definition (1) of
weak mixing given in section 2.1. Conversely, if T t is not weak mixing there is
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a measurable eigenfunction g such that g(T tx) = e(λ)g(x). Ergodicty implies
that g is of constant modulus thus g is in L2 but (2.5) clearly does not hold
for g.

Now, if fj is a countable base in L2(M,µ) then (2.5) is equivalent to

lim inf
N→∞,N∈N

1

N

∫ N

0

∣∣∣∣∫
M

fj(T
ux)f̄j(x)dµ

∣∣∣∣ du = 0. (2.6)

Since the unique invariant probability measure by T t(α,1),φ−1 µφ is pro-
portional to the measure of density φ(x)dx and since φ is a smooth strictly
positive function, an L2 countable basis of complex functions {fj} for the
Lebesgue measure is also a countable basis for L2(Td+1,C). We fix such a
family {fj}. For r, j, N, k ∈ N we define

Ar(j,N, k) =
{
φ ∈ Cr(Td+1,R∗+) :

1

N

∫ N

0

∣∣∣∣∫
Td+1

fj(T
u
(α,1),φ−1x)f̄j(x)dφ(x)dx

∣∣∣∣ du < 1/k

}
and observe that Ar(j,N, k) is an open set since the quantity estimated is
continuous in φ. On the other hand φ ∈ Cr(Td+1,R∗+) satisfies (2.6) if and
only if

φ ∈
⋂
j∈N

⋂
k∈N

⋂
M∈N

⋃
N≥M

Ar(j,N, k)

whence the set of φ ∈ Cr(Td+1,R∗+) such that T t(α,1),φ−1 is weak mixing for
its unique invariant probability measure is a countable intersection of open
sets, that is a Gδ set.

2

Considering proposition 2.2.2, to prove theorem 2.2.1, it is enough to show
that the set of strictly positive functions ϕ for which the flow is weak mixing
is dense in Cr(Td,R∗+), for any r ∈ N.
Still, the way we prove density, we obtain that the set contains a Gδ dense
subset. We then use proposition 2.2.2 to conclude that it is exactly a Gδ

dense set.
First we state a classical general lemma on weak mixing for ergodic special

flows. In this lemma {T t} will be the special flow constructed from an ergodic
automorphisim T of a Lebesgue space L and a ceiling function f > 0.
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Lemma 2.2.1 The flow {T t} is weak mixing if and only if, for any λ in R∗
the equation

h(T (x)) = ei2πλf(x)h(x) (2.7)

does not have a non zero measurable complex solution h.

Proof. Assume that (2.7) has a measurable solution h. Let H(x, s) =
h(x)e(λs). To see thatH is well defined just note thatH(x, f(x)) = h(x)e(λf(x)) =
h(x + α) = H(x + α, 0). Observe then that H(T t(x, s)) = H(x, s + t) =
e(λt)H(x, s) which confirms that T t has an eigenfunction and is thus not
weak mixing.

Conversely, if H is an eigenfunction of T t with eigenvalue λ, we ob-
serve that h(x) = H(x, 0) satisfies h(Tx) = H(Tx, 0) = H(x, f(x)) =
H(T f(x)(x, 0)) = e(λf(x))H(x, 0) = e(λf(x))h(x).

2

Now we return to the special flow constructed over the rotation automor-
phism Tα of the torus Td with the ceiling function ϕ and from the Lemma we
just stated we obtain a criterion, on the Birkhoff sums of ϕ, which guaran-
tees weak mixing for the special flow. We will sometimes denote the Birkhoff
sums by

ϕm(θ) =
m−1∑
k=0

ϕ(θ + kα).

Lemma 2.2.2 (Criterion for weak mixing) If for every g in L2(Td,C),
and for every λ in R∗, we have

inf
m∈N

∣∣∣∣∫
Td
eiλϕm(θ)g(θ)dθ

∣∣∣∣ = 0,

then the flow over Tα with the ceiling function ϕ is weak mixing.

Proof of Lemma 2.2.2. Since Tα is ergodic any measurable solution of (2.7)
has constant modulus and is therefore in L2. Suppose h is a solution of (2.7),
we have

h(θ +mα) = eiλϕm(θ)h(θ)
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and for any k ∈ Zd

e−i2πm(k,α)

∫
Td
h(θ)ei2π<k,θ>dθ =

∫
Td
h(θ +mα)ei2π<k,θ>dθ,

=

∫
Td
eiλϕm(θ)h(θ)ei2π(k,θ)dθ.

Should the condition of the Lemma be satisfied we would have

inf
m∈N

∣∣∣∣∫
Td
eiλϕm(θ)h(θ)ei2π<k,θ>dθ

∣∣∣∣ = 0.

Which implies that
∫
Td h(θ)ei2π<k,θ>dθ = 0 for any k ∈ Zd, hence h is zero.

2

Remark : It is enough to check the condition of the lemma for the cha-
racters χj(θ) = ei2π<j,θ> that form a basis of L2.

In all the rest r will be an arbitrary integer. Given the irrational vector
α ∈ Td define

Ar(α) ={
ϕ ∈ Cr(Td,R)|∀λ ∈ R∗,∀j ∈ N, infm∈N

∣∣∫
Td e

iλϕm(θ)χj(θ)dθ
∣∣ = 0

}
.

In light of lemma 2.2.2 density in theorem 2.2.1 will follow from

Proposition 2.2.3 Fix r ∈ N. If α is Liouville then Ar(α) is a Gδ dense
subset of Cr(Td,R).

Proof of proposition 2.2.3. For j, p, k ∈ N3, define

Ar
(j,p,k,m)(α) = {ϕ ∈ Cr(Td,R) :

∀λ ∈ [
1

p
, p],

∣∣∣∣∫
Td
eiλϕm(θ)χj(θ)dθ

∣∣∣∣ < 1

k
}.

We have
Ar(α) =

⋂
j∈N

⋂
p∈N

⋂
k∈N

⋃
m∈N

Ar
(j,p,k,m)(α).

The set Ar
(j,p,k,m)(α) is obviously open (we took λ ∈ [1

p
, p] for this purpose),

and we just have to prove that it is dense, which will be the goal of the rest
of the section.
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First we write the fact that α is not Diophantine :
There exist a sequence kn ∈ Zd with limn→∞ |kn| = +∞ such that

‖(kn, α)‖ < 1

|kn|3n
. (2.8)

We introduce now a sequence of real functions on Td

ψ(n)(θ) =
cos(2π(kn, θ))

|kn|n
.

Finally let mn = |kn|2n. The essential fact about mn is that |kn|n � mn �
‖(kn, α)‖−1.

We will need the following lemmas (the first one is direct from the defi-
nition of ψ(n))

Lemma 2.2.3 For any r ∈ N we have

|ψ(n)|r −→
n→∞

0.

Lemma 2.2.4 Let ψ̃(n) = cos(2π(kn, θ)). Then we have for any m such that
m‖(kn, α)‖ < 1/2

ψ̃(n)
m (θ) = Xn,m cos (2π(kn, θ) + φn,m) ,

where Xn,m ≥ 2
π
m and φn,m ∈ [0, 2π).

Proof of Lemma 2.2.4. We have

ψ̃(n)
mn(θ) = Re

(
1− ei2πmn(kn,α)ei2π(kn,θ)

)
,

= Re

(
eiπ(mn−1)(kn,α) sin (πmn(kn, α))

sin (π(kn, α))
ei2π(kn,θ)

)
,

= Xn,m cos (2π(kn, θ) + φn,m) ,

if we let
Xn,m =

sin (πm(kn, α))

sin (π(kn, α))
.

Since m‖(kn, α)‖ < 1/2, we have sin(πm(kn, α)) = sin(πm‖(kn, α)‖) ≥
2m‖(kn, α)‖ while sin(π(kn, α)) = sin(π‖(kn, α)‖) ≤ π‖(kn, α)‖ hence

Xn,m ≥
2

π
m
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2

Remark : The functions ψ(n) we introduced are "α" periodic (in the sense
that ψ(n)(x+ jα) ∼ ψ(n)(x)) as long as the number of iteration of Tα, is such
that m‖(kn, α)‖ = o(1). Consequently, the Birkhoff sums of ψ(n) up to mn

will look like mnψ
(n). If mn is moreover such that mn

Dn
→∞, where Dn is the

denominator in the expression of ψ(n), then ψ(n)
mn will have great oscillations.

This essential phenomenon will allow us to check the criterion of lemma 2.2.2
by means of the stationnary phase method. The idea next, is to perturb a
given function by adding to it a function ψ(n) that will "produce mixing" at
time mn.

From the estimation in lemma 2.2.4 and a basic fact on stationnary phase,
we have the following crucial result.

Lemma 2.2.5 Fix g ∈ C∞(Td,R) and p > 0, and assume that λ ∈ [1/p, p].
There exists a constant C(g, p) > 0 such that∣∣∣∣∫

Td
eiλψ

(n)
mn (θ)g(θ)dθ

∣∣∣∣ ≤ CY −1/8
n

where Yn = |kn|n.

Exercise 2.2.2 rm Give a proof of lemma 2.2.5. Hint : Assume d = 1, the
general case being similar. Cut the integral into intervals where the derivative
of ψ(n)

mn is larger than Y
−1/4
n and intervals where the derivative is less than

Y
−1/4
n then majorize the integral on each of these intervals.

Now, we are ready to prove that Ar
(j,p,k)(α) = ∪m∈NAr

(j,p,k,m)(α) is dense
in Cr(Td,R).

Fix a function ϕ ∈ Cr(Td,R) and take ε > 0 arbitrarily small. We can
assume the integral of ϕ is zero. We let P be a trigonometrical polynomial
with zero average and such that |ϕ− P |r < ε. We let Q be the zero average
solution of the linear cohomological solution associated to P , that is P (x) =
Q(x+ α)−Q(x).

Then for n ∈ N we define

ϕ(n) = P + ψ(n).
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Now, if we take n large enough, we will have, from Lemma 2.2.3 :

|ϕ− ϕ(n)|r < 2ε. (2.9)

On the other hand, up to extracting a subsequence from mn, we can assume
that mnα converges to some vector ᾱ on Td and thus that Pmn converges to
a fixed function Q(x+ ᾱ)−Q(x).

Then, applying lemma 2.2.5 we have∫
Td
eiλϕ

(n)
mn (θ)χj(θ)dθ =

∫
Td
eiλψ

(n)
mn (θ)eiλPmn (θ)χj(θ)dθ −→

n→∞
0.

(We used lemma 2.2.5 for g(θ) = eiλ(Q(θ+ᾱ)−Q(θ))χj(θ), and the fact that
eiλPmn (θ)χj(θ)→ eiλ(Q(θ+ᾱ)−Q(θ))χj(θ) uniformly when n goes to infinity.)

So when n is sufficiently large, we have that ϕ(n) ∈ Ar
(j,p,k)(α). The

real number ε being arbitrarily small this completes the proof of density
of Ar

(j,p,k)(α).
proposition 2.2.3 is proved. 2

Proof of theorem 2.2.1. In light of lemma 2.2.2, proposition implies that
for any r ∈ N, the set of ϕ ∈ Cr(Td,R∗+) for which the flow is weak mixing
contains a Gδ dense subset of Cr(Td,R∗+). Together with proposition 2.2.2,
this proves theorem 2.2.1. 2

2.3 From special flows to reparametrizations.
In this section we see how the theorems for the special flows T tα,ϕ translate

into theorems for the reparametrized flows T t(α,1),φ−1 .
Consider the submanifold of Td+1, X = Td×{0}. This is a global Poincaré

section to the flow, in the sense that any orbit of T t(α,1),φ−1 (which are the
same orbits as those of the linear flow T t(α,1)) hits X in finite time. Therefore,
T t(α,1),φ−1 can be viewed as a special flow constructed from Tα on Td and from
the ceiling function given by the time that a point from X takes to come
back to X. This time is simple to compute.

R(φ)(θ) = ϕ(θ) =

∫ 1

0

φ(θ + ξα, ξ)dξ. (2.10)

Remark : This formula just translates the fact that the return time to that
section is the integral of one over the speed along the fibres. This explains
why we used the reparametrizing function in the form φ−1 instead of φ.
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From this correspondence between reparametrizations and special flows,
theorem 2.1.2 follows immediately from theorem 2.2.2.

Proof of theorem 2.1.1. Fix a Liouville vector α ∈ Rd and r ∈ N.
Introduce the set

Br(α) = {φ ∈ Cr(Td+1,R∗+) | R(φ) ∈ Ar(α)},

and
Br

(j,p,k)(α) = {φ ∈ Cr(Td+1,R∗+) | R(φ) ∈ Ar
(j,p,k)(α)}.

The function R(φ) being the ceiling function obtained from φ by (2.10).
As in the proof of theorem 2.2.1, we need only to prove that Br

(j,p,k)(α) is
Cr dense in Cr(Td+1,R∗+). We fix φ and we take φ̂ a trigonometrical polyno-
mial close to φ. Obviously, ϕ̂ = R(φ̂) (given by (2.10)) will be a trigonome-
trical polynomial and, by the proof of theorem 2.2, for n sufficiently large,
ϕ̂+ ψ(n) ∈ Ar

(j,p,k)(α)
Recall that

ψ(n)(θ) = Re

(
ei2π(kn,θ)

|kn|n

)
.

And define

Ψ(n)(θ, s) =
i2π ((kn, α) + ln)

ei2π((kn,α)+ln) − 1
Re

(
ei2π(kn,θ)ei2πlns

|kn|n

)
,

where ln is chosen to be the closest integer to −(kn, α). A straightforward
computation implies

R
(
Ψ(n)

)
= ψ(n).

Before we conclude, we need to check that Ψ(n) is small.

Lemma 2.3.1 We have
|Ψ(n)|r −→

n→∞
0.

Proof of lemma 2.3.1. The choice of ln such that |(kn, α) + ln| < 1
2
implies∣∣∣∣i2π ((kn, α) + ln)

ei2π((kn,α)+ln) − 1

∣∣∣∣ < π

2
.

Since |ln| ≤ |kn|(
∑
|αj|) + 1, Ψ(n), just like ψ(n), goes to 0 in the Cr topology

when n goes to infinity. 2
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Now, because the correspondence in (2.10), φ → R(φ), is linear we will
haveR(φ̂+Ψ(n)) = ϕ̂+ψ(n) ∈ A(j,p,k)(α), or equivalently φ̂+Ψ(n) ∈ B(j,p,k)(α).
By Lemma 2.3.1 and the choice of φ̂ this last function is close to φ which
proves density of B(j,p,k)(α). Hence the set of φ ∈ Cr(Td+1,R∗+) such that
T t(α,1),φ−1 is weak mixing for its unique invariant probability measure contains
a dense Gδ subset of Cr(Td+1,R∗+). Theorem 2.1.1 on reparametrization now
follows from the combination of the latter result with proposition 2.2.2. 2

2.4 Rigidity of the reparametrized flows

In this section, we will see that in the case d = 1 the reparametrized flows
T t(α,1),φ−1 are always rigid in the following sense.

Definition 2.4.1 We say that a flow T t (or a map T ) defined on a smooth
manifold M is Cr rigid if there exists a sequence tn such that T tn converges
uniformly to the Identity map in the Cr topology.

In the case α is a Diophantine number this is not surprising and comes
directly from the fact that T t(α,1),φ−1 is conjugate to a linear irrational flow
(any irrational α can be approxiamted by rationals pn/qn faster than 1/q2

n

which automatically yields rigidity of T t(α,1) since T qn(α,1) → Id). But in the
Liouvillean case we get that there exists a sequence qn such that T qn(α,1),φ−1 →
Id while the T t(α,1),φ−1 is in general weak mixing, in which case the general
sequence of times tn is a mixing sequence for T t(α,1),φ−1 .

Theorm 2.4.1 For any α ∈ R − Q and any φ ∈ C∞(T2,R∗+), the flow
T t(α,1),φ−1 is C∞ rigid.

Proof. We will prove the equivalent fact that T tα,ϕ is C∞-rigid for any
α ∈ R − Q and any ϕ ∈ C∞(T,R∗+) The proof is based on the so called
improved Denjoy-Koksma inequality, a variant of which we now state.

Lemma 2.4.1 For any α ∈ R−Q and any ϕ ∈ C∞(T,R∗+), there exists qn
such that ‖qnα‖ → 0 and for any r ∈ N

lim
n→∞

‖Sαqnϕ− qn
∫
T
ϕ‖r = 0. (2.11)
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Before we prove this technical lemma let us observe first how theorem
2.4.1 can be derived from it. Without loss of generality we assume that

∫
T ϕ =

1. Fix now ε > 0 such that 2ε < infx∈T ϕ(x). For x ∈ T let us look at T qnα,ϕ(x, ε).
We know that

T qnα,ϕ(x, ε) = (x+mα, ε+ qn − Sαmϕ(x))

where m is the unique integer such that 0 < ε+ qn − Sαmϕ(x) < ϕ(x+mα).
Since for any r, limn→∞ ‖Sαqnϕ− qn‖r = 0 we get that for any x ∈ T m = qn
and since ‖qnα‖ → 0 we have that T qnα,ϕ(x, ε)→ (x, ε) in any Cr norm. Finally
any (x, s) ∈M can be written as T s′α,ϕ(x, ε) for some −ε < s′ < maxx∈T ϕ(x),
thus

T qnα,ϕ(x, s) = T s
′

α,ϕT
qn
α,ϕ(x, ε) ∼ T s

′

α,ϕ(x, ε) = (x, s)

and the proof of theorem 2.4.1 will be complete once we give the
Proof of lemma 2.4.1. For k ∈ Z∗ and χk(x) = e(x) we write for m ∈ Z :
Sαmχk = Xm,kχk, |Xm,k| = | sin(πmkα)/ sin(πkα)|. From the properties of
the sequence qn of denominators of convergents of α (see proposition 1.4.1 of
chapter ??) we get that |Xqn,k| ≤ π

2
|k|ql/qn+1 for every l ≤ n and |k| < ql.

On the other hand we trivially have |Xm,k| ≤ m for all m ∈ Z.
Let us now compute ‖Sαqnϕ− qn

∫
ϕ‖r using Fourier series.

‖Sαqnϕ− qn‖r ≤ C
∑
k∈Z∗
|ϕ̂k||k|r+1|Xqn,k|

≤ C
ql
qn+1

∑
|k|<ql

|ϕ̂k||k|r + Cqn
∑
|k|≥ql

|ϕ̂k||k|r

Now since ϕ ∈ C∞(T,R) we know that
∑
|k|≥ql |ϕ̂k||k|

r+2 converges the-
refore

‖Sαqnϕ− qn‖r ≤ C
ql
qn+1

+ C
qn
q2
l

(2.12)

To finish we need to consider two cases.
Case 1 : α is not of constant type. That means that there exists a subse-
quence qni of its denominators such that qni+1/qni → 0 as i→∞. If we take
n = l = ni in (2.12) we then get

‖Sαqniϕ− qni‖r ≤ C
qni
qni+1

+
C

qni

whence ‖Sαqniϕ− qni‖r → 0 as required.
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Case 2 : α is not of constant type. That means that there exists K such
that ql+1 ≤ Kql for any l. We deduce that for any n sufficiently large there
exists ln ≤ n such that qln ∈ [qn/n

2, qn/n]. If we take l = ln in (2.12) we then
get

‖Sαqnϕ− qn‖r ≤
C

n
+
Cn4

qn
.

Since ql+2 ≥ 2ql for every l this means that qn ≥ 2n/2 and we get the required
‖Sαqnϕ− qn‖r → 0.

2

Exercise 2.4.1 What is the minimal regularity of ϕ you can give to insure
that T tα,ϕ is C0-rigid ?
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Chapitre 3

The Poincaré Siegel theorem on
linearization of holomorphic
germs

In this chapter, we see how holomorphic germs f : C → C : z 7→ λz +
O(z2) with |λ| 6= 1 or with λ = e(α) := ei2πα with α Diophantine are
linearizable in the neighborhood of the origin, which means that they are
conjugated by a holomorphic map to the map Λ : z 7→ z : there exists
h biholomorphic bijection defined on a neighborhood of 0 such that hφ =
Λh. This result will be based on the solvability of the linearized equation
Λ∆h−∆hΛ = ∆f for f = O(z2) and on a quadratically convergent scheme
of successive conjugations known as the KAM scheme (Kolmogorov Arnol’d
Moser). The proof for the case |λ| 6= 1 was obtained by Poincaré by direct
computation of the coefficients of the linearizing germ h from those of f . In
this case there are no small divisors and the majorization of the coefficients
of h is relatively simple (see for example section 2.1.B in the book of Katok
Hasselblatt : Introduction to the modern theory of dynamical systems).

When = e(α) with α Diophantine the linearization result was first disco-
vered by Siegel (in 1952 )who handled delicate estimates involving the small
divisors that appear in the coefficients of h if one computes them directly
from those of f .

The proof we give is an example of application of the KAM quadratic
scheme to reach the conjugacy and follows the lines of an article published
by Moser in 1966 and can also be found in the aforementioned book of Katok
Hasselblatt, in section 2.8.

39
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This is introduction to KAM theory will be helpful in understanding the
analysis of the quasi-periodic Schrödinger operator for small real analytic
potentials.

A proof of a more general theorem based on majorizing series can be
found for example at

3.1 Notations and result
For ∆ > 0 we denote B∆ = {z ∈ C : |z| ≤ r}. We will denote Cω

∆ the set
of holomorphic maps f such that f(0) = 0 and the radius of convergence of
f is larger than r. We will denote C̄ω

∆ the set of f ∈ Cω
∆ and the power series

of f is convergent and continuous for |z| ≤ ∆. We then define a norm on C̄ω
∆

given by |f |∆ := sup|z|≤∆ |f(z)| <∞.

Theorm 3.1.1 Let f(z) = λz+
∑

k≥2 fkz
k be a holomorphic map in a neigh-

borhood of 0. Assume that |λ| 6= 1 or λ = e(α) with α Diophantine, then there
exists ∆ > 0 and a h ∈ Cω

∆ : h(z) = z +
∑

k≥2 hkz
k such that h is a biholo-

morphic bijection from B∆ onto its image and such that h◦f ◦h−1 is defined
on B∆/2 and

h ◦ f ◦ h−1(z) = λz, for |z| ≤ ∆/2.

3.2 Proof of the Poincaré Siegel theorem
Exercise 3.2.1 Let un be a sequence of positive real numbers such that
un+1 ≤ 2nu2

n. Show that if u0 < 1/2 then un converges to 0 and un = o(a−n)
for any a > 1.

We will always assume that || ≤ 1, the case || > 1 being reduced to
that case by consideration of f−1. We will denote f by f = Λ + ∆f where
∆f =

∑
k≥2 fkz

k will always correspond to holomorphic functions in a neigh-
borhood of zero such that ∆f = O(z2). We look for the conjugacy under the
form I + ∆h with I : z 7→ z.

Observe that |∆f ′|∆ → 0 as ∆ → 0 which will allow us to treat f as a
perturbation of Λ in the neighborhood of 0.

Lemma 3.2.1

a) Let f ∈ C̄ω
∆, then |fk|∆k ≤ |f |∆.
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b) Let d ∈ N and assume |fk| ≤ K|k|d∆−k then f ∈ Cω
∆ and for any δ > 0,

|f |∆(1−δ) ≤ C(d) K
δd+1 .

c) There exists C0 > 0 such that if f ∈ C̄ω
∆, then f ′ ∈ Cω

∆ and for any δ > 0 :
|f ′|∆(1−δ) ≤ C0

δ2
|f |∆.

Proof.

a) fk∆k =
∫
T f(∆e(θ))e(−kθ)dθ.

b) |f |∆(1−δ) ≤
∑
|fk|∆k(1 − δ)k ≤ K

∑
|k|d(1 − δ)k ≤ C(d) K

δd+1 . The last
inequality is obtained by observing that |k|d is smaller than the k coefficient
that appears in the power series expansion of the absolute value of the dth

derivative of the function δ 7→ 1/δ (expanded around (1 − δ) ∼ 0, that is
write the expansion of 1/(1− u) with u = 1− δ).
c) Apply a) to bound the coefficients of the series of f then apply b) to
bound |f ′|∆(1−δ).

2

Hereafter we will assume that α ∈ DC(d − 1), that is there exists γ > 0
such that for any k ∈ Z∗

‖kα‖ ≥ γ

|k|d

Proposition 3.2.1 Let ∆f ∈ C̄ω
∆, then there exists ∆h ∈ Cω

∆ such that

Λ∆h−∆hΛ = ∆f (3.1)

and
|∆h′|∆(1−δ) ≤

C(d)

γ
δ−d−2|∆f |∆ (3.2)

Proof. We simply have that

∆hk =
∆fk
k −

hence |∆h′k| ≤ C
γ
|k|d+1|∆fk| which implies the estimate of the proposition in

light of lemma 3.2.1. 2

Proposition 3.2.2 Let ∆, δ > 0 be sufficiently small and such that |∆f ′|∆ ≤
ε ≤ δd+10. Then there exists ∆h ∈ Cω

∆ such that f1 = h ◦ f ◦ h−1, with
h = I + ∆h, is holomorphic on B∆(1−δ)4 and f1 = Λ + ∆f1 with

|∆f ′1|∆(1−δ)5 ≤ Cδ−d−4ε2.
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Moreover ∆h is as in proposition 3.2.1, and thus

|∆h′|∆(1−δ) ≤
C(d)

γ
δ−d−2ε

Proof. Because ∆h solves (5.2.2), it satisfies (3.2), and because we assumed
that |∆f ′|∆ ≤ ε ≤ δd+10 it is easy to show that h−1(B∆(1−δ)4) ⊂ B∆(1−δ)3

while f(B∆(1−δ)3) ⊂ B∆(1−δ)2 so that f1 is well defined.
We now write h ◦ f = f1 ◦ h. Because ∆h solves (5.2.2) we get that

∆f1 ◦ h = ∆h ◦ f −∆h ◦ Λ

Hence
∆f1 = (∆h ◦ f −∆h ◦ Λ) ◦ h−1.

But h−1(B∆(1−δ)4) ⊂ B∆(1−δ)3 and Λ(B∆(1−δ)3) ⊂ B∆(1−δ)2 as well as f(B∆(1−δ)3) ⊂
B∆(1−δ)2 so

|∆f1|∆(1−δ)4 ≤ |∆h′|∆(1−δ)2|∆f |∆(1−δ)3 ≤ Cδ−d−2ε2

and the estimate of |∆f ′1|∆(1−δ)5 follows from lemma 3.2.1. 2

The proof of theorem 3.1.1 will be obtained by an inductive application
of proposition 3.2.2.

For η > 0, define δn = η
2n

and ∆n = ∆n−1(1−δn)5. We fix η > 0 sufficiently
small so that ∆n ≥ ∆0/2 for every n ∈ N. Then fix ∆0 sufficiently small so
that ε0 := |∆f ′|∆0 ≤ δd+10

0 .
We apply proposition 3.2.2 inductively : f0 = f , f1 = h0 ◦ f0 ◦ h−1

0 ,
f2 = h1 ◦ f1 ◦ h−1

1 . . .
We denote Hn = hn−1 ◦ . . . ◦ h0, so that fn = Hn ◦ f ◦ H−1

n . We also
introduce εn := |∆f ′n|∆n .

To justify the possibility of an inductive application of proposition 3.2.2
and the well definiteness of fn we will need to verify that for every n :
εn ≤ δd+10

n .
But the proposition says that εn ≤ Cδ−d−4

n−1 ε2n−1 (with C := C(d, γ)), or
equivalently that εn ≤ C ′an−1ε2n−1 if we let C ′ = Cη−d−4 and a = 2d+4. If we
define ε̄n = C ′an+1εn we observe that ε̄n ≤ ε̄2n−1 and thus ε̄n ≤ (ε̄0)2n .

This immediately gives us that if we chose ∆0 sufficiently small so that
ε0 and therefore ε̄0 be sufficiently small we will have that εn converges qua-
dratically to 0 (like b2n for some b � 1), and by the same token that the
inductive hypothesis εn ≤ δd+10

n is indeed satisfied.
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We proved that for ∆0 > 0 sufficiently small |fn|∆0/2 → 0. It remains to
show that Hn converges.

It is clear that since |∆hn|∆0/2 ≤ C(d)δ−d−2
n εn then if εn converges quadra-

tically to 0 then ε′n := C(d)δ−d−2
n εn also converges quadratically to 0. Hence

if ∆0 is chosen sufficiently small it will follow that Hn(B∆0/4) ⊂ B∆0/2, so
that Hn ∈ C̄ω

∆0/8
and there is a constant C > 0 such that |Hn+1 −Hn|∆0/8 =

|∆hn ◦Hn|∆0/4 ≤ |∆hn|∆0/2. The latter implies that Hn is a Cauchy sequence
in the Banach space C̄ω

∆0/8
and yields its convergence to some H∞ ∈ C̄ω

∆0/8
.

The same argument shows that if ∆0 is chosen sufficiently small then
H−1
n is a Cauchy sequence in the Banach space C̄ω

∆0/8
and converges to some

H−1
∞ ∈ C̄ω

∆0/8
.

Moreover, we have H∞ ◦ f ◦ H−1
∞ (z) = Λ(z) for |z| ≤ ∆0/16. The proof

of theorem 3.1.1 is thus completed. 2

3.3 The Liouville phenomenon. Cremer cycles.
In the next exercise, we show that if α is super-Liouville, then f(z) =

ei2παz+z2 is not linearizable since it has infinitely many cycles accumulating
the origin.

Exercise 3.3.1 Let f : C → C : f(z) = ei2παz + z2. Assume that α is such
that there exist infinitely many qn such that ‖qnα‖ ≤ n−2qn

1. Show that there exists a sequence zn → 0 such that f qn(zn) = zn (here
f 2 = f ◦ f , f 3 = f ◦ f ◦ f, . . .). Hint : Compute the coefficient of z in
f qn(z) − z and then express this coefficient in terms of the roots of the
polynomial f qn(z)− z.

2. Conclude that f is not topologically conjugated to Λ(z) = ei2παz.
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Chapitre 4

SL(2,R) cocycles

4.1 Introduction

Given a diffeomorphism f acting on a manifold M , a fundamental ap-
proach to understand the dynamics of f is to first analyze the dynamics of
its tangent map, that is the geometry of Dfn(x) where fn is the n times
composition of f . For example if the norm of Dfn(x) grows geometrically at
some point x then this means that some nearby points in the neighborhood
of x may get split exponentially fast (in n) under the action of fn : this is
called sensitive dependance on initial conditions and is the basis phenome-
non behind what is commonly called chaotic dynamics. To the contrary if
the norm of Dfn remains bounded at all points then this means that the
dynamics of f is related to that of translations on tori or sphere rotations.

Since Dfn(x) = Df(fn−1(x)).Df(fn−2(x)) . . . Df(x), the dynamics of
Dfn can be thought as a product of matrices (or composition of linear ope-
rators) "above" the orbits of f . This leads to a generalization of the problem
of understanding Dfn(x) to that of understanding the product of linear maps
or matrices "above" the dynamics of f . By this we mean that given a ma-
trix map x ∈ X 7→ A(x) ∈ M(d,R), we are interested in the products
A(fn(x))A(fn−1(x)) . . . A(x). The map (x, v) ∈ M × Rd 7→ (f(x), A(x)v) is
called a linear cocycle above f with the cocycle map being A(·). Linear co-
cycles above f are skew products above f that act linearly on the second
coordinate (a skew product over T is a dynamical system F acting on a pro-
duct space X×Y such that π◦F = T , where π : X×Y → X is the projection
on the first coordinate). They can also be viewed as a multiplicative version

45
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of the linear skew products that act by translation on the second coordinate
that we have seen in the previous chapter. Notice that the case A(·) = Df(·)
is a particular case and that some general results that are obtained for li-
near cocycles may be applied to the particular case of Df but that it turns
out that the study of the behavior of linear cocycles when the map A is
independent on f is often much simpler then the special case A = Df .

Let us first understand the picture when a single linear mapA ∈ GL(m,R)
is iterated. Let v ∈ Rm. We are interested in the rate of growth of ‖Anv‖ as
n→∞. It is easy to see, by writing A in its real Jordan form, for instance,
that Rm can be decomposed into A-invariant subspaces E1⊕ . . .⊕Er in such
a way that for each i,there is a number λi s.t. ∀v ∈ Ei − {0},

lim
1

n
ln ‖Anv‖ = ±λi, n→ ±∞

The λi are the log of the moduli of the eigenvalues of A.
It is of course easy to construct diffeomorphisms f on a manifold M and

matrix mapsA : M → GL(m,R) so that the productA(fn(x))A(fn−1(x)) . . . A(x)
behaves erratically on many points x. But the Oseledts theory, which can
actually be viewed as a multiplicative version of the Birkhoff Ergodic Theo-
rem, tells us that in the case of invertible maps f that preserve a probability
measure µ, then the asymptotic behavior of A(fn(x))A(fn−1(x)) . . . A(x) as
n→∞ is, for µ-almost every point x, similar to that of a single linear map
that is iterated.

We will state and prove Oseledets theorem only in the case of two di-
mensional matrices of determinant 1 (SL(2,R) matrices) and we refer to L.
Arnold Random dynamical systems, Springer 1998 for general statements and
proofs. The SL(2,R) case already contains most of the ideas and is easier to
expose.

We recall that a matrix A ∈ SL(2,R) is called hyperbolic if its trace is
strictly larger than 2 which is also equivalent to A having one real eigenvalue
strictly larger than 1 and one eigenvalue strictly smaller than 1. A matrix
with trace strictly less than two is called elliptic and it is conjugated to a
matrix in the group SO(2,R) of rotation matrices. The ”degenerate” case of
matrices with trace exactly two is called parabolic.

For v ∈ R2 we denote ‖v‖ the Euclidean norm of v, and use a similar
notation for its induced operator norm on A ∈ SL(2,R), that is ‖A‖ =
sup‖v‖=1 ‖Av‖.
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We will very frequently the following geometric fact from the linear alge-
bra of SL(2,R) matrices.

Any matrix A ∈ SL(2,R)(2, R) can be written as A = RDS, where R and
S belong to SO(2,R) (the group of rotations), and D ∈ SL(2,R) is diagonal
with non-negative entries. These entries are called the singular values of A.
Notice then that ‖A‖ = ‖A−1‖ = ‖D‖. The matrix A is a rotation if and
only if D is the identity matrix.

Lemma 4.1.1 If A is not a rotation, then there are unit vectors u(A) ⊥ s(A)
unique modulo sign, such that

‖A · u(A)‖ = ‖A‖, ‖A · s(A)‖ = ‖A‖−1 .

Moreover A(u(A)) and A(s(A)) are collinear respectively to s(A−1) and u(A−1).
Notice u(A) and s(A) are the eigenvectors of the symmetric matrix A∗A.

SL(2,R) cocycles. Notations.

Given a dynamical system (T,X, µ) and a measurable map A : X →
SL(2,R), the group of real 2 × 2 matrices with determinant 1, we define an
SL(2,R)-cocycle over (T,X, µ) with in the fibres the matrix map A by

F : (x, v) ∈ X ×R2 7→ (Tx,A(x) · v) ∈ X ×R2, where A : X → SL(2,R) .

Since the pair (T,A) specifies F = FT,A, we also call it a cocycle. Sometimes
(when the underlying T is fixed) we also call the map A a cocycle.

The powers F n can be written as F n(x, v) = (T nx,AnT (x) · v), where

AnT (x) = A(T n−1x) · · ·A(x) (for n > 0).

In the case T is invertible, F is also invertible since we can define

A−nT (x) = A(T−nx)−1 · · ·A(T−1x)−1 (for n > 0), A0
T (x) = Id.

The following identity ’

Am+n
T (x) = AmT (T nx)AnT (x) for all x ∈ X, m, n ∈ Z. (4.1)

is called the “cocyle identity”.
Most of the time T will be fixed and we write for simplicity An(x) instead

of AnT (x).
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As we said, Oseledets theory will apply to cocycles where the base map
preserves a probability measure µ. So we will always assume that in the base
we have a dynamical system (T,X, µ) and since we will only be intersted in
the behavior of the products An(x) (and A−n(x) in the case T is invertible)
only on a set of full µ-measure, we will only assume that the map A is µ-
measurable. Sometimes, especially when the base dynamics is regular, it is
interesting to consider regular maps A : analytic, smooth, continuous...

Let us mention two basic examples where the SL(2,R) cocycles appear :

Example 4.1.1 Let T2 = R2/Z2 be the 2-torus. Given a diffeomorphism
f : T2 → T2 that preserves area and orientation, we can define a SL(2,R)-
cocycle (T,A) by taking X = T2, µ as Lebesgue measure, T = f , and A as
the derivative of f (because the tangent bundle is trivial, i.e., TX = X×R2).

Example 4.1.2 Let H1 and H2 be two matrices in SL(2,R). Suppose we
multiply these matrices randomly with probability p1 we multiply by H1 (on
the left) and with probability p2 we multiply by H2 (always on the left). We
want to understand what is the statistical behavior of the products when
many trials are repeated. We look for results of the kind of the law of large
numbers but in this multiplicative context. The good setting to study this
problem is to consider the space X = {0, 1}N of infinite ”one-sided word-
s” formed with the "letters” 0 and 1. We equip X with the product mea-
sure µ = p1δ0 + p2δ1 and consider on X the measure preserving ”shift” map
σ(x0, x1, . . .) = (x1, x2, . . .). Then we consider the matrix map defined over X
as follows A(x0, x1, . . .) = H1 if x0 = 0 and A(x0, x1, . . .) = H2 if x0 = 1. Our
problem becomes to understand the behavior of the cocycle An(x) for µ-a.e.
x ∈ X. A celebrated result of Furstenberg states that unless in some obvious
cases such as H1 and H2 are commuting matrices in SO(2,R), the products
An(x) will grow exponentially for µ-almost every x and will actually behave
similarly to the case of a single hyperbolic matrix H that is multiplied.

In Sections 4.2–4.4 below we follow very closely the presentation of Avila
and Bochi text Trieste Lecture Notes on Lyapunov Exponents
Part I.
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4.2 The Lyapunov Exponent
Given a cocycle F = FT,A, we want to understand the behavior of typical

orbits F n(x, v) = (T nx,An(x) · v), as it is usual in Ergodic Theory. Thus
we aim to obtain information about the sequence of matrices An(x), for a
full-measure set of points x. The most basic information of this kind concerns
asymptotic growth.

Theorm 4.2.1 (Furstenberg–Kesten Theorem [?] for SL(2,R)) Assume
T : X → X is a µ-preserving transformation and A : X → SL(2,R) is a
measurable map such that :∫

log ‖A(x)‖ dµ(x) <∞. (4.2)

Then for µ-almost every x ∈ X, the following limit exists :

λ(x) = lim
n→∞

1

n
log ‖An(x)‖. (4.3)

The function λ : X → [0,∞) is T -invariant λ(Tx) = λ(x) for µ-a.e. x ∈ X,
λ is µ-integrable, and its integral is given by

Λ =

∫
λ(x) dµ(x) = lim

n→∞

1

n

∫
log ‖An(x)‖ dµ(x) = inf

n≥1

1

n

∫
log ‖An(x)‖ dµ(x) .

(4.4)

We call (4.2) the integrability condition. The number λ(x) is called the
(upper) Lyapunov exponent at the point x, and Λ is called the integrated
(upper) Lyapunov exponent. If T is ergodic then λ is constant equal to Λ
almost everywhere, so we write λ = Λ for simplicity.

Also notice that any norm on L(R2,R2) would work equally well in the
statement of Theorem 4.2.1 and would yield the same results with the same
function λ(x) and the same number Λ.

The proof of Theorem 4.2.1 is based on Kingman’s Subadditive Ergodic
Theorem of which we just recall the statement

Theorm 4.2.2 (Kingman’s Subadditive Ergodic Theorem) Let fn : X →
R̄ be a sequence of measurable functions such that f+

1 is µ-integrable and

fm+n ≤ fm + fn ◦ Tm for all m, n ≥ 1.
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Then 1
n
fn converges a.e. to a function f : X → R̄. Moreover, f+ is µ-

integrable and ∫
f = lim

n→∞

1

n

∫
fn = inf

n≥1

1

n

∫
fn ∈ R ∪ {−∞}

A sequence of functions as in the hypotheses of the theorem is called
subadditive.

Proof. [Proof of Theorem 4.2.1] The sequence of functions fn(x) = log ‖An(x)‖
is subadditive, and f0 is integrable. Therefore Theorem 4.2.2 assures that
fn/n converges almost everywhere to a function λ. Since fn ≥ 0, λ ≥ 0.
Theorem 4.2.2 also gives (4.4). 2

4.3 Oseledets Theorem
??
Theorem 4.2.1 gives information about the growth of the matrices An(x),

while the Oseledets Theorems below describe the asymptotic behavior of
vectors An(x) · v.

Theorm 4.3.1 (One–Sided Oseledets) Let T : X → X be a µ-preserving
transformation and A : X → SL(2,R) satisfy the integrability condition (4.2).
Let λ(·) be the Lyapunov exponent of the cocycle (T,A).

For a.e. x such that λ(x) = 0 we have

lim
n→+∞

1

n
log ‖An(x) · v‖ = 0 for every v ∈ R2 \ {0}. (4.5)

For a.e. x ∈ X such that λ(x) > 0, there exists a one-dimensional vector
space E−x ⊂ R2 such that :

lim
n→+∞

1

n
log ‖An(x) · v‖ =

{
λ for all v ∈ R2 \ E−x
−λ for all v ∈ E−x \ {0}

(4.6)

Moreover, the spaces E−x depend measurably on the point x and are invariant
by the cocycle.

Measurability of the spaces E−x means that they give a measurable map
from the set {x; λ(x) > 0} to P1 (the projective space of R2), while invariance
means that A(x) · E−x = E−Tx.
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Thus Theorem 4.3.1 says that if λ(x) > 0 then ‖An(x)·v‖ grows like enλ(x)

for v in all directions in R2, except for one direction for which the growth is
like e−nλ(x).

For invertible cocycles we have :

Theorm 4.3.2 (Two-sided Oseledets) Let T be an invertible bimeasu-
rable transformation of the probability space (X,µ), and let A : X → SL(2,R)
satisfy the integrability condition. For a.e. point x where the Lyapunov ex-
ponents is positive, there exists a splitting R2 = E+

x ⊕ E−x into two linear
one-dimensional subspaces such that (4.6) holds and

lim
n→−∞

1

|n|
log ‖An(x) · v‖ =

{
λ for all v ∈ R2 \ E+

x

−λ for all v ∈ E+
x \ {0}

(4.7)

Moreover, the spaces E+
x and E−x are invariant by the cocycle, depend mea-

surably on the point x, and satisfy :

lim
n→±∞

1

n
log∠

(
E+
Tnx, E

−
Tnx

)
= 0 . (4.8)

We call E+
x and E−x the Oseledets spaces. In view of (4.8), we say that the

angle between them decreases at most subexponentially. Notice that E−x can
only be distinguished when iterating in the future. In fact, when iterating in
the future only E− can be distinguished since all other vectors grow at the
same exponential rate. This is why only in the invertible case can we have
the complete decomposition of R2 similar to the case of a single matrix :
E−x is the only vector that does not grow exponentially when multiplied by
An(x), n ≥ 0, and E+

x is the only vector that does not grow exponentially
when multiplied by An(x), n ≤ 0.

Proof of Oseledets Theorem.

The following lemma will be used a few times :

Lemma 4.3.1 Let f : X → R be a measurable function such that f ◦ T − f
is integrable in the extended sense 1. Then

lim
n→∞

1

n
f(T nx) = 0 for a.e. x ∈ X.

1. A measurable function g is said to be integrable in the extended sense if g+ or g−

are integrable. Notice that the Birkhoff Theorem still applies.
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Proof. Let g = f ◦ T − f , and assume g+ ∈ L1(µ). By Birkhoff’s Theorem,
there is a function g̃ with g̃+ ∈ L1(µ) such that

f ◦ T n

n
=
f

n
+

1

n

n−1∑
j=0

g ◦ T j → g̃ a.e.

For every point x where convergence above holds and g̃(x) 6= 0, we have
|f(T nx)| → ∞. But, by the Poincaré’s Recurrence Theorem, the set of points
x which satisfy the latter condition has zero measure. Therefore g̃ = 0 a.e.,
as we wanted to show. 2

Proof. [Proof of Theorem 4.3.1] Let λ(·) be given by Theorem 4.2.1. For
each point such that (4.3) holds and λ(x) = 0. Then, for every non-zero
v ∈ R2,

‖(An(x))−1‖−1 ‖v‖ ≤ ‖An(x) · v‖ ≤ ‖An(x)‖ ‖v‖ .
Taking log’s, dividing by n, and making n→ +∞ gives (4.5).

Now consider the T -invariant set [λ > 0] = {x ∈ X; λ(x) > 0}. For a.e.
x ∈ [λ > 0], the orthogonal directions sn(x) = s(An(x)), un(x) = u(An(x))
are defined for sufficiently large n. We are going to show that they converge
to (necessarily measurable) maps [λ > 0]→ P1, and that lim sn(x) is exactly
the E−x space we are looking for.

Fix some x with λ(x) > 0. We may write λ, sn instead of λ(x), sn(x) etc.
Take unit vectors in the directions of sn and un that by simplicity of notation
we indicate by the same symbols.

Let αn > 0 be the angle between sn and sn+1. That is, sn = ± cosαn sn+1±
sinαn un+1. Since the vectors sn+1, un+1 are orthogonal and so are their
images by An+1(x), we get :

‖An+1(x) · sn‖ ≥ ‖An+1(x) · (sinαn un+1)‖ = (sinαn)‖An+1(x)‖ .

On the other hand :

‖An+1(x) · sn‖ ≤ ‖A(T nx)‖ ‖An(x)sn‖ = ‖A(T nx)‖ ‖An(x)‖−1 .

So it follows that
sinαn(x) ≤ ‖A(T nx)‖

‖An(x)‖ ‖An+1(x)‖
. (4.9)

From the definition (4.3) of λ, the integrability condition (4.2), and Lemma 4.3.1
it follows that for a.e. x,

lim
n→∞

1

n
log sinαn = −2λ .
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Thus, for a.e. x such that λ(x) > 0 we have that αn(x) goes exponentially
fast to zero, and, in particular, sn(x) is a Cauchy sequence in P1, for a.e. x.
Let s(x) be the limit. As the tail of a geometric series goes to zero with the
same speed as the summand, we have :

lim
n→∞

1

n
log sin∠(sn, s) = −2λ . (4.10)

Now write βn = ∠(sn, s). Then

An(x) · s = ±‖An(x)‖−1 cos βn ± ‖An(x)‖ sin βn

Therefore, using (4.10),

lim sup
n→∞

1

n
log ‖An(x) · s‖ ≤ lim sup

n→∞

1

n
log max

(
‖An(x)‖−1, ‖An(x)‖ sin βn

)
= max(−λ, λ− 2λ) = −λ .

On the other hand, 1
n

log ‖An(x) · s‖ ≥ 1
n

log ‖An(x)‖−1 → −λ, so it follows
that 1

n
log ‖An(x) · s‖ → −λ. Now, if v is a unit vector not collinear to s then

‖An(x) · v‖ ≥ ‖An(x)‖ sin∠(v, s),

which implies that 1
n

log ‖An(x) · v‖ → λ. So we have proved that (4.6) holds
taking E−x as the s direction. Finally, notice that if v ∈ A(x) ·E−x \ {0} then
1
n

log ‖An(Tx) ·v‖ → −λ. It follows that v ∈ E−Tx almost surely. So invariance
holds and the proof of Theorem 4.3.1 is completed. 2

We now consider the invertible case :
Proof. [Proof of Theorem 4.3.2] Let E− and E+ be the spaces given by
Theorem 4.3.1 applied respectively to F = FT,A and F−1. Then (4.6) and
(4.7) hold.

We are left to show (4.8) which in particular implies that E−x 6= E+
x for

a.e. x such that λ(x) > 0. Fix ε � 1. For a.e. x such that λ(x) > 0 we
have for a subsequence of n that goes to +∞ that AnE−x = λnE

−
Tnx with

|λn| ≤ λ−n(1 + ε)n and ‖A−n(T nx)E+
Tnx‖ ≤ λ−n(1 + ε)n and ‖A−n(T nx)v‖ ≤

λn(1+ε)n for any unitary vector v (as an exercise, show that these properties
hold for µ-a.e. x). Let θn be the angle between E+

Tnx and E
−
Tnx. We then have

that E−x = A−n(T nx)AnE
−
x = λnA

−nE−Tnx and projecting E−Tnx on E+
Tnx we

get that
1 = ‖E−x ‖ ≤ λ−2n(1 + ε)2n + θn(1 + ε)2n

hence 1
n

ln(θn) ≥ −3ε and since ε > 0 can be made arbitrary small we are
done. 2
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4.4 Uniform Hyperbolicity
A whole class of examples that deserves to be studied in some detail is

that of the uniformly hyperbolic cocycles.
In this subsection we assume X is a compact Hausdorff space.
Let T : X → X and A : X → SL(2,R) be continuous maps. We say the

cocycle in uniformly hyperbolic if there exist constants c > 0 and τ > 0 such
that

‖An(x)‖ > ceτn, for all n ≥ 0. (4.11)

This definition of uniform hyperbolicity is apparently weaker than the
more usual one ; but we will establish their equivalence in Theorem 4.4.1 and
Corollary 4.4.1 below.

Exercise 4.4.1 For any k ≥ 1, a cocycle (T,A) is uniformly hyperbolic if
and only if so is its power (T k, AkT ).

Theorm 4.4.1 If (T,A) is a uniformly hyperbolic cocycle then there exist a
map Es : X → P1 and constants C > 0 and σ > 0 such that

‖An(x)|Es
x‖ < Ce−σn, for all x ∈ X and n ≥ 0. (4.12)

Moreover, the map Es is unique, invariant by the cocycle, and continuous.

Proof. Assume (T,A) is uniformly hyperbolic, and fix τ > 0 so that (4.11)
is satisfied. We will use Oseledets Theorem 4.3.1 and its proof. Let sn(x) be
the direction the most contracted by An(x). We have the estimate (4.9) for
the angle αn(x) = ∠(sn(x), sn+1(x)). Here A is uniformly bounded, so we
obtain from (4.11) that αn(x) goes exponentially fast to zero, uniformly in x.
In particular, Es(x) = s(x) = lim sn(x) exists and is a continuous function.

We wish to use again (4.9)

sinαn(x) ≤ ‖A(T nx)‖
‖An(x)‖ ‖An+1(x)‖

and from uniform geometric increase of ‖An(x)‖ we wish to get

βn = ∠(sn, s) ≤ C
1

‖An(x)‖ ‖An+1(x)‖

and then

An(x) · s = ±‖An(x)‖−1 cos βn ± ‖An(x)‖ sin βn ≤ Ce−nτ
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as desired, but the problem is that the bound on βn would hold only on
typical points of some invariant measure of T such that the rate of increase
of ‖An(x)‖ becomes almost uniform after some large n.

We turn therefore to an ergodic-theoretic argument.
Observe first that the same proof of convergence of sn shows that

∠(sn(Tx), A(x)sn+1(x)) = O(e−2nτ )

which implies the cocycle invariance of Es : Es(Tx) = A(x)Es(x).
Let now µ be any T -invariant Borel probability measure. By the proof of

Theorem 4.3.1, we know that Es(x) is the Oseledets contracting direction for
µ-a.e. x ∈ X. Consider the continuous function φ(x) = log ‖A(x)|Es(x)‖. Its
n-th Birkhoff average is

Bn(x) =
1

n
(φ+ φ ◦ T + · · ·+ φ ◦ T n−1) =

1

n
log ‖An(x)|Es(x)‖ .

By Oseledets’ Theorem, for µ-a.e. x ∈ X, limBn(x) exists and equals−λ(x) =
− lim 1

n
log ‖An(x)‖. By the hypothesis (4.11), λ(x) ≥ τ . Now we need the

following :

Lemma 4.4.1 Let φ : X → R be a continuous function, and let Bn denote
the n-Birkhoff average of φ under T . Assume that there is a ∈ R such that for
every T -invariant measure µ, we have limn→∞Bn(x) ≤ a for µ-a.e. x ∈ X.
Then lim supn→∞Bn(x) ≤ a uniformly. That is, for every a′ > a there exists
n0 ∈ N such that Bn(x) < a′ for every n ≥ n0 and every x ∈ X.

Proof. This is a standard Krylov–Bogoliubov argument. If the conclusion
is false then there is a′ > a and sequences ni → ∞ and xi ∈ X such that
Bni(xi) ≥ a′. Consider the sequence of measures µi = 1

ni

∑ni−1
j=0 δT jxi . Passing

to a subsequence, we can assume that µi converges weakly to a measure µ.
Then µ is T -invariant and

∫
φ dµ = lim

∫
φ dµi = limBni(xi) ≥ a′. So by

Birkhoff’s Theorem, the set of points x such that limBn(x) ≥ a′ has positive
µ measure. This contradicts the assumption. 2

Coming back to the proof of Theorem 4.4.1, it follows from the lemma
that lim supn→∞Bn(x) ≤ −τ uniformly. In particular, for any σ < τ , there
exist n0 such that Bn0(x) < −σ for every x ∈ X. Thus (by the same argument
as for Remark 4.4.1), (4.12) holds for appropriate C.

Let us show uniqueness of Es. If for some x there existed two linearly
independent vectors v1, v2 in R2 such that limn→∞A

n(x) · vi = 0 for both
i = 1, 2 then we would have ‖An(x)‖ → 0, which is impossible.
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2

Corollary 4.4.1 If T : X → X is a homeomorphism and (T,A) is uniformly
hyperbolic then there is a continuous invariant splitting R2 = Eu

x ⊕ Es
x such

that

‖A−n(x)|Eu
x‖ < Ce−σn, ‖An(x)|Es

x‖ < Ce−σn, for all x ∈ X and n ≥ 0,

where C > 0 and σ > 0 are constants. The spaces Eu
x and Es

x are uniquely
defined and are invariant by the cocycle.

Proof. Let Es and Eu be given by Theorem 4.4.1 applied respectively to
the cocycle and its inverse. Since ‖A−n(x)|Es

x‖ = ‖An(T−nx)|Es
T−nx‖−1 →∞

as n→ +∞, we see that Es
x 6= Eu

x . 2

The spaces Eu and Es are called respectively the unstable and stable
directions. By continuity, the angle between them has a positive lower bound.

Proposition 4.4.1 Let (T,A) be a uniformly hyperbolic cocycle. Then for
every continuous map B : X → SL(2,R) sufficiently close to A, the cocycle
(T,B) is uniformly hyperbolic.

Proof. Let Es : X → P1 be the stable direction. For α > 0, define the
following cone field :

Cs
α(x) =

{
v ∈ R2; ∠(v, Es

x) < α or v = 0
}
.

It is easy to see that there is α and k ≥ 1 such that for every x ∈ X,

v ∈ Cα(T k(x)), w = [Ak(x)]−1 · v ⇒
{
w ∈ Cα/2(x)
‖w‖ > 2‖v‖

Therefore if B is sufficiently close to A then

v ∈ Cα(T k(x)), w = [Bk(x)]−1 · v ⇒
{
w ∈ Cα(x)
‖w‖ > 2‖v‖

It follows that for any m ≥ 1 and v ∈ Cα(T kmx) we have ‖[Bkm(x)]−1 · v‖ >
2m‖v‖. So ‖Bkm(x)‖ > 2m. This proves that (T k, Bk

T ) is uniformly hyperbolic,
and thus by Remark 4.4.1, so is (T,B). 2
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Example 4.4.1 Let T : X → X be a homeomorphism. Let f : X →
R be a continuous positive function, and define diagonal matrices B(x) =
exp(f(x)Id). For any continuous C : X → SL(2,R), the cocycle (T,A) with
A(x) = C(Tx)−1B(x)C(x) is uniformly hyperbolic. However, it is not true
that all uniformly hyperbolic cocycles (T,A) are of this form, because topolo-
gical obstructions may arise.

4.5 The fibered rotation number

Let T be a homeomorphisms of a compact metric space X. We associate
to a cocycle (T,A) a projective cocycle given by the map FA (same notation
as that of the cocycle map) from X × S1 	 : (x, v) 7→ (Tx, A(x)v

‖A(x)v‖).
If A : X → SL(2,R) is homotopic to Identity, that is, if there exists an

application Ã : [0, 1]×X → SL(2,R) such that Ã(0, ·) = A(·) et Ã(1, ·) = Id,
then the projective cocycle FA is itself homotopic to Identity : There exists
a lift F̃A of FA to X × R such that F̃A(x, y) = (Tx, f̃A(x, y)) where f̃A :
X × R→ R is a continuous application such that

(i) f̃A(x, y + 1) = f̃A(x, y) + 1 ;
(ii) for every x ∈ X, f̃A(x, ·) : R→ R is a strictly increasing homeomor-

phism ;
(iii) if π2 is the projection map X × R → X × S1 : (x, y) 7→ (x, e2πiy),

then FA ◦ π2 = π2 ◦ F̃A.

Exercise 4.5.1 Show the following
– A lift F̃A is not unique. It is unique up to an additive integer : if G̃A :

(x, y) 7→ (Tx, g̃A(x, y)) is another lift of FA then g̃A ≡ f̃A + p for some
p ∈ Z.

– F̃ n(x, y) is given by (x, y) 7→ (T n, f̃nA(x, y)).
– The (x, y) 7→ f̃A(x, y) − y is Z-periodic in y and defines thus a map
from X × R/Z to R.

Theorm 4.5.1 Suppose (X,T ) is uniquely ergodic with its unique invariant
probability measure and suppose that A is homotopic to identity. There exists
then ρ̃ ∈ R such that

f̃nA(x, y)− y
n
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converges uniformly in (x, y) ∈ X × R/Z to ρ̃. This limit is independent
on the lift of FA, up to an addition of an integer (see first item of exercise
4.5.1). We denote therefore ρA = ρ̃[1] ∈ R/Z the fibered rotation number of
the cocycle (T,A). Moreover the following holds :

– For any probability measure on X × R/Z invariant by FA we have∫
X×R/Z

(f̃A(x, y)− y)dm(x, y) = ρ̃.

– the map C0(X, SL(2,R)) → R/Z : A 7→ ρA is continuous for the uni-
form convergence norm on C0(X, SL(2,R)).

Proof.

Lemma 4.5.1 For every x ∈ X, y, z ∈ R such that |y − z| < 1, we have
f̃nA(x, y)− f̃nA(x, z)| < 1.

Proof. From (i) and (ii) above we get that for y < z < y + 1 : f̃A(x, y) <
f̃A(x, z) < f̃A(x, y + 1) = f̃A(x, y) + 1, thus |f̃A(x, y)− f̃A(x, z)| < 1 and the
Lemma follows by iteration of the latter inequality. 2

Lemma 4.5.2 There exists ρ̃, such that for any probability measure m on
X × R/Z invariant by FA we have that∫

X×R/Z
(f̃A(x, y)− y)dm(x, y) = ρ̃.

Proof. Denote the projection on the first variable by π1(x, y) = x. Observe
first that the projection of m on the first variable π1

∗m(B) := m(B × T) for
B ⊂ X is invariant by T therefore pi1∗m = by unique ergodicity of T .

Let ϕ(x, y) = f̃A(x, y)− y. By the Birkhoff ergodic theorem, there exists
ϕ̃ ∈ L1(X × R/Z) such that ϕ̃(FA(x, y)) = ϕ̃(x, y) and

∫
X×R/Z ϕ̃(x, y)dm =∫

X×R/Z ϕ(x, y)dm and

lim
N→∞

1

N
SFAN ϕ(x, y) = ϕ̃(x, y). (4.13)

But Lemma 4.5.2 implies that for (x, y) such that (4.13) holds then (4.13)
holds for (x, y′) for any y′ ∈ T and is independent of y. The latter im-
plies in particular that ϕ̃ is a function of only one variable x, and therefore
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ϕ̃(Tx) = ϕ̃(x) for π1
∗m = -a.e. x ∈ X, thus ϕ̃ is constant by unique ergo-

dicity of (T,X, ). Denote ρ(m) the latter constant and note that ρ(m) =∫
X×R/Z ϕ(x, y)dm. From what preceded we conclude that for almost every
x ∈ X and for every y ∈ T we have that

lim
N→∞

1

N
SFAN ϕ(x, y) = ρ(m). (4.14)

Hence ρ(m) does not depend on m and Lemma 4.5.2 is proved. 2

The uniform convergence of f̃nA(x,y)−y
n

then follows from Lemma 4.5.2 and
the following Lemma, similar to Lemma 4.4.1 of Section 4.4.

Lemma 4.5.3 Let Z be compact metric space, and G : Z 	 a continuous
map and φ : Z → R a continuous function such that for any probability
measure m on Z that is G invariant we have that

∫
Z
φdm = L is independent

of m, then limN→∞
1
N
SGNφ(z) = L uniformly in z ∈ Z.

Proof. Let L =
∫
Z
φdm for some probability measure m on Z that is G

invariant. Suppose that we do not have that limN→∞
1
N
SGNφ(z) = L uniformly

in z ∈ Z. Then there exists ε > 0 such that for any n > 0 there exists zn such
that | 1

N
SGNφ(zn)−L| > ε. Consider then the sequence of probability measures

µn := 1
n

∑n−1
i=0 δGizn satisfies |

∫
Z
φdµn−L| > ε and by extraction one obtains

a limit measure µ∞ that is invariant by G and satisfies |
∫
Z
φdµ∞ − L| ≥ ε

which contradicts the assumption of the Lemma. 2

To finish the proof of Theorem 4.5.1, we still need to show that the ro-
tation number ρ(A) is continuous in A ∈ C0(X, SL(2,R)). For this observe
that by the uniform convergence of f̃nA(x,y)−y

n
we have for every ε > 0 that

there exists N > 0 such that for every (x, y) ∈ X × R/Z
|f̃NA (x, y)− y −Nρ̃(A)| < Nε

and since f̃NA (x, y)− y is continuous in A (for the uniform convergence norm)
we have by compacity of X ×R/Z that for B sufficiently close to A (for the
uniform convergence norm) for every (x, y) ∈ X × R/Z

|f̃NB (x, y)− y −Nρ̃(A)| < Nε

(here, we chose the same ”integer” in the lift of FA and FB) hence for every
p ≥ 1

|f̃pNB (x, y)− y − pNρ̃(A)| < pNε

thus |ρ̃(B)− ρ̃(A)| ≤ ε. The proof of Theorem 4.5.1 is now complete. 2
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Chapitre 5

Reducible cocycles

5.1 Reducibility of Uniformly Hyperbolic co-
cycles

Definition 5.1.1 A cocycle (f, A) is said to be Cr reducible if there exists
B(·) ∈ Cr(T, SL(2,R)) and a constant matrix A0 such that

B(f(x))A(x)B(x)−1 = A0

We also say that A is Cr cohomologous to the constant matrix A0.

More generally, two cocycles (f, A) and (f, A′) are said to be Cr cohomo-
logous if if there exists B(·) ∈ Cr(T, SL(2,R)) such that

B(x+ α)A(x)B(x)−1 = A′(x).

The maps (x, v) ∈ M × R2 7→ (f(x), A(x)v) and (x, v) 7→ (f(x), A′(x)v)
are then Cr conjugated. We call the map x 7→ B(x) a fibered conjugacy.

Note that two cocycles that are C0 cohomologous share many dynamical
features : same Lyapunov exponent, Oseledet’s decomposition of one is sent
into the other’s by B, if the products An are bounded then the same holds
for A′n, etc.

Exercise 5.1.1 Show that two cocycles that are C0 cohomologous share many
dynamical features : same Lyapunov exponent, Oseledet’s decomposition of
one is sent into the other’s by B, if the products An are bounded then the
same holds for A′n. Try to find other invariants for the C0 cohomology class

61
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between cocycles with the same base dynamics. Find invariants for the Cr

cohomology class between cocycles with the same base dynamics that are not
invariants for the C0 cohomology class.

Exercise 5.1.2 Show that (α,A) with A(·) not homotopic to Identity cannot
be reducible. Give an example of non reducible cocycle.

Theorm 5.1.1 If (α,A) is of class Cr and (α,A) is uniformly hyperbolic
then the stable and unstable directions of (α,A) are of class Cr. Equivalently

(α,A) is Cr cohomologous to a diagonal matrix A′(θ) = .

(
eϕ(θ) 0
0 e−ϕ(θ)

)
,

with ϕ ∈ Cr(T,R∗+).

Proof. We will use the following lemma

Lemma 5.1.1 Let I, J ⊂ R be two intervals. Let (f (n))n∈N be a sequence of
maps f (n) : I × J → J (we write f (n)

θ (x) := f (n)(θ, x)) such that f (n) is of
class Cr (r ∈ N, r =∞, r = ω) and there exists M > 0 and λ ∈ (0, 1) such
that

– ‖f (n)‖r ≤M
– ‖∂2f

(n)‖ < λ
then there exists x∞ : I → J such that

x∞(θ) = lim
n→∞

f
(1)
θ ◦ . . . ◦ f

(n)
θ (x)

for any x ∈ J . Moreover, x∞(·) is of class Cr.

Let us see how this Lemma applies to show that the continuous maps
θ 7→ Es(θ) and θ 7→ Eu(θ) (from Corollary 4.4.1) are actually Cr. WLOG
we can assume in the argument of Proposition 4.4.1 that k = 1 in that there
exists a cone field

Cs
α(θ) =

{
v ∈ R2; ∠(v, Es

θ) < α or v = 0
}
.

such that for every θ ∈ X,

v ∈ Cs
α(θ + α), w = A(θ)−1 · v ⇒

{
w ∈ Cs

α/2(θ)

‖w‖ > 2‖v‖

This means that the projective maps on P1 (the 1 dimensional space of
directions of R2) fm(θ)(·) associated to the matrices (Am(θ))−1 are uniformly
contracting on any small interval around θ +mα.
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Fix two some small interval of θ : I ⊂ I ′ and let mn be such that θ ∈ I
implies θ + mnα ∈ I ′ and mn+1 − mn is large but bounded. Then there
exists an interval J such that the projective maps f (n)(θ)(·) associated to
[A(θ+mnα) . . . A(θ+(mn+1−1)α)]−1 for any θ ∈ I are uniform contractions
on J .

Since f (1)
θ ◦ . . . ◦ f

(n)
θ (x) converges to the direction Es(θ) for any x ∈ J ,

Lemma 5.1.1 applies and gives the required smoothness of Es(θ). 2

Theorm 5.1.2 If α ∈ R \ Q is Diophantine and if (α,A) is a smooth uni-

formly hyperbolic cocycle then (α,A) is reducible to A0 =

(
eL 0
0 e−L

)
where

L = L(α,A) is the Lyapunov exponent of (α,A).

Proof. From Theorem 5.1.1 we first conjugate using a smooth matrix B1(·)

the cocycle (α,A) to A′(θ) =

(
eϕ(θ) 0
0 e−ϕ(θ)

)
with ϕ ∈ C∞(T,R∗+)

By the Birkhoff ergodic theorem (the usual additive ergodic theorem)
applied to the function ϕ we get that the (integrated) Lyapunov exponent

L := L(α,A) = L(α,A′) =a.s. lim
n→∞

Sαnϕ(θ) =

∫
T
ϕ(u)du.

Then we apply Theorem 1.6.1 to get a smooth solution b(·) to the linear
cohomological equation

b(θ + α)− b(θ) = lnϕ(θ)− L

Thus the matrix B2(θ) =

(
e−b(θ) 0
0 eb(θ)

)
, satsifies

B2(θ + α)A′(θ)B2(θ)−1 = A0 =

(
eL 0
0 e−L

)
.

Hence,A(·) is reducible toA0 via the smooth fibered conjugacyB2(·)B1(·).
2

Exercise 5.1.3 Show that Theorem 5.1.2 holds for α ∈ DC ⊂ Rd, d ≥ 2.

The following exercise shows that the reducibility conclusion holds in
finite regularity with the crucial loss of derivatives phenomenon that was
discussed in the previous chapters.
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Exercise 5.1.4 As in Exercise 1.6.3, show that if α ∈ DC(τ, γ) ⊂ R and
(α,A) is a UH cocycle of class Cr, r > τ+2 then (α,A) is C [r−τ ]−1 reducible.
Write down the corresponding statement in higher dimension.

Exercise 5.1.5 Show that if α is Liouville then for a Gδ dense set of A ∈
C∞(T, SL(2,R)) the cocycle (α,A) is not reducible.

Proposition 5.1.1 If (α,A) is uniformly hyperbolic then 2ρ(α,A) ∈ Zα.

Definition 5.1.2 We say that a cocycle (α,A) is non uniformly hyperbolic or
NUH if it has positive Lyapunov exponent but it is not uniformly hyperbolic.

The following is straightforward from the definitions

Proposition 5.1.2 A non uniformly hyperbolic cocycle (α,A) is not C0 re-
ducible. In particular a cocycle (α,A) with LE(α,A) > 0 and 2ρ(α,A) /∈ Zα
is not reducible.

Exercise 5.1.6 Proof Proposition 5.1.2.

Corollary 5.1.1 Let α ∈ R−Q. Consider the almost-Mathieu cocycle with
large potential, i.e. λ > 2

AE(θ) =

(
λ cos(θ)− E −1
1 0

)
then (α,A) is NUH, thus not reducible, for an uncountable set of energies E.

Proof. By Herman subharmonicity trick, we know that LE(α,AE) > 0 for
every E.

Notice that ρ(α,AE)→ 0 as E → −∞ while ρ(α,AE)→ 1 as E → +∞.
But ρ(α,AE) is continuous in E and from Proposition 5.1.1, (α,A) is NUH
if 2ρ(α,A) /∈ Zα. 2

5.2 Reducibility in a perturbative setting.

In this section we will prove a reducibility result on cocycles (α,A) in the
following setting
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– We start form a perturbative setting where we suppose that A(·) is close
to a constant matrix A0 ∈ SL(2,R). Since the uniformly hyperbolic
case was already solved, even in the global setting, we will assume
that A0 is an elliptic matrix, that is : A0 is complex conjugated to(
ei2πβ0 0
0 e−i2πβ0

)
.

– We assume that A(·) is sufficiently smooth. We will work in the real
analytic category but matrix functions A(·) with sufficient regularity
(compared to the Diophantine condition satisfied by α) could also be
reduced following a similar scheme. We denote by Cω

h (T,R) the set of
functions f : T → R such that f(θ) =

∑
k∈Z fke(kθ) and such that

the series f(θ + is) :=
∑

k∈Z fke(k(θ + is)) converges in C for every
|s| ≤ h. The space Cω

h (T,R) is a complete Banach space for the norm
|f |h := supθ∈T,|s|≤h |f(θ+ is)|. A matrix map A(·) ∈ Cω

h if all its entries
are in Cω

h (T,R) and the Cω
h norm of A is the maximum of the Cω

h norms
of the coefficients.
For f ∈ Cω

h (T,R) we denote f̂ :=
∫
T f(θ)dθ. We define similarly Â.

– We assume the frequency α is Diophantine
– We assume that the fibered rotation number is Diophantine with respect
to α in the following sense : there exists κ, τ > 0 such that 2ρ(α,A) ∈
DSα(τ, κ) with

DSα(τ, κ) :=

{
β ∈ R : ∀k ∈ Z \ {0}, min

l∈Z
|kα− β − l| ≥ κ

|k|τ

}
.

Exercise 5.2.1 Fix α and let τ > 1. Show that Leb(T \DSα(τ, κ)) → 0 as
κ→ 0.

Let DSα(τ) =
⋃
κ>0DSα(τ, κ). Show that Leb(T \DSα(τ)) = 0.

Generalize these definitions and results to α ∈ Td and β ∈ R.

We will obtain the reducibility result using a quadratic scheme similar to
what we have seen in the Poincaré Siegel Theorem for holomorphic germs.

To fix notations we pose A(·) = eF0(·)A0 where F0 ∈ Cω
h (Td, sl(2,R)) and

A0 = eU0 ∈ SL(2,R) (U0 ∈ sl(2,R)).

Theorm 5.2.1 (Dinaburg-Sinai) Let α ∈ DC(σ, γ), τ, κ > 0, A0 ∈ SL(2,R),
h > 0. There exists ε∗(γ, σ, κ, τ, d, A0) such that for every F ∈ Cω

h (Td, sl(2,R))
satisfying

(i) |F |h ≤ ε∗
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(ii) 2ρ(α, eF (·)A0) ∈ DSα(κ, τ)
the cocycle (α, eF (·)A0) is reducible on an analytic band of width h′ = h/2.

5.2.1 Reduction up to quadratic terms.

Denote ε0 := |F0|h ≤ ε∗. Let us look for a fibered conjugacy B1(·) close to
Identity that brings A(·) closer to a constant. Namely we look for B1 of the
form B1 = eY1 where Y1 ∈ Cω

h′(Td, sl(2,R)) (Y1 will be of order ε0) and for a
constant A1 ∈ SL(2,R) such that

eY1(·+α)(eF0(·)A0)e−Y1(·) = eF1(·)A1,

with F1 much smaller then F0.
Since eM = I + M + O(M2), (I + M)−1 = I −M + O(M2) (and O(·)

being uniform for M in a neighborhood of 0) we see that if we want F1 to be
zero we must take

Y1(·+ α)− A0Y1(·)A−1
0 = −F0 + A1A

−1
0 − Id +O2(|Y1|h′ , |F0|h).

Where we use the notation O2(a, b) = O(a2 + b2 + ab).
Conversely, we have the following consequence of the resolution of the

linearized conjugacy equation

Proposition 5.2.1 If we solve the linearized equation

Y1(·+ α)− A0Y1(·)A−1
0 = −F0 + F̂0 (5.1)

with Y1 ∈ Cω
h′(T, sl(2,R)) then

eY1(·+α)(eF0(·)A0)e−Y1(·) = eF1(·)A1, (5.2)

with A1 := eF̂0A0 and |F1|h′ = O2((|Y1|h′ , |F0|h).

Exercise 5.2.2 Complete the proof of Proposition 5.2.1.

5.2.2 The analysis of the linearized equation

Under the two Diophantine conditions on α ∈ DC(σ, γ) and on ρ(α,A0) ∈
DSα(τ, κ) we will show that as in the proof of the Diophantine holomorphic
germs linearization Theorem, the linearized equation of Proposition 5.2.1
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can be solved with good control on the solution up to a loss in the domain
of analyticity width. Namely, we have the following, if we suppose that A0 is

complex conjugated to Dβ0 :=

(
ei2πβ0 0
0 e−i2πβ0

)
. Since the fibered rotation

number of A0 above any system is equal to β0[1] we use the notation ρ(A0) =
β0.

Proposition 5.2.2 If α ∈ DC(σ, γ) and 2β0 ∈ DSα(κ, τ) then the equation

Y (·+ α)− A0Y (·)A−1
0 = F − F̂

has a unique solution Y ∈ Cω
h′(Td, sl(2,R)), defined for every h′ < h, such

that
‖Y ‖h′ ≤ C(κ, γ, ‖A0‖)

‖F‖h
(h− h′)a

with a = d+ 1 + σ + τ .

Proof. We need the following

Exercise 5.2.3 If 2β0 ∈ DSα(κ, τ) and ρ(A0) = β0 then there exists P such
that ‖P‖ ≤ C(κ, ‖A0‖) such that P−1A0P = Dβ0

From Exercise 5.2.6, replacing F − F̂ by P (F − F̂ )P−1, we can assume
WLOG that A0 = Dβ0 . Indeed, in the required bound on the solution Y we
already have a constant that depends on κ and ‖A0‖.

Define the following base of sl(2,R).

g1 =

(
1 0
0 −1

)
g2 =

(
0 1
0 0

)
g3 =

(
0 0
1 0

)
The crucial observation is that the action Ad(A0) : sl(2,R) → sl(2,R),

Ad(A0)(g) = A0gA
−1
0 is diagonal on the base (g1, g2, g3) with

Ad(A0)(g1) = g1, Ad(A0)(g2) = e(2β)g2, Ad(A0)(g3) = e(−2β)g3.

Hence if we write F − F̂ = f1(·)g1 + f2(·)g2 + f3(·)g3 with fi ∈ Cω
h (T,R)

such that
∫
T fi(θ)dθ = 0, and if we look for the solution Y under the form

y1(·)g1 + y2(·)g2 + y3(·)g3, we get that the yi are solutions of

y1(θ + α)− y1(θ) = f1(θ) (5.3)
y2(θ + α)− e(2β)y2(θ) = f2(θ) (5.4)

y3(θ + α)− e(−2β)y3(θ) = f3(θ) (5.5)
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Passing to Fourier series coefficients, (5.6)–(5.8)

y1,k =
f1,k

e(kα)− 1
(5.6)

y2,k =
f2,k

e(kα)− e(2β)
(5.7)

y3,k =
f3,k

e(kα)− e(−2β)
(5.8)

From (5.6)–(5.8), the Diophantine conditions on α for (5.6), and the Dio-
phantine condition β ∈ DSα(σ, κ) for (5.7) and (5.8), and similar Cauchy
estimates as in Lemma 3.2.1 we get the real analyticity and the required
bound on Y . 2

5.2.3 Adjusting the eigenvalues of the constant part

Lemma 5.2.1 If A = eF (·)A0 is such that ρ(α,A) ∈ DSα(τ, κ) and if maxθ∈T ‖F (θ)‖ ≤
ε and ‖A0‖ ≤M then there exists A′0 such that

– ‖A′0 − A0‖ ≤ Cε
– ρ(A′0) = ρ(α,A) ∈ DSα(τ, κ)

Here C is a constant that depends only on M and κ.

Exercise 5.2.4 Prove Lemma 5.2.1. Observe first that |ρ(α,A0)−ρ(α,A)| ≤
Cε, then use Exercise 5.2.6.

5.2.4 The iterative KAM main step

We now use Proposition 5.2.2 and Lemma 5.2.1 to build the main step of
the KAM iterative conjugacy scheme.

Let α ∈ DC(σ, γ). Fix τ, κ > 0. Fix ε0 > 0 small.
Let hn be the sequence h0 = h and hn+1 = hn(1 − 1

4n+1 ) for n ≥ 0. Let
Mn be the sequence M0 = M and Mn+1 = Mn(1 + 1

4n+1 ) for n ≥ 0.

Proposition 5.2.3 There exists C(σ, γ, τ, κ,M, h)>0 such that the following
holds. Let An, Fn be such that

(a) An ∈ SL(2,R) is such that ρ(An) ∈ DSα(κ, τ) and ‖An‖ ≤Mn

(b) Fn ∈ Cω
hn

(Td, sl(2,R))
(c) ρ(α, eFn(·)An) ∈ DSα(κ, τ)
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Then there exists An+1, Yn+1, Fn+1 such that
(a’) An+1 ∈ SL(2,R) is such that ρ(An+1) ∈ DSα(κ, τ) and ‖An+1‖ ≤
Mn+1

(b’) Fn+1 ∈ Cω
hn+1

(Td, sl(2,R)),
(c’) eYn+1(·)eFn(·)Ane

−Yn+1(·) = eFn+1(·)An+1

(d’) Let εn = |Fn|hn then

‖Yn+1‖hn+1 ≤ C4naεn (5.9)
‖An+1 − An‖ ≤ Cεn+1 (5.10)

εn+1 ≤ C4naε2n (5.11)

provided that C4naεn ≤ 1
10n+1

Proof. Due to (a) and (b) we can apply Proposition 5.2.2 and find a solution
Yn+1 to the linearized equation

Yn+1(·+ α)− AnYn+1(·)A−1
n = −Fn + F̂n

with the bound (5.9). Next Proposition 5.2.1 implies

eYn+1(·)eFn(·)Ane
−Yn(·) = eF

′
n+1(·)A′n+1

with A′n+1 = eF̂nAn and F ′n+1 satisfying (b’) and (5.11). We then apply
Lemma 5.2.1 to write eF ′n+1(·)A′n+1 = eFn+1(·)An+1 with An+1 and Fn+1 as in
(a’)–(d’).

2

5.2.5 Convergence of the KAM scheme

We will now see how Proposition 5.2.4 yields the proof of Theorem 5.2.1.
The following simple Lemma is nevertheless crucial to insure that the condi-
tion C4naεn ≤ 1

10n+1 holds during the induction, and to show that the iterative
conjugation scheme converges.

Lemma 5.2.2 If εn is such that εn+1 ≤ C4naε2n and if ε0 ≤ ε∗(C, h0) then
for every n C4naεn ≤ 1

10n+1

Exercise 5.2.5 Prove Lemma 5.2.2.



70 CHAPITRE 5. REDUCIBLE COCYCLES

Proof of Theorem 5.2.1.
From Lemma 5.2.1, we can assume to start with that ρ(A0) ∈ DSα(κ, τ).

Let M0 = M = ‖A0‖. Let ε0 = |F0|h0 that we will suppose to be sufficiently
small.

Then we apply Proposition 5.2.4 to obtain A1, Y1, F1 satisfying (a’)–(d’).
Note that the conjugacy equation (c’) implies that eF1(·)A1 satisfies (c) by
invariance of the fibered rotation number under conjugation of the cocycle.

If ε0 is sufficiently small, we of course have Ch−a0 ε0 ≤ 1
101
� 1. We are

then in condition to apply Proposition 5.2.4 again and again. Indeed, if ε0
is sufficiently small, Lemma 5.2.2 allows to check the necessary inductive
condition C4naεn ≤ 1

10n+1 for every n. The outcome (a’)–(c’) of step (n) of
the induction allows to check the hypothesis (a)–(c) at step (n+ 1).

We get therefore a sequenceAn, Yn, Fn such that the product eYn(·) . . . eY1(·)

converges in Cω
h
2

(Td, SL(2,R)) to some B(·) such that

B(·+ α)eF0(·)A0B(·)−1 = A∞

where A∞ := limn→∞An
2

5.2.6 Eliasson’s theorem

Theorm 5.2.2 Fix τ, γ, h, σ > 0 and A0 ∈ SL(2,R). There exists ε :=
ε(τ, γ, h, σ, ‖A0‖) such that if A ∈ Cω

h (T, SL(2,R)) satisfies
– |A− A0|h ≤ ε
– ρ(α,A) ∈ DSα(σ)

then the cocycle (α,A) is Cω
h
2

reducible.

Note that if we fix some σ > 1 then DSα(σ) is of full measure. Hence the
difference with Theorem 5.2.1 is that with just one closeness condition to A0

a full measure set of fibered rotation numbers is covered, while in the former
Theorem we needed to make ε smaller and smaller to cover more and more
fibered rotation numbers.

As a consequence of Eliasson’s Theorem, one can show that

Corollary 5.2.1 Let α ∈ DC(τ, γ). Consider the Schrd̈inger cocycle with
potential V ∈ Cω

h (T,R). There exists ε := ε(τ, γ, h) such that if |V |h ≤ ε then
then (α,AV,E) is Cω

h
2

is reducible for Lebesgue almost every E in the spectrum.
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The proof of Theorem 5.2.2 is based on a KAM scheme with truncation,
and on the elimination of the resonances (uncontrolled small divisors) via
conjugations that are not close to the Identity. The key point is that these
conjugacies are required only a finite number of times after which the proof
proceeds similarly to Theorem 5.2.1.

The resonance sequence.

We start with a Lemma that says that due to the Diophantine condition
on α if the fibered rotation number (or any number ρ) has some resonance
with the multiples of α then these resonances occur only very sporadically,
and after "eliminating" them by changing ρ to ρ + kα for the resonant fre-
quency k the new number becomes non resonant for a long time.

The following straightforward lemma on resonances between the fibered
rotation number and the base frequency α will be crucial in the sequel.

Fix U = max(τ + 1, σ + 1) and define

DSUα (N) := {β ∈ T : |β − kα− l| > 1

NU
;∀l ∈ Z,∀0 < |k| ≤ N}

Lemma 5.2.3 There exists N0(τ, γ) if α ∈ DC(τ, γ) and if β /∈ DSUα (N)
for some U ≥ τ + 1 and N ≥ N0 then there exists a unique k ∈ [−N,N ]
such that ‖β − kα‖ ≤ 1

NU . Moreover, we have that the latter k satisfies and
β − kα ∈ DSUα (1000N).

Proof. If β /∈ DSUα (N) then there exists k ∈ [−N,N ] such that ‖β−kα‖ ≤
1
NU . If there exists another k′ ∈ [−N,N ] − {0} such that ‖β − kα‖ ≤ 1

NU ,
then ‖k′α − kα‖ ≤ 1

NU which contradicts α ∈ DC(τ, γ) if N0 is sufficiently
large. The fact that β − kα ∈ DSUα (1000N) follows similarly. 2

Given a sequence Nn →∞, we define and ρ ∈ T, we define the resonance
sequence kn, n ≥ 1, associated to ρ and {Nn}n≥1 as follows : we let ρ0 = ρ and
define inductively ρ(An) = ρ−

∑n
i=1 kiα, and let kn+1 = 0 if ρn ∈ DSUα (Nn+1),

and if ρn /∈ DSUα (Nn+1) then we take kn+1 to be the unique integer in
[−Nn+1, Nn+1] such that ‖ρn − kα‖ ≤ 1

NU
n+1

and ρn − kα ∈ DSUα (1000Nn+1).

Truncation procedure.

Let hn be the sequence h0 = h and hn+1 = hn/100 for n ≥ 0. Note that
hn → 0 ! Note also that hn+1 − hn = δn = 99

100n+1 and hn+1 = 1
100n+1 .
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Let Nn = [ 1
50π

(3
2
)
n
100n].

What is Nn ?. The KAM scheme to prove Eliasson’s Theorem is based
on solving the linearized cohomological equation after truncation of the right
hand side term. Nn is the order of truncation. Namely given f ∈ Cω

h (T,R)
we define TNf(θ) =

∑
|k|≤N fke(kθ), and RNf := f − TNf .

Exercise 5.2.6 Show that TNf ∈ Cω
h and

|TNf |h′ ≤ C(h− h′)−a|F |h
|RNf |h′ ≤ C(h− h′)−ae−2π(h−h′)Nn

We write A(·) = eF (·)A with A constant, and where we can also assume
that ρ(A) = ρ(α,A(·)).

The fact that ρ(α,A) ∈ DSα(σ) does not allow to start a KAM procedure
where at each step we solve the linearized equation Y (·+ α)−Ad(A)Y (·) =
F−F̂ (indeed ρ(α,A) ∈ DSα(σ, κ) but maybe κ is too small compared to the
norm of F and the procedure explodes from the first step ! !). Instead, we will
truncate F atNn and solve the linearized equation with TNnF in the RHS ins-
tead of F , under the condition that ρ(A) ∈ DSUα (Nn). We will then obtain a
conjugacy eY to eF̄ Ā with |F̄‖h′ = N2U+2

n (h−h′)−a
(
O2(|F |h) +O(e−2π(h−h′)Nn|F |h′)

)
.

Since Nn grows geometrically the quadratic part of the first error term gua-
rantees convergence while the e−2π(h−h′)Nn in front of the second term makes
it very small.

The elimination of the resonance.

If the condition ρ(A) ∈ DSUα (Nn) we "correct" the fibered rotation num-
ber using a special conjugacy that is not close to identity that is chosen
according to Lemma 5.2.3. This procedure is called elimination of the reso-
nance.

This will guarantee quasi-reducibility of an analytic cocycle above a Dio-
phantine rotation, and to get reducibility in the case ρ(α,A) ∈ DSα(σ) we
just need to observe that the resonance phenomenon ρ(An) /∈ DSUα (Nn) can
happen only finitely many times (the fibered rotation number becomes always
good after a certain order of the induction ! !).

For k ∈ Z let Ek : R/2Z→ SL(2,C) :=

(
e(−k

2
·) 0

0 e(k
2
·)

)
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From exercise , we know that if A is an elliptic matrix with ρ(A) = β
then there exists P such that ‖P‖ ≤ C(‖β‖, ‖A0‖) such that P−1A0P = Dβ.
Moreover, the dependence of C(‖β‖, ‖A0‖) on ‖β‖ is bounded by 1/‖β‖2.

When A is an elliptic matrix with β = ρ(A) we have a matrix P such

that P−1AP =

(
ei2πβ 0
0 e−i2πβ

)
For such A and P , if we define the fibered conjugacy D(·) := PEk(·)P−1

then D(·+ α)AD(·)−1 = Ā with ρ(Ā) = β − kα.
If we apply this argument to a matrix cocycle (α, eF (·)A) we obtain D(·+

α)eF (·)AD(·)−1 = eF̄ (·)Ā with ρ(Ā) = ρ(A)−kα and |F̄ |h ≤ C(‖β‖, ‖A0‖)|F |h.

The main KAM step.

In this Proposition C is a constant that depends on h, γ, τ, ‖A‖

Proposition 5.2.4 Let A(·) = eF (·)A with A constant, and ρ := ρ(A) =
ρ(α,A(·)). Let kn be the resonance sequence associated to ρ and {Nn}. There
exists V > 0 and a sequence of matrices Pn such that ‖Pn‖ ≤ γ−2N

2(τ+1)
n

and a sequence Yn ∈ Cω
hn

(T, sl) such that if we denote Cn = eYnPnEknP
−1
n ,

Bn := Cn ◦ . . . C1 then

Bn(·+ α)A(·)B−1
n (·) = eFnAn

with εn := |Fn|hn satisfying
(i) ρn := ρ(An) = ρ(α,A)−

∑n
i=1 kiα

(ii) In case kn = 0 we have

(ii)1 εn+1 ≤ CNV
n+1(ε2n + e−2πδn+1Nn+1εn)

In case kn 6= 0 we have

(ii)2 εn+1 ≤ CNV
n+1e

4πhn+1Nn+1(ε2n + e−20πδn+1Nn+1εn)

(iii) In case kn = 0 we have

(iii)1 |Yn|hn ≤ CNV
n+1εn

In case kn 6= 0 we have

(iii)2 |Yn|hn ≤ CNV
n+1e

4πhn+1Nn+1εn
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We note that the proposition holds under the condition that CNV
n+1e

4πhn+1Nn+1εn
remains small in the induction.

2

Proof. By induction : suppose given the step n. Then we have two cases
Case 1 : ρn ∈ DSUα (Nn+1). Then we let kn+1 = 0. We solve with Yn+1 the
linearized equation with TNn+1Fn in the RHS. We then use Lemma 5.2.1 to ad-
just the constant part An+1 in eFn+1An+1 so that (i) holds. The estimate (iii)1

follows the same lines as Proposition 5.2.2. The estimate (ii)1 comes from the
truncation and rest estimates of Exercise 5.2.6 and the fact that |Fn+1‖hn+1 =

(hn− hn+1)−a
(
O2(|TNn+1Fn|hn+1 , |Yn+1|hn+1) +O(|F |h, |RNn+1Fn|hn+1

)
)
. The

factor e−2πδn+1Nn+1 corresponds to |RNn+1Fn|hn+1 where δn+1 = hn+1 − hn.
The factor (hn − hn+1)−a is accounted for in NV

n+1

Case 2 : ρn /∈ DSUα (Nn+1). Then we let kn+1 be as in Lemma 5.2.3. First of
all we observe that since |ρn − kn+1α| ≤ 1

NU
n+1

and since α ∈ DC(τ, γ) then

‖ρn‖ ≥ γ

Nτ+1
n+1

. This provides the bound ‖Pn‖ ≤ γ−2N
2(τ+1)
n+1 for the matrix Pn

that diagonalizes An. Next we apply the fibered conjugacy PnEkn+1(·)P−1
n to

eFn(·)An and we get after using Lemma 5.2.1 eF̄n(·)Ān with ρ(α, eF̄n(·)Ān) =
ρ(Ān) = ρn − kn+1α. Since ρn − kn+1α ∈ DSUα (1000Nn+1), we find ourselves
in the context of Case 1 with Ān and F̄n instead of An and Fn and 10Nn+1

instead of Nn+1 for the truncation order. Note that the control on Pn and the
fact that |kn+1| ≤ Nn+1 gives that |F̄n|h̄n ≤ CN b

n+1e
4πh̄nNn+1 where b is some

constant (that depends only on τ) and e4πh̄nNn+1 accounts for the norm of
Ekn+1 on the analytic band of width h̄n := hn

50
. Now (iii)2 and (ii)2 follow as

in Case 1. Note the factor NV
n+1e

4πhn+1Nn+1 that accounts for the small divisor
and the size of the conjugacy and the bands width loss, while the factor 10π
in the rest term comes from the fact that we truncated at 1000Nn+1 while
h̄n − hn+1 = h̄n/2 ≥ δn/100. 2

Convergence of the scheme and quasi-reducibility.

Recall that hn be the sequence h0 = h and hn+1 = hn/100 for n ≥ 0. Note
that hn → 0 ! Note also that hn+1 − hn = δn = 99

100n+1 and hn+1 = 1
100n+1 . Let

Nn = [ 1
50π

(3
2
)
n
100n].
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Lemma 5.2.4 Let C, V > 0 and εn be a sequence such that for every n we
have at least one of the following that holds

εn+1 ≤ CNV
n+1(ε2n + e−2πδn+1Nn+1εn) (5.12)

εn+1 ≤ CNV
n+1e

4πhn+1Nn+1(ε2n + e−10πδn+1Nn+1εn). (5.13)

Then for any η > 0, there exists ε∗(h,C, V ) > 0 such that if ε0 < ε∗ then
for every n

(?) CNV
n+1e

4πhn+1Nn+1εn ≤ ηe−( 3
2

)
n

.

Proof. For any fixed l, if ε∗ is sufficiently small then CNV
l+1e

4πhl+1Nl+1εl ≤
ηe−( 3

2
)
l

. Then, if l is sufficiently large (depending only on h,C, V ), the proof
of (?) for n > l will follow by induction. Indeed after order n = l, the
factor CNV

n+1 does not count much in the inequalities (5.12)–(5.13) and
we basically just have to show that if εn ≤ e−( 3

2
)
n

e−4πhn+1Nn+1 then ε2n +

e−2πδn+1Nn+1εn ≤ e−( 3
2

)
n+1

e−4πhn+2Nn+2 and e4πhn+1Nn+1(ε2n+e−20πδn+1Nn+1εn) ≤
e−( 3

2
)
n+1

e−4πhn+2Nn+2 . The latter is a straightforward calculation.
2

As a consequence of Lemma 5.2.4 and Proposition 5.2.4 we obtain quasi-
reducibility for cocycles that are defined above Diophantine rotation and that
are close to a constant. Namely we say that a cocycle (α,A(·)) is Cω quasi-
reducible if for any ξ > 0 there exists h′ > 0 and B ∈ Cω

h′(T, SL(2,R)) and
Ā ∈ SL such that

B(·+ α)A(·)B(·)−1 = A′(·)
with |A′ − Ā|h′ ≤ ξ. Note that h′ can be very small and B very large !

Corollary 5.2.2 Fix τ, γ, h and A0 ∈ SL(2,R). There exists ε := ε(τ, γ, h, ‖A0‖)
such that if A ∈ Cω

h (T, SL(2,R)) satisfies
• |A− A0|h ≤ ε

then the cocycle (α,A) is Cω quasi-reducible.

Eliasson’s trick on finiteness of the number of resonancies.

Let Nn = [ 1
50π

(3
2
)
n
100n]. Recall that U ≥ σ + 1

Lemma 5.2.5 If α ∈ DC(τ) and ρ ∈ DSUα (σ) for some σ > 0, then the
resonance sequence kn, n ≥ 1, associated to ρ and {Nn}n≥1 becomes zero
after some n.
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Proof. Given any κ > 0, since U ≥ σ + 1, the fact that ρ ∈ DSUα (σ, κ)
implies that for n large ‖ρ(α,A)−

∑n
i=1 kiα‖ ≥

1
NU
n+1

. 2

Proof of Theorem 5.2.2.

Lemma 5.2.5 implies that after some n only Case 1 has to be considered
in Proposition 5.2.4. But this actually allows to change the definition of hn
after some large n0 to hn+1 = hn(1− 1

4n+1 ) and proceed with the proof using
only (ii)1 and (iii)1 and obtain convergence of the sequence Bn in Cω

hn0/2

which gives reducibility. 2



Chapitre 6

Homeomorphisms of the Circle

Let π : R → T = R/Z, x 7→ x[1]. Given a homeomorphism f : T we
define its lift F to the universal cover R of T such as

f ◦ π = π ◦ F

We call Homeo+(T) the set of orientation preserving circle homeomor-
phisms. We have that f ∈ Homeo+(T) if and only if f has a lift F that is
strictly increasing and F (x+ 1)− F (x) = 1.

6.1 Rotation number

The following Proposition shows that a circle homeomorphism behaves
in average like a rotation.

Proposition 6.1.1 Let f ∈ Homeo+(T) and F denote its lift to R. Then
there exists ρ(f) ∈ T such that the following limit holds uniformly in x ∈ R

ρ(f) = lim
n→∞

F n(x)− x
n

[1].

The number ρ(f) is called the rotation number of f .

Proof. Two lifts of f differ by an integer, so that the limit of the proposition
if it exists is defined modulo the addition of an integer, or equivalently ρ(f) ∈
T. Fix now a lift F of f .

77
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Independence of x and uniformity : We have that F n is increasing and
F n(x)−F n(x+1) = 1. Thus we can reduce the study of the limit to x ∈ [0, 1).
Also, for x, y ∈ [0, 1) we get that |F n(x)− F n(y)| < 1. Consequently,∣∣∣∣F n(x)− x

n
− F n(y)− y

n

∣∣∣∣ < 2

n
(6.1)

and if the limit exists for one x then the same limit holds uniformly for all
y ∈ R.

Existence : Define an = F n(0). Then, apply (6.1) to x = am and y = 0 to
get that

am + an − 2 ≤ am+n ≤ am + an + 1 (6.2)

Now exercise 6.1.1 allows to conclude the proof. 2

Exercise 6.1.1 Show that if a sequence an satisfies (6.2), then an/n has a
finite limit.

The following shows that the rotation number of a homeomorphism is an
invariant of topological conjugacy.

Proposition 6.1.2 If h ∈ Homeo+(T) then, ρ(h−1 ◦ f ◦ h) = ρ(f)

Proof. Let F and H be lifts of f and h. By Proposition 6.1.1, we can
choose F such that F n(0) = nρ(f) + un with un = o(n). Suppose WLOG
that H(0) = 0. Check that G = H−1 ◦ F ◦H is a lift of h−1 ◦ f ◦ h. Then

Gn(0) = H−1◦F n◦H(0) = H−1(nρ(f)+un) = [nρ(f)+un]+H−1({nρ(f)+o(n)})

Therefore Gn(0)/n→ ρ(f) and the proof is completed. 2

6.2 Poincaré classification

We say that a point x is periodic for f of period q if f q(x) = x and there
is no other 0 < q′ < q such that f q′(x) = x.

Proposition 6.2.1 Let f ∈ Homeo+(T). Then, ρ(f) = p
q
, p ∧ q = 1, if and

only if f has a periodic orbit of period q. In this case all the periodic orbits
of f have the same period q.
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Proof. Let F be a lift of f . We have that ρ(f) = p
q
if and only if there

exist x0 such that F q(x0)− x0 − p = 0. Indeed, if F q(x0)− x0 − p = 0 then
F nq(x0)−x0−np = 0, which implies that ρ(f) = p

q
. Conversely, if there is no

such x0 then by by the intermediate value theorem we have that F q(x)−x−p
is either strictly positive or strictly negative for every x ∈ T. Suppose it is
positive, the other case being similar. By compacity, there exists ε > 0 such
that F q(x)−x−p > ε for every x ∈ T. Hence F nq(x)−x−np > nε for every
x ∈ T, n ∈ N∗. Hence ρ(f) ≥ p

q
+ ε > p

q
.

So, suppose ρ(f) = p
q
with p ∧ q = 1. Then there exists x0 such that

f q(x0) = x0. If there exists x′ of period q′ then there is p′ such that F q′(x′)−
x′ − p′ = 0, hence ρ(f) = p′

q′
hence q′ = lq and p′ = lp. We necessarily have

F q(x′) − x′ − p = 0 otherwise we cannot have F q′(x′) − x′ − p′ = 0. We
conclude that all the periodic points have period q.

Now, if x0 is a periodic point for f of period q then there exists p such that
F q(x0)− x0 − p = 0, hence ρ(f) = p

q
. If p = lp′ and q = lq′ then necessarily

F q′(x0)− x0 − p′ = 0 otherwise we cannot have F q(x0)− x0 − p = 0. By the
definition of a period, q′ ≥ q hence l = 1 and p ∧ q = 1.

2

Proposition 6.2.2 The map ρ : Homeo+(T) → T, f 7→ ρ(f) is continuous
for the C0 topology.

Proof. We have that ρ(f) < p
q
if and only if there exists ε > 0 such that

F q(x)− x− p < −ε,∀x

indeed if not, then either there exists x such that F q(x)−x− p = 0 in which
case ρ(f) = p/q or for every x, F q(x)− x− p > 0, in which case ρ(f) ≥ p/q.
But F q(x) − x − p < −ε,∀x is an open condition in the C0 topology, i.e. it
is verified for g C0 close to f if it is verified for f . 2

The following Proposition due to Poincaré shows that circle homeomor-
phisms with irrational rotation number are indeed acquainted to rotations,
by semi-conjugacy.

We use the trigonometric order on the circle and write x < y < z if
according to the trigonometric orientation y falls between x and z.

We recall that a map h : T → T has degree d if it has a lift H : R → R
such that H(x+1) = H(x)+d. Homeomorphisms in Homeo+(T) have degree
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1, but there exist continuous maps from T → T of degree one that are not
homeomorphisms.

Theorm 6.2.1 If f ∈ Homeo+(T) is such that ρ(f) /∈ Q, then there exists
h : T → T of degree one and that preserves the trigonometric ordering of
points on the circle and satisfies h ◦ f = Rα ◦ h. We then say that f is
semi-conjugated to Rα.

Exercise 6.2.1 Show that a continuous h : T→ T that preserves the trigo-
nometric ordering of points must have degree 1.

Proof. Let α := ρ(f). The main ingredient in the proof of Poincaré’s Theo-
rem is the fact that the order in the orbit of any point x by f is the same as
the order of the sequence nα on the circle.

Lemma 6.2.1 For any n,m, n′,m′ and x ∈ T, we have that

nα−m < n′α−m′, ⇐⇒ F n(x)−m < F n′(x)−m′

Proof. The proof of the lemma is straight forward from the observation
that α < m−m′

n−n′ if and only if F n−n′(y) − y − (m −m′) < 0 for every y. We
then apply the latter to y = F n′(x). 2

If ρ(f) /∈ Q, we have that f has no periodic orbits. In particular we can
define h(fn(0)) = nα. Now, for any z ∈ T we denote by z− and z+ the closets
points to the left and to the right of z that are in the closure of the orbit
of 0 by f (it is possible that z− = z+ = z or not). We construct now an
increasing sequence fni(0) that converges to z− as follows : let n0 = 0, then
take n1 to be the first n ≥ n0 such that fn(0) ∈ (fn0(0), z−), then take n2 to
be the first n ≥ n1 such that fn(0) ∈ (fn1(0), z−), etc. Construct similarly
the subsequence fmi(0) that decreases towards z+.

By the preservation of the order of points between f and the Rα we
have that niα is an increasing sequence that is bounded by the decreasing
sequence miα. Their limit points ẑ− and ẑ+ must coincide, ẑ− = ẑ+ = ẑ,
otherwise we get a contradiction with the definition of z− and z+. We then
define h[z−, z+] = ẑ. Observe also that for any sequence fpi(0) that converges
to z− or to z+ the preservation of order implies that piα converges to ẑ.

We can define in this way h for any z since the intervals [z−, z+] (or points
in the case z− = z+) for distinct z are either equal or disjoint. The map h
thus defined is continuous since it is continuous on the boundary and inside
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each [z−, z+]. It is surjective since it contains the orbit nα. Since it preserves
the trigonometric ordering on the circle its lift is an increasing map and its
degree is equal to one.

2

From his result on semi-conjugacy, Poincaré obtained the following alter-
native for circle homeomorphisms with irrational rotation number.

Definition 6.2.1 We say that an interval I is wandering for f if for every
n ∈ Z, fn(I) ∩ I = ∅.

Corollary 6.2.1 For f ∈ Homeo+(T) the following are equivalent
(i) f does not have a wandering interval
(ii) f is transitive
(iii) f is minimal
(iv) f is conjugated to Rα (i.e. the semi-conjugacy h satisfies h ∈ Homeo+(T)).

Proof. We clearly have that (iii) =⇒ (ii) =⇒ (i), as well as (iv) =⇒
(iii). Now, the increasing semi-conjugacy h is not injective if and only if
there exists I such that h(I) = ẑ (actually I is of the form (z−, z+)). Since
h(fn(I)) = Rn

αh(I) = ẑ + nα 6= ẑ we necessarily have that hn(I) ∩ I = ∅.
Hence (i) =⇒ (iv) which finishes the proof of the Corollary. 2
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Chapitre 7

Circle Diffeomorphisms

A natural question, is when can the Poincaré result on semi-conjugacy
be improved to insure a conjugacy between f ∈ Homeo+(T) and Rα. Denjoy
solved this problem by showing that a sufficient condition is that the ho-
meomrophism f be regular, in particular f ∈ Diff2(T) is sufficient. He also
showed that there exist f ∈ Diff1 with irrational rotation number α that is
not conjugated to Rα.

7.1 The Denjoy Theorem

Theorm 7.1.1 If f ∈ Diff2 and ρ(f) = α ∈ R−Q, then f is conjugated to
Rα : There exists h ∈ Homeo+(T) such that h ◦ f = Rα ◦ h.

Proof.
Let qn be the sequence of best denominators associated to α. Suppose n is

even and let Jn = [0, R2qn−1
α (0)]. We have

∑qn−1
l=0 |Rl

α(Jn)| ≤ 2. We also have
that for every orbit x0, x1, . . . , xqn−1 = x,Rα(x), R2

α(x), . . . , Rqn−1
α (x) it is

possible to rearrange the points such that xl0 ∈ Jn, xl1 ∈ Rα(Jn), . . . , xlqn−1 ∈
Rqn−1
α (Jn).
By semi-conjugacy the same situation holds for f : If In = [0, f 2qn−1(0)]

then
∑qn−1

l=0 |f l(In)| ≤ 2. Also, every orbit x0, x1, . . . , xqn−1 = x, f(x), f 2(x), . . . , f qn−1(x)
can be rearranged such that xl0 ∈ In, xl1 ∈ f(In), . . . , xlqn−1 ∈ f qn−1(In).

Now take any pair of points (x, y) ∈ T, and let xl0 , yl′0 ∈ In, xl1 , yl′1 ∈
f(In), . . . , xlqn−1 , yl′qn−1

∈ f qn−1(In).

83
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We have that

|lnDf qn(x)− lnDf qn(y)| =

∣∣∣∣∣
qn−1∑
l=0

lnDf(f l(x))−
qn−1∑
l=0

∣∣∣∣∣
=

∣∣∣∣∣
qn−1∑
i=0

lnDf(xli)−
qn−1∑
l=0

Df(yl′i)

∣∣∣∣∣
≤ max

θ∈T
|D lnDf(θ)|

qn−1∑
i=0

|xli − yl′i |

≤ max
θ∈T
|D lnDf(θ)|

qn−1∑
i=0

|f i(In)|

≤ C(f)

Where C(f) := 2 maxθ∈T |D lnDf(θ)|.
But since f qn ∈ Diff1(T), there exists x0 such that Df qn(x0) = 1. Taking

y = x0 in the inequality above, we hence get that for any x ∈ T we have
Df qn(x) ≤ eC(f).

The latter inequality implies that f cannot have wandering intervals.
Indeed, if I is a wandering interval for f then necessarily |f qn(I)| → 0 as
n → ∞ which clearly contradicts Df qn(x) ≤ eC(f) for every x ∈ I. By
Corollary 6.2.1 we conclude that f is conjugated to Rα.

2

7.2 Denjoy counterexamples
Theorm 7.2.1 For any α ∈ R−Q there exists a C1 diffeomorphism of the
circle f such that ρ(f) = α and f has a wandering interval.

Proof. Let {ln}n∈Z be a sequence of positive numbers such that
∑

n∈Z ln = 1

and ln+1

ln
→ 1 as n→∞.

We take on the circle a collection of disjoint intervals {In}n∈Z such that
|In| = ln and such that the In’s are ordered like the orbit of 0 under Rα, that
is In < Ij is and only if {nα} < {jα} (for the cyclic ordering on T).

Now we define a diffeomorphism f on W = ∪n∈ZIn as follows : f ∈
Diff∞(In, In+1) and f ′ can be prolongated to the closure Īn = [an, bn] so that
f ′(an) = f ′(bn) = 1, and min f ′|In ,max f ′|In → 1 as n → ∞. The condition
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ln+1

ln
→ 1 as n→∞ insures that such an f can be constructed (of course not

unique).
We also construct a map h : W → T such that h(In) = Rn

α(0). We clearly
have h ◦ f = Rα ◦ h on W . We also have that f and h are monotonous on
W . Since both W and the orbit {Rn

α(0)}n∈Z are dense on the circle we can
extend f and h to the whole circle getting a semi-conjugacy h, that is not
injective such that h ◦ f = Rα ◦ h on T.

We just have to show that f is of class C1. Indeed, f is C1 by construction
onW . We need to show that it is also C1 at the points x ∈ Ω = T−W . Since
f ′ = 1 on the boundary of W , we finish if we show that f ′(x) = 1 for every
x ∈ Ω. Equivalently, we must show that |f([x, z])|/|[x, z]| → 1 as z → x. We
can assume x < z the other case being similar. If x is a left boundary point
of some interval in W then we are done since f ′ = 1 on the boundary of W .
If not, then x is accumulated on the right by intervals in W . Hence, we have
that ∑

In∈[x,z]

ln < |[x, z]| <
∑

In∈[x,z]

ln + l̂nz

where l̂nz = 0 if z does not belong to W and l̂nz = |[x, z] ∩ Inz | where nz is
such that the interval Inz contains z. Also

∑
In∈[x,z]

ln+1 < |f([x, z])| <
∑

In∈[x,z]

ln+1 + l̂′nz

where l̂′nz = 0 or l̂′nz = |f([x, z] ∩ Inz)|. As z → x we have that nz → ∞
hence in the case l̂n,z 6= 0 we have that l̂′nz/l̂nz ∼ 1 as z → x, because
min f ′|In ,max f ′|In → 1 as n → ∞. It also holds that minn:In∈[x,z] → ∞ as
z → x, hence we have that ln+1/ln → 1 as z → x uniformly for all n such
that In ∈ [x, z]. We conclude that |f([x, z])|/|[x, z]| → 1 as z → x. 2

Exercise 7.2.1 Show how to construct inductively a sequence In as in Den-
joy counterexample.

Exercise 7.2.2 Give an explicit construction of f on W .
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7.3 Non regular conjugacies. The Liouville phe-
nomenon

Denjoy Theorem states that if f ∈ Diff∞(T) has an irrational rotation
number α then f is topologically conjugated to the rotation Rα. I n this sec-
tion we see that circle diffeomorphisms of class C∞ with a Liouville rotation
number α do not have in general a C1 conjugacy with Rα.

More precisely define

Aα = cl∞
(
{h ◦Rα ◦ h−1 : h ∈ Diff∞(T)}

)
where cl∞ stands for closure in the C∞ topology : diffeomorphisms of Aα are
the diffeomorphisms that can be approached in any topology by diffeomor-
phisms of the form h ◦Rα ◦ h−1, h ∈ Diff∞(T). Observe that by continuity of
the rotation number ρ(f) = α for f ∈ Aα.

Theorm 7.3.1 If α is a Liouville number then for f in a Gδ-dense set of
Aα f is not C1 conjugated to Rα.

Proof. We will use the following criterion for non existence of a C1 conju-
gacy.

Lemma 7.3.1 If f is such that

lim sup
n∈Z

‖Dfn‖ = +∞

then f is not C1 conjugated to Rα.

Proof. The proof of the Lemma is very simple. Assume f = h◦Rα◦h−1 with
h of class C1. Then fn = h ◦Rn

α ◦h−1 has a bounded derivative, independent
of n. This contradicts the limsup of the lemma.

2

Let An,m = {f ∈ Aα : ‖Dfn‖ > m}. Clearly f ∈ ∩m∈N∪n∈ZAn,m satisfies
lim supn∈Z ‖Dfn‖ = +∞. Since An,m is a relatively open set in Aα for any
Cr topology, we just need to show that An,m is dense in A. For this we fix m
and r ∈ N and start with f = h ◦Rα ◦ h−1, and we show that for any ε > 0,
there exists hn ∈ Diff∞(T) such that, if n is large, fn := h◦hn ◦Rα ◦h−1

n ◦h−1

satisfies
(i) ‖fn − f‖Cr ≤ ε
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(ii) There exists ln such that ‖Df ln‖ > m

Construction of hn.
We define a sequence ψn ∈ Diff∞([0, 1]) such that for some An →∞ and

εn = 1
n

(1) ψn(x) = x for x ∈ [0, 1
20
, [1

2
, 1]

(2) ψn(x) < εnx for x ∈ [ 1
10
, 1

2
− 1

10
]

(3) ‖ψn‖Cr < An

Of course An depends on r but we drop this dependance in the notations
since r is supposed to be fixed.

Exercise 7.3.1 To construct the sequence ψn, start by showing that there
exists a sequence φn ∈ C∞([0, 1],R) such that φn > 0, φn(x) = 1 for x ∈
[0, 1

20
, [1

2
, 1], φn(x) < εn for x ∈ [ 1

10
, 1

2
− 1

10
] and

∫ 1

0
φn(θ)dθ = 1. Then integrate

φn on [0, 1] to get ψn.

Let now qn be a subsequence of the sequence of best denominators of α
such that

|||qnα||| <
1

q2n
n

and such that qn > An.
Next define Hn ∈ Diff∞([0, 1

qn
]) by Hn(x) = 1

qn
ψn(qnx). We have that

Hn(0) = 0 and Hn( 1
qn

) = 1
qn

and H ′n(0) = H ′n( 1
qn

) = 1 while H(r)
n (0) =

H
(r)
n ( 1

qn
) = 0, for every r ≥ 2. Hence we can extend Hn to a strictly increasing

diffeomorphism of R by asking that Hn ◦R 1
qn

= R 1
qn
◦Hn.

Since Hn(x+ 1) = Hn(x) + 1, Hn defines a lift of a circle diffeomorphism
hn ∈ Diff∞(T). The following properties of hn are inherited from (1)–(3) of
ψn.

(h1) hn(x) = x for x ∈ [ 1
2qn
, 1
qn

]

(h2) hn(x) < εnx for x ∈ [ 1
10qn

, (1
2
− 1

10
) 1
qn

]

(h3) ‖hn‖Cr < qrnAn

The important fact is that hn ◦R 1
qn

= R 1
qn
◦ hn, from where we conclude

that (using (h3) and the Fa De Bruno formula for differentiating compositions



88 CHAPITRE 7. CIRCLE DIFFEOMORPHISMS

of maps)

‖hn ◦Rα ◦ h−1
n −Rα‖Cr ≤ ‖hn ◦Rα ◦ h−1

n − hn ◦R pn
qn
◦ h−1

n +R pn
qn
−Rα‖Cr

≤ ‖hn‖r
2

Cr |α−
pn
qn
|

≤ 1

qnn

if n is sufficiently large. Hence ‖fn − f‖Cr ≤ ε.
Now, let ln be such that Rln

α ([ 1
2qn
, 3

4qn
]) ⊂ [ 1

10qn
, (1

2
− 1

10
) 1
qn

] (this is possible
by minimality of Rα).

Finally, let Jn := [ 1
2qn
, 3

4qn
] and In := h ◦ hn(Jn) = h(Jn), by (h1). We

have that

f lnn (In) = h ◦ hn ◦Rln
α ◦ h−1

n ◦ h−1(In)

= h ◦ hn ◦Rln
α (Jn)

Because Rln
α (Jn) ⊂ [ 1

10qn
, (1

2
− 1

10
) 1
qn

] we get from (h2) that |hn◦Rln
α (Jn)| ≤

εnJn, hence since In = h(Jn)

|h ◦ hn ◦Rln
α (Jn)| ≤ ‖h‖C1εn|Jn| ≤ ‖h‖C1‖h−1‖C1εn|In|

In conclusion, |f lnn (In)|/|In| → 0 as n → ∞, which implies that ‖Df−lnn ‖ →
∞ as n→∞ and completes the proof of (ii) and hence of Theorem 7.3.1.

2

The result we have proved has a general implication on the set of all circle
diffeomorphisms having rotation number α. Define this set as

Fα := {f ∈ Diff∞(T) : ρ(f) = α}

A difficult result by Yoccoz shows the following

Theorm 7.3.2 For any irrational α, the set Aα is dense in Fα

Then our result gives the following general Corrolary

Corollary 7.3.1 If α ∈ R − Q is Liouville then for f in a Gδ-dense set of
Hα, f is not C1 conjugated to Rα.



Chapitre 8

KAM with parameter exclusion.
Smooth conjugacies in the
Arnol’d family.

8.1 The Arnol’d family

For |ε| < 1
2π
, define the following family of circle diffeomorphisms

ft,ε(θ) = θ + ϕ(t) + ε∆f(θ)

Where ∆f ∈ C∞(T,R) is such that for every θ ∈ T, f ′(θ) > −2π We denote
by I0 = [0, 1] and by lip(I0) the Lipschitz norm of function on I0.

Assume that ϕ is Lipschitz and that there there exists M such that

2‖ϕ‖lip(I0) ≤M, inf
t∈I0

ϕ′(t) ≥ 2

M
(8.1)

When ϕ(t) = t and ∆f(θ) = sin(2πθ), the family is called the Arnol’d
family.

For t ∈ I0, we say that ft,ε is linearizable if there exists h ∈ Diff∞(T) such
that h ◦ ft,ε ◦h−1 = Rρ(ft,ε). Our goal in this section is to show that as ε→ 0,
most of the members of the family ft,ε become linearizable. This result should
be put into contrast with the result on Liouville phenomenon, that indicates
to us that the diffeomorphisms of the family ft,ε that have a Liouville rotation
number will in general be non linearizable. The diffeomorphisms ft,ε that have

89
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a rational rotation number are also non linearizable in general and they form
an open dense set in the parameter space t ∈ I0 (see exercise 8.1.1).

The abundance in measure of the linearizable diffeomorphisms in ft,ε
comes from the fact that the set of Diophantine numbers has full measure.

Theorm 8.1.1 For any η > 0, there exists ε0 such that if ε < ε0 then the
set of t ∈ [0, 1] such that ft,ε is linearizable has Lebesgue measure larger than
1− η.

In this statement ε0 depends on η and M and ∆f . We will see later that
there exists r0 ∈ N universal (for example r0 = 100 is sufficient but one could
do much better ! !) such that the dependence of ε0 on ∆f is only through
‖∆f‖r0 .

Exercise 8.1.1 It is not difficult to show using Poincaré classification that
for an open and dense set of t ρ(ft,ε) is rational and ft,ε is not linearizable.

The proof of Theorem 8.1.1 in the case ∆f(θ) = sin(2πθ) goes back to
Arnold (1970). It was originally based on a quadratic scheme with parameter
exclusion inspired by the work of Kolmogorov on Hamiltonian systems. The
inductive conjugacy scheme in this context can be carried out in the real
analytic category since the function sin(2πθ) is real analytic. The scheme
is then similar to the one we presented in the proof of the Poincaré-Siegel
Theorem with a succession of band width losses due to the loss of regularity
in resolving the linearized equation.

In the general case of a smooth function ∆f the proof of Theorem 8.1.1
is mainly due to Moser and the proof we present here is inspired from his
work.

Let
ft(θ) = Rϕ(t)(θ) + ∆ft(θ)

with ∆ft ∈ C lip,∞
0 (I × T,R), that we simply write as

f(θ) = Rϕ(θ) + ∆f(θ)

because we will always assume the functions we use are parametrized by t.
For I a collection of intervals of I0, we denote C lip,∞(I,T,R) the set of

families of smooth maps in the T variable and Lipschitz in the parameter
t ∈ I. We denote C lip,∞

0 (I,T,R) the subset of maps f ∈ C lip,∞(I,T,R) such
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that if we write ft(z) = (f 1
t (z), f 2

t (z)) ∈ Td × T, then
∫
T f

2
t (z)dz = 0 for

t ∈ I.
For f ∈ C lip,∞

0 (I0,T,R), we use the notation ‖f‖lip(I),r = max|ι|≤r Lip(f (ι))
where f (ι) is the derivative of f of order ι and where Lip(f) is the maximum
of the supnorm of f and its Lipschitz constant.

Theorem 8.1.1 follows from the following more general statement.

Theorm 8.1.2 There exists r0, such that for any ϕ that satisfies (8.1), for
any η > 0 there exists ε(η,M), such that if ‖∆f‖lip(I),r0 < ε then the set of
t ∈ I0 such that ft is linearizable has measure greater than 1− η.

The proof of Theorem 8.1.2 is based on an inductive procedure where at
each step we solve the linearized system that corresponds to the conjugacy
equation of Rϕ + ∆̃f to a rotation. This is possible for the parameters t that
satisfy some arithmetic condition that corresponds to the induction step we
are at. The solution of the linearized equation yields a new family (on the
restricted space of parameters) Rϕ̃+∆̃f where the nonlinear term ∆̃f satisfies
quadratic estimates compared to ∆f .

As the induction proceeds we have to exclude more parameters that fail
to satisfy the arithmetic condition but the scheme converges quickly (qua-
dratiqually) so the measure of the excluded parameters at each step becomes
smaller and smaller leaving a large set of parameters at the end of the induc-
tion for which the maps are linearized.

8.2 Solving the linearized system. The induc-
tive step

For N ∈ N, define

D(N) = {α ∈ I0 / |1− ei2πkα| ≥ N−3, ∀0 < |k| ≤ N}.

Proposition 8.2.1 There exists σ > 0 such that If N ∈ N and I is a col-
lection of intervals such that I ⊂ {t ∈ I0 / ϕ(t) ∈ D(N)}, then there exist
ϕ̃ ∈ Lip(I,R) and h, ∆̃f ∈ C lip,∞

0 (I,T,R) such that if we write H = Id + h
we have that

H ◦ f = (Rϕ̃ + ∆̃f) ◦H (8.2)

with for all r′ > r ≥ 0
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∆S ≤ C0N
σ∆0

‖h‖lip(I),r+1 ≤ CrSN
σ∆r

∆̃r ≤ CrSN
σ∆0∆r + Cr,r′N

σ+r−r′∆r′

where :

S = ‖ϕ‖lip(I)
∆S = ‖ϕ− ϕ̃‖lip(I)
∆r = ‖∆f‖lip(I),r
∆̃r = ‖∆̃f‖lip(I),r

Proof.

Lemma 8.2.1 There exists σ > 0 such that if v ∈ C lip,∞
0 (I × T,R), is a

trigonometric polynomial with degree N ∈ N and I is an interval such that
I ⊂ {t ∈ I0 / ϕ(t) ∈ D(N)}, then there exists h ∈ C lip,∞(I × T,R) such
that :

v = h− h ◦Rϕ

‖h‖lip(I),r+1 ≤ Cr‖ϕ‖lip(I)Nσ‖v‖lip(I),r
The proof of Lemma 8.2.1 is done using Fourier expansions and is similar

to the proof of existence of solutions to the linearized cohomological equation
above α. We leave its proof as an exercise.

We show how the lemma implies Proposition 8.2.1.
For f ∈ C lip,∞

0 (I × T,R) we write f as a Fourier series with Lipschitz
coefficients fk,t : f =

∑
k∈Z fk,te(kθ). Then we define TNf +RNf := f with

TNf :=
∑
|k|<N

fk,te(kθ)

RNf :=
∑
|k|≥N

fk,te(kθ)

Observe that for any r′ ≥ r, r, r′ ∈ N the following truncation estimates
hold :

‖TNf‖lip,r′ ≤ Cr,r′N
2+r′−r‖f‖lip,r

‖RNf‖lip,r ≤ Cr,r′N
2+r−r′‖f‖lip,r′
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with Cr,r′ constants that depend on r and r′.

Exercise 8.2.1 Prove the truncation estimates using Fourier series

Since ∆f ∈ C lip,∞
0 (I × T,R) we can apply Lemma 8.2.1 and get h such

that (after replacing σ by σ + 2)

TN∆f = h− h ◦Rϕ

‖h‖lip(I),r+1 ≤ Cr‖ϕ‖lip(I)Nσ‖∆f‖lip,r

We see now that

∆̃f ◦ (Id + h) = ϕ− ϕ̃+ ∆f + h ◦ (Rϕ + ∆f)− h
= ϕ− ϕ̃+RN∆f + h ◦ (Rϕ + ∆f)− h ◦Rϕ

Thus

∆̃f = ϕ− ϕ̃+ (RN∆f + h ◦ (Rϕ + ∆f)− h ◦Rϕ) ◦ (Id + h)−1

We choose ϕ̃ such that ∆̃f has zero average, that is

ϕ− ϕ̃ =

∫
T

(RN∆f + h ◦ (Rϕ + ∆f)− h ◦Rα) ◦ (Id + h)−1(θ)dθ

Observe that since we chose h to get rid of the "big" part TN∆f of ∆f ,
the remaining part (RN∆f + h ◦ (Rϕ + ∆f)− h ◦Rϕ) ◦ (Id + h)−1 contains
a "rest" term RN∆f and a "quadratic" term h ◦ (Rϕ + ∆f)− h ◦Rϕ that is
of order Dh ·∆f which up to some loss in derivatives is a O2(∆f). Indeed,
standard estimations on composition and inverse of maps (we will omit the
proofs) now give that ϕ̃ − ϕ, and ∆̃f satisfy the conclusion of Proposition
8.2.1.

2

8.3 The KAM scheme
Lemma 8.3.1 Let M > 0. There exists N0(M) such that if N > N0 and
Ñ = N3/2 and if I is an interval of size 1 ≥ |I| ≥ 1/(2MN2) and if M−1 <
ϕ′(t) < M for every t ∈ I, then there exists a union of disjoint intervals
U = {Ĩj} such that ϕ(Ĩj) ∈ D(Ñ) and Ĩj ⊂ I and |Ĩj| ≥ 1/(2MÑ2) and∑
|Ĩj| ≥ (1− 2dM2Ñ−1)|I|.
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Proof. We just observe that the set of tk ∈ I such that 1 + ei2πϕ(t) = 0 with
k ≤ Ñ consists of at most d([MÑ2|I|]+2) points separated one from the other
by at least 1/(MÑ2). Excluding from I the intervals [tk−M/Ñ3, tk+M/Ñ3]
leaves us with a collection of intervals of size greater than 1/(2MÑ2) of total
length |I| − d([MÑ2|I|] + 2)M/Ñ3 ≥ (1− 2dM2Ñ−1)|I|. 2

Recall that
‖ϕ‖lip(I0) ≤

M

2
, inf

t∈I0
ϕ′(t) ≥ 2

M
(8.3)

Let N0 ≥ N0(M) of Lemma 8.3.1 and define for n ≥ 1, Nn = N
3
2
n−1.

Observe that Lemma 8.3.1 implies that if An is a collection of intervals
of sizes greater than 1/(2MN2

n) and ϕn are functions satisfying (8.3) on An
with M instead of 2M then there exists An+1 that is a collection of intervals
with sizes greater than 1/(2MN2

n+1) such that ϕn(An+1) ⊂ D(Nn+1) and
λ(An+1) ≥ (1− 2dM2N−1

n+1)λ(An).
We now describe the inductive scheme that we obtain from an iterative

application of Proposition 8.2.1. We start with f = Rϕ + ∆f . At step n we
have fn = Rϕn + ∆fn, defined for t ∈ An, with A−1 = [0, 1]. We denote
εn,r = ‖∆fn‖lip(An),r. We obtain hn and ϕn+1 a defined on An+1 such that

HnfnH
−1
n = Rϕn+1 + ∆fn+1

with ∆fn+1 ∈ C lip,∞
0 (An+1,T,R), and if we denote ξn,r = ‖hn‖lip(An+1),r+1

and νn = ‖ϕn+1 − ϕn‖lip(An+1) we have from Proposition 8.2.1 that

ξn,r ≤ CrγnN
σ
n εn,r (8.4)

νn ≤ εn,0 (8.5)

εn+1,r ≤ CrγnN
σ
n εn,0εn,r + Cr,r′γnN

σ+r−r′
n εn,r′ (8.6)

with γn = (1 + Sn + εn,0)σ, where

Sn := ‖ϕn‖lip(An)

If during the induction we can insure that
∑
εn,0 < 1/(100M) we can

conclude from (8.5) and the definition of M that for all n, ϕn satisfies on An
the inductive condition

(C1) ‖ϕn‖lip(An) ≤ 2M, inf
t∈An

ϕ′n(t) ≥ 1

2M
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and Lemma 8.3.1 will insure that An+1 is well defined and λ(An+1) ≥ (1 −
2M2N−1

n+1)λ(An). To be able to apply the inductive procedure we also have
to check that Hn is indeed invertible which is insured if during the induction
we have

(C2) ξn,0 <
1

2
.

We call the latter two conditions the inductive conditions.
We need to prove now that the scheme (8.4)–(8.6) converges provided an

adequate control on ε0,0 and εr0,0 for a sufficiently large r0 is.

Lemma 8.3.2 Let α = 4σ+ 2, β = 2σ+ 1, and r0 = [8σ+ 5]. If Sn, ξn,r, εn,r
satisfy (8.4)–(8.6), there exists N̄0(σ) such that if N0 = N̄0M and

ε0,0 ≤ N−α0 , ε0,r0 ≤ Nβ
0

then for any n the inductive conditions (C1) and (C2) are satisfied and in
fact εn,0 ≤ N−αn , ξn,0 ≤ N−σn , and for any s ∈ N, there exists C̄r such that
max(εn,s, ξn,s) ≤ C̄sN

−1
n .

Proof. We first prove by induction that for every n, εn,0 ≤ N−αn and εn,r0 ≤
Nβ
n , provided N̄0(σ) is chosen sufficiently large.
Assuming the latter holds for every i ≤ n, the inductive hypothesis (C1)

and (C2) can be checked up to n immediately from (8.4) and (8.5). Now,
(8.6) applied with r = 0 and r′ = r0 yields

εn+1,0 ≤ C0N
σ
n (2 +M)σN−2α

n + C0,r0N
σ−r0
n Nβ

n

≤ N−αn+1

provided N̄0(σ) is sufficiently large.
On the other hand, applying (8.6) with r′ = r = r0 yields

εn+1,r0 ≤ Cr0N
σ
n (1 +M)σN−αn Nβ

n + Cr0,r0(1 +M)σNσ
nN

β
n

≤ Nβ
n+1

provided N̄0(σ) is sufficiently large.
To prove the bound on εn,s we start by proving that for any s, there exist

C̃s and ns such that for n ≥ ns we have that εn,s ≤ C̃sN
β
n . Let indeed ns be

such that N−1/10
ns (1 +M)σ(Cs +Cs,s) < 1. Let C̃s be such that εns,s ≤ C̃sN

β
ns .



96CHAPITRE 8. SMOOTH CONJUGACIES IN THE ARNOL’D FAMILY

We show by induction that εn,s ≤ C̃sN
β
n for every n ≥ ns. Assume the latter

true up to n and apply (8.6) with r = r′ = s to get

εn+1,s ≤ CsN
σ
n (1 +M)σN−αn εn,s + Cs,s(1 +M)σNσ

n εn,s

≤ Nσ+1/10
n εn,s

≤ C̃sN
σ+1/10+β
n ≤ C̃sN

β
n+1.

We will now bootstrap on our estimates as follows. Let s′(s) = s + [σ +

β+ 3
2
(σ+1)]+1, and define ñs ≥ max(ns, ns′) such that N−1/10

ñs
(1+M)σ(Cs+

C̃s′Cs,s′) < 1.
. Let C̄s be (large !) such that εñs,s ≤ C̄sN

−σ−1
ñs

. We will show by induction
that for any n ≥ ñs we have that εn,s ≤ C̄sN

−σ−1
n . Indeed, apply (8.6) with

r = s r′ = s′ to get

εn+1,s ≤ C̄sCsN
σ
n (1 +M)σN−αn N−σ−1

n + Cs,s′C̃s′(1 +M)σNβ
nN

σ+s−s′
n

≤ C̄sN
−σ−1
n+1

since ñs was chosen sufficiently large.
Finally, (8.4) yields that for n ≥ ñs, ξn,s ≤ C ′sN

−1
n .

2

8.4 Proof of the KAM Theorem

We can now finish the proof of the KAM Theorem 8.1.2. The sets An are
decreasing and we let A∞ = lim infAn. Note that the norm ‖ · ‖lip,r norms
are well defined on A∞ for functions that are in C lip,∞

0 (An,T,R) for every n.
The result of Lemma 8.3.2 implies that

λ(A∞) ≥ Π(1− 2M2N−1
n+1) ≥ 1− η

if N0 ≥ N0(η). On A∞, ϕn converges in the Lipschitz norm to some ϕ∞ ∈
Lip(A∞,R), and the maps Hn ◦ . . . ◦ H1, H

−1
n ◦ . . . ◦ H−1

1 converge in the
C lip(A∞),∞ norm to some G,G−1 such that on A∞ it holds that G ◦ (Rϕ +
∆f) ◦G−1 = fϕ∞ . 2
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8.5 Liouville phenomenon. Non smooth conju-
gacies

Exercise 8.5.1 For 0 < ε < 1
2π
, define the following family of circle diffeo-

morphisms for t ∈ [0, 1] :

ft,ε(θ) = θ + t+ ε sin(2πθ)

In all the sequel 0 < ε < 1
2π

will be fixed. For a map f and a point x we
denote by ω(x, f) the omega limit set of the orbit of x under f , that is the
accumulation points of fn(x), n ∈ N.

The goal of this exercise is to show that there exists t ∈ [0, 1] such that
the rotation number ρ(ft,ε) ∈ R − Q and such that the conjugacy of ft,ε to
the rotation Rρ(ft,ε) is not Lipschitz.

a) Compute ρ(f0,ε) and ρ(f1,ε) and show that ρ(f 1
2
,ε) 6= 0. Deduce that

[0, 1]→ T : t 7→ ρ(ft,ε) is surjective.

b) For every p
q
∈ [0, 1], p ∧ q = 1, show that the set of t ∈ [0, 1] such that

ρ(ft,ε) = p
q
is a non empty interval that will be denoted [t−p

q
, t+p

q
]. (Hint : Use

that the map θ 7→ ft,ε(θ) is analytic in θ). Show that ft+p
q

has finitely many

periodic orbits of period q and that if x1 < x2 < . . . < xN denote the periodic
points in cyclic ordering on the circle then f q

t+p
q

[xi, xi+1] = [xi, xi+1] and every

point x ∈ (xi, xi+1] satisfies ω(x, f q
t+p
q

) = xi+1. What can you say about the

α-limit set of x ?

c) Deduce that for any η > 0 there exists a set E that is a collection of open
intervals on the circle and an integer l such that f l

t+p
q

(E) is strictly included

in Ec and |E| > 1 − η (Ec is the complementary in T of a set E while |E|
denotes its Lebesgue measure).

d) We now start an inductive construction of a parameter t∞ as follows. Let
ηn := 1

n+1
. Take p1

q1
∈ [0, 1] and consider ft+p1

q1

to which we apply c) and get

E1 and l1 corresponding to η1.

Show that if p2
q2
> p1

q1
is sufficiently close to p1

q1
then

– p2
q2
− p1

q1
< 1

q1001
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– f l1
t+p2
q2

(E1) is strictly included in Ec
1.

Show that there also exists a set E2 that is a collection of open intervals on
the circle and an integer l2 such that f l2

t+p2
q2

(E) is strictly included in Ec
2 and

|E2| > 1− η2.

Continue the induction and show that t+pn
qn

→ t∞ such that ρ(ft∞) ∈ R − Q
and that the conjugating map h such that h ◦ ft∞ = Rρ(ft∞ ) ◦ h satisfies
|h(En)| ≤ |Ec

n| for every n.

e) ÊDeduce that h is not Lipschitz. What can you say more about h ? What
can you say about the set of parameters t such that ρ(ft,ε) ∈ R−Q and such
that the conjugacy of ft,ε to the rotation Rρ(ft,ε) is not Lipschitz ? Can you
say it is Gδ dense inside the set of of parameters t such that ρ(ft,ε) ∈ R−Q ?

3 3 3


