GÉOMÉTRIE COMPLEXE ET THÉORIE DE HODGE
GÉOMÉTRIE COMPLEXE ET THÉORIE DE HODGE

Benoît Stroh
TABLE DES MATIÈRES

1. Introduction .. 3
 1.1. Géométrie complexe ... 3
 1.2. Variétés kählériennes et théorie de Hodge 4
 1.10. Structures de Hodge .. 7
 1.11. Pour aller plus loin ... 7

2. Algèbre linéaire et fonctions holomorphes à plusieurs variables 9
 2.1. Rappels de géométrie différentielle et d’algèbre linéaire 9
 2.36. Fonctions, champs de vecteurs et fonctions holomorphes 20

3. Variétés complexes .. 31
 3.4. Faisceaux I ... 32
 3.24. Fibrés vectoriels .. 37
 3.52. Faisceaux II ... 45
 3.79. Sous-variétés .. 53
 3.81. Exemples de variétés complexes 53
 3.88. Orientation et métriques ... 56

4. Cohomologie des variétés complexes ... 59
 4.3. Construction de la cohomologie 60
 4.21. Applications ... 63

5. Décomposition de Hodge ... 71
 5.1. Position du problème : le cas des surfaces de Riemann 71
 5.4. Formes harmoniques ... 72
 5.28. Opérateurs différentiels .. 78
 5.42. Cohomologie et formes harmoniques 82
 5.56. Les théorèmes de dualité .. 85
TABLE DES MATIÈRES

5.59. Variétés kählériennes .. 85
5.74. Identités kählériennes .. 88
5.84. Le théorème principal ... 90

Bibliographie .. 93
CHAPITRE 1

INTRODUCTION

1.1. Géométrie complexe

La géométrie complexe et la théorie de Hodge peuvent se résumer en un mot : généraliser ce que vous avez vu dans le cours de surfaces de Riemann en dimension supérieure. Détailions cela.

Il faut commencer par généraliser la notion de fonctions holomorphes lorsque la source est un ouvert de \mathbb{C}^n. La définition est très similaire au cas d’une variable, on obtient toujours une formule de Cauchy et un développement local en série entière convergente. Un point important pour nous sera que le lemme de Dolbeault reste valable. Plusieurs aspects de la théorie sont sensiblement plus compliqués que le cas à une variable : les pôles et les zéros ne sont pas ponctuels, et ne sont même pas des sous-variétés différentielles en général, la notion de résidu n’est pas évidente, etc. Nous n’aurons toutefois pas besoin de ces notions.

On définit ensuite les variétés complexes de dimension n par le formalisme général des cartes, en utilisant comme but des cartes des ouverts de \mathbb{C}^n et comme changement de cartes des biholomorphismes à n variables. On en déduit rapidement la notion de fonction holomorphe, de formes différentielle holomorphe ou lisse, etc. On obtient également des opérateurs différentiels d, ∂ et $\bar{\partial}$.

On étudie également la notion de fibré vectoriel holomorphe, dont l’espace total est une variété complexe. Par exemple, les fibrés tangents et cotangents des surfaces de Riemann sont des fibrés holomorphes, donc des variétés complexes de dimension deux.

Les premiers exemples de variétés complexes sont fournis par les produits de surfaces de Riemann, les espaces projectifs complexes $\mathbb{P}_\mathbb{C}^n$, les tores complexes \mathbb{C}^n/Λ avec $\Lambda \subset \mathbb{C}^n$ un réseau ou les sous-variétés de ceux-ci, la notion de sous-variété étant définie de manière analogue à celle apparaissant en géométrie différentielle. Ainsi se fait un lien avec la géométrie algébrique : les sous-variétés algébriques de $\mathbb{P}_\mathbb{C}^n$ qui sont lisses définissent naturellement des variétés complexes compactes.

La première grande divergence d’avec la théorie des surfaces de Riemann réside dans l’existence de variétés complexes compactes non algébriques. En effet, des plus importants
théorèmes de la théorie des surfaces de Riemann compactes garantit que toute surface de Riemann compacte X se plonge dans $\mathbb{P}^n_\mathbb{C}$ pour n assez grand, la démonstration étant basée sur le théorème de Riemann-Roch. Ainsi X est isomorphe à une sous-variété complexe de $\mathbb{P}^n_\mathbb{C}$. Les théorèmes GAGA de Serre garantissent ensuite que X est algébrique, définie par l’annulation de polynômes homogènes.

Cela est faux si X est une variété complexe compacte de dimension > 1. Déjà lorsque $X = \mathbb{C}^n / \Lambda$ est un tore complexe, l’algébrisation de X est subtile et n’est possible que lorsque Λ vérifie des conditions de polarisation. On dit alors que X est une variété abélienne. Ce sera d’ailleurs la théorie de Hodge qui permettra de caractériser les variétés abéliennes parmi les tores complexes.

D’autres divergences existent : il n’y a pas d’analogue du théorème d’uniformisation de Poincaré, le théorème des résidus devient hautement non naïf, l’analogue du théorème de Riemann-Roch (appelé théorème de Grithendieck-Riemann-Roch) donne moins de conséquences pratiques, hormis peut-être le cas des surfaces. Nous n’aborderons pas ces thèmes.

1.2. Variétés kählériennes et théorie de Hodge

Le thème principal de ce cours sera la théorie de Hodge, que vous avez déjà rencontrée dans le cas des surfaces de Riemann. Cette théorie vaudra pour une classe ad-hoc de variétés complexes compactes, qui contient les variétés projectives et les tores complexes : les variétés kählériennes. La définition de ces variétés fait intervenir les propriétés de certaines métriques hermitiennes sur X que nous dégagerons. Ainsi la donnée d’une variété kählérienne est en vérité la donnée d’une variété complexe X et d’une métrique kählérienne h. Toutefois la théorie de Hodge dépendra de l’existence de h, mais pas de son choix.

Nous verrons que toute les variétés ne sont pas kählériennes : par exemple les surfaces de Hopf (de dimension complexe 2). Par contre toutes les surfaces de Riemann (de dimension complexe 1) sont trivialement kählérienne. Soit X une variété complexe kählérienne. Voilà le théorème principal de la théorie de Hodge, dans lequel $H^k_{dR}(X, \mathbb{C})$ désigne la cohomologie de Rham à coefficients complexes, définies avec les formes différentielles lisses fermées modulo les formes exactes.

Théorème 1.3. — Il existe pour tout $k \geq 0$ une décomposition canonique entre \mathbb{C}-espaces vectoriels de dimension finie

$$H^k_{dR}(X, \mathbb{C}) = \bigoplus_{p+q=k} H^q(X, \Omega^p_X)$$

avec de plus

$$\overline{H^q(X, \Omega^p_X)} = H^p(X, \Omega^q_X)$$

où $\overline{\cdot}$ désigne le conjugué complexe d’un sous-espace vectoriel de $H^k_{dR}(X, \mathbb{C})$.

Remarque 1.4. — Si V est un \mathbb{C}-espace vectoriel de dimension finie et $W \subset V$ est un sous-\mathbb{C}-espace vectoriel, il n’y a aucun sens à parler de son conjugué $\bar{W} \subset V$.

Lorsque $V = V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ est donné comme complexifié d’un \mathbb{R}-espace vectoriel $V_\mathbb{R}$ de dimension finie, on dispose cette fois de l’application \mathbb{R}-linéaire $\bullet : V \to V$, $v_\mathbb{R} \otimes z \mapsto v_\mathbb{R} \otimes \bar{z}$, ce qui permet de définir \bar{W} pour tout sous-espace vectoriel $W \subset V$. C’est ce qui est utilisé dans l’énoncé du théorème avec $V = H^k_{dR}(X, \mathbb{C})$ et $V_\mathbb{R} = H^k_{dR}(X, \mathbb{R})$.

Remarque 1.5. — Le théorème 1.3 donnent immédiatement des contraintes sur les nombres de Betti $b_k = \dim_{\mathbb{C}} H^k_{dR}(X, \mathbb{C})$ des variétés compactes kählériennes. Par exemple b_{2k+1} est pair pour tout k.

Dans l’énoncé du théorème 1.3, $H^q(X, \Omega^p_X)$ désigne la cohomologie sur X du faisceau Ω^p_X des p-formes différentielles holomorphes. Nous montrerons par la théorie de Dolbeault une caractérisation de $H^q(X, \Omega^p_X)$ via des formes différentielles lisses $\bar{\partial}$-fermées modulo des formes $\bar{\partial}$-exactes.

Par exemple lorsque X est une surface de Riemann, $q = 1$ et $p = 0$, on a $\Omega^0_X = \mathcal{O}_X$ qui est le faisceau des fonctions holomorphes sur X et

$$H^1(X, \mathcal{O}_X) = \mathcal{A}^{0,1}(X)/\text{Im}(\bar{\partial} : \mathcal{A}^{0,0}(X) \to \mathcal{A}^{0,1}(X))$$

où $\mathcal{A}^{0,1}(X)$ désigne les 1-formes différentielles lisses sur X de type $(0, 1)$, qui s’écrivent dans des cartes sous la forme $f(z)d\bar{z}$ avec f lisse, et $\mathcal{A}^{0,0}(X)$ désigne les fonctions lisses sur X.

Remarque 1.6. — Il est difficile de prouver que $H^q(X, \Omega^p_X)$ est un \mathbb{C}-espace vectoriel de dimension finie et toutes les preuves connues reposent sur des points délicats d’analyse. La théorie de Hodge fournit une preuve basée sur la théorie des équations différentielles elliptiques (voir la fin de ce paragraphe) et il existe une autre preuve due à Cartan-Serre basée sur l’analyse fonctionnelle holomorphe [Str][ch.7].

Cela sera la différence principale avec le cours de surfaces de Riemann que vous avez suivi. La théorie des faisceaux et de leur cohomologie n’était pas indispensable pour ce cours, mais le devient pour le notre.

Remarque 1.7. — Si on traite la théorie des surfaces de Riemann sans utiliser la cohomologie des faisceaux, on ne peut pas interpréter le quotient

$$\mathcal{A}^{0,1}(X)/\text{Im}(\bar{\partial} : \mathcal{A}^{0,0}(X) \to \mathcal{A}^{0,1}(X))$$

intervenant dans la décomposition de Hodge.

Nous étudierons ainsi de manière extensive la théorie des faisceaux sur un espace topologique général, cela étant en lien avec le cours introductif d’homologie. Nous dégagerons par exemple les notions de faisceaux fins, mous et acycliques, qui n’ont pas de cohomologie en degré supérieur et verrons comment des résolutions d’un faisceau par des faisceaux de ce type permettent de calculer concrètement la cohomologie.
Cela éclairera d’une part l’isomorphisme
\[H^1(X, \mathcal{O}_X) = A^{0,1}(X)/\text{Im}(\bar{\partial} : A^{0,0}(X) \to A^{0,1}(X)) \]
et ses généralisations pour calculer \(H^q(X, \Omega^p_X) \). Cela éclairera également l’apparition de la cohomologie de de Rham en théorie de Hodge : il s’agit en fait de la cohomologie du faisceau \(\mathbb{C}_X \) des fonctions localement constantes sur les ouverts de \(X \). Nous verrons d’ailleurs comment comprendre l’isomorphisme cohomologie de de Rham et cohomologie singulière en utilisant la théorie des faisceaux : il s’agit simplement de deux calculs différents de la même cohomologie du faisceau \(\mathbb{C}_X \), en utilisant deux résolutions acycliques, la première avec des faisceaux de formes différentielles lisses et la seconde avec des faisceaux de chaînes singulières.

Remarque 1.8. — La géométrie complexe est historiquement (travaux de Cartan, Serre, Oka) le premier domaine à avoir utilisé la cohomologie des faisceaux, qu’on peut éviter en géométrie différentielle ou en topologie algèbrique. Cette cohomologie des faisceaux a été réutilisée de manière extensive par Grothendieck et Serre en géométrie algébrique, puis dans plusieurs autres contextes (géométrie rigide de Tate et ses variantes dues à Berkovich et Huber).

Remarque 1.9. — La théorie de Hodge vaut également en géométrie algébrique sur les corps finis (travaux de Deligne-Illusie) et en géométrie rigide sur les corps \(p \)-adiques. Nous discuterons brièvement des hypothèses nécessaires et notamment de la nécessité ou non de trouver dans ce cadre un analogue de la condition de kählériannité.

La preuve du théorème généralisera celle que vous avez vu dans le cadre des surfaces de Riemann. Elle utilisera crucialement la théorie des opérateurs différentiels elliptiques sur les variétés différentielles compactes, c’est à dire une version globale des équations différentielles aux dérivées partielles elliptiques. Cela fera le lien avec le cours d’analyse sur les variétés.

Plus précisément nous introduirons un laplacien \(\Delta_d \) associé à la dérivation usuelle \(d \) et à d’autres données comme une métrique et une orientation, qui agit sur les \(k \)-formes différentielles lisses sur \(X \). Nous vérifierons qu’il s’agit d’un opérateur différentiel elliptique et la théorie générale de ces opérateurs nous fournira une compréhension explicite de la cohomologie de de Rham \(H^k_{\text{dR}}(X, \mathbb{C}) \) en termes de \(k \)-formes différentielles \(\Delta_d \)-harmoniques.

De même, nous définirons un laplacien \(\Delta_{\bar{\partial}} \) associée à la dérivation anti-holomorphe \(\bar{\partial} \), et ce sera également un opérateur elliptique. Cela permettra de comprendre explicitement la cohomologie des faisceaux \(H^q(X, \Omega^p_X) \) en termes de formes lisses de type \((p, q) \) qui sont \(\Delta_{\bar{\partial}} \)-harmoniques.

Cela prouvera à la fois la finitude de la cohomologie de de Rham et de la cohomologie du faisceau \(\Omega^p_X \) et sera vrai sous l’hypothèse de compacité mais sans hypothèse de kählériannité.
Ce qu’il faudra faire pour prouver le théorème 1.3 sera alors de relier Δ_d et Δ_∂ en utilisant l’hypothèse que X est kählérienne. Cela reposera sur les identités kählériennes, desquelles on déduira que $\Delta_d = 2\Delta_\partial$. La décomposition de Hodge sera alors facile à obtenir.

Nous verrons enfin d’autres aspects de la théorie de Hodge : décomposition de Lefschetz et théorème de l’indice de Hodge.

1.10. Structures de Hodge

Nous formaliserons enfin la notion de décompositions apparaissant dans le théorème 1.3 sous la terminologie de structure de Hodge. Nous définirons la notion de polarisation d’une structure de Hodge et montrerons que lorsque X est projective, sa cohomologie est une structure de Hodge polarisée.

Nous étudierons en détail le cas des structures de Hodge de poids 1 et montrerons qu’elles sont en équivalence de catégorie avec les tores complexes. Nous vérifierons alors que les structures de Hodge polarisées de poids 1 correspondent exactement aux variétés abéliennes.

Des applications et des prolongements de la théorie de Hodge et des structures de Hodge seront données dans le cours Fondamental 2 de Claire Voisin. Seront notamment étudiées les variations de structures de Hodge, qui expliquent comment la décomposition de Hodge de la cohomologie de X_s varie lorsque $f : X \to S$ est un morphisme submersif propre de variétés complexes avec X kählérienne, et $X_s = f^{-1}(s)$ qui est donc une variété complexe (car f est submersif) kählérienne (car fermée dans X kählérien) compacte (car f est propre) pour tout $s \in S$.

1.11. Pour aller plus loin

Revenons à quelques thèmes qui pourraient être développés en géométrie complexe (mais que nous n’aborderons pas faute de temps...).

On pourrait définir la notion de sous-variété éventuellement singulière d’une variété complexe X, ce qui incluerait par exemple le lieu d’annulation de fonctions holomorphes à plusieurs variables, ou au lieu polaire de fonctions méromorphes à plusieurs variables. L’outil de base pour cela est le théorème de factorisation de Weierstrass [Me][ch.X.1].

On pourrait ensuite chercher à définir abstraitement des variétés complexes non lisses, sans chercher à les voir comme sous-variétés de variétés lisses. Cela nécessite évidemment d’oublier le formalisme des atlas et des cartes, puisque les ouverts de \mathbb{C}^n ne peuvent modéliser que des variétés lisses. La solution est donnée par le formalisme des espaces localement annélés, qui sont des espaces topologiques munis de faisceaux d’anneaux [De][Ch.II].

On peut alors donner un sens à la notion de fonction holomorphe sur une telle variété singulière, ou à la notion du faisceau \mathcal{O}_X des fonctions holomorphes. On peut même
définir toute une classe de faisceaux de \mathcal{O}_X-modules, appelés les faisceaux cohérents, qui contiennent les faisceaux de fonctions holomorphes sur les sous-variétés. Cette théorie \cite{De}[Ch.II] rappelle fortement le formalisme de Grothendieck et Serre utilisé en théorie de schémas.

Toutefois ce formalisme est plus délicat dans le cas des variétés complexes : il faut en effet prouver que le faisceau \mathcal{O}_X est cohérent (c’est le théorème d’Oka \cite{Me}, Ch.XIII], basé sur le théorème de factorisation de Weierstrass). Il faut aussi dégager une classe d’espaces « assez petits » qui n’ont pas de cohomologie cohérente. Ce sont les espaces de Stein \cite{De} Ch.I.6] qui généralisent les variétés algébriques affines. On peut alors montrer la finitude de la cohomologie cohérente de toute variété compacte dans ce contexte très général : c’est l’argument de Cartan-Serre qui fonctionne \cite{De} Th.IX.4.8], et non pas l’argument issu de la théorie de Hodge.

Mentionnons enfin les développements très récents dus à Clausen et Scholze dans le contexte des mathématiques liquides. Ils définissent la cohomologie cohérente à support compact d’une variété complexe quelconque, qui est un objet plus sophistiqué qu’un \mathbb{C}-espace vectoriel. Ils prouvent également la finitude de la cohomologie cohérente dans le cas compact d’une manière tout à fait différente de celle de Cartan-Serre.
2.1. Rappels de géométrie différentielle et d’algèbre linéaire

Si \(U \subset \mathbb{R}^N \) est un ouvert, pour tout \(P \in U \) on note \(T_P = \mathbb{R}^N \) vu comme \(\mathbb{R} \)-espace vectoriel. On note \(\frac{\partial}{\partial x_i} \), sa base canonique, et \(dx_i \in \text{Hom}_\mathbb{R}(T_P, \mathbb{R}) \) sa base duale (bien sûr il faudrait écrire les indices \((dx_i)_{1 \leq i \leq N}\) pour plus de rigueur mais nous laisserons cela de côté pour alléger l’écriture). Si \(f \in C^\infty(U, \mathbb{R}) \) on dispose de \(d_P f : T_P \rightarrow \mathbb{R} \) qui est \(\mathbb{R} \)-linéaire, et se décompose donc en
\[
 d_P f = \sum_i \frac{\partial f}{\partial x_i}(P) \cdot dx_i
\]
On a donc \(\frac{\partial f}{\partial x_i}(P) \in \mathbb{R} \) pour tout \(P \in U \). Ce réel peut aussi s’écrire comme le résultat de l’application de l’élément de base duale \(\partial / \partial x_i \) au vecteur \(d_P f \in \text{Hom}_\mathbb{R}(T_P, \mathbb{R}) \), ou comme l’application de la forme linéaire \(d_P f \) au vecteur \(\partial / \partial x_i \in T_P \).

2.1.1. Formes différentielles complexes. — Tout marche exactement pareil si on regarde des fonctions à valeurs complexes, mais il va falloir complexifier tous les espaces vectoriels en jeu, c’est à dire leur appliquer le foncteur \(\bullet \otimes \mathbb{R} \mathbb{C} \). Commençons par deux calculs élémentaires qui serviront en permanence.

Lemme 2.2. — Soit \(k \) un corps et \(M, N, P \) de \(k \)-espaces vectoriels de dimension finie. On dispose alors d’un isomorphisme canonique \(\text{Hom}_k(M, N) \otimes_k P \approx \text{Hom}_k(M, N \otimes_k P) \).

Remarque 2.3. — Dans la suite, les isomorphismes canoniques seront notés par des égalités comme dans le lemme. L’existence d’une application \(k \)-linéaire \(\text{Hom}_k(M, N) \otimes_k P \rightarrow \text{Hom}_k(M, N \otimes_k P) \) est évidente sans aucune hypothèse de finitude, il s’agit de \(\phi \otimes p \mapsto (m \mapsto \phi(m) \otimes p) \) pour \(\phi \in \text{Hom}_k(M, N) \). Nous laissons en exercice la preuve qu’il s’agit d’un isomorphisme en dimension finie.

Il est plus intéressant de comprendre pourquoi on n’a pas d’isomorphisme lorsque \(M \) et \(P \) ne sont plus des \(k \)-espaces vectoriels de dimension finie. Il s’agit d’un problème d’échange des quantificateurs \(\forall \) et \(\exists \). Prenons par exemple \(k = \mathbb{Q}, I \) un ensemble infini, \(M = \bigoplus_I \mathbb{Q} \),
$N = \mathbb{Q}$. On a alors $\text{Hom}_\mathbb{Q}(\bigoplus_I \mathbb{Q}, \mathbb{Q}) = \prod_I \mathbb{Q}$. Prenons $P = \hat{\mathbb{Q}}$. Alors on veut comparer $(\prod_I \mathbb{Q}) \otimes \mathbb{Q} \hat{\mathbb{Q}}$ et $\prod_I \hat{\mathbb{Q}} = \text{Hom}_\mathbb{Q}(\bigoplus_I \mathbb{Q}, \mathbb{Q})$. On a une inclusion $(\prod_I \mathbb{Q}) \otimes \mathbb{Q} \hat{\mathbb{Q}} \subset \prod_I \hat{\mathbb{Q}}$ mais l'image n’est pas $\prod_I \hat{\mathbb{Q}}$. Au contraire cette image est formée des collections d’éléments $(x_i)_{i \in I}$ de $\hat{\mathbb{Q}}$ qui sont dans une extension de degré finie de \mathbb{Q} indépendante de i. Si on veut décrire un élément de $(\prod_I \mathbb{Q}) \otimes \mathbb{Q} \hat{\mathbb{Q}}$ on utilise donc des quantificateurs du type « $\exists K/\mathbb{Q}$ finie telle que $\forall i \in I$, $x_i \in K$ », alors que si on veut décrire un élément de $\prod_I \hat{\mathbb{Q}}$, les quantificateurs deviennent « $\forall i \in I$, $\exists K_i/\mathbb{Q}$ finie telle $x_i \in K_i$ ».

Lemme 2.4. — Soit $A \to B$ un morphisme d’anneau, M un A-module et N un B-module. On note $\text{Res}^A_B N$ le groupe abélien N vu comme A-module via $A \to B$. On dispose d’un isomorphisme canonique de B-modules $\text{Hom}_A(M, \text{Res}^A_B N) = \text{Hom}_B(M \otimes A, N)$.

Démonstration. — Cela résulte de l’adjonction $(\bullet_A B, \text{Res}^A_B)$ entre les catégories de A-modules et de B-modules. □

Retournons aux différentielles de fonctions à valeur complexes. Déjà $C^\infty(U, \mathbb{C}) = C^\infty(U, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$ grâce à l’application \mathbb{R}-bilinéaire $C^\infty(U, \mathbb{R}) \times \mathbb{C} \to C^\infty(U, \mathbb{C})$, $(f, z) \mapsto z \cdot f$. Par application des lemmes 2.2 et 2.4 on obtient des isomorphismes canoniques entre \mathbb{C}-espaces vectoriels

$$\text{Hom}_{\mathbb{R}}(T_P, \mathbb{C}) = \text{Hom}_{\mathbb{R}}(T_P, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} = \text{Hom}_{\mathbb{C}}(T_P \otimes_{\mathbb{R}} \mathbb{C}, \mathbb{C}) .$$

Ainsi les \mathbb{C}-espaces vectoriels $\text{Hom}_{\mathbb{R}}(T_P, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$ et $T_P \otimes_{\mathbb{R}} \mathbb{C}$ sont duals. On appellera les éléments de $T_P \otimes_{\mathbb{R}} \mathbb{C}$ des vecteurs tangents complexes et les éléments de $\text{Hom}_{\mathbb{R}}(T_P, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$ des 1-formes différentielles complexes.

Les deux \mathbb{R}-bases duales $\partial/\partial x_i$ (base de T_P) et dx_i (base de $\text{Hom}_{\mathbb{R}}(T_P, \mathbb{R})$) définissent donc par complexification une \mathbb{C}-base $\partial/\partial x_i$ de $T_P \otimes_{\mathbb{R}} \mathbb{C}$, ainsi qu’une \mathbb{C}-base dx_i de $\text{Hom}_{\mathbb{R}}(T_P, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$. Ces bases restent duales.

On peut maintenant différencier des fonctions à valeurs complexes $f \in C^\infty(U, \mathbb{C})$. En effet on disposera pour tout $P \in U$ de $d_P f : T_P \to \mathbb{C}$ qui est \mathbb{R}-linéaire, donc $d_P f \in \text{Hom}_{\mathbb{R}}(T_P, \mathbb{C}) = \text{Hom}_{\mathbb{R}}(T_P, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$. On aura

$$d_P f = \sum_i \frac{\partial f}{\partial x_i}(P) \cdot dx_i$$

avec cette fois $\frac{\partial f}{\partial x_i}(P) \in \mathbb{C}$ pour tout $P \in U$. La morale est donc claire : une fonction lisse sur U à valeurs complexes a sa différentielle $d_P f$ qui est une 1-forme différentielle complexe. On peut contracter cette forme linéaire à valeurs complexes selon un vecteur tangent complexe pour dériver f en P.

Remarque 2.5. — Le lecteur qui voudrait rendre l’opération $\bullet_{\otimes_{\mathbb{R}} \mathbb{C}}$ plus explicite utilisera évidemment que $V \otimes_{\mathbb{R}} \mathbb{C} = V \oplus iV$ avec une structure de \mathbb{C}-espace vectoriel évidente pour tout \mathbb{R}-espace vectoriel V. Il faut toutefois se méfier de la notation formelle iV lorsque V
est déjà muni d’une structure de \mathbb{C}-espace vectoriel, ce qui sera le cas pour nous (voir les paragraphes suivants).

Exemple 2.6. — Soit $N = 2$, notons dx, dy, et $\partial/\partial x$, $\partial/\partial y$ les bases précédentes. Si $f(x, y) = e^{i(x+y)}$ et $P = (x_0, y_0)$, on a $d_P f = (ie^{i(x_0+y_0)}, ie^{i(x_0+y_0)})$ vu comme forme linéaire $\mathbb{R}^2 \to \mathbb{C}$. Il s’agit d’une forme différentielle complexe qu’on peut écrire $ie^{i(x_0+y_0)}dx + ie^{i(x_0+y_0)}dy$. Aussi $v = \partial/\partial x - 2i\partial/\partial y$ est un vecteur tangent complexe. On peut calculer $\partial f/\partial v(x_0, y_0) = \partial f/\partial x - 2i\partial f/\partial y = e^{i(x_0+y_0)}(i + 2)$.

Remarque 2.7. — Les formes différentielles complexes sont donc des éléments de $\text{Hom}_\mathbb{R}(T_p, \mathbb{C})$. Notons l’asymétrie entre les espaces vectoriels source et but : l’espace vectoriel sources $T_p = \mathbb{R}^N$ n’est pas un \mathbb{C}-espace vectoriel car il n’est même pas nécessairement de dimension paire. Par contre l’espace vectoriel but est \mathbb{C}, donc évidemment un \mathbb{C}-espace vectoriel, et c’est lui qui fournit une structure de \mathbb{C}-espace vectoriel sur $\text{Hom}_\mathbb{R}(T_p, \mathbb{C})$.

On va maintenant passer à une situation plus symétrique. Soit $N = 2n$. On identifie canoniquement $\mathbb{C} = \mathbb{R}^2$ via $z = x + iy \mapsto (x, y)$, et donc $\mathbb{C}^n = \mathbb{R}^{2n}$. Soit $P \in U \subset \mathbb{C}^n$ un ouvert. On notera $P = (z_1, \ldots, z_n) = (x_1, y_1, \ldots, x_n, y_n)$. En conséquence on note plutôt $dx_1, dy_1, \ldots, dx_n, dy_n : T_P \to \mathbb{R}$ les formes différentielles du paragraphe précédent. Elles forment une \mathbb{R}-base du \mathbb{R}-espace vectoriel $\text{Hom}_\mathbb{R}(T_P, \mathbb{R})$, et une \mathbb{C}-base de son complexifié $\text{Hom}_\mathbb{R}(T_P, \mathbb{C}) = \text{Hom}_\mathbb{R}(T_P, \mathbb{R}) \otimes_\mathbb{R} \mathbb{C}$. On peut alors définir $dz_i = dx_i + idy_i \in \text{Hom}_\mathbb{R}(T_P, \mathbb{C})$ (ne pas confondre le complexe i et l’indice i.... l’abus est clair et habituel) et on obtient une forme différentielle complexe. De même on note $d\bar{z}_i = dx_i - idy_i \in \text{Hom}_\mathbb{R}(T_P, \mathbb{C})$

Comme $\text{Hom}_\mathbb{R}(T_P, \mathbb{C}) = \text{Hom}_\mathbb{C}(T_P \otimes_\mathbb{R} \mathbb{C}, \mathbb{C})$ est le \mathbb{C}-dual du \mathbb{C}-espace vectoriel $T_P \otimes_\mathbb{R} \mathbb{C}$, une base duale de $dz_i, d\bar{z}_i$ est à chercher dans le \mathbb{C}-espace vectoriel $T_P \otimes_\mathbb{R} \mathbb{C}$. Un calcul élémentaire montre en effet que

$$\frac{\partial}{\partial z_i} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} - i \frac{\partial}{\partial y_i} \right)$$

et

$$\frac{\partial}{\partial \bar{z}_i} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} + i \frac{\partial}{\partial y_i} \right)$$

forme la base duale cherchée. Ce sont des vecteurs tangents complexes.

Remarque 2.8. — A priori rien ne nous empêcherait de commencer par définir les vecteurs tangents complexes $\partial/\partial x + i\partial/\partial y$ puis de chercher la base duale dans $\text{Hom}_\mathbb{R}(T_P, \mathbb{C})$. On ne fera jamais cela, notamment car ce n’est pas relié à la décomposition en parties $(1, 0)$ et $(0, 1)$ décrite dans le paragraphe suivant.

On obtient donc l’existence d’une décomposition de $d_P f$ dans la base $dz_i, d\bar{z}_i$ soit

$$d_P f = \sum_i \frac{\partial f}{\partial z_i}(P) dz_i + \sum_j \frac{\partial f}{\partial \bar{z}_j}(P) d\bar{z}_j$$
pour toute fonction lisse \(f : U \to \mathbb{C} \). Dans cette écriture \(\partial f / \partial z_1(P) \) est par définition le coefficient de \(dz_1 \) dans la décomposition de \(df \), et on peut l’obtenir comme application de l’élément de base duale \(\partial / \partial z_1 \) au vecteur \(df \), d’où la notation \(\partial f / \partial z_1(P) \). On obtient donc

\[
\frac{\partial f}{\partial z_i} = \frac{1}{2} \left(\frac{\partial f}{\partial x_i} - i \frac{\partial f}{\partial y_i} \right)
\]

et

\[
\frac{\partial f}{\partial \bar{z}_i} = \frac{1}{2} \left(\frac{\partial f}{\partial x_i} + i \frac{\partial f}{\partial y_i} \right)
\]

On notera désormais

\[
\partial P f = \sum_i \frac{\partial f}{\partial z_i}(P) dz_i
\]

et

\[
\bar{\partial} P f = \sum_j \frac{\partial f}{\partial \bar{z}_j}(P) d\bar{z}_j
\]

On obtient \(\partial P f, \bar{\partial} P f \in \text{Hom}_\mathbb{R}(T_P, \mathbb{C}) \) qui sont des formes différentielles complexes.

Remarque 2.9. — La morale est claire : \(dz_i \) et \(d\bar{z}_i \) servent à écrire les formes différentielles à valeurs complexes, c’est à dire (si on fixe le point \(P \in U \)) les éléments de \(\text{Hom}_\mathbb{R}(T_P, \mathbb{C}) \). Et \(\partial / \partial z_i, \partial / \partial \bar{z}_i \) servent à écrire les éléments du complexifié du plan tangent \(T_P \otimes_\mathbb{R} \mathbb{C} \). Ils servent aussi à dériver des fonctions à valeurs complexes.

Remarque 2.10. — On n’a PAS utilisé pour l’instant un fait crucial, à savoir que \(T_P = \mathbb{C}^n \) est canoniquement un \(\mathbb{C} \)-espace vectoriel. Au contraire on l’a considéré comme un \(\mathbb{R} \)-espace vectoriel de dimension 2\(n \), on l’a complexifié en \(T_P \otimes_\mathbb{R} \mathbb{C} \) qui est de dimension complexe 2\(n \), ce qui est logique avec la \(\mathbb{C} \)-base \(\partial / \partial z_i, \partial / \partial \bar{z}_i \) de cardinal 2\(n \). De même l’espace des formes différentielles complexes \(\text{Hom}_\mathbb{R}(T_P, \mathbb{C}) \) est de dimension complexe 2\(n \) de base \(dz_i, d\bar{z}_i \).

On a juste utilisé dans la partie précédente que \(T_P \) est un \(\mathbb{R} \)-espace vectoriel de dimension paire, et donc \(\text{Hom}_\mathbb{R}(T_P, \mathbb{R}) \) aussi. On a donc pu ordonner une base de ce dernier en \(dx_1, dy_1, dx_2, dy_2, \) ce qui permet de définir \(dz_i, d\bar{z}_i \) puis par dualité \(\partial / \partial z_i, \partial / \partial \bar{z}_i \).

Exemple 2.11. — Soit \(f : \mathbb{C} = \mathbb{R}^2 \to \mathbb{C}, z = x + iy \mapsto x \cdot \sin(y) \). Si on veut calculer \(\partial f = \frac{\partial f}{\partial x} \) on a deux choix : soit on calcule \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \) et \(\frac{\partial f}{\partial y} \) puis par définition \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \). Ou alors on écrit \(f(z) = \frac{z_1 + z_2}{2} \cdot \sin\left(\frac{z_1 - z_2}{2}\right) \) que l’on dérive en \(z \) en traitant \(z \) et \(\bar{z} \) comme deux variables muettes. Vérifier que cela donne le même résultat !

Lorsque \(P \in U \subset \mathbb{C}^n \) on a donc défini l’espace tangent complexe \(T_P \otimes_\mathbb{R} \mathbb{C} \) de dimension complexe 2\(n \) et de base \(\partial / \partial z_i, \partial / \partial \bar{z}_i \), ainsi que l’espace des 1-formes différentielles complexes \(\text{Hom}_\mathbb{R}(T_P, \mathbb{C}) \) de dimension complexe 2\(n \) et de base \(dz_i, d\bar{z}_i \). On aimerait maintenant...
trouver une description canonique, indépendante de tout choix de base, des sous-C-espace vectoriels de dimension n

$$A = \text{Vect}_\mathbb{C}(dz_1, dz_2, \cdots, dz_n) \subset \text{Hom}_\mathbb{R}(T_P, \mathbb{C})$$

et

$$B = \text{Vect}_\mathbb{C}(\partial/\partial z_1, \partial/\partial z_2, \cdots, \partial/\partial z_n) \subset T_P \otimes_\mathbb{R} \mathbb{C}$$

Remarque 2.12. — Il s'agit d’une question qui reviendra sans cesse en géométrie complexe! Un analogue de cette discussion dans le cadre des fibrés tangents et cotangents permettra de définir les champs de vecteurs holomorphes et les 1-formes différentielles holomorphes sur une variété complexe.

Comme nous l’avons dit, pour l’instant on n’a jamais utilisé la structure complexe naturelle sur $T_P = \mathbb{C}^n = \mathbb{R}^{2n}$, mais seulement la \mathbb{C}-structure sur $T_P \otimes_\mathbb{R} \mathbb{C}$ provenant du facteur

$\bullet \otimes \mathbb{R} \mathbb{C}$. On va maintenant faire jouer ces deux structures complexes les unes contre les autres, et cela va nous mener à une longue discussion d’algèbre linéaire. Nous retrouverons le cas de T_P dans le paragraphe [2.30.1]

Retenons néanmoins qu’il y a pour nous deux manières naturelles de produire un \mathbb{R}-espace vectoriel avec deux \mathbb{C}-structures : soit sous la forme de $T_P \otimes_\mathbb{R} \mathbb{C}$ en complexifiant un espace qui a déjà une \mathbb{C}-structure, soit en considérant $\text{Hom}_\mathbb{R}(T_P, \mathbb{C})$.

2.12.1. Discussion d’algèbre linéaire réelle et complexe. — Nous allons étudier dans ce paragraphe la situation abstraite et symétrique d’un \mathbb{R}-espace vectoriel muni de deux \mathbb{C}-structures compatibles. Nous spécialiserons la discussion à des cas comme $T_P \otimes_\mathbb{R} \mathbb{C}$ et $\text{Hom}_\mathbb{R}(T_P, \mathbb{C})$ dans les exercices [2.26 et 2.28]

Remarque 2.13. — Soit A un anneau de base et B, C deux A-algèbres. Soit M un B-module. Alors $M \otimes_A C$ est naturellement un $B \otimes_A C$-module.

Lorsque $A = \mathbb{R}$ et $B = C = \mathbb{C}$, on obtient que si V est un \mathbb{C}-espace vectoriel, alors $V \otimes_\mathbb{R} \mathbb{C}$ est un $\mathbb{C} \otimes_\mathbb{R} \mathbb{C}$-module. Par définition si $v \in V$, $z \in \mathbb{C}$, $\lambda \in \mathbb{C}$, $\mu \in \mathbb{C}$ on a pour cette loi d’algèbre $(\lambda \otimes \mu) \cdot (v \otimes z) = (\lambda v) \otimes (\mu z)$.

De même si K est un corps et L/K est une extension, pour tout L-espace vectoriel V, on a que $V \otimes_K L$ est une $L \otimes_K L$-algèbre.

Il est donc naturel de s’intéresser à l’anneau $\mathbb{C} \otimes_\mathbb{R} \mathbb{C}$, ou plus généralement pour toute extension galoisienne finie L/K à $L \otimes_K L$. Il se trouve que ce calcul de produit tensoriel est central dans la vision moderne de la théorie de Galois, et est d’ailleurs l’élément permettant de comprendre l’analogie entre théorie de galois des revêtements et théorie de Galois des corps. Il est d’ailleurs notable qu’il s’agit du premier calcul non trivial de produit tensoriel qu’on rencontre en algèbre.

On peut aussi remarquer que la donnée d’un $L \otimes_K L$-modules V est équivalente à la donnée d’un K-espaces vectoriels V, munis de deux structures compatibles de L-espace
vectorie. On veut dire par cela que si on note \(l \cdot_1 v \) la première action scalaire de \(L \) sur \(V \), et par \(l \cdot_2 v \) la seconde, alors l’application

\[L \times L \to \text{End}_K(V), \quad (z_1, z_2) \mapsto (v \mapsto z_1 \cdot_1 (z_2 \cdot_2 v)) \]

doit être \(K \)-bilinéaire (et on demande de plus que le morphisme \(L \otimes_K L \to \text{End}_K(V) \) soit un morphisme d’anneau). Le dictionnaire entre l’action de \(L \otimes_K L \) sur \(V \) et la donnée des deux actions \((\cdot_1, \cdot_2)\) compatibles est donné par \((l \otimes l') \cdot v = l \cdot_1 (l' \cdot_2 v)\). De l’égalité

\[((z_1 \otimes 1) * (1 \otimes z_2) \cdot v = (z_1 \otimes z_2) \cdot v = ((1 \otimes z_2) * (z_1 \otimes 1)) \cdot v \]
on tire \(z_1 \cdot_1 (z_2 \cdot_2 v) = z_2 \cdot_2 (z_1 \cdot_1 v) \) pour tous \(z_1, z_2 \in L, v \in V \). Autrement dit \(z_1 \cdot_1 (\bullet) : V \to V \) n’est pas seulement \(K \)-linéaire mais aussi \(L \)-linéaire pour l’action \(\cdot_2 \), et réciproquement.

Remarque 2.14. — Ainsi la donnée d’un \(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \)-module \(V \) est équivalente à la donnée d’un \(\mathbb{R} \)-espace vectoriel \(V \) muni de deux structures compatibles de \(\mathbb{C} \)-espace vectoriel.

Remarque 2.15. — Soit \(V \) un \(K \)-espace vectoriel muni de deux \(L \)-structures compatibles. On n’a pas nécessairement de lien entre \(z_1 \cdot_1 (z_2 \cdot_2 v) \) et \(z_2 \cdot_1 (z_1 \cdot_2 v) \) pour \(z_1, z_2 \in L \) et \(v \in V \). En termes de structure de \(L \otimes_K L \)-module, on n’a pas nécessairement l’égalité

\[(z_1 \otimes z_2) \cdot v = (z_2 \otimes z_1) \cdot v \]

Autrement dit le \(L \otimes_K L \) module ne provient pas d’un module sur \(\text{Sym}_K^2(L) \) par la flèche de quotient \(L \otimes_K L \to \text{Sym}_K^2(L) \).

Soient \(X \) et \(Y \) deux ensembles. Notons \(\text{Map}(X, Y) \) l’ensemble des applications ensemblistes de \(X \) dans \(Y \). Si \(Y \) est un groupe (respectivement un anneau) alors \(\text{Map}(X, Y) \) est également un groupe (respectivement un anneau) par produit des applications.

Proposition 2.16. — Soit \(K \) un corps et \(L/K \) une extension galoisienne finie. L’application \(L \otimes_K L \to \text{Map}(\text{Gal}_{L/K}, L), x \otimes y \mapsto (\sigma \mapsto x\sigma(y)) \) est un isomorphisme de \(L \)-algèbres.

Remarque 2.17. — On voit facilement sur la formule qu’il s’agit d’un morphisme de \(L \)-algèbres, et donc en particulier d’un morphisme de \(L \)-espaces vectoriels de même dimension \(n \). Il suffit donc de prouver l’injectivité pour montrer la surjectivité. Or cette injectivité résulte du lemme d’indépendance des caractères en théorie de Galois.

On peut aussi donner une preuve directe en fixant un élément primitif de \(L \) sur \(K \), donc en écrivant \(L = K(x) \). On a alors un isomorphisme de \(K \)-algèbres \(L = K[x]/(P) \) où \(P \) est le polynôme minimale de \(x \) sur \(K \). Alors \(L \otimes_K L = L[x]/(P) \). Mais \(P \) est scindé à racines simples dans \(L \), et ses racines forment exactement la \(\text{Gal}(L/K) \)- orbite de \(x \). On déduit la proposition du lemme chinois.

Exercice 2.18. — Vérifier que l’application \(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}, \ z_1 \otimes z_2 \mapsto (z_1 z_2, z_1 \bar{z}_2) \) est surjective. Trouver en particulier un antécédant explicite de \((1, 0)\) et de \((0, 1)\).
Remarque 2.19. — Dans l’énoncé on a considéré $L \otimes_K L$ comme une L-algèbre par action à gauche de l'application $L \otimes_K L \rightarrow \text{Map}(\text{Gal}_{L/K}, L)$, $x \otimes y \mapsto (\sigma \mapsto \sigma(x)y)$, ce serait un isomorphisme de L-algèbre pour l'action de L sur $L \otimes_K L$ donnée par $l \cdot (x \otimes y) = x \otimes l(y)$.

Soit $n = [L : K]$ et fixons une énumération des n éléments de $\text{Gal}_{L/K}$. On obtient donc un isomorphisme de L-algèbres $\text{Map}(\text{Gal}_{L/K}, L) \sim L^n$ qui dépend de l’énumération. En particulier $\text{Map}(\text{Gal}_{L/K}, L)$ n’est pas du tout un anneau intègre, mais un produit de corps.

Remarque 2.20. — Une manière de comprendre l’isomorphisme de la proposition 2.16 réside dans la notion de K-formes de L-algèbres. Si A est une L-algèbre, il peut exister différentes K-algèbres B non isomorphes entre elles telles que $B \otimes_K L \simeq A$. Autrement dit, deux K-algèbres non isomorphes peuvent devenir isomorphes après extension des scalaires de K à L. On dit que deux telles algèbres sont des K-formes l’une de l’autre.

Ici $B = L$ et $C = \text{Map}(\text{Gal}_{L/K}, K)$ sont deux K-algèbres non isomorphes (B est un corps donc intègre, mais $C \simeq K^n$ est non intègre). Ce sont des formes l’une de l’autre puisque $L \otimes_K L$ et $\text{Map}(\text{Gal}_{L/K}, K) \otimes_K L = \text{Map}(\text{Gal}_{L/K}, L)$ deviennent isomorphes comme L-algèbre (on a bien sûr utilisé le lemme 2.2).

Pour un exemple concernant des algèbres non commutatives, $	ext{Mat}_2(\mathbb{R})$ et les quaternions \mathbb{H} sont deux \mathbb{R}-algèbres non isomorphes munies d’un isomorphisme $\text{Mat}_2(\mathbb{R}) \otimes_\mathbb{R} \mathbb{C} \simeq \mathbb{H} \otimes_\mathbb{R} \mathbb{C}$.

Ainsi si L/K est galoisienne finie de degré n et V est un L-espace vectoriel, alors $V \otimes_K L$ est un module sur $L \otimes_K L = \text{Map}(\text{Gal}_{L/K}, L) \simeq L^n$. Mais la proposition suivante donne une caractérisation très sympathique des modules sur un produit d’algèbres.

Proposition 2.21. — Soient A_1 et A_2 deux anneaux. Pour tout $A_1 \times A_2$-module M, il existe un A_1-module M_1 et un A_2-module M_2 canoniques, et un isomorphisme canonique $M = M_1 \times M_2$ de $A_1 \times A_2$-modules. Autrement dit le foncteur $\text{Mod}_{A_1} \times \text{Mod}_{A_2} \rightarrow \text{Mod}_{A_1 \times A_2}$, $(M_1, M_2) \mapsto M_1 \times M_2$ entre catégories de modules est une équivalence de catégories.

Démonstration. — Poser $M_1 = (1_{A_1}, 0_{A_2}) \cdot M$ et $M_2 = (0_{A_1}, 1_{A_2}) \cdot M$ puis faire les vérifications fastidieuses. □

Remarque 2.22. — Si on veut s’en souvenir par une phrase : un module sur un produit d’algèbres se casse en produit de modules sur chacune des algèbres.

Corollaire 2.23. — Soit L/K une extension finie galoisienne de degré n. Fixons une énumération des n éléments de $\text{Gal}(L/K)$. On obtient alors une équivalence de catégories $\text{Mod}_{L \otimes_K L} = \text{Vect}_L^n$.
Pour être plus explicite, il faut être capable d'inverser l'isomorphisme de la proposition 2.16. On va voir dans les exercices comment le faire pour le cas de l'extension \(\mathbb{C}/\mathbb{R} \), qui est le seul cas dont on aura besoin.

Exercice 2.24. — En utilisant l’exercice 2.18, écrire explicitement la décomposition de \(V \) un \(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \)-module comme produit de deux \(\mathbb{C} \)-espaces vectoriels \(V^{1,0} \) et \(V^{0,1} \). Y-a-t-il une restriction sur les dimensions de \(V^{1,0} \) et \(V^{0,1} \) ?

Il peut être utile de recourir à un point de vue plus concret, qui utilise la description \(\mathbb{C} = \mathbb{R}[X]/(X^2 + 1) \).

Exercice 2.25. — Soit \(V \) un \(\mathbb{R} \)-espace vectoriel de dimension complexe.

i. Vérifier que la donnée d’une structure de \(\mathbb{C} \)-espace vectoriel sur \(V \) étendant la \(\mathbb{R} \)-structure est équivalente à la donnée de \(J \in \text{End}_{\mathbb{R}}(V) \) vérifiant \(J^2 = -\text{Id}_V \).

ii. Vérifier que la donnée de deux structures compatibles de \(\mathbb{C} \)-espace vectoriel sur \(V \) est équivalente à la donnée de \(J_1, J_2 \in \text{End}_{\mathbb{R}}(V) \) commutants et tels que \(J_1^2 = J_2^2 = -\text{Id}_V \).

iii. Vérifier que la donnée de deux structures compatibles de \(\mathbb{C} \)-espace vectoriel sur \(V \) est équivalente à la donnée d’une structure de \(\mathbb{C} \)-espace vectoriel sur \(V \) et de \(J \in \text{End}_{\mathbb{C}}(V) \) vérifiant \(J^2 = -\text{Id}_V \).

iv. On se place dans le contexte de la question iii (on a donc rompu la symétrie entre les deux structures complexes sur \(V \) en en choisissant d’abord une puis en désignant la seconde par \(J \)). Montrer l’existences d’une décomposition

\[
V = V^{1,0} \oplus V^{0,1}
\]

en produit de deux sous-\(\mathbb{C} \)-espaces vectoriels, où \(J \) agit par homothétie de rapport \(i \) sur \(V^{1,0} \) et de rapport \(-i \) sur \(V^{0,1} \). Vérifier que \(V^{0,1} \) est engendré par les vecteurs de la forme \(u + iJ(u) \) pour \(u \in V \), et \(V^{1,0} \) par ceux de la forme \(u - iJ(u) \). Y-a-t-il des restrictions sur la dimension de \(V^{1,0} \) et \(V^{0,1} \) ?

v. Vérifier que cette décomposition est exactement celle fournie par l’exercice 2.24.

On va appliquer la discussion de l’exercice 2.25 à deux cas particuliers dans les deux exercices qui suivent : celui où l’espace vectoriel \(V \) est donné comme complexifié d’un \(\mathbb{R} \)-espace vectoriel \(W \), puis celui où \(V \) est donné comme le \(\mathbb{C} \)-dual d’un \(\mathbb{R} \)-espace vectoriel \(W \).

Exercice 2.26. — Soit \(W \) un \(\mathbb{R} \)-espace vectoriel de dimension finie et \(V = W \otimes_{\mathbb{R}} \mathbb{C} \). Soit \(J \in \text{End}_{\mathbb{R}}(W) \) tel que \(J^2 = -\text{Id}_W \). Il induit un endomorphisme \(\mathbb{C} \)-linéaire \(J \otimes 1 \) que l’on notera pour simplifier \(J \) de \(V \). Notons \(\bullet \mapsto \bar{\bullet} \) l’application \(V \to V, v \otimes z \mapsto v \otimes \bar{z} \), et pour tout sous-\(\mathbb{R} \)-espace vectoriel \(V' \subset V \), notons \(V^\dagger \subset V \) son image par cette application de conjugaison.

Vérifier que les sous-espaces \(V^{1,0} \) et \(V^{0,1} \) fournis par la question iv de l’exercice 2.25 vérifient \(V^{1,0} = V^{0,1} \), et qu’ils sont de même dimension.
2.1. rappels de géométrie différentielle et d’algèbre linéaire

Remarque 2.27. — On peut reformuler cela de manière plus concrète : lorsque l’espace vectoriel V de l’exercice 2.25 est muni d’une \mathbb{C}-base (e_1, \ldots, e_n) et lorsque la matrice de J dans cette base est dans $\text{Mat}_n(\mathbb{R}) \subset \text{Mat}_n(\mathbb{C})$, alors les sous-espaces propres $V^{1,0}$ et $V^{0,1}$ de J pour i et $-i$ sont de même dimension. De plus si on note $\bullet \mapsto \bullet$ l’application $V \to V$, $\sum_i \lambda_i e_i \mapsto \sum_i \bar{\lambda}_i e_i$, on a $V^{1,0} = V^{0,1}$.

Le lien entre l’existence d’une telle base et l’exercice 2.26 est bien sûr qu’on pose $W = \text{Vect}_{\mathbb{R}}(e_1, \ldots, e_n)$, ou dans l’autre sens qu’étant donné W on en choisit n’importe quelle \mathbb{R}-base.

Exercice 2.28. — Soit W un \mathbb{R}-espace vectoriel de dimension finie et $V = \text{Hom}_{\mathbb{R}}(W, \mathbb{C})$ vu comme \mathbb{C}-espace vectoriel. Soit $J \in \text{End}_{\mathbb{R}}(W)$ tel que $J^2 = -\text{Id}_W$. Notons $I \in \text{End}_{\mathbb{C}}(V)$ l’endomorphisme transposé de J. On applique l’exercice 2.25.iv à (V, I) et l’on obtient des sous-\mathbb{C}-espaces vectoriels $V^{1,0}$, $V^{0,1}$ de V. Par ailleurs on note $\bullet \mapsto \bullet$ l’application $V \to V$ de post-composition avec la conjugaison complexe $\mathbb{C} \to \mathbb{C}$.

. Vérifier que $V^{1,0} = V^{0,1}$ et que ces espaces sont de même dimension.

 . Utilisons J pour donner à W une structure de \mathbb{C}-espace vectoriel. Vérifier que $V^{1,0} \subset V$ consiste en les formes linéaires $W \to \mathbb{C}$ qui sont \mathbb{C}-linéaires, et que $V^{1,0} \subset V$ consiste en les formes anti-\mathbb{C}-linéaires.

Convention : dans le cadre de l’exercice 2.26 et 2.28, on notera I l’action de $i \in \mathbb{C}$ provenant de la première structure complexe sur V et i la seconde.

On aura besoin de comparer différentes métriques dans le contexte de l’exercice 2.28. C’est le contenu de l’exercice suivant, qui jouera un rôle important par la suite.

Exercice 2.29. — Soit W un \mathbb{C}-espace vectoriel de dimension finie et $V = \text{Hom}_{\mathbb{R}}(W, \mathbb{C})$. On a alors $V_{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C} = \text{Hom}_{\mathbb{R}}(W, \mathbb{C})$ auquel on peut appliquer l’exercice précédent pour le décomposer en $V^{1,0} \oplus V^{0,1}$. Soit $V^{1,1} = V^{1,0} \otimes_{\mathbb{C}} V^{0,1} \subset \Lambda_2^2 V_{\mathbb{C}}$ et $V^{1,1}_R = V^{1,1} \cap \Lambda_2^2 V$.

. Interpréter $V^{1,1}$ et $V^{1,1}_R$ comme certaines formes alternées sur W.

 . Calculer ces espaces lorsque $W = \mathbb{C}^2$.

 . Notons $\text{Herm}(W) \subset \text{Bilin}_{\mathbb{R}}(W \times W, \mathbb{C})$ le sous-espace vectoriel des formes hermitiennes h qui sont \mathbb{C}-linéaires en la première variable, \mathbb{C}-antilinéaire en la seconde et telles que $\overline{h(u, v)} = h(v, u)$. Montrer que l’application

$$\text{Herm}(W) \to V^{1,1}_R, \ h \mapsto \omega = -\text{Im}(h)$$

est une bijection.

 . Montrer que l’application $\text{Herm}(W) \ni h \mapsto g = \text{Re}(h)$ définit une bijection de $\text{Herm}(W)$ vers l’ensemble des formes \mathbb{R}-bilinéaires symétriques sur W vérifiant $g(iu, iv) = g(u, v)$.

CHAPITRE 2. ALGÈBRE LINÉAIRE ET FONCTIONS HOLOMORPHES À PLUSIEURS VARIABLES

v. Lorsque \(g = \Re h \), vérifier que \(g \) est non dégénérée si et seulement si \(h \) est non dégénérée.

vi. On dit que \(\omega = -\Im h \) est positive lorsque \(h \) est définie positive. En déduire que dans ce cas \(W \) est à la fois munie d’une structure hermitienne, d’une structure euclidienne et d’une structure symplectique.

Remarque 2.30. — Le signe dans la formule \(\omega = -\Im h \) est justifié par le lemme 5.20 qui concernera la version pour les fibrés vectoriels de l’exercice.

Convention : lorsque \((V,h)\) est un espace vectoriel hermitien, on utilisera l’exercice 2.29 pour obtenir \(g \) et \(\omega \). On basculera sans plus d’avertissements entre les objets \((V,h)\), \((V,\omega)\) et \((V,g)\).

2.30.1. Cas des espaces tangents et cotangents. — Soit \(\mathcal{P} \in U \subset \mathbb{C}^n \) un point d’un ouvert de \(\mathbb{C}^n \). On a donc \(T_\mathcal{P} = \mathbb{C}^n \) qui est muni d’une structure de \(\mathbb{C} \)-espace vectoriel.

Notons \(W = T_\mathcal{P} \) comme \(\mathbb{R} \)-espace vectoriel, muni de son endomorphisme \(I \) associé à sa \(\mathbb{C} \)-structure. On applique l’exercice 2.26 et on en déduit une décomposition \(T_\mathcal{P} \otimes \mathbb{C} = (T_\mathcal{P})^{1,0} \oplus (T_\mathcal{P})^{0,1} \) en sous-\(\mathbb{C} \)-espaces vectoriels de même dimension. De plus \(T_\mathcal{P}^{1,0} = T_\mathcal{P}^{0,1} \) où la conjugaison \(T_\mathcal{P} \otimes \mathbb{C} \to T_\mathcal{P} \otimes \mathbb{C} \) est l’application \(v \otimes \lambda \mapsto v \otimes \bar{\lambda} \). Aussi \(T_\mathcal{P}^{1,0} \) est engendré par les vecteurs \(u - iI(u) \) pour \(u \in T_\mathcal{P} \), et \(T_\mathcal{P}^{0,1} \) est engendré par les vecteurs \(u + iI(u) \).

Remarque 2.31. — Conformément à notre convention précédente, on note \(i \) et \(I \) des endomorphismes de \(T_\mathcal{P} \otimes \mathbb{C} \) provenant des deux structures complexes : \(I = I \otimes 1 \) désigne l’action de \(i \in \mathbb{C} \) sur la structure complexe de \(T_\mathcal{P} \otimes \mathbb{C} \) provenant de celle de \(T_\mathcal{P} \), et \(i \) désigne l’action de \(\Id_{T_\mathcal{P}} \otimes i \).

Corollaire 2.32. — On a

\[
T_\mathcal{P}^{\{0\}} = \text{Vect}_\mathbb{C} \left(\frac{\partial}{\partial z_1}, \cdots, \frac{\partial}{\partial z_n} \right) \subset T_\mathcal{P} \otimes \mathbb{C} = \text{Vect}_\mathbb{C} \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1}, \cdots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial y_n} \right)
\]

et

\[
T_\mathcal{P}^{\{1\}} = \text{Vect}_\mathbb{C} \left(\frac{\partial}{\partial \bar{z}_1}, \cdots, \frac{\partial}{\partial \bar{z}_n} \right) \subset T_\mathcal{P} \otimes \mathbb{C} = \text{Vect}_\mathbb{C} \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1}, \cdots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial y_n} \right)
\]

Démonstration. — Il suffit de calculer \(u - iI(u) \) puis \(u + iI(u) \) pour \(u \in T_\mathcal{P} \). On traite juste le premier cas. Il suffit de considérer \(u \) un vecteur de la \(\mathbb{R} \)-base canonique de \(T_\mathcal{P} \). Lorsque \(u = \partial/\partial x_k \), par définition de la structure complexe canonique sur \(T_\mathcal{P} \) et donc de \(I \), on a

\[
I(\partial/\partial x_k) = \partial/\partial y_k.
\]

Ainsi

\[
\frac{\partial}{\partial x_k} - iI \left(\frac{\partial}{\partial x_k} \right) = \frac{\partial}{\partial x_k} - i \left(\frac{\partial}{\partial y_k} \right) = 2 \frac{\partial}{\partial z_k}
\]
De même si \(u = \partial / \partial y_k \) on a
\[
\frac{\partial}{\partial y_k} - i f \left(\frac{\partial}{\partial y_k} \right) = \frac{\partial}{\partial y_k} + i \frac{\partial}{\partial x_k} = 2i \frac{\partial}{\partial z_k}
\]
\(\square \)

Passons au cas des 1-formes différentielles. Notons toujours \(W = T_P, V = \text{Hom}_\mathbb{R}(T_P, \mathbb{C}) \) et application l'exercice 2.28. On en déduit une décomposition \(V = V^{1,0} \oplus V^{0,1} \) en sous-\(\mathbb{C} \)-espaces vectoriels de même dimension, qui sont de plus conjugués. De plus \(V^{1,0} = \text{Hom}_\mathbb{C}(T_P, \mathbb{C}) \) consiste en les formes \(\mathbb{C} \)-linéaires sur \(T_P \), et \(V^{0,1} = \text{Hom}_\mathbb{C}(T_P, \mathbb{C}) \) en les formes \(\mathbb{C} \)-antilinéaires \(\phi \) vérifiant \(\phi(\lambda v) = \bar{\lambda} \phi(v) \) pour tout \(v \in T_P \) et \(\lambda \in \mathbb{C} \).

Corollaire 2.33. — On a les égalités de sous-espaces
\[
V^{1,0} = \text{Vect}_\mathbb{C}(dz_1, \ldots, dz_n) \subset V = \text{Vect}_\mathbb{C}(dx_1, dy_1, \ldots, dx_n, dy_n)
\]
et
\[
V^{0,1} = \text{Vect}_\mathbb{C}(d\bar{z}_1, \ldots, d\bar{z}_n) \subset V = \text{Vect}_\mathbb{C}(dx_1, dy_1, \ldots, dx_n, dy_n)
\]
De plus pour toute fonction lisse \(f : U \to \mathbb{C} \), on a que \(d_P f = \partial_P f + \bar{\partial}_P f \) est la décomposition de la forme \(\mathbb{R} \)-linéaire \(d_P f \in V \) en partie \(\mathbb{C} \)-linéaire et \(\mathbb{C} \)-antilinéaire.

Démonstration. — Par définition on a \(dz_k = dx_k + idy_k : \mathbb{R}^{2n} = \mathbb{C}^n \to \mathbb{C} \),
\[
(x_1, y_1, \ldots, x_n, y_n) = (z_1, \ldots, z_n) \mapsto x_k + iy_k = z_k,
\]
qui est bien un vecteur de base des formes \(\mathbb{C} \)-linéaires sur \(\mathbb{C}^n \). \(\square \)

Remarque 2.34. — Dans le corollaire 2.33, la \(\mathbb{C} \)-linéarité de \(\phi \in V = \text{Hom}_\mathbb{R}(T_P, \mathbb{C}) \) veut dire \(\phi(I \cdot v) = i \phi(v) \), il s’agit donc de linéarité par rapport à la structure complexe \(I \) sur \(T_P \). En utilisant \(V = \text{Hom}_\mathbb{C}(T_P \otimes_\mathbb{R} \mathbb{C}, \mathbb{C}) \), cette condition est \(\phi(I \cdot v) = i \phi(v) \), et non pas \(\phi(i \cdot v) = i \phi(v) \) qui est automatiquement satisfaite par définition de \(\text{Hom}_\mathbb{C} \).

2.34.1. Formes différentielles supérieures. — Pour tout \(k \geq 0 \) notons \(\text{Alt}^k_\mathbb{R}(T_P, \mathbb{C}) \) l’ensemble des applications \(k \)-\(\mathbb{R} \)-multilinéaires alternées \(T_P \times \cdots \times T_P \to \mathbb{C} \). Généralisant ce qu’on vient de faire pour \(k = 1 \), il est naturel de chercher à le découper en somme directe de plusieurs espaces vectoriels. On remarque que \(\text{Alt}^k_\mathbb{R}(T_P, \mathbb{C}) \) a \(k + 1 \) structures complexes, par action sur chaque espace vectoriel \(T_P \) à la source, ou par action sur le but \(\mathbb{C} \). Plusieurs de ces structures complexes coïncident au signe près, par alternance des formes considérées. Ainsi \(\text{Alt}^k_\mathbb{R}(T_P, \mathbb{C}) \) est un \(\mathbb{C}^{\otimes (k+1)} \)-module, et en fait un module sous \(\Lambda^k_\mathbb{R} \mathbb{C} \otimes_\mathbb{R} \mathbb{C} \). On peut calculer explicitement les algèbres \(\mathbb{C}^{\otimes (k+1)} \) et \(\Lambda^k_\mathbb{R} \mathbb{C} \otimes_\mathbb{R} \mathbb{C} \) pour casser \(\text{Alt}^k_\mathbb{R}(T_P, \mathbb{C}) \) en morceaux. Néanmoins il parait plus simple d’utiliser ce qu’on a fait lorsque \(k = 1 \) et de poser les définitions suivantes.
Définition 2.35. — Pour tous entiers \(p, q \geq 0 \) tels que \(p + q = k \), on note
\[
\text{Alt}^{p,q} = \Lambda^p \text{Hom}_R(T_P, \mathbb{C})^{1,0} \otimes_{\mathbb{C}} \Lambda^q \text{Hom}_R(T_P, \mathbb{C})^{0,1}
\]
On obtient un \(\mathbb{C} \)-espace vectoriel de base \(dz_I \wedge \bar{dz}_J \) où \(I, J \) parcourrent les sous-ensembles ordonnées de \(\{1, \cdots, n\} \) de cardinal respectifs \(p \) et \(q \). On note \(dz_I = dz_{i_1} \wedge \cdots \wedge dz_{i_p} \) et \(d\bar{z}_J = d\bar{z}_{j_1} \wedge \cdots \wedge d\bar{z}_{j_q} \) si \(I = \{i_1, \cdots, i_p\} \) et \(J = \{j_1, \cdots, j_q\} \). On a alors
\[
\text{Alt}^k_R(T_P, \mathbb{C}) = \bigoplus_{p+q=k} \text{Alt}^{p,q}
\]
et \(\text{Alt}^{p,q} = \text{Alt}^{q,p} \) pour tous \(p, q \).

2.36. Fonctions, champs de vecteurs et fonctions holomorphes

2.36.1. Fonctions holomorphes. — On peut enfin définir la notion de fonction holomorphe à plusieurs variables. Elle n’est pas surprenante, mais faut la discussion de la partie 2.12.1 pour comprendre l’équivalence entre différentes caractérisations.

Définition 2.37. — Soit \(U \subset \mathbb{C}^n \) un ouvert de \(\mathbb{C}^n \) et \(f : U \to \mathbb{C} \) lisse (c’est à dire \(C^\infty \)). On dit que \(f \) est holomorphe sur \(U \) si \(d_P f : T_P \to \mathbb{C} \) est \(\mathbb{C} \)-linéaire pour tout \(P \in U \).

Ainsi vu le corollaire 2.33, \(f \) est holomorphe si et seulement si
\[
d_P f \in \text{Hom}_R(T_P, \mathbb{C})^{1,0} \subset \text{Hom}_R(T_P, \mathbb{C})
\]
est dans la partie \((1,0)\) des formes différentielles à valeurs complexes. Cela équivaut également à dire que \(d_P f \) se décompose en combinaison linéaire à coefficients complexes de \(dz_1, \cdots, dz_n \). Cela est équivalent à demander \(d_P f = \partial_P f \), ou bien encore \(\bar{\partial}_P f = 0 \).

On peut enfin formuler l’équation \(\bar{\partial}_P f = 0 \) comme une famille d’équations de Cauchy-Riemann garantissant l’holomorphie de \(f \). En effet cela équivaut à \(\partial f / \partial x_k = -i \partial f / \partial y_k \) pour tout \(1 \leq k \leq n \), soit \(\partial f / \partial x_k = -i \partial f / \partial y_k \) pour tout \(k \).

Remarque 2.38. — On peut définir la notion opposée de fonction antiholomorphe. On demandera à \(d_P f \) d’être \(\mathbb{C} \)-antilinéaire, ie d’être de type \((0,1)\), ie de se décomposer selon \(d\bar{z}_1, \cdots, d\bar{z}_n \). Puisque la partie \((0,1)\) de \(\text{Hom}_R(T_P, \mathbb{C}) \) est le conjugué de la partie \((1,0)\), cela équivaut à demander que l’application \(U \to \mathbb{C}, z \mapsto \overline{f(z)} \) est holomorphe.

On notera \(\mathcal{O}(U) \) la \(\mathbb{C} \)-algèbre des fonctions holomorphes sur \(U \). On obtient des premières propriétés analogues à celles des fonctions holomorphes à une variable [Vo, Ch.I.2].

Proposition 2.39. — Soit \(f : U \to \mathbb{C} \) de classe \(C^1 \). Alors \(f \) est holomorphe si et seulement si elle admet localement sur \(U \) un développement en série entière convergent absolument.
Remarque 2.40. — Une fonction \(f : \mathbb{C}^n \to \mathbb{C} \) a un développement en série entière convergeant absolument au voisinage de 0 s’il existe \(a_I \in \mathbb{C} \) pour tout \(I \in \mathbb{N}^n \) tels que
\[
f(z) = \sum_{I} a_I z^I
\]
pour tout \(z \) assez petit, où on note \(z^I = z_1^{i_1} \cdots z_n^{i_n} \) lorsque \(I = \{i_1, \cdots, i_n\} \). On demande de plus qu’il existe \(R_1, \cdots, R_n > 0 \) tels que \(\sum_I |a_I| r^I \) converge pour tous \(r_1 < R_1, \cdots, r_n < R_n \).

Remarque 2.41. — La preuve de la proposition 2.18 repose comme à une variable sur une formule de Cauchy. Elle prend la forme que pour tout \(D = \{(\zeta_1, \cdots, \zeta_n) \mid |\zeta - a| \leq r_i\} \) un produit de disques qui est inclus dans \(U \), pour tout \(z = (z_1, \cdots, z_n) \) dans l’intérieur de \(D \), pour tout \(f : U \to \mathbb{C} \) holomorphe, on a
\[
f(z) = \left(\frac{1}{2i\pi} \right)^n \int_{|\zeta_i - a_i| = r_i} f(\zeta) \frac{d\zeta_1}{\zeta_1 - z_1} \cdots \frac{d\zeta_n}{\zeta_n - z_n}
\]
On dispose également du principe du maximum \([\text{Vo, th.1.21}]\), formulé comme pour les fonctions à une variable, et du principe de prolongement analytique ??th.1.22\[\text{Vo}.\] Donnons l’assertion précise.

Proposition 2.42. — Soit \(U \subset \mathbb{C}^n \) un ouvert connexe et \(f \) holomorphe sur \(U \). S’il existe un ouvert \(V \subset U \) telle que \(f|_V = 0 \) alors \(f = 0 \).

Remarque 2.43. — Contrairement aux fonctions à une variable, on peut avoir \(f|_Z = 0 \) sur un sous-ensemble \(Z \subset U \) contenant un point d’accumulation sans que \(f = 0 \). Par exemple \(f(z_1, z_2) = z_1 \) est nulle sur le fermé \(\{z_2 = 0\} \subset \mathbb{C}^2 \) qui contient des points d’accumulations.

2.43.1. Biholomorphismes. — Soit \(U \subset \mathbb{C}^n \) un ouvert et \(m \geq 1 \) un entier. On définit de la même manière que précédemment la notion de fonction holomorphe \(f : U \to \mathbb{C}^m \). Cela équivaut simplement à dire que les composantes \((f_1, \cdots, f_m) \) de \(f \) sont holomorphes.

Si \(U \subset \mathbb{C}^n \) et \(V \subset \mathbb{C}^m \) sont des ouverts, on dit que \(f : U \to V \) est un biholomorphisme si elle est bijective, holomorphe, de réciproque holomorphe. Cela implique bien sûr \(n = m \) puisque \(d_P f : \mathbb{C}^n \to \mathbb{C}^m \) est \(\mathbb{C} \)-linéaire bijective pour tout \(P \in U \).

D’après le théorème d’inversion locale de la géométrie différentielle, si \(f : U \to \mathbb{C}^n \) est holomorphe et si \(d_P f \) est injective (donc bijective) pour \(P \in U \) fixé, alors \(f \) induit une bijection \(f : U' \to V' = f(U') \) pour \(P \in U' \) dans un voisinage assez petit. Autrement dit si \(d_P f \) est bijective alors \(f \) est un biholomorphisme entre un voisinage ouvert de \(P \) et son image.

De même si \(f : U \to \mathbb{C}^n \) est holomorphe, injective, telle que \(d_P f \) est bijective pour tout \(P \in U \) alors \(f \) est un biholomorphisme \(f : U \to f(U) \).

Lemme 2.44. — Soit \(\phi : U \to V \) un biholomorphisme entre ouverts de \(\mathbb{C}^n \). L’application \(\phi^* : \mathcal{O}(V) \to \mathcal{O}(U) \), \(f \mapsto f \circ \phi \) est un isomorphisme d’anneaux.
2.44.1. Formes différentielles. — Nous allons définir divers sous-espaces de formes différentielles sur les ouverts de \mathbb{C}^n, qui joueront un rôle crucial jusqu'à la fin du cours.

2.44.1.1. Type des formes différentielles lisses. — Si $U \subset \mathbb{C}^n$ est un ouvert, on a dispose pour tout $P \in U$ de l'espace vectoriel des formes différentielles à valeurs complexes $\text{Hom}_\mathbb{R}(T_P, \mathbb{C})$, qui se décomposent selon $dx_1, dy_1, \cdots, dx_n, dy_n$ et du sous-espace
\[
\Omega^1_P = \text{Hom}_\mathbb{R}(T_P, \mathbb{C})^{1,0} \subset \text{Hom}_\mathbb{R}(T_P, \mathbb{C})
\]
des formes qui se décomposent comme combinaison \mathbb{C}-linéaire de dz_1, \cdots, dz_n. De même on dispose du sous-espace vectoriel
\[
\text{Hom}_\mathbb{R}(T_P, \mathbb{C})^{0,1} \subset \text{Hom}_\mathbb{R}(T_P, \mathbb{C})
\]
des formes qui se décomposent comme combinaison \mathbb{C}-linéaire de $d\bar{z}_1, \cdots, d\bar{z}_n$.

On peut maintenant faire varier P comme en calcul différentiel, en notant qu'on dispose d'un isomorphisme canonique $T_P = \mathbb{C}^n$ pour tout $P \in U$, qui permet de ne pas parler de sections de fibrés vectoriels dans le cas d'un ouvert de \mathbb{C}^n. Notons
\[
A^0(U) = C^\infty(U, \mathbb{C})
\]
l'anneau des fonctions lisses à valeurs complexes sur U et
\[
A^1(U) = C^\infty(U, \text{Hom}_\mathbb{R}(\mathbb{C}^n, \mathbb{C}))
\]
l'espace des 1-formes différentielles lisses à valeurs complexes sur U. Tout élément $\omega \in A^1(U)$ s'écrit de manière unique $\omega = \sum_{k=1}^n (f_k dx_k + g_k dy_k)$ avec $f_k, g_k \in A^0(U)$. Autrement dit $A^1(X)$ est un module libre de rang $2n$ sur $A^0(X)$, de base $dx_1, dy_1, \cdots, dx_n, dy_n$. On note alors
\[
A^{1,0}(U) = C^\infty(U, \text{Hom}_\mathbb{R}(\mathbb{C}^n, \mathbb{C})^{1,0}) \subset A^1(U)
\]
et l'on obtient le $A^0(U)$-module libre de base dz_1, \cdots, dz_n. De même on pose
\[
A^{0,1}(U) = C^\infty(U, \text{Hom}_\mathbb{R}(\mathbb{C}^n, \mathbb{C})^{0,1}) \subset A^1(U)
\]
et l'on obtient le $A^0(U)$-module libre de base $d\bar{z}_1, \cdots, d\bar{z}_n$.

\textbf{Remarque 2.45.} — Il s’agit toujours de formes différentielles lisses. Ainsi les coefficients f_k et g_k sont des fonctions lisses sans plus de condition.

On dispose de la décomposition $A^1(U) = A^{1,0}(U) \oplus A^{0,1}(U)$. On a de plus l'opérateur de differentiation $d : A^0(U) \to A^1(U)$ qui envoie $f \in A^0(U)$ sur $U \to \text{Hom}_\mathbb{R}(\mathbb{C}^n, \mathbb{C})$, $P \mapsto df_p$. De même on a
\[
\partial : A^0(U) \to A^{1,0}(U), \quad \bar{\partial} : A^0(U) \to A^{0,1}(U)
\]
et $d = \partial + \bar{\partial}$.
Remarque 2.46. — Bien sûr, $d : A^0(U) \to A^1(U)$ est \mathbb{C}-linéaire mais il n’est pas $A^0(U)$-linéaire. Au contraire on a la règle de Leibniz $d(fg) = fdg + gdf$ pour tous $f, g \in A^0(U)$.

Il en est de même pour ∂ et $\bar{\partial}$ puisqu’un calcul immédiat (ou tout simplement une considération des parties \mathbb{C}-linéaires et \mathbb{C}-antilinéaires de l’égalité de Leibnize précédente) montrer que $\partial(fg) = f\partial g + g\partial f$ et $\partial(fg) = f\bar{\partial} g + \bar{\partial} f$ pour tous $f, g \in A^0(U)$.

Proposition 2.47. — On a $\mathcal{O}(U) = \text{Ker}(\partial : A^0(U) \to A^{0,1}(U))$.

Démonstration. — Il s’agit d’une reformulation de la condition d’holomorphie des fonctions : une fonction lisse f est nulle si et seulement si $\partial(f) = 0$. □

2.47.0.1. Formes différentielles holomorphes. — Imposons maintenant des conditions d’holomorphie et notons

$$\Omega^1(U) = \bigoplus_{k=1}^n \mathcal{O}(U) \cdot dz_k$$

l’espace des 1-formes différentielles holomorphes sur U. On dispose de la différentielle $d = \partial : \mathcal{O}(U) \to \Omega^1(U)$.

2.47.0.2. Cas des formes différentielles de plus haut degré. — Soit $k \geq 0$ un entier. Rappelons qu’on considère en géométrie différentielle l’espace $\text{Alt}^k(\mathbb{C}^n, \mathbb{C})$ des applications k-multi-\mathbb{R}-linéaires alternées $(\mathbb{C}^n)^k \to \mathbb{C}$. On a donc

$$\text{Alt}^k(\mathbb{C}^n, \mathbb{C}) = \Lambda^k_\mathbb{R} \text{Hom}_\mathbb{R}(\mathbb{C}^n, \mathbb{C}) = \text{Hom}_\mathbb{R}(\Lambda^k_\mathbb{R} \mathbb{C}^n, \mathbb{C})$$

Il s’agit d’un \mathbb{C}-espace vectoriel de dimension finie C^k_{2n} (coefficient binomial) de base les $dx_I \wedge dy_J$ pour $I, J \subset \{1, \cdots, n\}$ deux sous-ensembles tels que

$$k = \text{Card}(I) + \text{Card}(J)$$

On a noté $dx_I = \wedge_{i \in I} dx_i$ et $dy_J = \wedge_{j \in J} dy_j$, et dans ces formules, il est implicite qu’on ordonne I et J de la manière naturelle ; cela est important puisque $dx_1 \wedge dx_2 = -dx_2 \wedge dx_1$.

Une autre \mathbb{C}-base de $\text{Alt}^k(\mathbb{C}^n, \mathbb{C})$ est formée des $dz_I \wedge d\bar{z}_J$ pour $I, J \subset \{1, \cdots, n\}$ deux sous-ensembles. Ici $dz_I = \wedge_{i \in I} dz_i$ et $d\bar{z}_J = \wedge_{j \in J} d\bar{z}_j$.

On considère ensuite l’espace des k-formes différentielles à valeurs complexes

$$A^k(U) = C^\infty(U, \text{Alt}^k(\mathbb{C}^n, \mathbb{C}))$$

Il s’agit d’un $A^0(U)$-module libre de base les $dx_I \wedge dy_J$, ou de base les $dz_I \wedge d\bar{z}_J$, et on a $A^k(U) = \Lambda^k_{A^0(U)} A^1(U)$.

Définition 2.48. — Soit $k = p + q$ des entiers avec $p, q \geq 0$. On note $A^{p,q}(U) \subset A^k(U)$ le sous-$A^0(U)$-module engendré par les $dz_I \wedge d\bar{z}_J$ où I est de cardinal p et J est de cardinal q.
Ainsi $A^{p,q}(U)$ est l’espace des k-formes différentielles s’écrivant comme somme de fonctions du type $f \cdot dz_I \wedge d\bar{z}_J$, où $f : U \rightarrow \mathbb{C}$ est lisse et $dz_I, d\bar{z}_J$ sont comme avant. Cela est compatible avec les notations déjà introduites $A^0(U) = A^{0,0}(U), A^{1,0}(U)$ et $A^{0,1}(U)$. On a donc
\[
\bigoplus_{p+q=k} A^{p,q}(U) = A^k(U).
\]
Dans la définition suivante, on va isoler un sous-espace dans $A^{p,q}(U)$ en imposant des conditions d’holomorphie aux fonctions qui sont les coefficients de dz_I.

Définition 2.49. — Soient $p \geq 0$ un entier. On note $\Omega^p(U) \subset A^{p,0}(U)$ le sous-ensemble engendré par les dz_I où $I \subset \{0, \cdots , n\}$ parcourt les sous-ensembles de cardinal p.

Remarque 2.50. — Récapitulons les notations : les éléments de A^k sont des k-formes différentielles complexes, où les coefficients sont des fonctions lisses. Les éléments de $A^{p,q}$ sont des formes de type (p,q), et on dira que p est le type holomorphe et q le type antiholomorphe. Les coefficients sont pour l’instant toujours des fonctions lisses.

Les éléments de Ω^p sont des formes de type $(p,0)$ à coefficients holomorphes. Ce sont donc des formes différentielles à coefficients holomorphes et de type purement holomorphes.

Remarque 2.51. — On aurait pu définir $\Omega^{p,q}(U)$ comme les combinaisons linéaires à coefficients holomorphes de $dz_I \wedge d\bar{z}_J$. Cet espace ne jouera aucun rôle dans la suite car on verra dans la remarque 3.50 qu’il n’est pas relié à un fibré vectoriel holomorphe.

Convention : on notera toujours pas A les formes différentielles dont les coefficients sont des fonctions lisses, et par Ω les formes différentielles dont les coefficients sont holomorphes.

On a évidemment les formules $A^k(U) = \Lambda^k_{A^0(U)} A^1(U)$ et
\[
A^{p,q}(U) = \Lambda^p_{A^0(U)} A^{1,0}(U) \otimes \Lambda^q_{A^0(U)} A^{0,1}(U) \quad \Omega^k(U) = \Lambda^k_{\mathcal{O}(U)} \Omega^1(U)
\]

2.51.0.1. Différentielle extérieure. — On dispose de la différentielle extérieure $d : A^0(U) \rightarrow A^1(U)$ mais aussi de $d : A^1(U) \rightarrow A^2(U)$ définie par
\[
\sum_i f_i dz_i + \sum_j g_j d\bar{z}_j \mapsto \sum_i df_i \wedge dz_i + \sum_j dg_j \wedge d\bar{z}_j
\]
Elle s’étend pour tout $k \geq 0$ en $d : A^k(U) \rightarrow A^{k+1}(U)$ via
\[
d\left(\sum_{i,j} f_{i,j} \cdot dz_I \wedge d\bar{z}_J \right) = \sum_{i,j} df_{i,j} \wedge dz_I \wedge d\bar{z}_J
\]
et on a $d \circ d = 0$.
Définition 2.52. — Pour tous \(p,q \geq 0 \) et \(\omega \in A^{p,q}(U) \), on note \(\partial(\omega) \in A^{(p+1,q)} \) la composante de type \((p+1,q)\) de \(d\alpha \). On note aussi \(\bar{\partial}(\omega) \in A^{(p,q+1)} \) la composante de type \((p,q+1)\) de \(d\alpha \).

Le lemme suivant donne une définition calculatoire de \(\partial \) et \(\bar{\partial} \).

Lemme 2.53. — Pour tous \(p,q \geq 0 \), pour tout \(\omega = \sum_{l,j} f_{l,j} \cdot dz_l \wedge d\bar{z}_j \in A^{p,q}(U) \), on a

\[
\partial \omega = \sum_{l,j,i} \frac{\partial f_{l,j}}{\partial z_i} \cdot dz_i \wedge dz_l \wedge d\bar{z}_j
\]

\[
\bar{\partial} \omega = \sum_{l,j,i} \frac{\partial f_{l,j}}{\partial \bar{z}_i} \cdot dz_i \wedge dz_l \wedge d\bar{z}_j
\]

Remarque 2.54. — On retiendra que \(\partial \) fait augmenter le type holomorphe (c’est à dire le \(p \) du type \((p,q)\)) de 1 et que \(\bar{\partial} \) fait augmenter le type anti-holomorphe (ie le \(q \)) de 1.

Enfin pour tout \(k \geq 0 \) et tout \(\omega \in A^k(U) \), on décompose \(\omega = \sum_{p+q=k} \omega_{p,q} \) en utilisant \(A^k(U) = \bigoplus_{p+q=k} A^{p,q}(U) \), et on note

\[
\partial(\omega) = \sum_{p+q=k} \partial(\omega_{p,q})
\]

\[
\bar{\partial}(\omega) = \sum_{p+q=k} \bar{\partial}(\omega_{p,q})
\]

qui sont des éléments de \(A^{k+1}(U) \). On remarque que les formules du lemme 2.53 restent vraies pour \(\bar{\partial}w \) et \(\bar{\partial}w \) lorsque \(\omega \in A^k(U) \). En effet, elles ne faisaient pas intervenir \(p \) et \(q \).

On en déduit notamment que si \(f \in A^0(U) \) on a \(\partial f = \sum_i \partial f/\partial z_i \cdot dz_i \) et \(\bar{\partial} f = \sum_i \bar{\partial} f/\partial \bar{z}_i \cdot d\bar{z}_i \), et par conséquent \(\partial, \bar{\partial} : A^0(U) \rightarrow A^1(U) \) sont les opérateurs définis précédemment.

Exercice 2.55. — Calculer \(\partial(z \cdot dx) \), \(\partial(z \cdot dz) \) et \(\bar{\partial}(z_1 \cdot dz_1 \wedge d\bar{z}_2) \).

Exercice 2.56. — Vérifier les points suivants.

i. \(d = \partial + \bar{\partial} : A^k(U) \rightarrow A^{k+1}(U) \) pour tout \(k \geq 0 \).

ii. \(\partial(\alpha \wedge \beta) = (\partial \alpha) \wedge \beta + (-1)^k \alpha \wedge (\partial \beta) \) pour tout \(\alpha \in A^k(U), \beta \in A^l(U) \).

iii. \(\bar{\partial}(\alpha \wedge \beta) = (\bar{\partial} \alpha) \wedge \beta + (-1)^k \alpha \wedge (\bar{\partial} \beta) \) pour tout \(\alpha \in A^k(U), \beta \in A^l(U) \).

iv. \(\partial^2 = \bar{\partial}^2 = 0 \) et \(\partial \partial \bar{\partial} + \bar{\partial} \partial = 0 \).

L’opérateur \(\bar{\partial} \) jouera un rôle crucial pour nous puisqu’il permet de caractériser les formes différentielles holomorphes parmi les formes lisses de type \((p,0)\), comme on le voit dans la proposition qui suit. On l’appelle souvent « opérateur de Dolbeault ».

Proposition 2.57. — Pour tout \(p \geq 0 \), le noyau de \(\bar{\partial} : A^p(U) \rightarrow A^{(p+1)}(U) \) est égal à \(\Omega^p(U) \).
Déémonstration. — Si \(\omega = \sum I f_I \cdot dz_I \in A^{p,0}(U) \) où \(I \subset \{1, \cdots, n\} \) parcourt les ensembles de cardinal \(p \), on a \(\bar{\partial} \omega = \sum \frac{\partial f_I}{\partial z_I} \cdot d\bar{z}_I \wedge dz_I \). Donc \(\bar{\partial} \omega = 0 \) est équivalent à \(\frac{\partial f_I}{\partial z_I} = 0 \) pour tout \(i \), c'est à dire à l'holomorphie de \(f_i \).

\[\square \]

Remarque 2.58. — Le noyau de \(\bar{\partial} : A^{p,q}(U) \to A^{(p,q+1)}(U) \) n'est pas égal à \(\Omega^{p,q}(U) \) si \(q \geq 1 \), où \(\Omega^{p,q} \) a été introduit dans la remarque 2.51. En effet ce noyau contient par exemple \(\bar{\partial} (A^{(p,q-1)}(U)) \).

2.58.0.1. Le lemme de Dolbeault. — Ce lemme jouera un rôle analogue au lemme de Poincaré, qui garantit que la différentielle \(d : A^k(U) \to A^{k+1}(U) \) est localement exacte. Vous avez prouvé la proposition suivante en cours de surfaces de Riemann.

Proposition 2.59. — Soit \(f \) une fonction de classe \(C^1 \) sur un ouvert de \(\mathbb{C} \). Alors il existe localement sur cet ouvert une fonction \(g \) de classe \(C^1 \) telle que \(f = \partial g/\partial \bar{z} \).

Remarque 2.60. — Donnons une esquisse de preuve. Comme la question est locale, on se ramène à supposer que \(f \) est à support compact. On définit alors

\[
g(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{f(\zeta)}{\zeta - z} \cdot d\zeta \wedge d\bar{\zeta}
\]

Mais attention, l’intégrale définissant \(g \) est impropre et il faut en vérité la remplacer par

\[
\lim_{\varepsilon \to 0} \left(\frac{1}{2\pi i} \int_{\mathbb{C} - D_\varepsilon} \frac{f(\zeta)}{\zeta - z} \cdot d\zeta \wedge d\bar{\zeta} \right)
\]

où \(D_\varepsilon \subset \mathbb{C} \) est le disque de centre \(z \) et de rayon \(\varepsilon \). On vérifie alors que \(\bar{\partial} g = f \) par dérivation sous le signe intégral, en utilisant le théorème de Stokes puis finalement la formule de Cauchy.

Exercice 2.61. — Soient \(p \geq 0 \), \(q > 0 \) et \(\alpha \) une forme de type \((p,q) \) et de classe \(C^1 \) sur un ouvert \(U \) de \(\mathbb{C}^n \). Supposons \(\bar{\partial} \alpha = 0 \). Le but de cet exercice est de montrer qu’il existe localement sur \(U \) une forme différentielle \(\beta \) de type \((p,q-1) \) et de classe \(C^1 \) telle que \(\alpha = \bar{\partial} \beta \).

i. En décomposant \(\alpha \) sur la base des \(dz_I \wedge d\bar{z}_J \), montrer qu’on peut se ramener au cas où \(p = 0 \).
ii. Soit \(f(z_1, \cdots, z_n) \) une fonction de classe \(C^1 \) sur \(U \) qui est holomorphe en les variables \(z_I \) pour tout \(l > q \). Montrer qu’il existe localement sur \(U \) une fonction \(g \) de classe \(C^1 \) holomorphe en les variables \(z_I, l > q \), telle que \(\partial g/\partial \bar{z}_q = f \).
iii. Soit \(\alpha = \sum_J \alpha_J d\bar{z}_J \) de type \((0,q) \) telle que \(\bar{\partial} \alpha = 0 \). On va dans les questions suivants raisonner par récurrence sur le plus grand entier \(k \) tel qu’il existe \(J \) avec \(k \in J \) et \(\alpha_J \neq 0 \). Initialiser la récurrence lorsque \(k = q \).
iv. Conclure.
Rappelons qu’un complexe de \(\mathbb{C} \)-espaces vectoriels (concentré en degré positifs) est la donnée pour tout \(k \geq 0 \) d’un espace vectoriel \(V_k \) et d’une application linéaire \(d_k : V_k \to V_{k+1} \) vérifiant \(d_{k+1} \circ d_k = 0 \) pour tout \(k \geq 0 \). On a donc \(\text{Im}(d_k) \subset \text{Ker}(d_{k+1}) \). Le complexe est dit exact si \(\text{Im}(d_k) \subset \text{Ker}(d_{k+1}) \) et \(d_0 \) est injective. On dit alors que \(V_1 \to V_2 \to \cdots \) est une résolution de \(V_0 \).

Corollaire 2.62. — Pour tout ouvert assez petit \(U \subset \mathbb{C}^n \) et tout entier \(p \geq 0 \), le complexe suivant est exact

\[
0 \to \Omega^p(U) \to A^p(U) \overset{\partial}{\to} A^{p+1}(U) \overset{\partial}{\to} \cdots \overset{\partial}{\to} A^{n+p}(U) \to 0
\]

et fournit donc une résolution de \(\Omega^p(U) \).

Remarque 2.63. — Le lemme de Poincaré sur l’exactitude locale de \(d : A^k(U) \to A^{k+1}(U) \) est valable pour tout ouvert contractile \(U \), en particulier pour les ouverts homéomorphes à des boules ouvertes.

Il est naturel de se demander si on peut prouver le lemme de Dolbeault pour des ouverts d’un type précis (ou déjà d’échanger les quantificateurs dans l’énoncé du lemme, et prouver que le lemme Dolbeault est valable sur des ouverts assez petits indépendant de la forme \(\alpha \) telle que \(\partial \alpha = 0 \)). D’après [GH, p.25,27], le lemme de Dolbeault est valable lorsque \(U = \{ (z_1, \cdots, z_n) \in \mathbb{C}^n, |z_i - a_i| < r_i \ \forall i \} \)
est un polydisque, c’est à dire un produit de disques, et aussi pour tout \(r \leq n \) lorsque

\(U = \{ (z_1, \cdots, z_n) \in \mathbb{C}^n, |z_i - a_i| < r_i \ \forall i \text{ et } z_j \neq 0 \ \forall j \leq r \} \)
on où on remarque d’ailleurs que ce dernier ouvert n’est pas contractile. On peut aussi montrer [Vo ch.4 exo.1 p.111] que le lemme de Dolbeault est valable lorsque \(U = \mathbb{C}^n \).

Toutefois, il n’est pas vrai que le lemme de Dolbeault soit valable pour tout ouvert contractile \(U \). Il est difficile de trouver une caractérisation générale sur \(U \) garantissant la validité du lemme de Dolbeault. La bonne notion, relevant de l’analyse convexe holomorphe, est celle d’‘espace Stein’. Cette notion est de plus stable par intersection, ce qui sera important dans REF A VENIR !!!!!

2.63.1. Champs de vecteurs holomorphes. — Pour tout ouvert \(U \subset \mathbb{C}^n \), on note \(T(U) \) le \(\mathcal{O}(U) \)-module libre engendré par les \(\frac{\partial}{\partial z_i} \), et on appelle les éléments de \(T(U) \) les champs de vecteurs holomorphes. C’est donc un sous-espace vectoriel de l’ensemble \(\mathcal{C}^\infty(U, \mathbb{C}^n \otimes_{\mathbb{R}} \mathbb{C}) \) des champs de vecteurs tangents complexes. Bien sûr on a canoniquement identifié \(T_P = \mathbb{C}^n \) pour tout \(P \in U \) pour voir les éléments de \(\mathbb{C}^n \otimes_{\mathbb{R}} \mathbb{C} \) comme des vecteurs tangents complexes.

Rappelons que pour tout corps \(k \), une \(k \)-déerrivation d’une \(k \)-algèbre commutative \(A \) est une application \(k \)-linéaire \(d : A \to A \) vérifiant la règle de Leibniz \(d(ab) = ad(b) + bd(a) \).
Pour tout ouvert $U \subset \mathbb{C}^n$, les champs de vecteurs tangents lisses $\mathcal{C}^\infty(U, \mathbb{C}^n)$ s'identifient canoniquement aux \mathbb{R}-dérivations de l'algèbre $\mathcal{C}^\infty(U, \mathbb{R})$ via l’application qui à un champ \mathcal{X} associe la dérivation $D_\mathcal{X}$ définie par $D_\mathcal{X}(f) = df(\mathcal{X})$ pour tout $f \in \mathcal{C}^\infty(U, \mathbb{R})$. Par définition $df(\mathcal{X})(P) = df(\mathcal{X}(P))$ pour tout $P \in U$.

De même les champs de vecteurs tangents complexes $\mathcal{C}^\infty(U, \mathbb{C}^n \otimes _{\mathbb{R}} \mathbb{C})$ s'identifient canoniquement aux \mathbb{C}-dérivations de l’algèbre $\mathcal{C}^\infty(U, \mathbb{C})$ des fonctions lisses à valeurs complexes.

Les formules sont évidentes car si $\mathcal{X} = \sum_i a_i \frac{\partial}{\partial z_i} + \sum_j b_j \frac{\partial}{\partial \bar{z}_j}$ avec $a_i, b_j \in \mathcal{C}^\infty(U, \mathbb{C})$, on a

$$D_\mathcal{X}(f) = \sum_i a_i \frac{\partial f}{\partial z_i} + \sum_j b_j \frac{\partial f}{\partial \bar{z}_j}$$

Proposition 2.64. — Les champs de vecteurs holomorphes $T(U)$ s'identifient canoniquement aux \mathbb{C}-dérivations de l’algèbre $\mathcal{O}(U)$ des fonctions holomorphes sur U.

Démonstration. — Il suffit de remarque que si f est holomorphe et a_i est holomorphe, $a_i \cdot \frac{\partial f}{\partial z_i}$ reste holomorphe. □

Remarque 2.65. — Cela donne une définition intrinsèque des champs de vecteurs holomorphes, sans introduire de coordonnées z_1, \ldots, z_n.

2.65.1. Comportement par biholomorphismes. — Soit $U, V \subset \mathbb{C}^n$ des ouverts et $\phi : U \to V$ un biholomorphisme. Il permet donc de définir une image inverse des formes différentielles $\phi^* : A^k(V) \to A^k(U)$ pour tout $k \geq 0$. Lorsque $k = 0$ il s’agit simplement de la précomposition des fonctions par ϕ, soit $\phi^*(f) = f \circ \phi$. Lorsque $k = 1$ on définit pour tout $\alpha \in A^1(V)$ et tout $P \in U$

$$\phi^*(\alpha)(P) = \alpha(\phi(P)) \circ d_P \phi$$

où $\alpha(\phi(P)) \in \text{Hom}_\mathbb{R}(\mathbb{C}^n, \mathbb{C})$ par nature de ce qu’est α. Et de même pour tout $k \geq 1$, où $\phi^*(\alpha)(P)$ est égal à la forme k-linéaire alternée $\alpha(\phi(P))$ précomposé avec $d_P \phi$ appliqué à chaque facteur.

Lemme 2.66. — L’application ϕ^* réalise un isomorphisme de $A^{p,q}(V)$ sur $A^{p,q}(U)$ et de $\Omega^p(V)$ sur $\Omega^p(U)$ pour tous p, q.

Démonstration. — Quitte à considérer ϕ^{-1} on voit qu’il suffit de prouver $\phi^*(A^{p,q}(V)) \subset A^{p,q}(U)$ et $\phi^*(\Omega^p(V)) \subset \Omega^p(U)$. Il est clair que $\phi^*(f)$ est holomorphe sur U pour tout f holomorphe sur V puisque ϕ est holomorphe. Il suffit donc de prouver la première inclusion. Comme

$$A^{p,q}(U) = \Lambda^p_{A^0(U)} \Lambda^q_{A^0(U)} A^{1,0}(U) \otimes \Lambda^q_{A^0(U)} A^{0,1}(U)$$

il suffit de prouver que $\phi^* : A^1(V) \to A^1(U)$ respecte $A^{1,0}$ et $A^{0,1}$. On peut pour cela fixer $P \in U$ et il faut alors voir que pour tout $\alpha \in \text{Hom}_\mathbb{R}(\mathbb{C}^n, \mathbb{C})^{0,1}$, on a $\alpha \circ d_P \phi \in \Lambda^{0,1}(V)$.
Hom\(_R(\mathbb{C}^n, \mathbb{C})^{0,1}\), et de même en type \((0, 1)\). Mais c’est clair puisque Hom\(_R(\mathbb{C}^n, \mathbb{C})^{0,1}\) consiste en les formes \(\mathbb{C}\)-linéaires, et que \(d_P \phi\) est \(\mathbb{C}\)-linéaire car \(\phi\) est holomorphe. □

On voit aussi que tout biholomorphisme \(\phi : U \sim V\) vérifie \(\phi^* \circ d = d \circ \phi^*\) (cela étant vrai pour tout difféomorphisme), \(\phi^* \circ \partial = \partial \circ \phi^*\) et \(\phi^* \circ \bar{\partial} = \bar{\partial} \circ \phi^*\).

Remarque 2.67. — Ainsi en utilisant le formalisme des atlas, il sera évident dans le chapitre suivant de définir \(A^{p,q}(X), \Omega^p_U, T(X), \partial\) et \(\bar{\partial}\) pour toute variété complexe \(X\) et tous \(p, q \geq 0\).
On va naturellement combiner les constructions du chapitre précédent avec le formalisme général de la géométrie différentielle pour définir les variétés complexes. On supposera une familiarité avec le vocabulaire des cartes et des atlas, ce qui nous permettra d’alléger certaines notations. Soit X une variété différentielle de dimension réelle $2n$.

Définition 3.1. — Un atlas holomorphe sur X est un atlas lisse dont les changements de cartes sont des biholomorphismes entre ouverts de $\mathbb{C}^n = \mathbb{R}^{2n}$. C’est donc la donnée d’un recouvrement ouvert $X = \bigcup_{i \in I} U_i$ et d’homéomorphismes $\phi_i : U_i \rightarrow V_i \subset \mathbb{C}^n$ pour tout $i \in I$ telles que $\phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \rightarrow \phi_j(U_i \cap U_j)$ soit un biholomorphisme entre ouverts de \mathbb{C}^n pour tous $i, j \in I$.

On dit que deux atlas holomorphes sont équivalents quand leur union reste un atlas holomorphe.

Définition 3.2. — Une variété complexe de dimension complexe n est une variété différentielle de dimension réelle $2n$ munie d’une classe d’équivalence d’atlas holomorphes.

Remarque 3.3. — Soit X une variété différentielle. On peut en général la munir de plusieurs structures complexes différentes. C’est le cas lorsque $X = \mathbb{C}/\Lambda$ avec $\Lambda \subset \mathbb{C}$ un réseau. Les variétés différentes \mathbb{C}/Λ sont difféomorphes entre elles lorsque Λ varie, puisque toutes difféomorphes à $(\mathbb{S}^1)^2$. Mais on sait bien (REF POLY SDR) que les surfaces de Riemann \mathbb{C}/Λ et \mathbb{C}/Λ' ne sont isomorphes que lorsqu’il existe $z \in \mathbb{C}^*$ tel que $\Lambda' = z \cdot \Lambda$.

Cela permet de définir la notion de fonctions holomorphes sur X : ce sont les fonctions lisses de X dans \mathbb{C} qui sont holomorphes dans un atlas holomorphe de X (on va préciser dans un instant cette notion pour former un faisceau qu’on notera \mathcal{O}_X). De même on définit les morphismes de variétés complexes.

On va globaliser les constructions de $A(U)$, $A^{p,q}(U)$, $\mathcal{O}(U)$, $\Omega^p(U)$ à toute variété complexe, via le formalisme des faisceaux. Rappelons leur définition dans le cadre général. Cela passe d’abord par la notion de préfaisceau.
3.4. Faisceaux I

Soit X un espace topologique. On dispose donc de l’ensemble $\text{Ouv}(X)$ des ouverts de X. On munit $\text{Ouv}(X)$ d’une structure de catégorie en posant $\text{Map}_{\text{Ouv}(X)}(U, V) = \emptyset$ si U n’est pas inclus dans V et $\text{Map}_{\text{Ouv}(X)}(U, V) = \{ \iota \}$ si U est inclus dans V et que $\iota : U \hookrightarrow V$ est l’inclusion canonique.

Définition 3.5. — Un préfaisceau \mathcal{F} sur un espace topologique X est un foncteur contra-variant $\mathcal{F} : \text{Ouv}(X) \rightarrow \text{Set}$ vers la catégorie des ensembles.

Ainsi un préfaisceau \mathcal{F} est la donnée pour tout ouvert $U \subset X$ d’un ensemble $\mathcal{F}(U)$ et pour tous ouverts $U \subset V$ d’une application ensembliste $\text{res}^V_U : \mathcal{F}(V) \rightarrow \mathcal{F}(U)$ vérifiant $\text{res}^V_U = \text{Id}_{\mathcal{F}(U)}$ et $\text{res}^V_U \circ \text{res}^W_V = \text{res}^W_U$ pour tous $U \subset V \subset W$. On appelle les éléments de $\mathcal{F}(U)$ les sections de \mathcal{F} sur U, et on y pense comme à un certain type de «fonctions», qu’on peut restreindre à des ouverts plus petits. Pour plus de légèreté on notera $\text{res}^V_U(s) = s|_U$. On utilise aussi fréquemment les notations suivantes pour l’espace des sections de \mathcal{F} sur U $\mathcal{F}(U) = \Gamma(U, \mathcal{F}) = H^0(U, \mathcal{F})$

Remarque 3.6. — On définit de même les préfaisceaux en groupes abéliens, où $\mathcal{F}(U)$ est un groupe abélien pour tout $U \subset X$ et res^V_U est un morphisme de groupe. De même pour les préfaisceaux en anneaux, les préfaisceaux en \mathbb{C}-espaces vectoriels, etc.

Exemple 3.7. — On dispose des préfaisceaux suivants, où la restriction est évidente :

i. $\mathcal{F}(U)$ est l’ensemble des fonctions ensemblistes $U \rightarrow \mathbb{C}$, et res^V_U est la restriction des fonctions.

ii. $\mathcal{F}(U)$ est l’ensemble des fonctions continues $U \rightarrow \mathbb{C}$.

iii. Si X est une variété différentiable, $\mathcal{F}(U)$ est l’ensemble des fonctions C^∞ sur U.

iv. Si X est une variété différentiable, $\mathcal{F}(U)$ est l’ensemble des k-formes différentielles sur U.

v. $\mathcal{F}(U) = \mathbb{C}$ pour tout U, et res^V_U est l’identité pour tous U, V.

vi. $\mathcal{F}(U) = \mathbb{C}^{\pi_0(U)}$ est l’ensemble des fonctions localement constantes $U \rightarrow \mathbb{C}$, et res^V_U la restriction des fonctions. On note usuellement $\mathcal{F} = \mathcal{O}_X$, et de même en remplaçant \mathbb{C} par \mathbb{Z} etc.

vii. Si $X \subset \mathbb{C}^n$ est un ouvert, $\mathcal{O}_X(U) = \mathcal{O}(U)$ est l’ensemble des fonctions holomorphes sur U.

viii. Si $X \subset \mathbb{C}^n$ est un ouvert et $p \geq 0$, $\Omega^p_X(U) = \Omega^p(U)$ est l’ensemble des p-formes différentielles holomorphes sur U.

ix. Si $X \subset \mathbb{C}^n$ est un ouvert et $p, q \geq 0$, $\mathcal{A}^{p,q}_X(U) = A^{p,q}(U)$ est l’ensemble des $p+q$-formes différentielles lisses de type (p, q) sur U.
x. Si $X \subset \mathbb{C}^n$ est un ouvert, $T_X(U) = T(U)$ est l’ensemble des champs de vecteurs tangents complexes holomorphes.

On voit donc que les préfaisceaux ne paramètrent pas nécessairement des fonctions, même si c’est bien sûr la situation typique qu’il faut avoir en tête.

Exemple 3.8. — Si on note $\mathcal{F}(U)$ l’ensemble des fonctions à support compact sur U, on n’obtient pas un préfaisceau. En effet la restriction ne préserve pas la compacité du support.

Il y a une notion un peu exotique de cofaisceau \mathcal{G}, qui sont munis pour tous $U \subset V$ d’un morphisme de corestriction $\text{cores}_{U,V} : \mathcal{G}(U) \to \mathcal{G}(V)$ et notre \mathcal{F} est un cofaisceau.

Définition 3.9. — Soit X un espace topologique et \mathcal{F}, \mathcal{G} deux préfaisceaux en groupes sur X. Un morphisme de préfaisceaux $f : \mathcal{F} \to \mathcal{G}$ est la donnée pour tout $U \subset X$ d’un morphisme de groupes $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ commutant aux restrictions.

Remarque 3.10. — On dispose de la même manière de la notion d’un morphisme de préfaisceaux en ensemble, ou de préfaisceaux en anneau, etc.

Exemple 3.11. — Les applications naturelles suivantes sont des morphismes de préfaisceaux :

i. Si $X \subset \mathbb{C}^n$ est un ouvert, $d : \mathcal{O}_X \to \Omega^1_X$.

ii. Si $X \subset \mathbb{C}^n$ est un ouvert, $d : \mathcal{A}^k_X \to \mathcal{A}^{k+1}_X$.

iii. Si $X \subset \mathbb{C}^n$ est un ouvert, $d : \Omega^p_X \to \Omega^{p+1}_X$ pour tout $p \geq 0$.

iv. Si $X \subset \mathbb{C}^n$ est un ouvert, $\partial : \mathcal{A}^k_X \to \mathcal{A}^{k+1}_X$ pour tout $k \geq 0$.

v. Si $X \subset \mathbb{C}^n$ est un ouvert, $\bar{\partial} : \mathcal{A}^{p,q}_X \to \mathcal{A}^{p+1,q}_X$ pour tout $k \geq 0$.

vi. Si $X \subset \mathbb{C}^n$ est un ouvert et \mathcal{O}_X est le faisceau en groupe multiplicatif des fonctions holomorphes sans zéros, l’application $\exp : \mathcal{O}_X \to \mathcal{O}^*_X$, $f \mapsto e^f$.

Lorsque \mathcal{F} est un préfaisceau, il n’y a *a priori* aucun lien entre $\mathcal{F}(U_i)$ pour $U_i \subset X$ parcourant un recouvrement ouvert, et $\mathcal{F}(X)$. Par exemple on peut très bien imaginer $\mathcal{F}(X) = 0$ et $\mathcal{F}(U_i) \neq 0$, ou au contraire $\mathcal{F}(U_i) = 0$ pour tout i alors que $\mathcal{F}(X)$ est très grand. La définition de faisceau vient imposer de telles contraintes. On peut évidemment définir la notion de faisceau en ensemble, mais on se restreint à celle de faisceaux en groupes pour pouvoir utiliser la notion de suite exacte courte.

Définition 3.12. — Soit X un espace topologique et \mathcal{F} un préfaisceau en groupes. On dit que \mathcal{F} est un faisceau si pour tout ouvert $U \subset X$ et tout recouvrement ouvert $U = \cup_{i \in I} U_i$,

en notons $U_{ij} = U_i \cap U_j$ pour tous $i \neq j \in I$, on a la suite exacte courte

$$0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \mathcal{F}(U_{ij})$$

où la première flèche est $\prod_i \text{res}^U_{U_i}$ et la seconde est induite pour tous $i \neq j$ par

$$\mathcal{F}(U_i) \times \mathcal{F}(U_j) \to \mathcal{F}(U_{ij}), \quad (s_i, s_j) \mapsto \text{res}^U_{U_{ij}}(s_i) - \text{res}^U_{U_{ij}}(s_j)$$

Ainsi les sections de \mathcal{F} sur U sont de « nature locale », ie se recollent quand on recouvre U par des ouverts plus petits La plupart des préfaisceaux usuels sont des faisceaux :

Exemple 3.13. — On dispose des faisceaux suivants, où la restriction est évidente :

i. $\mathcal{F}(U)$ est l’ensemble des fonctions ensemblistes $U \to \mathbb{C}$.

ii. $\mathcal{F}(U)$ est l’ensemble des fonctions continues $U \to \mathbb{C}$. En effet la continuité d’une application ensembliste est une propriété locale : elle est vraie lorsqu’elle est vraie sur de petits ouverts recouvrant l’espace.

iii. Si X est une variété différentiable, $\mathcal{F}(U)$ est l’ensemble des fonctions C^∞ sur U. En effet, la lissité d’une fonction est également une propriété locale.

iv. Si X est une variété différentiable, $\mathcal{F}(U)$ est l’ensemble des k-formes différentielles sur U.

v. $\mathcal{L}_X(U) = \mathbb{C}^{\pi_0(U)}$ est l’ensemble des fonctions localement constantes $U \to \mathbb{C}$. En effet, la notion d’être localement constante est une notion locale pour une fonction ensembliste.

vi. Si $X \subset \mathbb{C}^n$ est un ouvert, $\mathcal{O}_X(U) = \mathcal{O}(U)$ est l’ensemble des fonctions holomorphes sur U. En effet, l’holomorphie est encore une propriété locale.

vii. Si $X \subset \mathbb{C}^n$ est un ouvert et $p \geq 0$, $\Omega^p_X(U) = \Omega^p(U)$ est l’ensemble des p-formes différentielles holomorphes sur U.

viii. Si $X \subset \mathbb{C}^n$ est un ouvert et $p, q \geq 0$, $\mathcal{A}^{p,q}_X(U) = \mathcal{A}^{p,q}(U)$ est l’ensemble des $p+q$-formes différentielles lisses de type (p, q) sur U.

ix. Si $X \subset \mathbb{C}^n$ est un ouvert, $T_X(U) = T(U)$ est l’ensemble des champs de vecteurs tangents complexes holomorphes.

x. Si X est une variété différentielle et $\pi : E \to X$ est un fibré vectoriel, $\mathcal{E}(U)$ est l’ensemble des sections lisses de π.

xi. Si X est une variété différentielle et $\pi : E \to X$ est un fibré vectoriel, $\mathcal{E}(U)$ est l’ensemble des sections continues de π.

xii. Si X est une variété différentielle et $\pi : E \to X$ est un fibré vectoriel, $\mathcal{E}(U)$ est l’ensemble des sections ensemblistes de π.
Exercice 3.14. — Prouver que le préfaisceau des fonctions constantes où $\mathbb{C}_X(U) = \mathbb{C}$ pour tout $U \subset X$ n’est pas un faisceau.

En effet la notion d’être constante n’est pas une propriété locale pour une fonction. Seule le fait d’être localement constante est une propriété, et cela explique que \mathbb{C}_X est un faisceau et pas \mathbb{C}_X. On peut obtenir d’autres préfaisceaux qui ne sont pas des faisceaux en imposant des propriétés globales aux sections.

Exemple 3.15. — Soit X un espace topologique et $F(U)$ le préfaisceau des fonctions continues bornées. Ce n’est pas un faisceau. En effet on n’a jamais imposé aux recouvrements d’être finis et si $U = \cup_{i \in I} U_i$ est un recouvrement infini et f est borné sur chaque U_i, elle n’a pas de raison d’être bornée sur U.

On trouve quantité d’autres exemples de préfaisceaux qui ne sont pas des faisceaux en faisant des quotients naïfs (par opposition des quotients dans la catégorie des faisceaux, voir la remarque 3.68).

Exemple 3.16. — Les préfaisceaux suivants ne sont pas des faisceaux lorsque X est une variété complexe.

i. $\mathcal{H}(U) = \Omega^1_X(U)/d(O_X(U))$.

ii. $\mathcal{H}(U) = \text{Ker}(d : A^k_X(U) \rightarrow A^{k+1}_X(U))/\text{Im}(d : A^{k-1}_X(U) \rightarrow A^k_X(U))$.

iii. $\mathcal{H}(U) = \text{Ker} (\bar{\partial} : A^{p,q}_X(U) \rightarrow A^{p,q+1}_X(U))/\text{Im}(d : A^{p,q-1}_X(U) \rightarrow A^{p,q}_X(U))$.

Remarque 3.17. — Élaborons sur l’exemple précédent. Dans les trois cas, on a $\mathcal{H}(U) = 0$ pour $U \subset X$ un « petit » ouvert (par exemple simplement connexe pour le premier exemple, contractile pour le second, et Stein (cf. rem. 2.63) pour le troisième), en utilisant les lemmes de Poincaré et de Dolbeault. Et pourtant on n’a pas $\mathcal{H}(X) = 0$ a priori, et il est facile de trouver des contre-exemples.

Plaçons nous par exemple dans le premier exemple, avec même $X \subset \mathbb{C}$ un ouvert. Si $X = \cup_i U_i$ est l’union d’ouverts simplement connexes, on a donc $\mathcal{H}(U_i) = 0$ pour tout $i \in I$ car toute fonction holomorphe a une primitive holomorphe sur un ouvert simplement connexe. Mais cette primitive n’est pas unique, elle est juste unique à constante près. En conséquent pour tout $\omega \in \Omega^1_X(X)$, soit $g_i \in O_X(U_i)$ telle que $d(g_i) = \omega|_{U_i}$. Même si on a évidemment $(\omega|_{U_i})|_{U_{ij}} = (\omega|_{U_j})|_{U_{ij}}$ pour tous $i \neq j$, il n’y a aucune raison pour que $f_i|_{U_{ij}} = f_j|_{U_{ij}}$, a priori on peut juste dire que $f_i|_{U_{ij}} - f_j|_{U_{ij}}$ est localement constant sur U_{ij}. On ne peut donc pas utiliser l’axiome de faisceau de O_X pour recoller les f_i en $f \in O_X(X)$ telle que $df = \omega$.

Voilà la définition d’un morpohisme, qui permet de parler de la catégorie des faisceaux.

Définition 3.18. — Soit X un espace topologique et \mathcal{F}, \mathcal{G} deux faisceaux en groupes sur X. Un morphisme de faisceaux $f : \mathcal{F} \rightarrow \mathcal{G}$ est un morphisme de préfaisceaux.
Terminons par un énoncé de recollement de faisceaux, dont la preuve est très formelle.

Proposition 3.19. — Soit X un espace topologique et $X = \bigcup_{i \in I} U_i$ un recouvrement ouvert. Notons $U_{ij} = U_i \cap U_j$ pour tous $i \neq j \in I$. Soit \mathcal{F}_i un faisceau sur U_i pour tout $i \in I$ et $\tau_{ij} : \mathcal{F}_j|_{U_{ij}} \to \mathcal{F}_i|_{U_{ij}}$ un isomorphisme de faisceaux sur tous $i \neq j$ vérifiant la condition de cocyle (ou de Chasles) $\tau_{ik} = \tau_{ij} \circ \tau_{jk}$ pour tous $i \neq j \neq k$. Il existe un unique faisceau \mathcal{F} sur X et des isomorphismes $s_i : \mathcal{F}_i \simto \mathcal{F}|_{U_i}$ pour tous i tels que $\tau_{ij} = s_i \circ s_j^{-1}$.

On peut de même recoller des morphismes de faisceaux. La proposition sert dans un contexte de cartes et d’atlas. Pour alléger les notations, il est alors agréable pour tout homéomorphisme $f : X \to Y$ d’identifier abusivement les ouverts de X et de Y, puis d’identifier les faisceaux sur X et sur Y.

Corollaire 3.20. — Soit X une variété complexe. Il existe des faisceaux \mathcal{O}_X, Ω^p_X, T_X paramétrant fonctions, formes différentielles et champs de vecteurs holomorphes, et des faisceaux \mathcal{A}^0_X et $\mathcal{A}^{p,q}_X$ paramétrant des formes différentielles lisses. Il existe des morphismes de faisceaux $d : \Omega^p_X \to \Omega^{p+1}_X$, $d : \mathcal{A}^p_X \to \mathcal{A}^{p+1}_X$, $\partial : \mathcal{A}^{p,q}_X \to \mathcal{A}^{p,q+1}_X$ et $\bar{\partial} : \mathcal{A}^{p,q}_X \to \mathcal{A}^{p,q+1}_X$.

Démonstration. — Utiliser la proposition 2.66 et l’abus de notation consistant à identifier des faisceaux sur des espaces homéomorphes pour construire les isomorphismes τ_{ij} sur U_{ij} comme dans la proposition.

Remarque 3.21. — On prendra garde que toute construction naturelle dans les ouverts de \mathbb{C}^n ne se recolle pas! Par exemple la dérivation $f \mapsto f'$ définit une application $\mathcal{O}(U) \to \mathcal{O}(U)$ pour tout ouvert $U \subset \mathbb{C}$. Mais pour un biholomorphisme $\phi : U \to V$, on n’a PAS $(f \circ \phi)' = f' \circ \phi$. En conséquence l’application $f \mapsto f'$ ne commute pas avec les isomorphismes de recollement τ_{ij} de la proposition 3.19 et on n’obtient pas d’application de dérivation $\mathcal{O}_X \to \mathcal{O}_X$ sur une surface de Riemann.

C’est logique car sur une variété, pour dériver une fonction en une fonction, il faut se donner un champ de vecteurs tangents. Ce n’est que sur les ouverts de \mathbb{C} ou \mathbb{R}^n qu’on peut implicitement utiliser le champ de vecteurs $\partial/\partial z$ ou $\partial/\partial x_k$ pour $1 \leq k \leq n$.

3.21.1. Faisceaux en modules.

On peut définir des variantes de la notion de faisceau en groupes abéliens. Par exemple, si \mathcal{A} est un faisceau en anneau sur X, on définit la notion de faisceau en \mathcal{A}-modules en imposant que $\mathcal{F}(U)$ soit muni d’une structure de $\mathcal{A}(U)$-module pour tout $U \subset X$, et que la restriction soit \mathcal{A}-linéaire (plus précisément linéaire par rapport au morphisme de restriction $\mathcal{A}(U) \to \mathcal{A}(V)$). On a alors la notion de morphisme de faisceaux en \mathcal{A}-modules : on demande à $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ d’être $\mathcal{A}(U)$-linéaire.

Exemple 3.22. — Les faisceaux \mathcal{A}^k_X et $\mathcal{A}^{p,q}_X$ sont en \mathcal{A}^0_X-modules et $d, \partial, \bar{\partial}$ sont \mathcal{A}^0_X-linéaires. Les faisceaux Ω^p_X sont en \mathcal{O}_X-modules et d est \mathcal{O}_X-linéaire.
Exercice 3.23. — Calculer les endomorphismes \(\mathcal{O}_X \)-linéaires du faisceau \(\mathcal{O}_X \) lorsque \(X \) est un ouvert de \(\mathbb{C}^n \). Idem pour les endomorphismes \(\mathcal{A}_X^0 \)-linéaires de \((\mathcal{A}_X^0)^* \).

3.24. Fibrés vectoriels

Nous allons rappeler la notion de fibré vectoriel en géométrie différentielle, puis définir celle de fibré holomorphe en géométrie complexe. Nous verrons aussi comment interpréter tous les faisceaux précédents comme sections lisses ou holomorphes de certains fibrés sur les variétés complexes. Le reste du cours pourra être formulé au choix en terme de fibrés vectoriels ou de faisceaux, et nous privilégierons ce dernier point de vue (mais voir la remarque REF SUR COHO FAISCEAUX!!!).

3.24.1. Fibrés complexes en géométrie différentielle.

Soit \(X \) une variété différentielle. Rappelons qu’un fibré vectoriel complexe \(\pi : E \to X \) de rang \(r \geq 0 \) est la donnée d’un espace topologique \(E \) et d’une application continue \(\pi \) tels qu’il existe un recouvrement ouvert \(X = \bigcup_{i \in I} U_i \) et un isomorphisme \(\phi_i : \pi^{-1}(U_i) \cong U_i \times \mathbb{C}^r \) telle que \(\pi = \text{pr}_1 \circ \phi_i \) et telle que pour tout \(i, j \in I \), le morphisme composé \(\phi_j \circ \phi_i^{-1} : (U_i \cap U_j) \times \mathbb{C}^r \to (U_i \cap U_j) \times \mathbb{C}^r \) soit de la forme \((x, \lambda) \mapsto (x, f(x, \lambda))\) où \(f : x \mapsto (\lambda \mapsto f(x, \lambda)) \) est donnée par une application lisse \(U_i \cap U_j \to \text{GL}_r(\mathbb{C}) \). Autrement dit on demande à \(f \) d’être lisse en \(x \) et linéaire en \(\lambda \).

On vérifie alors aisément que \(E \) est muni d’une structure de variété différentiable telle que \(\pi \) soit lisse et submersive. De plus les fibres de \(\pi \), c’est-à-dire les sous-ensembles de la forme \(E_x := \pi^{-1}(x) \subset E \) pour \(x \in X \), sont naturellement munies d’une structure de \(\mathbb{R} \)-espace vectoriel de dimension \(r \).

On rappelle aussi que si \(\pi : E \to X \) et \(\tau : F \to X \) sont des fibrés sur la même variété de base \(X \), un morphisme de fibrés vectoriels est une application lisse \(f : E \to F \) telle que \(\tau \circ f = \pi \) (ce qui garantit que pour tout \(x \in X \), on a \(f(\pi^{-1}(x)) \subset \tau^{-1}(x) \)) telle que pour tout \(x \in X \), l’application induite par \(f \) de \(E_x = \pi^{-1}(x) \) dans \(F_x = \tau^{-1}(x) \) soit linéaire.

Soit \(X = \bigcup_{i \in I} U_i \) une variété différentielle munie d’un recouvrement ouvert. Pour tous \(i \neq j \in I \) notons \(U_{i,j} = U_i \cap U_j \) et pour tous \(i, j, k \in I \) distincts trois à trois, notons \(U_{i,j,k} = U_i \cap U_j \cap U_k \). Donnons \(g_{i,j} : U_{i,j} \to \text{GL}_n(\mathbb{C}) \) une fonction lisse pour tous \(i \neq j \) vérifiant la règle de Chasles \(g_{i,k} = g_{i,j} \times g_{j,k} \) pour tous \(i \neq j \neq k \), où \(\times \) désigne le produit matriciel. On dit alors que \((g_{ij})_{ij}\) est un cocycle pour le recouvrement \((U_i)_{i}\) et le groupe \(\text{GL}_n(\mathbb{C}) \).

On peut alors considérer la relation d’équivalence \(\sim \) sur \(\prod_{i \in I} U_i \times \mathbb{C}^r \) donnée par \((x_j, \lambda) \sim (x_i, g_{i,j}(\lambda))\) pour tout \(x \in U_i \cap U_j \), en notant \(x_j = x_u \) comme élément de \(U_i \), et \(x_j = x_u \) comme élément de \(U_j \). Le fait que cette relation est transitive résulte d’ailleurs de la règle de cocycle sur les \(g_{ij} \). On obtient une première projection

\[
\text{pr}_1 : \prod_{i \in I} U_i \times \mathbb{C}^r \to \prod_{i \in I} U_i
\]
qui vérifie $\text{pr}_1(x_j, \lambda) \simeq \text{pr}_1(x_i, \lambda)$ pour tous $(x_j, \lambda) \sim (x_i, \lambda)$. Ici \simeq est la relation d’équivalence sur $\bigsqcup_{i \in I} U_i$ donnée par $x_i \simeq x_j$ si et seulement si $x_i = x_j \in U_{i,j}$. On a donc un homéomorphisme entre $(\bigsqcup_{i \in I} U_i)/\simeq$ muni de la topologie quotient et X.

On peut alors définir l’espace topologique quotient

$$E := \left(\bigsqcup_{i \in I} U_i \times \mathbb{C}^r \right)/\sim$$

qui est muni d’une application continue $\pi : E \to X$ passant pr_1 au quotient. Il est formel et fastidieux de vérifier que $\pi : E \to X$ est un fibré vectoriel complexe de rang r.

On dit que deux cocycles $(g_{i,j})_{i,j \in I}$ et $(h_{i,j})_{i,j \in I}$ différent d’un cobord s’il existe $f_i : U_i \to \text{GL}_n(\mathbb{C})$ lisse pour tout $i \in I$ vérifiant $h_{i,j} = g_{i,j} \times f_i|U_{i,j} \times f_i|U_{i,j}^{-1}$ pour tous $i, j \in I$. On vérifie que dans ce cas les fibrés E et F construit respectivement à l’aide de $g_{i,j}$ et de $h_{i,j}$ sont isomorphes. En effet il suffit de passer au quotient l’isomorphisme

$$\prod_{i \in I} U_i \times \mathbb{C}^r \to \prod_{i \in I} U_i \times \mathbb{C}^r$$

qui envoie (x_i, λ) sur $(x_i, f_i(x_i)(\lambda))$.

Enfin pour tout fibré vectoriel complexe $\pi : E \to X$ de rang r et pour tout recouvrement ouvert $X = \bigcup_{i \in I} U_i$ tel que $E|_{U_i}$ soit trivialisable, choisissons une trivialisation $k_i : E|_{U_i} \to U_i \times \mathbb{C}^r$. Notons alors $f_{i,j} = k_j|_{U_{i,j}} \circ k_i|_{U_{i,j}}^{-1}$ qui vérifie la règle de cocyle. On dispose alors du fibré F construit par quotient à partir de $f_{i,j}$. On vérifie que les fibrés E et F sont isomorphes. En effet il suffit de passer au quotient l’isomorphisme

$$\prod_{i \in I} E|_{U_i} \to \prod_{i \in I} U_i \times \mathbb{C}^r$$

qui envoie $e_i \in E|_{U_i}$ sur $k_i(e_i)$, puisque cette isomorphisme est compatible à la relation d’équivalence évidente à la source et à la relation \sim donnée par les $(f_{i,j})_{i,j}$ au but.

En conséquence on a prouvé la proposition suivante.

Proposition 3.25. — Soit $X = \bigcup U_i$ une variété différentielle munie d’un recouvrement ouvert. On dispose d’une bijection canonique entre les classes d’isomorphismes de fibrés vectoriels complexes de rang r sur X trivialisables sur chaque U_i et les familles de cocycles $f_{i,j} : U_{i,j} \to \text{GL}_r(\mathbb{C})$ modulo les cobords.

Remarque 3.26. — On peut faire mieux (CF REF APRES!!!) en faisant varier le recouvrement ouvert, de telle sorte qu’on puisse paramétrer par des cocyles tous les fibrés vectoriels sur X.

Remarque 3.27. — Tout marche bien sûr de même pour les fibrés réels, et on obtient une bijection entre les classes d’isomorphismes de fibrés vectoriels réels de rang r sur X.
trivialisables sur chaque U_i et les familles de cocycles $f_{i,j} : U_{i,j} \to \text{GL}_r(\mathbb{R})$ modulos les cobords.

Exemple 3.28. — On peut construire les fibrés vectoriels suivants.

i. Le fibré trivial complexe de rang r qui est $\text{Triv}^r_C = X \times \mathbb{C}^r$ est associé au cocycle trivial $f_{i,j} = 1_r : U_{i,j} \to \text{GL}_r(\mathbb{C})$.

ii. Soit F un fibré réel de cocycles $f_{i,j} : U_{i,j} \to \text{GL}_r(\mathbb{R})$. Alors en utilisant l’inclusion évidente $\text{GL}_r(\mathbb{R}) \subset \text{GL}_r(\mathbb{C})$ on obtient un nouveau cocycle $f_{i,j,c} : U_{i,j} \to \text{GL}_r(\mathbb{C})$ et donc un fibré complexe que l’on note F_C. On dira que c’est le complexifié de F.

iii. Plus généralement pour tous $r, s \geq 0$ et tout morphisme de groupes $\rho : \text{GL}_r(\mathbb{C}) \to \text{GL}_s(\mathbb{C})$, l’image de tout cocycle $f_{i,j} : U_{i,j} \to \text{GL}_r(\mathbb{C})$ est un cocycle $\rho(f_{i,j}) : U_{i,j} \to \text{GL}_s(\mathbb{C})$, et l’image d’un cobord est un cobord. Cela permet d’associer à tout fibré vectoriel complexe E de rang r un nouveau fibré vectoriel complexe de rang s, noté E^ρ.

iv. En utilisant le morphisme de groupes $\text{GL}_r(\mathbb{C}) \times \text{GL}_s(\mathbb{C}) \to \text{GL}_{r+s}(\mathbb{C})$ qui construit une matrice carrée de taille $r+s$ par bloc diagonaux de tailles r et s, on obtient donc à partir de E et F deux fibrés vectoriels de rang r et s sur X un nouveau fibré noté $E \oplus F$ de rang $r+s$ sur X.

v. En utilisant le morphisme de groupes $\text{GL}_r(\mathbb{C}) \to \text{GL}_r(\mathbb{C})$, $M \mapsto M^{-1}$, on construit un nouveau fibré E^{c} de rang r à partir d’un fibré E de rang r. On dit que c’est le fibré dual de E.

vi. En utilisant le morphisme de groupes $\text{GL}_r(\mathbb{C}) \to \text{GL}(\text{Mat}_{r,s}(\mathbb{C}))$, $M \mapsto (N \mapsto M \cdot N \cdot M^{-1})$ on construit le fibré $\text{End}_C(E)$ de rang r^2 à partir de E de rang r.

vii. En utilisant le morphisme de groupes $\text{GL}_r(\mathbb{C}) \times \text{GL}_s(\mathbb{C}) \to \text{GL}(\text{Mat}_{r,s}(\mathbb{C}))$, $(M_1, M_2) \mapsto (N \mapsto M_1 \cdot N \cdot M_2^{-1})$ on construit le fibré $\text{Hom}_C(E, F)$ de rang $r \cdot s$ à partir de E et F de rang respectifs r et s.

viii. En utilisant le produit de Kronecker $\text{GL}_r(\mathbb{C}) \times \text{GL}_s(\mathbb{C}) \to \text{GL}_{r+s}(\mathbb{C})$, on construit un fibré produit tensoriel $E \otimes_C F$ de rang rs à partir de deux fibrés E et F de rang r et s.

ix. En utilisant pour tous $r, k \geq 0$ le morphisme $\text{GL}_r(\mathbb{C}) \to \text{GL}(\text{Alt}_C^k(\mathbb{C}, \mathbb{C}))$, $M \mapsto (A \mapsto A(M \bullet, \cdots, M \bullet)$ on construit à partir tout fibré complexe E de rang r un fibré $\text{Alt}_C^k(E, X \otimes \mathbb{C})$ de rang C^k_r (le coefficient binomial).

Remarque 3.29. — En travaillant un peu plus on peut rendre ces constructions fonctorielles. On dispose ainsi des fibrés vectoriels E^{c}, E_C, $E \otimes_C F$, etc, et pas simplement de leur classe d’isomorphisme. Voir l’exercice 3.36.

Proposition 3.30. — Soit $f : X \to Y$ une application lisse entre variétés et $F \to Y$ un fibré vectoriel complexe de rang n. Soit $Y = \cup V_i$ un recouvrement trivialisant F et
40 CHAPITRE 3. VARIÉTÉS COMPLEXES

g_{ij} : V_{ij} \to \text{GL}_n(\mathbb{C}) le cocycle associé. Alors en notant \(U_i = f^{-1}(V_i) \) pour tout \(i \), on obtient un cocyle \(g_{ij} \circ f : U_{ij} \to \text{GL}_n(\mathbb{C}) \), ce qui permet de définir le fibré complexe \(f^*(F) \) de rang \(n \) sur \(X \).

Soit \(X \) une variété et \(E \to X \) un fibré complexe. Rappelons qu’un sous-fibré vectoriel \(F \subset E \) de rang \(r \leq n \) est une sous-variété de \(E \) telle dans tout recouvrement \(X = \bigcup_i U_i \) trivialisant \(E \), on a \((F \subset E) \sim (U_i \times \mathbb{C}^r \subset U_i \times \mathbb{C}^n) \).

Proposition 3.31. — Soit \(F \subset E \) un sous-fibré vectoriel sur \(X \). En prenant une trivialisation de \(E \) sur \(U_i \) adaptée au sous-espace vectoriel fourni par \(F \), on obtient un cocyle \(g_{ij} : U_{ij} \to \text{GL}_n(\mathbb{C}) \) qui est triangulaire supérieure par blocs, les blocs diagonaux étant de taille \(r \times r \) et \((n-r) \times (n-r)\). Le bloc de taille \(r \times r \) définit un cocyle \(h_{ij} : U_{ij} \to \text{GL}_r(\mathbb{C}) \) dont le fibré associé n’est autre que \(E \). Le bloc de taille \((n-r) \times (n-r)\) définit un cocyle \(k_{ij} : U_{ij} \to \text{GL}_{n-r}(\mathbb{C}) \) dont le fibré de rang \(d-r \) associé est noté \(E/F \).

Exercice 3.32. — Soit \(E \) un fibré vectoriel réel de rang \(2r \) sur \(X \).

i. Supposons que \(E \) admet une structure de fibré vectoriel complexe. Construire une section \(J \) sur \(X \) du fibré réel \(\text{End}_\mathbb{R}(E) \) telle que \(J^2 = -\text{Id}_E \).

ii. Réciproquement à toute telle section \(J \) associer une structure de fibré complexe sur \(E \).

iii. Si \(E \) est un fibré complexe, montrer que le fibré réel sous-jacent au fibré complexe \(\text{Hom}_\mathbb{C}(E, X \times \mathbb{C}) \) est isomorphe à \(\text{Hom}_\mathbb{R}(E, X \times \mathbb{R}) \).

Remarque 3.33. — Tout fibré réel de dimension paire n’admet pas nécessairement de structure complexe. Par exemple on sait que les seules sphères \(S^{2n} \) dont le fibré tangent admet une structure complexe sont \(S^2 \) et \(S^6 \). DEVELOPPER POUR VARIETE APRES!!!

Si \(E \to X \) admet une structure complexe associée à \(J \), il en admet une autre (appelée conjuguée) associée à \(-J\).

Exercice 3.34. — Soient \(E \) et \(F \) des fibrés vectoriels complexes sur \(X \). Montrer que les fibrés \(E \otimes_\mathbb{C} F \) et \(\text{Hom}_\mathbb{C}(E^\vee, F) \) sont isomorphes.

Exercice 3.35. — Pour tous \(r, k \geq 0 \) et tout fibré complexe \(E \) de rang \(r \), construire un fibré \(\Lambda^k_E \) de rang \(C^k_r \) qui mérite le nom de puissance extérieure \(k \)-ème de \(E \).

Exercice 3.36. — Soient \(E \) et \(F \) des fibrés vectoriels complexes sur \(X \). Décrire en termes de cocycles les morphismes de fibrés de \(E \) dans \(F \). En déduire par exemple que la construction \(E \mapsto E^\vee \) est fonctorielle contravariante.

Remarque 3.37. — Lorsque \(X = \{\ast\} \) est un point, on a une équivalence de catégorie tautologique entre les fibrés vectoriels sur \(X \) et les espaces vectoriels. Par cette équivalence, les constructions de l’exemple 3.28 correspondent aux constructions usuelles sur les espaces vectoriels.
3.24. FIBRÉS VECTORIELS

Lorsque X est quelconque, si E et F sont des fibrés vectoriels sur X on dispose pour tout $x \in X$ d’un isomorphisme canonique d’espaces vectoriels entre $(E')_x$ et le dual de E_x, et entre $(E \otimes F)_x$ et $E_x \otimes_C F_x$, etc. Ainsi les constructions de l’exemple 3.28 « mettent en famille de manière lisse sur X » les constructions usuelles sur les espaces vectoriels, comme la construction du dual ou du produit tensoriel.

Ainsi pour toute variété différentielle X de dimension d munie d’un atlas $X = \cup_{i \in I} U_i$ avec

$$\phi_i : U_i \simto V_i \subset \mathbb{R}^d$$

on dispose naturellement du cocyle $U_{i,j} \to \text{GL}_d(\mathbb{R})$, $x \mapsto d_x(\phi_i \circ \phi_j^{-1})$ ce qui permet de construire le fibré tangent Tan_X, qui est un fibré réel de rang d. Bien sûr on a une identification canonique entre espaces vectoriels $(\text{Tan}_X)_P = T_P X$ pour tout $P \in X$. On peut alors construire son complexifié Tan_X, \mathbb{C}, son dual Cotan_X qui est le fibré cotangent à X, son complexifié $\text{Cotan}_X, \mathbb{C}$, ainsi que les fibrés $\text{Alt}^k_{\mathbb{C}}(\text{Tan}_X, \mathbb{C}, \mathbb{C})$ et $\text{Hom}_{\mathbb{R}}(\text{Tan}_X, \mathbb{C})$. On retrouve donc des variantes en tant que fibré sur X de toutes les espaces vectoriels intervenant dans le paragraphe 2.1.1.

3.37.1. Fibrés et faisceaux. — Soit toujours X une variété différentielle. Rappelons qu’on note \mathcal{A}^0_X le faisceau des fonctions lisses à valeurs complexes sur X.

Définition 3.38. — Soit $\pi : E \to X$ un fibré vectoriel (réel ou complexe). On appelle section de E sur X toute application lisse $s : X \to E$ telle que $\pi \circ s = \text{Id}_X$.

Pour tout fibré vectoriel réel ou complexe E sur X et tout ouvert $U \subset X$, on note alors $\mathcal{E}(U)$ l’ensemble des sections de $E|_U$ sur U. On vérifie aisémen que cela fait un faisceau sur X. De plus tout morphisme de fibré vectoriel $E \to F$ sur F fournit un morphisme de faisceaux $\mathcal{E} \to F$.

Exemple 3.39. — On a les correspondances suivantes entre fibrés et faisceaux de sections.

i. Lorsque $E = X \times \mathbb{R}$ est le fibré réel constant de rang 1, le faisceau \mathcal{E} est le faisceau des fonctions lisses à valeurs réelles sur X.

ii. Lorsque $E = X \times \mathbb{C}$ est le fibré constant complexe de rang 1, on a $\mathcal{E} = \mathcal{A}^0_X$.

iii. Lorsque $E = X \times \mathbb{C}^r$ est le fibré constant complexe de rang r, on a $\mathcal{E} = (\mathcal{A}^0_X)^r$.

iv. Lorsque $E = \text{Tan}_X$, le faisceau \mathcal{E} paramètre les champs de vecteurs lisses. Le fibré E est réel, puisque son rang est égal à la dimension de X, qui n’a aucune raison d’être paire.

v. Lorsque $E = \text{Tan}^*_X = \text{Hom}_{\mathbb{R}}(\text{Tan}_X, X \times \mathbb{R})$ qui est toujours un fibré réel, le faisceau \mathcal{E} paramètre les 1- formes différentielles lisses à valeurs réelles.

vi. Lorsque $E = \text{Hom}_{\mathbb{R}}(\text{Tan}_X, X \times \mathbb{C}) = (\text{Tan}^*_X)_{\mathbb{C}}$ qui est maintenant un fibré complexe, le faisceau \mathcal{E} paramètre les 1-formes différentielles lisses à valeurs complexes.
Soit $E \to X$ un fibré vectoriel complexe de rang r et \mathcal{E} le faisceau associé. Il est clair que \mathcal{E} est un faisceau de \mathcal{A}_X^0-modules. De plus comme E est localement trivialisable sur X, le faisceau \mathcal{E} est localement libre de rang r, c’est à dire qu’il existe un recouvrement $X = \bigcup_{i \in I} U_i$ et un isomorphisme de faisceaux $\mathcal{E}|_{U_i} \sim (\mathcal{A}_{U_i}^0)^r$ qui soit $\mathcal{A}_{U_i}^0$-linéaire pour tout $i \in I$.

Remarque 3.40. — Bien sûr ces isomorphismes $\mathcal{E}|_{U_i} \sim (\mathcal{A}_{U_i}^0)^r$ ne coïncident pas sur les $U_{i,j}$ pour $i, j \in I$, sans quoi le faisceau \mathcal{E} serait globalement libre, et comme on va le voir dans un instant cela n’arrive que lorsque le fibré E est trivial.

Proposition 3.41. — L’association $E \mapsto E$ définit une équivalence de catégorie entre la catégorie des fibrés vectoriels complexes sur X et la catégorie des faisceaux localement libres de rang fini en \mathcal{A}_X^0-modules.

Démonstration. — On va juste démontrer l’essentielle surjectivité, les autres points n’étant pas plus difficiles à prouver. Si \mathcal{E} est un faisceau localement libre de rang r sur \mathcal{A}_X^0, on choisit un recouvrement $X = \bigcup_{i \in I} U_i$ et des isomorphismes de faisceaux $\phi_i : \mathcal{E}|_{U_i} \sim (\mathcal{A}_{U_i}^0)^r$ qui soient $\mathcal{A}_{U_i}^0$-linéaires pour tout $i \in I$. Pour tous $i \neq j \in I$ on a alors $\phi_j \circ \phi_i^{-1}$ qui est un automorphisme $\mathcal{A}_{U_{i,j}}^0$-linéaire de $(\mathcal{A}_{U_{i,j}}^0)^r$. Mais $\text{End}_{\mathcal{A}_{U_{i,j}}^0}(\mathcal{A}_{U_{i,j}}^0)^r = \text{Mat}_n(\mathcal{A}^0(U_{i,j}))$ par l’exercice 3.23 donc

$$\text{Aut}_{\mathcal{A}_{U_{i,j}}^0}(\mathcal{A}_{U_{i,j}}^0)^r = \text{GL}_n(\mathcal{A}^0(U_{i,j})) = \mathcal{C}_\infty(U_{i,j}, \text{GL}_r(\mathbb{C}))$$

Ainsi $\phi_j \circ \phi_i^{-1}$ définit naturellement un élément $f_{i,j}$, qui vérifie la relation de cocycle. Cela permet de construire le fibré E cherché. □

Démonstration. — On retrouve par exemple la notion de repère, c’est à dire une famille (s_1, \cdots, s_d) de sections d’un fibré vectoriel E qui forme pour tout $x \in X$ une base de l’espace vectoriel E_x. Cet repère correspond exactement à un isomorphisme de faisceaux $(\mathcal{A}_X^0)^d \to \mathcal{E}$, $(f_1, \cdots, f_d) \mapsto \sum_k f_k s_k$ donc par l’équivalence de catégorie à une trivialisation de E. □

Remarque 3.42. — On peut donc au choix privilégier le langage géométrique (celui des fibrés vectoriels) ou faisceautique (celui de leurs sections), les deux étant naturels. Dans ce cours, nous privilégierons souvent le point de vue faisceautique.

Néanmoins pour l’instant le langage des fibrés vectoriels, plus de constructions sont accessibles que dans le langage des faisceaux : $E \otimes F$, E/F, $\text{Hom}(E, F)$. Nous verrons dans la partie 3.52 comment adapter ces contructions aux faisceaux.

3.42.1. Fibrés vectoriels holomorphes.

Soit maintenant X une variété complexe.
3.24. FIBRÉS VECTORIELS

Définition 3.43. — Un fibré vectoriel holomorphe E de rang r sur X est un fibré vectoriel complexe $\pi : E \to X$ de rang r sur la variété différentielle X, tel qu'il existe un recouvrement $X = \bigcup_{i \in I} U_i$ et des trivialisations locales $\phi_i : E|_{U_i} \cong U_i \times \mathbb{C}^r$ telle que le cocycle associé

$$\phi_j \circ \phi_i^{-1} : (U_i \cap U_j) \times \mathbb{C}^r \cong (U_i \cap U_j) \times \mathbb{C}^r$$

soit holomorphe pour tous $i, j \in I$. On appelle alors (U_i, ϕ_i) une trivialisation holomorphe de E.

Remarque 3.44. — Tout fibré holomorphe est nécessairement complexe (puisque les fonctions holomorphes sont à valeurs complexes), mais la réciproque est fausse. Par exemple pour tout fibré réel E sur une variété complexe X, le fibré complexifié $E_\mathbb{C}$ est complexe mais n'a aucune raison d'être holomorphe.

Remarque 3.45. — Une structure de fibré holomorphe sur un fibré complexe est bien une donnée additionnelle : premièrement tous les fibrés complexes ne sont pas des fibrés holomorphes, et deuxièmement un fibré complexe peut être muni de plusieurs structures de fibré holomorphes non biholomorphes entre elles. Cela est analogue à la remarque 3.3.

En conclusion nos notations seront légèrement abusives car nous notons plus bas de la même manière Tan_X le fibré tangent complexe et le fibré tangent holomorphe. Ce qu'on veut dire, c'est que ce fibré complexe a une structure canonique de fibré holomorphe. Idem pour $\text{Alt}^k_{\mathbb{C}}(Tan_X, X \times \mathbb{C})$ etc.

Tout ce qu'on avait fait avait les fibrés complexes sur les variétés différentielles s'adapte sans problème. Ainsi les fibrés holomorphes sont paramétrés par les cocycles holomorphes, qui sont des applications holomorphes

$$f_{i,j} : U_{i,j} \to \text{GL}_r(\mathbb{C})$$

vérifiant $f_{i,j} \circ f_{j,k} = f_{i,k}$ pour tous $i, j, k \in I$. On peut donc définir les fibrés holomorphes $E \otimes_{\mathbb{C}} F, E^\vee, \text{Alt}^k_{\mathbb{C}}(E, \mathbb{C})$, etc, associés à des fibrés holomorphes E et F.

Remarque 3.46. — Plus précisément, on a enrichi les constructions précédentes des fibrés complexes $E \otimes_{\mathbb{C}} F$, etc, en les enrichissant d'une structure de fibré holomorphe canonique lorsque E et F sont holomorphes.

Il est aisé de vérifier qu'un fibré vectoriel holomorphe sur X est lui-même une variété complexe. On en déduit la notion de section holomorphe de $\pi : E \to X$, qui est à la fois une section lisse et une application holomorphe entre variétés complexes.

De même le faisceau des sections holomorphes \mathcal{E} d'un fibré holomorphe E de rang r est naturellement un faisceau en \mathcal{O}_X-modules, et il est localement libre de rang r sur \mathcal{O}_X. On obtient de la sorte une équivalence de catégories entre fibrés holomorphes et faisceaux localement libres de rang fini en \mathcal{O}_X-modules.
Exemple 3.47. — On dispose sur la variété complexe X de dimension d des fibrés vectoriels holomorphes suivants :

i. Le fibré trivial de rang r qui est $X \times \mathbb{C}^r$, dont le cocycle est l’application identité $U_{i,j} \to GL_r(\mathbb{C})$. Son faisceau des sections holomorphes est \mathcal{O}_X^r.

ii. Le fibré tangent Tan_X qui est un fibré vectoriel holomorphe de rang d. Il est défini par le cocycle $U_{i,j} \to GL_d(\mathbb{C})$, $x \mapsto d_x(\phi_i \circ \phi_j^{-1})$ (OU INVERSE ???), qui est en effet à valeurs dans $GL_d(\mathbb{C})$ et holomorphe en x, les deux points provenant de l’holomorphie de $\phi_i \circ \phi_j^{-1}$. Son faisceau de sections holomorphes est T_X, qui paramètre les champs de vecteurs tangents holomorphes.

iii. Le fibré cotangent $\text{Cotan}_X = \text{Hom}_R(\text{Tan}_X, X \times \mathbb{R}) = \text{Hom}_C(\text{Tan}_X, X \times \mathbb{C})$. Son faisceau de sections holomorphes est Ω^1_X, qui paramètre les 1-formes différentielles holomorphes.

iv. Le fibré $\Lambda^k_C(\text{Cotan}_X) = \text{Alt}^k_C(\text{Tan}_X, X \times \mathbb{C})$. Son faisceau de sections holomorphes est Ω^k_X et paramètre les k-formes différentielles holomorphes.

Remarque 3.48. — On peut aussi utiliser la remarque ?? pour construire le faisceau T_X, puis l’équivalence de catégorie entre faisceaux localement libres de rang fini en \mathcal{O}_X-modules et fibrés holomorphes pour construire Tan_X, si on n’aime pas la construction qu’on a proposé par cocyles. On en déduit ensuite Cotan_X et $\Lambda^k_C(\text{Cotan}_X)$ par les constructions générales sur les fibrés holomorphes.

Remarque 3.49. — Revenons sur nos notations : on note de la même manière le fibré complexe trivial $X \times \mathbb{C}$ et sa structure canonique de fibré holomorphe. Par contre on différencie le faisceau de ses sections lisses A^0_X et celui de ses sections holomorphes \mathcal{O}_X. De même pour le fibré $\text{Alt}^k_C(\text{Tan}_X, X \times \mathbb{C})$: on note A^k_X son faisceau de sections lisses et Ω^k son faisceau de sections holomorphes.

Remarque 3.50. — Le fibré complexe Tan_X est holomorphe comme on l’a vu. Par contre son complexifié $\text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C}$ n’est a priori pas un fibré holomorphe. En effet, la catégorie des fibrés holomorphes est stable par des produits tensoriels $\otimes_{\mathbb{C}}$ au dessus de \mathbb{C}, mais rien n’indique qu’elle soit stable par $\bullet \otimes_{\mathbb{R}} \mathbb{C}$. Le fibré complexe $\text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C}$ se décompose en type $(0,1)$ et $(1,0)$, c’est à dire

$$\text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C} = (\text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C})^{1,0} \oplus (\text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C})^{0,1}$$

On peut montrer facilement que la composée de l’inclusion $\text{Tan}_X \hookrightarrow \text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C}$ provenant de l’inclusion $\mathbb{R} \subset \mathbb{C}$, composée avec la projection $\text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C} \to (\text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C})^{1,0}$ induit un isomorphisme de fibrés complexes

$$\text{Tan}_X \sim (\text{Tan}_X \otimes_{\mathbb{R}} \mathbb{C})^{1,0}$$
En particulier, \((\Tan_X \otimes \mathbb{R} \mathbb{C})^{1,0}\) est holomorphe, ce qu’on aurait d’ailleurs pu voir directement en termes de cocycles.

Par contre \((\Tan_X \otimes \mathbb{R} \mathbb{C})^{0,1}\) est un fibré anti-holomorphe, décrit par des cocycles qui sont des fonctions anti-holomorphes à valeurs dans \(\text{GL}_n(\mathbb{C})\). Cela explique à nouveau pourquoi

\[
\Tan_X \otimes \mathbb{R} \mathbb{C} = (\Tan_X \otimes \mathbb{R} \mathbb{C})^{1,0} \oplus (\Tan_X \otimes \mathbb{R} \mathbb{C})^{0,1}
\]

n’est pas a priori un fibré holomorphe, étant la somme d’un fibré holomorphe et d’un fibré anti-holomorphe. De même \(\text{Hom}_\mathbb{R}(\Tan_X, X \times \mathbb{C})^{1,0}\) est un fibré holomorphe, muni d’un isomorphisme

\[
\text{Hom}_\mathbb{R}(\Tan_X, X \times \mathbb{C})^{1,0} \to \text{Hom}_\mathbb{C}(\Tan_X, X \times \mathbb{C})
\]

Cela a un sens de considérer son faisceau de sections holomorphes, qu’on a noté \(\Omega^1\). Par contre le fibré complexe \(\text{Hom}_\mathbb{R}(\Tan_X, X \times \mathbb{C})^{0,1}\) est anti-holomorphe puisque

\[
\text{Hom}_\mathbb{R}(\Tan_X, X \times \mathbb{C})^{0,1} = \overline{\text{Hom}_\mathbb{R}(\Tan_X, X \times \mathbb{C})^{1,0}}
\]

et il n’y a donc aucun sens à considérer son faisceau de sections holomorphes. Cela explique à nouveau la remarque [2.51]: on ne considère jamais des combinaisons linéaires à coefficients holomorphes de formes de type \((p,q)\) car cette définition ne s’étend pas des ouverts de \(\mathbb{C}^n\) aux variétés complexes, puisque n’étant pas préservée par biholomorphismes.

Remarque 3.51. — Lorsque \(X\) est une variété complexe, son fibré tangent réel \(\Tan_X\) de la géométrie différentielle est en particulier un fibré complexe, puisque c’est un fibré holomorphe.

On appelle structure *presque complexe* sur une variété différentielle \(X\) (nécessairement de dimension paire) la donnée d’une structure de fibré complexe sur \(\Tan_X\). D’après l’exercice [3.32] cette donnée est équivalente à la donnée d’un endomorphisme \(I\) de \(\Tan_X\) de carré \(-\text{Id}\). Le théorème de Newlander-Nirenberg \([V_0]\, \text{th.2.24}\) permet de caractériser les structures presques complexes qui proviennent d’une structure de variété de variété complexe sur une variété différentielle donnée.

Convention : comme dans le cas ponctuel, on notera \(I\) la structure complexe de \(T_X\) lorsque \(X\) est une variété complexe. On considérera dans la suite le fibré complexe non holomorphe \(T_X \otimes \mathbb{R} \mathbb{C}\) qui sera lui muni de deux structures complexes, par action sur le premier et le second facteur du produit tensoriel. Nous noterons \(I\) la première et \(i\) la seconde.

3.52. Faisceaux II

La notion de préfaisceau séparé introduite dans la définition suivante est intermédiaire entre la notion de préfaisceau et celle de faisceau.
Définition 3.53. — Soit X un espace topologique et \mathcal{F} un préfaisceau sur X. On dit que \mathcal{F} est séparé si pour tout ouvert $U \subset X$ et tout recouvrement $U = \cup_{i \in I} U_i$, l’application $\prod_i \res_U^U : \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i)$ est injective.

L’inclusion de la catégorie des faisceaux dans celle des préfaisceaux admet un adjoint à gauche, qui est la faisceautisation. Détaillons cette construction dans un exercice.

Exercice 3.54. — Soit \mathcal{F} un préfaisceau sur X.

i. Donner des exemples de préfaisceaux non séparés.

ii. Pour tout $U \subset X$ notons $\mathcal{F}_1(U) = \mathcal{F}(U)/\mathcal{F}_0(U)$ où

$$\mathcal{F}_0(U) = \{ s \in \mathcal{F}(U) \mid \exists U = \cup_{i \in I} U_i, s|_{U_i} = 0 \ \forall i \in I \}$$

Prouver que \mathcal{F}_1 est un préfaisceau séparé.

iii. Calculer \mathcal{F}_1 pour tout exemple \mathcal{F} comme dans la question i.

iv. Soit $U = (U_i)_{i \in I}$ un recouvrement ouvert de U. Posons

$$A_U(U) = \{(s_i) \in \mathcal{F}_1(U_i) \mid s_i|_{U_{ij}} = s_j|_{U_{ij}} \ \forall i \neq j \in I \}$$

Vérifier que l’ensemble des recouvrements ouverts de U est ordonné, et que les $A_U(U)$ forment un système inductif filtrant ordonné par l’ensemble de ces recouvrements.

v. Vérifier que $\mathcal{F}_f(U) = \lim_U A_U(U)$ définit un faisceau sur X, qu’on appelle le faisceau-tisé de \mathcal{F}.

vi. Construire un morphisme de préfaisceau $\mathcal{F} \to \mathcal{F}_f$.

vii. Vérifier que pour tout faisceau \mathcal{G} sur X, on a une bijection naturelle entre l’ensemble des morphismes de préfaisceaux $\mathcal{F} \to \mathcal{G}$ et l’ensemble des morphismes de faisceaux $\mathcal{F}_f \to \mathcal{G}$.

viii. Calculer \mathcal{F}_f pour tous les préfaisceaux introduits précédemment qui ne sont pas des faisceaux.

3.54.1. Opérations sur les faisceaux. — Lorsqu’on dispose d’une application continue $f : X \to Y$ (vérifiant éventuellement des propriétés additionnelles), on peut passer de faisceaux sur X à des faisceaux sur Y et inversement.

Définition 3.55. — Soit $f : X \to Y$ une application continue entre espaces topologiques et \mathcal{F} un faisceau sur X. On note $f_*(\mathcal{F})(V) = \mathcal{F}(f^{-1}(V))$, et on appelle $f_*(\mathcal{F})$ l’image directe de \mathcal{F}.

On vérifie que $f_*(\mathcal{F})$ est en effet un faisceau sur X. De plus $f_*(\mathcal{F})$ a le même genre de structure que \mathcal{F}. Ainsi si X est une variété différentielle et \mathcal{F} est un faisceau en \mathcal{A}_X^0-modules, alors $f_*(\mathcal{F})$ est un faisceau en \mathcal{A}_Y^0-modules. Cela a un sens car pour tout ouvert $V \subset Y$, on a une application d’anneau $\mathcal{A}_Y^0(V) \to \mathcal{A}_X^0(f^{-1}(V))$, $\phi \mapsto \phi \circ f$. De même si X
est une variété complexe et \mathcal{F} est un faisceau en \mathcal{O}_X-modules, alors $f_*(\mathcal{F})$ est un faisceau en \mathcal{O}_Y-modules.

Remarque 3.56. — Si $Y = \{\ast\}$ est un point et $f : X \to Y$ est le morphisme évident, alors les faisceaux sur Y s'identifient aux ensembles (par évaluation sur l'unique ouvert non vide, qui est Y). On a alors $f_*(\mathcal{F})(Y) = \mathcal{F}(X)$, autrement dit $f_*(\mathcal{F})$ s'identifie aux sections globales de \mathcal{F} sur X.

En général pour tout Y, on peut penser à $f_*(\mathcal{F})$ comme un faisceau sur Y paramétrant les « sections de \mathcal{F} dans les fibres de f ». Même si \mathcal{F} est un faisceau de fonctions (ensemblistes, continues, lisses,...) sur X, alors $f_*(\mathcal{F})$ ne paramètre plus des fonctions sur les ouverts de Y.

Exemple 3.57. — Si $i : \{P\} \hookrightarrow X$ désigne l'inclusion d'un point, alors $i_*(\mathbb{C}_P)$ mérite le nom de faisceau gratte-ciel de rang un sur X, basé en P. Par définition $i_*(\mathbb{C}_P)(U) = \mathbb{C}$ si $P \in U$ et 0 sinon.

Définition 3.58. — Soit $f : X \to Y$ une application ouverte entre espaces topologiques et \mathcal{G} un faisceau sur Y. On note $(f^{-1})^{pr} (\mathcal{G})(U) = \mathcal{G}(f(U))$, ce qui définit un préfaisceau. On note alors $f^{-1}(\mathcal{G})$ son faisceautisé sur X, et on l'appelle l'image inverse usuelle de \mathcal{G}.

Exemple 3.59. — Soit Y un espace topologique et $X = Y \coprod Y$ l'union disjointe de deux copies de Y. Notons $f : X \to Y$ le morphisme évident, qui identifie les deux copies de l'union disjointe. Alors $(f^{-1})^{pr} (\mathbb{C}_Y)$ n'est pas un faisceau sur X. Déjà lorsque Y est un point, on trouve $(f^{-1})^{pr} (\mathbb{C}_Y) = \mathbb{C}_X$ qui est le préfaisceau constant, et non pas le faisceau des fonctions localement constantes. Pour tout Y on a par contre $f^{-1}(\mathbb{C}_Y) = \mathbb{C}_X$ qui est bien un faisceau.

Exercice 3.60. — Vérifier que la paire de foncteurs (f^{-1}, f_*) est adjointe, ce qui veut dire que pour tout faisceau \mathcal{G} sur Y et \mathcal{F} sur X, on a une bijection naturelle entre l'ensemble des morphismes de faisceaux $f^{-1}(\mathcal{G}) \to \mathcal{F}$ sur X et l'ensemble des morphismes de faisceaux $\mathcal{G} \to f_*(\mathcal{F})$ sur Y, i.e

$$\text{Hom}_X (f^{-1}(\mathcal{G}), \mathcal{F}) \cong \text{Hom}_X (\mathcal{G}, f_*(\mathcal{F}))$$

Au prix de recourir à une définition un peu plus compliquée, on peut introduire l'image inverse d'un faisceau par une application continue quelconque.

Définition 3.61. — Soit $f : X \to Y$ une application continue entre espaces topologiques et \mathcal{G} un faisceau sur Y. On note

$$(f^{-1})^{pr} (\mathcal{G})(U) = \text{colim}_{V \supset f(U)} \mathcal{G}(V)$$

où la colimite (limite inductive) est prise sur tous les ouverts de Y contenant $f(U)$ ordonnés par inclusion. Les applications de transition du système inductif sont fournies par les restrictions de \mathcal{F}. On note ensuite $f^{-1}(\mathcal{G})$ le faisceautisé de ce préfaisceau.
Exemple 3.62. — Ainsi si \(f : \mathbb{R} \hookrightarrow \mathbb{R}^2 \) est l’inclusion \(x \mapsto (x,0) \) du premier axe de coordonné et \(\mathcal{G} \) est le faisceau des fonctions continues sur \(\mathbb{R}^2 \), alors le faisceau \(f^{-1}(\mathcal{G}) \) envoie un ouvert \(U \subset \mathbb{R} \) sur l’ensemble des fonctions continues \(f(x,y) \) définies sur un voisinage ouvert de \(U \times 0 \) dans \(\mathbb{R}^2 \).

On vérifie que pour \(f \) continue, les foncteurs \((f^{-1}, f_{*}) \) continuent d’être adjoints.

Définition 3.63. — Soit \(X \) un espace topologique, \(x \in X \) un point et \(\mathcal{F} \) un faisceau sur \(X \). On note \(\mathcal{F}_x = \text{colim}_{x \in U} \mathcal{F}(U) \) où la colimite est prise sur les ouverts de \(X \) contenant \(x \). On appelle les éléments de \(\mathcal{F}_x \) les germes en \(s \) de sections de \(\mathcal{F} \).

Pour tout \(U \subset X \) ouvert, \(x \in U \) et \(s \in \mathcal{F}(U) \) on note \(s_x \in \mathcal{F}_x \) l’image de \(s \) dans la colimite définissant \(\mathcal{F}_x \). On remarque que par la propriété de faisceau (en groupes) de \(\mathcal{F} \), on a \(s = 0 \) si et seulement si \(s_x = 0 \) pour tout \(x \in U \). On exprime cela en disant que la famille des germes est conservative.

Exemple 3.64. — Si \(i : \{x\} \hookrightarrow X \) est l’inclusion d’un point et \(\mathcal{F} \) est un faisceau sur \(X \), on a donc \(\mathcal{F}_x = i^{-1}(\mathcal{F}) \).

Exercice 3.65. — Soit \(\mathcal{F} \) un préfaisceau sur \(X \) de faisceautisé \(\mathcal{F}_f \). Montrer que \((\mathcal{F}_f)_x = \mathcal{F}_x \) pour tout \(x \in X \).

Exercice 3.66. — Soit \(X \) un espace topologique et \(f : \mathcal{F} \rightarrow \mathcal{G} \) un morphisme de faisceaux sur \(X \). On dit que \(f \) est injectif si \(f_x : \mathcal{F}_x \rightarrow \mathcal{G}_x \) est injectif pour tout \(x \in X \). De même pour la surjectivité et la bijectivité.

i. Définir un candidat pour le faisceau Ker\((f) \) et vérifier que c’est bien un faisceau.

ii. Vérifier que \(f \) est injectif si et seulement si Ker\((f) \) est le faisceau nul.

iii. Définir un candidat pour le préfaisceau Im\(\text{pre} (f) \) mais montrer par des exemples que ce n’est pas toujours un faisceau.

iv. On note désormais Im\((f) \) le faisceautisé de Im\(\text{pre} (f) \). Vérifier que \(f \) est surjective si et seulement si Im\((f) = \mathcal{G} \).

v. Supposons que pour tout \(U \subset X \), qu’il existe un recouvrement \(U = \bigcup_{i \in I} U_i \) tel que \(f_{U_i} : \mathcal{F}(U_i) \rightarrow \mathcal{G}(U_i) \) est surjectif. Montrer que \(f \) est surjectif.

vi. Donner des exemples de morphismes surjectifs de faisceaux.

vii. Définir un candidat pour le préfaisceau Coker\(\text{pre} (f) \) mais montrer par des exemples que ce n’est pas toujours un faisceau.

viii. On note désormais Coker\((f) \) le faisceautisé de Coker\(\text{pre} (f) \). Vérifier que \(f \) est surjective si et seulement si Coker\((f) = 0 \).
Remarque 3.67. — Il est rare qu’un morphisme de faisceaux $f : \mathcal{F} \to \mathcal{G}$ soit surjectif car il vérifie la propriété très forte que $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ est surjectif pour tout $U \subset X$. Mais il est fréquent en pratique que f soit surjectif parce qu’il vérifie la propriété v de l’exercice, ce qui est un peu plus fort que la simple définition de la surjectivité de f.

Remarque 3.68. — D’une manière tout à fait analogue à l’exercice 3.66, on peut définir la notion de sous-faisceau $\mathcal{F} \subset \mathcal{G}$, et cela est équivalent au fait que $\mathcal{F}(U) \subset \mathcal{G}(U)$ pour tout ouvert $U \subset X$. Lorsque $\mathcal{F} \subset \mathcal{G}$ est un sous-faisceau, on peut former le préfaisceau quotient $(\mathcal{G}/\mathcal{F})^{\text{pre}}$ par la règle $(\mathcal{G}/\mathcal{F})^{\text{pre}}(U) = \mathcal{G}(U)/\mathcal{F}(U)$ pour tout $U \subset X$, mais ce n’est pas un faisceau en général (voir les exemples 3.16). On note alors \mathcal{G}/\mathcal{F} le faisceautisé de $(\mathcal{G}/\mathcal{F})^{\text{pre}}$. On peut donc justifier affirmer que $(\mathcal{G}/\mathcal{F})_x = \mathcal{G}_x/\mathcal{F}_x$ pour tout $x \in X$.

De la même manière que dans l’exercice 3.66, beaucoup de constructions naïves sur les faisceaux ne définissent en fait qu’un préfaisceau, et doivent ensuite être faisceautisées. Ainsi pour tous faisceaux \mathcal{F} et \mathcal{G} en groupes abéliens, on définit $\mathcal{F} \otimes \mathcal{G}$ en faisceautisant la règle $U \mapsto \mathcal{F}(U) \otimes \mathcal{G}(U)$. On définit aussi le faisceau des morphismes $\mathcal{H}om_X(\mathcal{F}, \mathcal{G})$ en faisceautisant la règle $U \mapsto \text{Hom}_U(\mathcal{F}|_U, \mathcal{G}|_U)$. De même pour des produits tensoriels et des faisceaux Hom sur des anneau de base plus généraux.

Remarque 3.69. — Ainsi malheureusement $\mathcal{F} \otimes \mathcal{G}$ est un faisceau assez inexcisique même si \mathcal{F} et \mathcal{G} sont simples. Néanmoins on a pour tout $x \in X$ qu’au niveau des germes, l’égalité $(\mathcal{F} \otimes \mathcal{G})_x = \mathcal{F}_x \otimes \mathcal{G}_x$ est vérifiée. On verra (REF!!!!) que dans une foule de contextes variés, on a $(\mathcal{F} \otimes \mathcal{G})(U) = \mathcal{F}(U) \otimes \mathcal{G}(U)$ pour des « petits » ouverts $U \subset X$ d’un type précis, par exemple contractiles, même s’il est faux que $(\mathcal{F} \otimes \mathcal{G})(U) = \mathcal{F}(U) \otimes \mathcal{G}(U)$ pour tout ouvert $U \subset X$. Voir aussi la remarque 3.76.

3.69.1. Suites exactes courtes de faisceaux. — Soit X un espace topologique. Une suite exacte courte de faisceaux est la donnée de faisceaux $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ et de morphismes $f : \mathcal{F}_1 \to \mathcal{F}_2$ et $g : \mathcal{F}_2 \to \mathcal{F}_3$ tels que f est injective, g est surjective et $\text{Im}(f) = \text{Ker}(g)$. On note

$$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$$

Ainsi une suite exacte courte de faisceaux est la donnée de trois faisceaux et de deux morphismes f, g tels que la suite $0 \to (\mathcal{F}_1)_x \to (\mathcal{F}_2)_x \to (\mathcal{F}_3)_x \to 0$ est une suite exacte courte de groupes abéliens pour tout $x \in X$.

D’après l’exercice 3.66, cela équivaut à demander que $f_U : \mathcal{F}_1(U) \to \mathcal{F}_2(U)$ est injective pour tout $U \subset X$, que $\text{Im}(f_U) = \text{Ker}(g_U)$ pour tout $U \subset X$, mais pas que $g_U : \mathcal{F}_2(U) \to \mathcal{F}_3(U)$ soit surjective pour tout $U \subset X$. La seule propriété de surjectivité vérifiée par g a priori est que pour tout $U \subset X$, pour tout $s \in \mathcal{F}_3(U)$, il existe un recouvrement $U = \bigcup_i U_i$ et des éléments $t_i \in \mathcal{F}_3(U_i)$ pour tout i tels que $g_{U_i}(t_i) = s|_{U_i}$ pour tout i, comme on le voit avec la surjectivité de g_x pour tout $x \in U$. On notera que dans cette dernière assertion, le recouvrement $U = \bigcup_i U_i$ dépend du choix de s.
Remarque 3.70. — En particulier si pour tout ouvert \(U \subset X \), il existe un recouvrement \(U = \bigcup_{i \in I} U_i \) tel que la suite
\[
0 \to \mathcal{F}_1(U_i) \to \mathcal{F}_2(U_i) \to \mathcal{F}_3(U_i) \to 0
\]
soit exacte pour \(i \in I \), alors la suite \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \) est exacte. La plupart des suites exactes courtes rencontrées en pratique sont exactes dans ce sens plus fort.

Exemple 3.71. — Soit \(X \) une surface de Riemann. On a alors les suites exactes courtes de faisceaux

i. \(0 \to \mathcal{C}_X \to \mathcal{O}_X \xrightarrow{d} \Omega^1_X \to 0 \) où \(\mathcal{C}_X \) est le faisceau des fonctions localement constantes et \(d \) est l’opérateur de différentiation. La surjectivité de \(d \) sur des petits ouverts \(U_i \) contractiles est bien connu, mais cette surjectivité est évidemment fausse sur des ouverts quelconques.

ii. \(0 \to 2i\pi \cdot \mathbb{Z}_X \to \mathcal{O}_X \xrightarrow{\exp} \mathcal{O}^*_X \to 0 \) où \(\exp(f) = e^f \) et où est le faisceau en groupe multiplicatif des fonctions holomorphes non nulles (sur \(U \) il vaut \(\mathcal{M}(U)^* \)) et \(\mathcal{D}iv_X \) est le faisceau des diviseurs (sur \(U \) il vaut \(\mathcal{D}iv(U) \)). Cette suite est exacte car sur un disque ouvert de \(\mathbb{C} \), l’analyse complexe prouve que tout diviseur est principal.

iii. \(0 \to \mathcal{O}^*_X \to \mathcal{M}^*_X \xrightarrow{\text{div}} \mathcal{D}iv_X \to 0 \) où \(\mathcal{M}^*_X \) est le faisceau en groupe multiplicatif des fonctions méromorphes non nulles (sur \(U \) il vaut \(\mathcal{M}(U)^* \)) et \(\mathcal{D}iv_X \) est le faisceau des diviseurs. Cette suite est exacte car sur un ouvert contractile, puisqu’il existe des logarithmes complexes, mais fausse en général.

iv. \(0 \to \mathcal{C}^*_X \to \mathcal{O}^*_X \xrightarrow{\text{dlog}} \Omega^1_X \to 0 \) où \(\text{dlog}(f) = \frac{df}{f} \).

v. \(0 \to \mathcal{O}_X(-(P)) \to \mathcal{O}_X \xrightarrow{\phi} \mathcal{O}_P \to 0 \) où \(P \in X \) et \(\phi(P) = f(P) \). Par définition, \(\mathcal{O}_P \) est le faisceau gratte-ciel en \(P \), tel que \(\mathcal{O}_P(U) = \mathbb{C} \) si \(P \in U \) et \(\mathcal{O}_P(U) = 0 \) sinon. Et \(\mathcal{O}_X(-(P)) \) est le faisceau des fonctions holomorphes nulles en \(P \). Cette suite est même exacte au niveau des sections globales car pour tout \(\lambda \in \mathbb{C} \), il existe \(f \) (constante !) telle que \(f(P) = \lambda \).

vi. \(0 \to \mathcal{O}_X(-(P) - (Q)) \to \mathcal{O}_X \xrightarrow{\phi} \mathcal{O}_P \oplus \mathcal{O}_Q \to 0 \) pour tous \(P \neq Q \in X \), où \(\phi(f) = (f(P), f(Q)) \). Cette fois elle n’est plus exacte au niveau des sections globales si \(X \) est compacte.

vii. \(0 \to \mathcal{O}_X(-D) \to \mathcal{O}_X \xrightarrow{\phi} \mathcal{O}_D \to 0 \) pour tout diviseur effectif \(D \geq 0 \). Ici \(\mathcal{O}_D = \oplus_i \mathcal{O}_P^{n_i} \) si \(D = \sum n_i(P_i) \). Ici la définition de \(\phi \) dépend du choix de paramètres locaux \(z_i \) en \(P_i \) pour tout \(i \). On peut alors écrire \(f \in \mathcal{O}_X(U) \) comme une série \(g_i(z_i) \) et \(\phi(f) = (g_i(0), g_i'(0), \ldots, g_i^{(n_i-1)}(0))_i \). Cette suite est surjective lorsque \(U \) est biholomorphe à un ouvert de \(\mathbb{C} \) car l’interpolation de Lagrange montre qu’il existe un polynôme avec valeurs arbitraires des dérivées fixées.
viii. $0 \to \mathcal{O}_X \to \mathcal{O}_X(D) \overset{\phi}{\to} \mathcal{O}_D \to 0$ lorsque $D \geq 0$ est effectif, où cette fois $\phi(f)$ est la famille des parties polaires de f en les P_i, cette définition dépendant aussi du choix des paramètres locaux z_i.

3.71.1. Suites exactes longues de Dolbeault et Poincaré. — Rappelons qu’un complexe de faisceaux sur un espace topologique X est la donnée d’une famille de faisceaux en groupes abéliens $(\mathcal{F}_i)_{i \in \mathbb{N}}$ et de morphismes de faisceaux $d_i : \mathcal{F}_i \to \mathcal{F}_{i+1}$ tels que $d_{i+1} \circ d_i = 0$ pour tout $i \geq 0$. Cela équivaut à demander $\ker(d_{i+1}) \subset \operatorname{im}(d_i)$ pour tout $i \geq 0$.

Le complexe est exact si $\ker(d_{i+1}) = \operatorname{im}(d_i)$ pour tout $i \geq 0$ et si d_0 est injective. On dit dans ce cas que $0 \to \mathcal{F}_0 \to \mathcal{F}_1 \to \cdots \to \mathcal{F}_n \to \cdots$ est une suite exacte longue de faisceaux.

La proposition suivante résulte du lemme de Dolbeault et joue un rôle fondamental dans toute la géométrie complexe. On appellera

$$A^{p,0}_X \overset{\tilde{\partial}}{\to} A^{p,1}_X \overset{\tilde{\partial}}{\to} \cdots \overset{\tilde{\partial}}{\to} A^{p,n}_X$$

le complexe de Dolbeault de X (à p fixé) et on dira que c’est une résolution de Ω^p_X.

Proposition 3.72. — Soit X une variété complexe de dimension complexe n et $p \geq 0$. On a une suite exacte longue de faisceaux

$$0 \to \Omega^p_X \to A^{p,0}_X \overset{\tilde{\partial}}{\to} A^{p,1}_X \overset{\tilde{\partial}}{\to} \cdots \overset{\tilde{\partial}}{\to} A^{p,n}_X \to 0$$

Démonstration. — L’exactitude se teste localement, donc par un atlas holomorphe se teste sur des petits ouverts de \mathbb{C}^n. C’est alors le corollaire 2.62 □

Remarque 3.73. — Un autre exemple de suites exactes longues de faisceaux est fourni par

$$0 \to \mathbb{C}_X \to A^0_X \overset{d}{\to} A^1_X \overset{d}{\to} \cdots \overset{d}{\to} A^n_X \to 0$$

grâce au lemme de Poincaré sur toute variété différentielle X de dimension réelle n.

3.73.1. Cas des faisceaux en A-modules. — Tentons de donner quelques définitions utiles pour la suite, sans toutefois trop verser dans le formalisme le plus général. Pour toute application lisse $f : X \to Y$ entre variétés différentielles et tout faisceau \mathcal{F} en A^0_X-module sur X, on vérifie aisément que $f_*(\mathcal{F})$ est bien un faisceau en A^0_Y-modules sur Y.

Par contre si \mathcal{G} est un faisceau en A^0_Y-modules, son image réciproque usuelle $f^{-1}(\mathcal{G})$ n’est pas un faisceau en A^0_X-modules.

Exemple 3.74. — Si $Y = \{\ast\}$ est un point, $f : X \to Y$ est le morphisme évident et $\mathcal{G} = \mathbb{C}_Y = A^0_Y$, on vérifie aisément que $f^{-1}(\mathcal{G}) = \mathbb{C}_X$. Ce n’est pas un faisceau en A^0_X-modules!
On définit alors un nouveau type d'image réciproque adapté aux faisceaux en \mathcal{A}^0-modules en notant $f^*(\mathcal{G}) = f^{-1}(\mathcal{G}) \otimes_{f^{-1}F} F_0 X$. Ce n'est malheureusement pas très explicite, car on rappelle que le produit tensoriel des faisceaux est le faisceautisé du produit tensoriel des préfaisceaux. On peut vérifier que les foncteurs (f^*, f_*) restent adjoints au niveau des catégories de faisceaux en \mathcal{A}^0-modules.

Exemple 3.75. — Pour toute application lisse entre variétés différentielles on a $f^*(\mathcal{A}^0_Y) = \mathcal{A}^0_X$, ce qu'on peut comparer à l'image réciproque usuelle de l'exemple 3.74.

Pour tous faisceaux \mathcal{F} et \mathcal{G} en \mathcal{A}^0_X-modules sur X, on définit également $\mathcal{F} \otimes_{\mathcal{A}^0_X} \mathcal{G}$ comme le faisceautisé de la règle $U \mapsto \mathcal{F}(U) \otimes_{\mathcal{A}^0(U)} \mathcal{G}(U)$.

On peut tout répéter dans le cas des variétés complexes et des faisceaux en \mathcal{O}_X-modules : on obtient là encore un faisceau $f^*(\mathcal{F})$ et un produit tensoriel $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$.

Remarque 3.76. — Si $X = \mathbb{P}^1_C = (C^2 - 0)/C^*$, on dispose pour tout $k \in \mathbb{Z}$ d’un faisceau $\mathcal{O}_X(k)$ qui envoie un ouvert $U \subset X$ sur l’ensemble des fonctions holomorphes f sur $\pi^{-1}(U)$ vérifiant l’équation fonctionnelle $f(\lambda \cdot z) = \lambda^k \cdot f(z)$ pour tout $\lambda \in C^*$ et $z \in C^2 - 0$. Ici on a noté $\pi : C^2 - 0 \to X$ l’application de passage au quotient. On vérifie en cours de surfaces de Riemann (par exemple en utilisant l’atlas holomorphe explicite de X) que $\mathcal{O}_X(1)(X) = \mathbb{C}[X, Y]^{(1)}$ est l’ensemble des polynômes homogènes de degré 1 en X, Y alors que $\mathcal{O}_X(-1)(X) = 0$. Et pourtant $\mathcal{O}_X(a) \otimes_{\mathcal{O}_X} \mathcal{O}_X(b) = \mathcal{O}_X(a + b)$. En conclusion

$$(\mathcal{O}_X(1) \otimes_{\mathcal{O}_X} \mathcal{O}_X(-1))(X) \neq \mathcal{O}_X(1)(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_X(-1)(X)$$

et la faisceautisation est nécessaire dans la formation du produit tensoriel de faisceaux.

Remarque 3.77. — Soit X une variété différentielle. Revenons sur l’équivalence de catégorie entre les fibrés vectoriels complexes et les faisceaux localement libres en \mathcal{A}^0_X-modules.

L’avantage du côté fibré est : ils sont explicites, les constructions de $f^*(E)$, E/F, $E \otimes F$, $\text{Hom}(E, F)$ sont simples. Le désavantage est l’apparition incessante des recouvrements ouverts, des trivialisations locales et des cocycles, et la lourdeur de notation associée.

L’avantage du côté des faisceaux est la définition abstraite unifiée. Le désavantage est que les définitions de $f^*(E)$, E/F, $E \otimes F$, $\text{Hom}(E, F)$ ne sont pas évidentes et demandent souvent des faisceautisations.

L’avantage penche plus du côté des fibrés et c’est effectivement le point de vue privilégié en géométrie différentielle.

Lorsque X est une variété complexe et qu’on compare les fibrés holomorphes et les faisceaux localement libres en \mathcal{O}_X-modules, on peut avoir la même discussion. *Toutefois la question du point de vue à privilégier ne se pose pas* : il va être clair à partir du chapitre suivant que la cohomologie des faisceaux va jouer un rôle crucial. Cette cohomologie est calculée (même pour un faisceau localement libre) en introduisant des faisceaux injectifs qui ne sont plus localement libres. Elle ne peut donc pas être calculée en restant dans le
monde des fibrés holomorphes. C’est pourquoi il est nécessaire d’introduire les faisceaux, avec la lourdeur conceptuelle parfois associée.

Enfin on verra qu’en géométrie différentielle (REF!!) les faisceaux en A^0_X-modules n’ont pas de cohomologie. Cela explique encore une fois le point de vue des fibrés favorisé en géométrie différentielle.

Remarque 3.78. — Finissons sur une note historique : les faisceaux ont été introduits par Leray pour la topologie algébrique. Ils ont néanmoins été développés et popularisés par Cartan et Serre pour la géométrie complexe, puis par Grothendieck pour la géométrie algébrique.

3.79. Sous-variétés

La définition est un analogue exact des sous-variétés en géométrie différentielle : si X est une variété complexe de dimension n, une sous-variété complexe $Y \subset X$ de codimension k est une sous-variété différentielle qui est localement définie par l’annulation d’une fonction holomorphe $f : X \to \mathbb{C}^k$ submersive, c’est à dire à différentielle surjective.

Lemme 3.80. — Soit X une variété complexe et $Y \subset X$ une sous-variété de codimension k. Alors Y est une variété complexe de dimension $n - k$.

Soit $i : Y \hookrightarrow X$ une sous-variété complexe de codimension k. On peut alors considérer la restriction à Y du fibré tangent holomorphe $i^*(T_X)$. On voit qu’on obtient un sous-fibré vectoriel $T_Y \subset i^*(T_X)$, ce qui correspond au fait que en tout $P \in Y$, l’espace tangent $T_P Y$ est un sous-espace vectoriel de $T_P X$. On peut donc introduire le fibré quotient $N_{Y/X} = i^*(T_X)/T_Y$ de rang k, qu’on appelle fibré conormal à Y relativement à X. DESSIN!!!

3.81. Exemples de variétés complexes

Nous n’allons pas nous attarder sur les exemples, ce qui est contestable. Mentionnons évidemment les ouverts de \mathbb{C}^n, les produits de plusieurs surfaces de Riemann. Les fibrés tangents et cotangents holomorphes de surfaces de Riemann fournissent également des exemples de variétés complexes de dimension > 1. Notons d’ailleurs qu’interpréter une 1-forme différentielle holomorphe sur une surface de Riemann comme une section holomorphe du fibré cotangent fait nécessairement intervenir la structure de variété complexe sur ce fibré, donc la notion de fonctions holomorphes à deux variables.

On peut aussi munir l’espace projectif complexe $\mathbb{P}^n_{\mathbb{C}} = (\mathbb{C}^{n+1} \setminus (0, \cdots, 0))/\mathbb{C}^*$ d’une structure complexe (avec un atlas explicite et bien connu en géométrie différentielle). De même pour les tores complexes \mathbb{C}^g/Λ avec $\Lambda \subset \mathbb{C}^g$ un réseau, c’est à dire un sous-groupe discret qui \mathbb{R}-engendre \mathbb{C}^g. Ces deux dernières variétés sont d’ailleurs compactes.
On peut alors considérer les sous-variétés de \mathbb{C}^n/Λ et de \mathbb{P}_n°, qui restent des variétés complexes. Il faut toutefois donner des exemples explicites de telles sous-variétés, ce qui n’est pas si facile et que nous allons faire en plusieurs parties.

On commence par rappeler l’atlas holomorphe de \mathbb{P}_n°. Premièrement pour tout $(z_0, \cdots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\}$, on note $[z_0 : \cdots : z_n]$ son image dans \mathbb{P}_n°. On dit que c’est une coordonnée homogène, c’est à dire que $[z_0 : \cdots : z_n] = [\lambda z_0 : \cdots : \lambda z_n]$ pour tout $\lambda \in \mathbb{C}^*$. Ainsi on prendra garde au fait que $z = [z_0 : \cdots : z_n]$ ne détermine pas $z_i \in \mathbb{C}$ pour tout i. Par contre la condition $z_i = 0$ (ou $z_i \neq 0$) est bien définie étant donnée $z = [z_0 : \cdots : z_n] \in \mathbb{P}_n^\circ$.

Pour $0 \leq i \leq n$, on note $U_i \subset \mathbb{P}_n^\circ$ l’ouvert où $z_i \neq 0$. On note alors $\phi_i : U_i \to \mathbb{C}^n$, $[z_0 : \cdots : z_n] \mapsto (z_0/z_i, \cdots, z_i-1/z_i, z_{i+1}/z_i, \cdots, z_n/z_i)$ qui est un homéomorphisme (où \mathbb{P}_n° est muni de la topologie quotient) de réciproque $\psi_i : \mathbb{C}^n \to U_i$, $(x_1, \cdots, x_n) \mapsto [x_1 : \cdots : x_{i-1} : 1 : x_i : \cdots : x_n]$. On obtient de la sorte un atlas de \mathbb{P}_n° dont les changements de cartes sont fournis par $\phi_i \circ \psi_j : \mathbb{C}^{n-1} \times \mathbb{C}^* \to \mathbb{C}^{n-1} \times \mathbb{C}^*$ qui est coordonnée par coordonnée l’application $z \mapsto z$ ou $z \in \mathbb{C}^* \mapsto 1/z$. En conséquence \mathbb{P}_n° est une variété complexe de dimension n.

On rappelle que si $F \in \mathbb{C}[X_0, \cdots, X_n]$ est un polynôme homogène de degré d et si $z = [z_0 : \cdots : z_n] \in \mathbb{P}_n^\circ$, on ne peut pas définir la valeur $F(z) \in \mathbb{C}$ car elle dépend du choix de $(z_0, \cdots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\}$. Mais comme $F(\lambda z_0, \cdots, \lambda z_n) = \lambda^d F(z_0, \cdots, z_n)$ pour tout $\lambda \in \mathbb{C}^*$, le lieu d’annulation de F est bien défini comme sous-ensemble fermé de \mathbb{P}_n°.

Remarque 3.82. — On peut être tenté de définir les variétés complexes projectives comme le lieu d’annulation dans \mathbb{P}_n° d’une famille (F_1, \cdots, F_r) de polynômes homogènes, à la manière de ce qu’on fait en théorie des variétés algébriques. On se heurte néanmoins à une difficulté car ce lieu d’annulation peut être non lisse, donc non localement homéomorphe à un ouvert de \mathbb{C}^d, donc même pas une variété différentielle. Par exemple considérer $F(X, Y, Z) = XY$ qui définit dans \mathbb{P}_2° une « croix » de droites projectives. Ce qu’on définirait de la sorte serait en fait une variété complexe singulière, théorie à laquelle on a fait allusion à la fin du chapitre d’introduction. Pour définir des variétés complexes (lisses) il va falloir imposer des conditions sur les polynômes homogènes.

Commençons par le cas le plus simple de ces conditions : celui où X est défini par une unique équation dans \mathbb{P}_n°. On notera l’apparition de l’adjectif « lisse » dans le sens de la géométrie algébrique (via un critère jacobien, c’est à dire submersif dans le sens de la géométrie différentielle), ce qui n’est pas du tout la même chose que lisse (ie C^∞) en géométrie différentielle.

Exercice 3.83. — On dit qu’un polynôme non homogène $f \in \mathbb{C}[z_1, \cdots, z_n]$ est lisse si le système d’équations $f = \partial f/\partial z_1 = \cdots = \partial f/\partial z_n = 0$ est sans solution dans \mathbb{C}^n.
3.81. EXEMPLES DE VARIÉTÉS COMPLEXES

Soit $F \in \mathbb{C}[X_0, \ldots, X_n]$ homogène. On dit que F est lisse dans le sens homogène si le système d’équation $F = \partial F/\partial X_0 = \cdots = \partial F/\partial X_n = 0$ n’a pas de solution $(z_0, \ldots, z_n) \neq (0, \ldots, 0)$ dans \mathbb{C}^{n+1}.

i. Montrer que si $f \in \mathbb{C}[z_1, \ldots, z_n]$ est lisse, son lieu d’annulation $Z \subset \mathbb{C}^n$ est une variété complexe. On pourra utiliser une version holomorphe du théorème des fonctions implicites.

ii. Soit $F \in \mathbb{C}[X_0, \ldots, X_n]$ homogène de degré d. Montrer la formule d’Euler

$$F = \frac{1}{d} \sum_{i=0}^{n} X_i \cdot \partial F/\partial X_i$$

iii. En déduire que F est lisse dans le sens homogène si et seulement si ses déshomogénisations $f(z_1, \ldots, z_n) = F(1, z_1, \ldots, z_n)$ (et idem pour toute permutation des variables) sont lisses dans le sens usuel.

iv. En déduire que si F est lisse dans le sens homogène, son lieu d’annulation X dans $\mathbb{P}^n_\mathbb{C}$ est une variété complexe.

On peut ensuite définir les intersections complètes globales. Soient $F_1, \ldots, F_r \in \mathbb{C}[X_0, \ldots, X_n]$ et notons $X \subset \mathbb{P}^n_\mathbb{C}$ leur lieu d’annulation commun. Si la matrice jacobienne $(\partial F/\partial X_i(z))$ de taille $r \times (n + 1)$ est de rang maximal r pour tout $z \in X$, on dit que X est une intersecion globale de codimension r dans $\mathbb{P}^n_\mathbb{C}$. Nous ne démontrerons pas la proposition suivante.

Proposition 3.84. — Si X est une intersection complète globale de codimension r, c’est une variété complexe compacte de dimension r.

Remarque 3.85. — Toute sous-variété complexe de $\mathbb{P}^n_\mathbb{C}$ n’est pas une intersection complète globale. On vérifie par exemple que l’image de l’application $f : \mathbb{P}^1_\mathbb{C} \to \mathbb{P}^3_\mathbb{C}, [x : y] \mapsto [x^3 : x^2y : xy^2 : y^3]$ n’est pas définie par l’annulation de deux polynômes homogènes. Au contraire elle est définie par l’annulation simultanée des trois équations $x_0x_3 = x_1x_2$, $x_0x_2 = x_1^2$, $x_1x_3 = x_2^2$.

La meilleure manière de prouver qu’une sous-variété de $\mathbb{P}^n_\mathbb{C}$ n’est pas une intersection complète globale est de manière cohomologique, en utilisant des arguments qui utilisent la décomposition de Lefschetz (REF!!).

On peut finalement définir les sous-variétés complexes les plus générales de $\mathbb{P}^n_\mathbb{C}$. Voir [Mi, p.18 def.3.10].

Proposition 3.86. — Soit $r \geq 0$ et $(F_\alpha)_\alpha \in \mathbb{C}[X_0, \ldots, X_n]$ une famille de polynômes homogènes et $X \subset \mathbb{P}^n_\mathbb{C}$ leur lieu d’annulation commun. On suppose qu’au voisinage de tout $P \in X$, le sous-ensemble X est en fait défini par l’annulation de r équations F_{α_1} =
\[\cdots = F_{a_r} = 0 \] parmi les \(F_\alpha \), et que la matrice \(r \times (n + 1) \) formée des \(\partial F_\alpha / \partial X_j(P) \) est de rang maximal \(r \). Alors \(X \) est une variété complexe de codimension \(r \).

Remarque 3.87. — Un des théorèmes principaux relatif aux surfaces de Riemann compactes montre qu’elles sont algébriques projectives, c’est à dire que ce sont des sous-variétés de \(\mathbb{P}^n_\mathbb{C} \) définies par l’annulation de polynômes homogènes. Il suffit pour le prouver de vérifier que les surfaces de Riemann sont des sous-variétés complexes de \(\mathbb{P}^n_\mathbb{C} \). On rappelle en effet que par les théorèmes GAGA que vous verrez dans le cours de Claire Voisin, toute sous-variété complexe fermée d’une variété complexe projective est définie par l’annulation de polynômes homogènes.

Le fait que les surfaces de Riemann compactes sont des sous-variétés complexes fermées de \(\mathbb{P}^n_\mathbb{C} \) pour \(n \) adéquat résulte du théorème de Riemann-Roch et sera vu en TD (REF EXO POLY!!!)

Une différence fondamentale entre la théorie des surfaces de Riemann et celle des variétés complexes compactes de dimension \(> 1 \) est qu’elles ne sont pas toutes algébriques. On verra (REF!!!) que par exemple les tores complexes ne sont pas tous algébriques, et ne peuvent donc pas être vus comme des sous-variétés complexes de \(\mathbb{P}^n_\mathbb{C} \).

3.88. Orientation et métriques

Une orientation de \(X \) est par définition la donnée d’une demi-droite dans \(\text{Alt}^n_\mathbb{R}(T_X, X \times \mathbb{R}) \) privé de sa section nulle, que on appelle la direction positive du fibré \(\text{Alt}^n_\mathbb{R}(T_X, X \times \mathbb{R}) \). Par définition une demi-droite d’un fibré vectoriel est la donnée pour tout \(x \in X \) d’une demi-droite de l’espace vectoriel \(\text{Alt}^n_\mathbb{R}(T_{X,x}, X \times \mathbb{R}) \) qui « varie de manière lisse avec \(x \) » (exercice : trouver une définition rigoureuse).

Soit \(X \) une variété complexe de dimension \(n \). Nous allons vérifier que \(X \) est orientable, munie d’une orientation canonique

Proposition 3.89. — Il existe une unique orientation de la variété différentielle \(X \) telle que pour tout \(x \in X \), pour toute \(\mathbb{C} \)-base \((u_1, \cdots, u_n) \) de \(T_{X,x} \), la \(\mathbb{R} \)-base \((u_1, Iu_1, \cdots, u_n, Iu_n) \) de \(T_{X,x} \) soit directe.

Remarque 3.90. — Plus généralement une orientation sur un fibré vectoriel réel \(E \) de rang \(r \) sur une variété différentielle \(X \) est la donnée d’une direction positive dans le fibré en droites \(\text{det}_\mathbb{R}(E) = \Lambda^r_\mathbb{R}E \). La proposition précédente se généralise et montre que si \(E \) est un fibré vectoriel complexe, il est muni d’une orientation canonique quand on le considère comme fibré réel.

Nous aurons besoin loin plus tard non seulement d’orientations mais aussi de métriques. Puisque \(X \) est complexe de dimension \(n \), le fibré tangent \(T_X \) est un fibré vectoriel complexe de dimension \(n \). On peut donc définir la notion de métrique hermitienne \(h \) sur \(X \) : il s’agit
pour tout $x \in X$ d’une application $h : T_{X,x} \times T_{X,x} \to \mathbb{C}$ qui varie de manière lisse avec x, qui est \mathbb{R}-bilinéaire, qui est \mathbb{C}-hermitienne (donc $h(zv, w) = z h(v, w)$ et $h(v, zw) = \overline{zh(v, w)}$) et telle que $h(v, v)$ soit définie positive pour toute section locale v de T_X.

Proposition 3.91. — Toute variété complexe admet des métriques hermitiennes.

Démonstration. — On utilise les partitions de l’unité : il existe un recouvrement ouvert $X = \bigcup_{i \in I} U_i$ et des fonctions lisses $\eta_i : X \to \mathbb{R}^+$ à support compact inclus dans U_i pour tout $i \in I$ tel que $\sum_{i \in I} \eta_i = 1$. Quitte à rapetisser les ouverts, on peut supposer qu’il existe des cartes holomorphes $\phi_i : U_i \to V_i \subset \mathbb{C}^n$. Pour tout $x \in U_i$, on a donc un isomorphisme \mathbb{C}-linéaire $d_p \phi_i : T_p X \to \mathbb{C}^n$ et on peut donc rappeler la métrique hermitienne standard en une métrique $<\cdot,\cdot>_i$ sur U_i. Si on pose $(v,w)_x = \sum_{x \in I} <v_x, w_x>_i$ avec $I_x = \{i \in I | x \in U_i\}$ pour tout $x \in X$ et toutes sections locales v, w de T_X, on obtient une métrique hermitienne sur X.

Soit (X, h) une variété complexe hermitienne. En appliquant la version pour les fibrés vectoriels de l’exercice 2.29, partant de h qui est une section de $\text{Herm}(T_X \times T_X, X \times \mathbb{C})$ on obtient une forme $\omega = -\text{Im}(h)$ qui est une application alternée sur $T_X \times T_X$ à valeurs réelles et de type $(1,1)$. On obtient aussi $g = \text{Re}(h)$ qui est une application symétrique sur $T_X \times T_X$ à valeurs réelles. Cette application vérifie de plus $g(Iv, Iv) = g(v, v)$ pour toutes sections locales v, w de T_X, et $g(v, v) > 0$ si v ne s’annule pas. Ici I désigne l’action canonique de $i \in \mathbb{C}$ sur le fibré complexe T_X, conformément à nos conventions.

Les relations $g(u, v) = \omega(u, Iv)$ et $h(u, v) = g(u, v) - i \omega(u, v)$ montrent que toute quantité parmi h, g, ω détermine les deux autres. Puisque h est hermitienne (ie est définie positive), l’application g est riemannienne (ie définie positive) et ω est non-dégénérée. On obtient de plus des équivalences entre ces propriétés. Ainsi à toute structure riemannienne (X, g) sur une variété complexe X telle que $g(Iv, Iv) = g(v, v)$ correspond une unique structure hermitienne (X, h).

Lorsqu’on fixera dans la suite une structure hermitienne sur X, on la notera toujours h et on appliquera librement les constructions précédentes pour obtenir g et ω. En particulier (X, g) devient une variété riemannienne et (X, ω) une variété symplectique.
On voit dans tous les exemples précédents de suite exacte courte qu’il paraît souhaitable
de quantifier le défaut de surjectivité au niveau des sections globales \(F_2(X) \to F_3(X) \)
pour une suite exacte courte de faisceaux \(0 \to F_1 \to F_2 \to F_3 \to 0 \). Cela répond en effet
da des questions éminemment classiques d’existence de primitive, de logarithmes, etc. La
cohomologie permettra cela.

Le théorème suivant est notre première boîte noire d’algèbre homologique. On don-
nera néanmoins quelques indications de construction juste après. Rappelons qu’on a noté
\(H^0(X, \mathcal{F}) = \mathcal{F}(X) \), et le théorème explique en particulier cette notation en donnant en
sens aux \(H^i \) pour \(i \geq 1 \).

Théorème 4.1. — Soit \(X \) un espace topologique. Il existe une famille de foncteurs (appe-
lés des \(\delta \)-foncteurs) \(H^i(X, \bullet) \) de la catégorie des faisceaux en groupes abéliens sur \(X \) vers la
catégorie des groupes abéliens pour tout \(i \geq 0 \), tels que \(H^0(X, \mathcal{F}) = \mathcal{F}(X) \) pour tout \(\mathcal{F} \), et
il existe pour toute suite exacte courte \(0 \to F_1 \to F_2 \to F_3 \to 0 \) une famille de morphismes
de groupes abéliens

\[
H^i(X, F_3) \to H^{i+1}(X, F_1)
\]

pour tout \(i \geq 0 \) telle que la suite suivante soit une suite exacte longue de groupes abéliens

\[
0 \to H^0(X, F_1) \to H^0(X, F_2) \to H^0(X, F_3) \\
\to H^1(X, F_1) \to H^1(X, F_2) \to H^1(X, F_3) \\
\to H^1(X, F_1) \to H^1(X, F_2) \to H^1(X, F_3) \cdots
\]

Remarque 4.2. — On rappelle qu’une suite exacte longue de groupes abéliens \(A_1 \xrightarrow{d_1} A_2 \xrightarrow{d_2} A_3 \cdots \) est une famille de groupes abéliens et de morphismes vérifiant \(\text{Im}(d_i) = \text{Ker}(d_{i+1}) \) pour tout \(i \).

Ainsi \(H^1(X, \mathbb{C}_X) \) contient l’obstruction à l’existence de primitives sur \(X \) des 1-formes
différentielles holomorphes, \(H^1(X, 2i\pi \cdot \mathbb{Z}_X) \) celle à l’existence de logarithme global, etc.
Plus précisément, il existe des primitives globales à toute 1-forme holomorphe sur \(X \) si
et seulement le morphisme \(H^1(X, \mathcal{C}_X) \to H^1(X, \mathcal{O}_X) \) est injectif. C’est bien sûr le cas si \(H^1(X, \mathcal{C}_X) = 0 \).

4.3. Construction de la cohomologie

La cohomologie des faisceaux rentre dans le cadre de l’algèbre homologique, et sa construction n’est pas fondamentalement différente des foncteurs Ext ou Tor. Tout le jeu consiste en effet à résoudre un faisceau par des faisceaux injectifs. Pour les preuves, voir [Vo, 4.2] ou le cours introductif d’algèbre homologique.

Définition 4.4. — Soit \(X \) un espace topologique. Un faisceau \(\mathcal{I} \) en groupes abéliens sur \(X \) est injectif si pour toute injection entre faisceaux \(\mathcal{A} \hookrightarrow \mathcal{B} \) sur \(X \), tout morphisme de \(\mathcal{A} \) dans \(\mathcal{I} \) s’étend en un morphisme de \(\mathcal{B} \) dans \(\mathcal{I} \).

Lemme 4.5. — La catégorie des faisceaux en groupes abéliens sur \(X \) a assez d’injectifs, ce qui veut dire que pour tout faisceau \(\mathcal{F} \) il existe une injection de \(\mathcal{F} \) dans un faisceau injectif \(\mathcal{I} \).

Démonstration. — On sait que la catégorie des groupes abéliens admet assez d’injectifs. Pour tout \(x \in X \), on dispose du groupe abélien \(\mathcal{F}_x \) et on choisit un groupe abélien injectif \(\mathcal{I}_x \subset \mathcal{I}_x \). On note \(\mathcal{I}(U) = \prod_{x \in U} \mathcal{I}_x \) avec des applications de restrictions évidentes, et on vérifie qu’il s’agit d’un faisceau injectif. L’application \(\mathcal{F} \to \mathcal{I} \) est claire, et on vérifie sur les germes qu’elle est injective.

On peut alors considérer le conoyau \(\mathcal{I}/\mathcal{F} \) et lui réappliquer le lemme. On en déduit le corollaire suivant.

Corollaire 4.6. — Soit \(\mathcal{F} \) un faisceau en groupes abéliens sur \(X \). Il existe une suite exacte longue

\[
0 \to \mathcal{F} \to \mathcal{I}_0 \overset{d_0}{\to} \mathcal{I}_1 \overset{d_1}{\to} \cdots
\]

où les \(\mathcal{I}_i \) sont injectifs pour tout \(i \geq 0 \).

On peut alors considérer les sections globales et on obtient un complexe de groupes abéliens

\[
0 \to \mathcal{F}(X) \to \mathcal{I}_0(X) \overset{d_0}{\to} \mathcal{I}_1(X) \overset{d_1}{\to} \cdots
\]

On rappelle qu’un complexe de groupes abéliens est une famille de groupes abéliens et de morphismes \(A_0 \overset{d_0}{\to} A_1 \overset{d_1}{\to} A_2 \cdots \) vérifiant \(d_{i+1} \circ d_i = 0 \), soit \(\text{Im}(d_i) \subset \text{Ker}(d_{i+1}) \) pour tout \(i \), mais pas nécessairement \(\text{Im}(d_i) = \text{Ker}(d_{i+1}) \) comme ce serait le cas pour une suite exacte longue.

Définition 4.7. — Le groupe \(H^i(X, \mathcal{F}) \) est le \(i \)-ème groupe de cohomologie de ce complexe. Autrement dit c’est le groupe abélien \(\text{Ker}(d_{i+1})/\text{Im}(d_i) \).
Le formalisme général de l’algèbre homologique montre que cela ne dépend pas du choix de la résolution injective, que c’est fonctoriel en F et que bien des suites exactes longues associées aux suites exactes courtes de faisceaux.

Remarque 4.8. — Plus de connaissances en algèbre homologique, notamment les catégories dérivées, permettent de définir la cohomologie canoniquement, sans recours à des résolutions injectives. Toutefois l’existence de telles résolutions sert à divers endroits clés de la théorie.

Remarque 4.9. — Tout d’abord, on peut prendre des résolutions injectives respectant des structures additionnelles du faisceau F. Ainsi si X est une variété complexe et F est un faisceau en \mathcal{O}_X-modules, on peut prendre des résolutions injectives qui sont des \mathcal{O}_X-modules. Cela garantit que $H^i(X, F)$ est un module sous $H^0(X, \mathcal{O}_X)$. De même pour X une variété différentielle et F en \mathcal{A}_X^0-modules. De même pour tout espace topologique X et tout faisceau F en \mathbb{C}-espaces vectoriels. On aura alors que $H^i(X, F)$ est un \mathbb{C}-espace vectoriel.

Même si F est un faisceau en \mathcal{O}_X-modules localement libre sur une variété complexe, sa cohomologie se calcule donc en introduisant des faisceaux injectifs en \mathcal{O}_X, qui ne sont plus localement libres. Ils ne sont donc pas associés à des fibrés vectoriels holomorphes. En conséquence, introduire seulement les fibrés vectoriels sans parler des définitions générales relatives aux faisceaux ne permet pas de définir la cohomologie de ces fibrés vectoriels.

Exercice 4.10. — Soit X un espace topologique et $0 \rightarrow I \rightarrow F \rightarrow G \rightarrow 0$ une suite exacte courte de faisceaux en groupes abéliens, avec I injectif.

i. Montrer que $H^k(X, I) = 0$ pour tout $k > 0$.

ii. En utilisant le théorème 4.1, montrer que la suite $0 \rightarrow I(X) \rightarrow F(X) \rightarrow G(X) \rightarrow 0$ est exacte.

iii. Montrer que cette suite est exacte sans utiliser le théorème mais seulement la définition d’un faisceau injectif.

Bien sûr la construction de la cohomologie est très formellement et pas directement utilisable dans la pratique, car les résolutions injectives sont difficilement manipulables. On verra d’autres incarnations beaucoup plus concrètes de certains groupes de cohomologie de certains faisceaux. Pour cela il faut caractériser d’autres faisceaux non nécessairement injectifs qui permettent de calculer la cohomologie.

Définition 4.11. — Un faisceau F en groupes abéliens sur X est acyclique si $H^i(X, F) = 0$ pour tout $i > 0$.

La proposition suivante est un abstract-non-sense d’algèbre homologique.
Proposition 4.12. — Soit \(F \) un faisceau sur \(X \) et \(0 \to F \to F_0 \xrightarrow{d_0} F_1 \xrightarrow{d_1} \cdots \) une suite exacte longue où \(F_i \) est acyclique pour tout \(i \geq 0 \). Le \(i \)-ème groupe de cohomologie du complexe
\[
0 \to F(X) \to F_0(X) \xrightarrow{d_0} F_1(X) \xrightarrow{d_1} \cdots
\]
est égal à \(H^i(X, F) \).

Autrement dit, on peut calculer la cohomologie de \(F \) avec n’importe quelle résolution par des faisceaux acycliques non nécessairement injectifs. Pour qu’un tel énoncé soit utile, encore faut-il dégager des classes de faisceaux acycliques....

Définition 4.13. — Un faisceau \(F \) sur \(X \) est flasque pour tous ouverts \(U \subset V \subset X \), la restriction \(\text{res}_{V/U} : F(V) \to F(U) \) est surjective.

Autrement dit un faisceau flasque paramètre des “fonctions” qui s’étendent toujours à un ouvert plus gros.

Exemple 4.14. —

i. Si \(P \in X \), le faisceau gratte-ciel \(\mathcal{O}_P \) vérifiant \(\mathcal{O}_P(U) = \mathbb{C} \) si \(P \in U \) et \(\mathcal{O}_P(U) = 0 \) sinon est flasque.

ii. Le faisceau de toutes les fonctions ensemblistes est flasque.

iii. Les faisceaux de fonctions continues, \(\mathcal{C}^\infty \), holomorphes (si \(X \) est une variété différentielle ou une surface de Riemann), etc, ne sont jamais flasques.

iv. Le faisceau des fonctions localement constantes \(\mathbb{Z}_X \) n’est pas flasque car si \(U \subset V \), \(U \) peut avoir plus de composantes connexes que \(V \).

Lemme 4.15. — Un faisceau flasque est acyclique.

Définition 4.16. — Soit \(A \) un faisceau en anneaux sur \(X \). On dit qu’il est fin s’il admet des partitions de l’unité subordonnées à tout recouvrement. Donc pour tout recouvrement \(X = \bigcup_{i \in I} U_i \), on demande qu’il existe une famille \((f_i \in A(X))_{i \in I} \) telle que \(1_{A(X)} = \sum_{i \in I} f_i \), telle que \(\text{supp}(f_i) \subset U_i \), et telle que la somme \(\sum_{i \in I} f_i \) soit localement finie.

Dans cette définition \(\text{supp}(f_i) = \{ x \in X | \forall x \in U \ | \text{res}_{X/U}(f_i) \neq 0 \} \), et on dit que la somme \(\sum_{i \in I} f_i \) est localement finie si pour tout \(x \in X \), il existe \(x \in U \subset X \) telle que la somme devienne finie après application de \(\text{res}_{X/U} \).

Définition 4.17. — Un faisceau fin est un faisceau \(F \) tel qu’il existe un faisceau en anneaux fin \(A \) tel que \(F \) soit un faisceau en \(A \)-modules.

Remarque 4.18. — On peut trouver des définitions plus générales dans la littérature (voir Gunning, Lectures on Riemann Surfaces) mais elles sont un peu tirées par les cheveux.
Exemple 4.19. — Les faisceaux de fonctions continues et C^∞ sont des faisceaux en anneaux flasques. Les faisceaux de sections continues de fibrés vectoriels sont des faisceaux fins. Les faisceaux de formes différentielles ou de champs de vecteurs C^∞ sont fins.

Par contre si X est une variété complexe, les faisceaux \mathcal{O}_X et Ω^p_X ne sont pas fins car il n’existe pas de partition de l’unité dans le monde holomorphe par le principe d’unicité du prolongement analytique.

Lemme 4.20. — Les faisceaux fins sont acycliques.

4.21. Applications

Soit X une variété différentielle de dimension réelle n. On dispose par le lemme de Poincaré de la suite exacte longue de faisceaux en \mathbb{C}-espaces vectoriels

$$0 \to \underline{\mathbb{C}}_X \to A^0_X \xrightarrow{d} A^1_X \xrightarrow{d} \cdots A^n_X \to 0$$

et les faisceaux A^k_X sont fins pour tout $k \geq 0$. On en déduit que pour tout $k \geq 0$, on a

$$H^k(X, \underline{\mathbb{C}}_X) = H^k_{dR}(X)$$

et ce groupe mesure le défaut de validité du lemme de Poincaré sur tout X. De plus, on a $H^k(X, \underline{\mathbb{C}}_X) = 0$ pour tout $k > n$.

Soit X une variété complexe de dimension complexe n. On dispose alors par le lemme de Dolbeault de la suite exacte longue de faisceaux en \mathbb{C}-espaces vectoriels

$$0 \to \Omega^p_X \to A^p,0_X \xrightarrow{\bar{\partial}} A^p,1_X \xrightarrow{\bar{\partial}} \cdots A^p,n_X \to 0$$

En conséquence on obtient un isomorphisme canonique de \mathbb{C}-espaces vectoriels

$$H^k(X, \Omega^p_X) = \text{Ker}(\bar{\partial} : A^{p,k}(X) \to A^{p,k+1}(X))/\text{Im}(\bar{\partial} : A^{p,k-1}(X) \to A^{p,k}(X))$$

pour tous $p, k \geq 0$, et cet espace vectoriel mesure l’obstruction globale au lemme de Dolbeaut. Aussi $H^k(X, \Omega^p_X) = 0$ pour tout $p \geq 0$ et tout $k > n$.

Remarque 4.22. — Soit X une variété complexe de dimension complexe n. Les annihilations de $H^k_{dR}(X)$ pour $k > 2n$ et de $H^k(X, \Omega^p_X)$ pour tout $p \geq 0$ et tout $k > n$ sont compatibles avec la décomposition de Hodge

$$H^k_{dR}(X) = \bigoplus_{p+q=k} H^q(X, \Omega^p_X)$$

lorsque X est compacte kählérienne.

Remarque 4.23. — La cohomologie des faisceaux est définie pour tout faisceau \mathcal{F} sur X. Mais on ne dispose d’aucun résultat absolument général garantissant l’annulation de $H^k(X, \mathcal{F})$ pour tout k assez grand. On peut d’ailleurs fabriquer des espaces
dont la cohomologie des faisceaux ne s’annule en aucun degré ; il suffit de prendre $X = \mathbb{S}^1 \coprod \mathbb{S}^2 \coprod \cdots \coprod \mathbb{S}^n \coprod \cdots$ et le faisceau \mathbb{C}_X.

Rappelons toutefois la notion d’espace topologique noethérien, dans lequel les chaînes descendantes de fermées stationnent. Un tel espace a une dimension bien définie, donnée par la longueur maximale de chaîne décroissante de fermées irréductibles. Un fameux théorème de Grothendieck dit alors que $H^k(X, F) = 0$ pour tout $k > \dim(X)$ et pour tout F.

Sauf que \mathbb{R}^n, \mathbb{C}^n, les variétés différentielles et les variétés complexes ne sont pas des espaces topologiques noethériens ! Le théorème de Grothendieck est en fait surtout adapté aux schémas et aux espaces adiques de Huber.

Remarque 4.24. — La finitude est une question encore plus compliquée. Déjà il faut se demander de quelle finitude on parle : si X est une boule ouverte de \mathbb{C}, $H^0(X, O_X)$ est un \mathbb{C}-espace vectoriel de dimension infinie, mais un $H^0(X, O_X)$-module de type fini, et $H^0(X, \Omega^1_X)$ est un $H^0(X, O_X)$-module libre de rang 1 et de base dz.

On verra dans la suite du cours des théorèmes de finitude comme \mathbb{C}-espace vectoriel pour $H^k_{dR}(X, \mathbb{C})$ lorsque X est une variété différentielle compacte, et pour $H^k(X, \Omega^p_X)$ lorsque X est une variété complexe compacte.

Cette finitude est souvent cruciale pour les applications : on peut par exemple reformuler toute la théorie des surfaces de Riemann compacte, et notamment leur algébrisation et le théorème de Riemann-Roch, dans la finitude de $H^1(X, O_X)$ comme \mathbb{C}-espace vectoriel $[\text{Str}]$.

Remarque 4.25. — Dès qu’on a fixé une résolution flasque F_\bullet du faisceau F sur X, la cohomologie $H^k(X, F)$ apparaît comme une obstruction à ce qu’un énoncé global soit vrai (ie l’exactitude de $F_{k-1}(X) \to F_k(X) \to F_{k+1}(X)$) sachant qu’il est vrai localement. Toutefois cette définition élémentaire de la cohomologie des faisceaux dépend de F_\bullet et pas juste de F.

Il peut pourtant être utile de voir le même groupe de cohomologie quantifiant diverses obstructions. Par exemple si X est une surface de Riemann, $H^1(X, O_X)$ mesure le défaut de validité globale du lemme de Dolbeault. Mais en utilisant la suite exacte courte exponentielle $0 \to 2i\pi \mathbb{Z}_X \to O_X \to O_X^\times$, on voit que le noyau de $H^1(X, 2i\pi \mathbb{Z}_X) \to H^1(X, O_X)$ mesure l’obstruction à l’existence globale de logarithmes holomorphes ; en utilisant la suite exacte courte de différentiation $0 \to \mathbb{C}_X \to O_X \to \Omega^1_X \to 0$ on que le noyau de $H^1(X, \mathbb{C}_X) \to H^1(X, O_X)$ mesure l’obstruction à l’existence globale de primitives holomorphes ; en utilisant la suite exacte courte $0 \to O_X \to O_X(P) \to O_P \to 0$ on voit que $H^1(X, O_X)$ contient l’obstruction à l’existence d’une fonction méromorphe holomorphe hors de $P \in X$ avec pôle simple de résidu non nul en P.

Soit X un espace topologique, \mathcal{F} un faisceau en groupes abéliens sur X et $X = \bigcup_{i \in I} U_i$ un recouvrement ouvert (on ne demande pas qu'il soit fini). Pour tous $i, j \in I$ on pose $U_{i,j} = U_i \cap U_j$, et de même pour $U_{i,j,k}$ etc. Plus synthétiquement, pour tout sous-ensemble fini $J \subset I$ on note $U_J = \cap_{j \in J} U_j$. Lorsque $K \subset J$ on a l’inclusion entre ouverts $U_J \subset U_K$. On a alors la restriction $\operatorname{res}_{K, J} : \mathcal{F}(U_K) \to \mathcal{F}(U_J)$.

Notons alors $\hat{\mathcal{C}}^0(X, U_\bullet, \mathcal{F}) = \prod_{i \in I} \mathcal{F}(U_i)$, puis $\hat{\mathcal{C}}^1(X, U_\bullet, \mathcal{F}) = \prod_{i,j \in I} \mathcal{F}(U_{i,j})$ et $\hat{\mathcal{C}}^2(X, U_\bullet, \mathcal{F}) = \prod_{i,j,k \in I} \mathcal{F}(U_{i,j,k})$. Enfin pour tout $r \geq 0$ on pose $\hat{\mathcal{C}}^r(X, U_\bullet, \mathcal{F}) = \prod_{J \in I} \mathcal{F}(U_J)$ où on effectue le produit sur les sous-ensembles $J \subset I$ de cardinal $r + 1$.

On définit ensuite une différentielle $d^r : \hat{\mathcal{C}}^r(X, U_\bullet, \mathcal{F}) \to \hat{\mathcal{C}}^{r+1}(X, U_\bullet, \mathcal{F})$ de la manière suivante : lorsque $r = 0$, l’application $d^0 : \prod_i \mathcal{F}(U_i) \to \prod_{i,j} \mathcal{F}(U_{i,j})$ envoie la famille (f_i) sur la famille $(\operatorname{res}_{U_i, U_{i,j}}(f_i) - \operatorname{res}_{U_j, U_{i,j}}(f_j))_{i,j}$. Lorsque $r = 1$, $d^1 : \prod_{i,j} \mathcal{F}(U_{i,j}) \to \prod_{i,j,k} \mathcal{F}(U_{i,j,k})$ envoie la famille $(f_{i,j})_{i,j}$ sur la famille $(\operatorname{res}_{U_{i,j}, U_{i,j,k}}(f_{i,j}) + \operatorname{res}_{U_{i,j,k}, U_{i,j,k}}(f_{i,j}) - \operatorname{res}_{U_{i,j}, U_{i,j,k}}(f_{i,j}))_{i,j,k}$. Dans le cas général le lecteur consultera https://stacks.math.columbia.edu/tag/03AK pour la convention de signes. On vérifie que $d^{r+1} \circ d^r = 0$ pour tout r.

Exemple 4.27. — Ainsi $\ker(d^0)$ est formé des familles de sections $f_i \in \mathcal{F}(U_i)$ telle que f_i et f_j coïncident sur $U_{i,j}$ pour tous i, j. D’après la propriété de faisceau, on voit que $\ker(d^0) = \mathcal{F}(X) = H^0(X, \mathcal{F})$ qui est en particulier indépendant du choix du recouvrement U_i.

Aussi $\ker(d^1)$ est formé des familles de sections $f_{i,j} \in \mathcal{F}(U_{i,j})$ vérifiant la règle de Chasles $(f_{i,j} + f_{j,k} \text{ coïncident avec } f_{i,k} \text{ sur } U_{i,j,k})$, et $\operatorname{im}(d^1)$ est formé des familles de sections $f_{i,j} \in \mathcal{F}(U_{i,j})$ de la forme $f_{i,j} = g_i - g_j$ où $g_i \in \mathcal{F}(U_i)$ pour tout $i \in I$. Comme $(g_i - g_j) + (g_j - g_k) = g_i - g_k$ il est clair que $d^1 \circ d^0 = 0$.

Définition 4.28. — La cohomologie de Cech de X relativement au faisceau \mathcal{F} et au recouvrement $X = \bigcup U_i$ est la cohomologie du complexe $(\hat{\mathcal{C}}^\ast(X, U_\bullet, \mathcal{F}), d^\ast)$. On la note

$$
\hat{H}^i_\bullet(X, \mathcal{F}) = \ker(d_i)/\operatorname{im}(d_{i-1})
$$

Exemple 4.29. — On a donc $\hat{H}^0_\bullet(X, \mathcal{F}) = H^0(X, \mathcal{F})$. Aussi $\hat{H}^1_\bullet(X, \mathcal{F})$ est l’ensemble des $f_{i,j} \in \mathcal{F}(U_{i,j})$ vérifiant la relation de Chasles $f_{i,j} + f_{j,k} = f_{i,k}$, modulo les $f_{i,j}$ de la forme $f_{i,j} = g_i - g_j$ où $g_i \in \mathcal{F}(U_i)$. Dans tous les cas la cohomologie de Cech est extrêmement concrète, avec un contenu combinatoire assez limpide. Le lecteur intéressé par l’algèbre simpliciale pourra d’ailleurs construire un complexe de groupes abéliens simpliciaux qui via l’équivalence de Dold-Kan correspond au complexe de Cech ; cela permet de comprendre la définition compliquée du bord d_i.

Exemple 4.30. — Lorsque X est une variété complexe et $\mathcal{F} = \mathcal{O}_X^\ast$ (ou X est une variété différentielle et $\mathcal{F} = \mathcal{A}_X^0$, ou X est une variété différentielle et $\mathcal{F} = \Omega_X^1$) on obtient que $\hat{H}^0_\bullet(X, \mathcal{F})$ est l’ensemble des classes d’isomorphismes de fibrés holomorphes (resp.
Les variétés complexes vérifient ces hypothèses.

Définition 4.33. — Soit X un espace topologique. Sa dimension de recouvrement est le plus petit entier n (s’il existe) tel que tout recouvrement ouvert U_\bullet de X admet un raffinement V_\bullet tel qu’aucun point de X n’est contenu dans strictement plus de $n+1$ ouverts parmi les V_i.

Proposition 4.34. — Soit X paracompact de dimension de recouvrement finie égale à n. Alors $H^k(X, F) = 0$ pour tout $k > n$ et tout faisceau F en groupes abéliens sur X.

Démonstration. — On utilise la proposition [4.32] qui permet de calculer la cohomologie à la Cech en remplaçant tout recouvrement par un raffinement. C’est alors évident car si V_\bullet est un recouvrement comme dans la définition de la dimension de recouvrement, le complexe de Cech relativement V_\bullet est concentré en degrés $\leq n$. □
Exemple 4.35. — On peut montrer que la dimension de recouvrement de \mathbb{R}^n est n. Cela permet de voir que $H^k(X, \mathcal{F}) = 0$ pour toute variété différentielle de dimension n, tout $k > n$ et tout faisceau \mathcal{F} en groupes abéliens sur X.

Pour être réellement explicite, il toutefois utile de n’utiliser qu’un seul recouvrement et de trouver des hypothèses sur le couple (U_\bullet, \mathcal{F}) qui garantissent que $H^i(X, \mathcal{F}) = \hat{H}^i(U_\bullet, X, \mathcal{F})$.

La proposition suivante résulte de généralités d’algèbre homologique (REF!!)

Proposition 4.36. — Soit X un espace topologique muni d’un recouvrement ouvert $X = \bigcup_{i \in I} U_i$ et \mathcal{F} un faisceau en groupes abéliens sur X. Supposons que \mathcal{F} est acyclique sur les U_i, sur les U_{ij}, sur les U_{ijk} etc. Alors $H^i(X, \mathcal{F}) = \hat{H}^i(U_\bullet, X, \mathcal{F})$.

La difficulté de cette proposition est qu’étant donné X et \mathcal{F}, il peut être facile de trouver U_\bullet tel que \mathcal{F} soit acyclique sur les U_i, mais pas forcément sur les U_{ij} et les multi-intersections supérieures.

Exemple 4.37. — Si X est une variété différentielle et $\mathcal{F} = \mathbb{Z}_X$, on peut choisir les U_i difféomorphes à des boules ouvertes de \mathbb{R}^n et ils sont donc contractiles. Mais les U_{ij} ne sont pas contractiles en général. Il se trouve que des techniques de géométrie riemannienne permettent de construire un recouvrement U_\bullet tel que toutes les multi-intersections soient difféomorphes à \mathbb{R}^n (voir Bott-Tu, Differential forms in Algebraic Topology, th.I.5.1).

Avec le même X et le même U_\bullet, il n’est pas vrai que tout \mathcal{F} soit acyclique sur les U_i. Par exemple si $X = \mathbb{R}^n$ et $i : S^{n-1} \hookrightarrow \mathbb{R}^n$, le faisceau $\mathcal{F} = i_* \mathbb{Z}_{S^{n-1}}$ n’est certainement pas acyclique sur X.

Exemple 4.38. — Si $X \subset \mathbb{C}^n$ est un ouvert, $H^k(X, \mathcal{O}_X)$ mesure l’obstruction à la validité du lemme de Dolbeault sur X pour les $(0, k)$-formes. Si $X = \mathbb{C}^n$ ou si X est une boule ouverte, par la remarque 2.63 on a $H^k(X, \mathcal{O}_X) = 0$ pour tout $k > 0$.

Si maintenant X est une variété complexe, on peut donc trouver un recouvrement U_\bullet (par exemple où U_i est biholomorphie à une boule ouverte) tel que \mathcal{O}_X soit acyclique sur les U_i. Toutefois il n’est pas clair que \mathcal{O}_X reste acyclique sur les U_{ij} etc. C’est le concept d’espace Stein qui va nous sauver.

On remarque qu’on ne peut pas adapter les constructions de géométrie riemannienne mentionnées dans l’exemple précédent pour construire un recouvrement dont les multi-intersections sont toutes biholomorphes à \mathbb{C}^n. En effet les constructions réalisées à l’aide de métriques sont rarement holomorphes.

Définition 4.39. — Soit X une variété complexe.

i. Pour tout compact $K \subset X$, l’enveloppe convexe holomorphe de K est

$$\hat{K} = \{ x \in X \text{ tq } |f(x)| \leq \sup_K |f| \forall f \in \mathcal{O}_X(X) \}$$
ii. X est holomorphiquement convexe si \hat{K} est compact pour tout compact $K \subset X$.

iii. X est Stein si elle est holomorphiquement convexe et si pour tout $x \in X$, il existe un voisinage ouvert $x \in U \subset X$ tel que pour tout $x \neq y \in U$, il existe $f \in \mathcal{O}_X(X)$ telle que $f(x) \neq f(y)$.

La seconde partie de la définition des espaces Stein est là pour éliminer le cas où X est compact, qui est toujours holomorphiquement convexe. Cette seconde partie est toujours vérifiée lorsque X est un ouvert de \mathbb{C}^n.

Exemple 4.40. — Les espaces suivants sont Stein.

i. Les boules ouvertes de \mathbb{C}^n.

ii. \mathbb{C}^n tout entier.

iii. Pour tout Stein X et toutes fonctions holomorphes $f_1, \cdots, f_r \in \mathcal{O}_X(X)$, le lieu d’annulation $f_1 = \cdots = f_r$ dans X est Stein si cela reste une variété complexe.

iv. Pour tout Stein X et toute fonction holomorphe $f \in \mathcal{O}_X(X)$, le lieu de non annulation $f \neq 0$ dans X reste Stein.

v. L’intersection de deux Stein reste Stein lorsque cette intersection est une variété complexe $[\text{De}]$[prop.I.6.20].

Remarque 4.41. — La notion d’espace Stein ressemble donc beaucoup à celle d’espace affine en géométrie algébrique (stabilité par passage aux fermés, et aux ouverts définis par une seule non annulation) mais englobe aussi des espaces qui n’ont rien d’algébrique comme des boules ouvertes ou le demi-plan de Poincaré. On voit notamment que toute variété algébrique affine qui est lisse définit une variété complexe Stein.

Le théorème suivant $[\text{De}]$[coro.IX.4.11] est absolument fondamental en géométrie complexe. Le lecteur pourra admirer la quantité d’analyse convexe nécessaire à sa démonstration.

Théorème 4.42. — Soit X un espace Stein et E un fibré vectoriel holomorphe sur X de faisceau de sections holomorphes \mathcal{E}, on a $H^k(X, \mathcal{E}) = 0$ pour tout $k > 0$.

Remarque 4.43. — Le théorème vaut en fait pour tout faisceau cohérent (au sens de la géométrie complexe $[\text{De}]$[II.3]) sur un espace Stein. Il évoque bien sûr un célèbre théorème de Serre en géométrie algébrique, qui prédit que les schémas affines n’ont pas de cohomologie cohérente supérieure. Mais il est strictement plus difficile et demande dans sa preuve beaucoup d’analyse non triviale.

Remarque 4.44. — Le principe d’Oka affirme que sur un espace Stein, tout fibré topologique a une structure de fibré holomorphe. De plus étant deux fibrés holomorphes, ils sont holomorphiquement équivalents si et seulement si ils sont topologiquement équivalents. On
peut penser donc aux espaces Stein comme étant « contractiles du point de vue de l’analyse complexe ». Sachant que \(\mathbb{C}^* \) est Stein et qu’il n’est pas évidemment pas contractile.

Exercice 4.45. — Soit \(X \) un espace Stein.

i. En utilisant la suite exacte courte exponentielle pour les fonctions holomorphes, associer à tout fibré en droites holomorphes \(E \) sur \(X \) un élément \(c_1(E) \in H^2(X, \mathbb{Z}_X) \) qui s’annule si et seulement si \(E \) est holomorphiquement trivial.

ii. Notons \(C \) le faisceau des fonctions continues à valeurs complexes sur \(X \). Montrer que \(H^1(X, C^*) = H^2(X, \mathbb{Z}_X) \).

iii. En déduire la preuve du principe d’Oka mentionné dans la remarque précédente.
CHAPITRE 5

DÉCOMPOSITION DE HODGE

5.1. Position du problème : le cas des surfaces de Riemann

Dans cette section, \(X \) désignera une surface de Riemann compacte. Ainsi \(X \) est une variété complexe compacte connexe de dimension 1. La théorie précédente s’applique et on trouve des suites exactes longues et courtes de faisceaux

\[
0 \rightarrow \mathbb{C}_X \rightarrow \mathcal{A}^0_X \xrightarrow{d} \mathcal{A}^1_X \xrightarrow{d} \mathcal{A}^2_X \rightarrow 0 \\
0 \rightarrow \mathcal{O}_X \rightarrow \mathcal{A}^{0,0}_X \xrightarrow{\partial} \mathcal{A}^{0,1}_X \rightarrow 0 \\
0 \rightarrow \Omega^1_X \rightarrow \mathcal{A}^{1,0}_X \xrightarrow{d} \mathcal{A}^{1,1}_X \rightarrow 0
\]

On a bien sûr utilisé qu’en dimension \(n \), on a \(\mathcal{A}^{p,q}_X = 0 \) pour tous \(p, q \geq 0 \) tels que \(p+q > n \), mais aussi pour tout \(p > n \) et tout \(q \geq 0 \), et également pour tout \(q > n \) et tout \(p \geq 0 \). De plus on a les décompositions \(\mathcal{A}^0_X = \mathcal{A}^{0,0}_X \oplus \mathcal{A}^{0,1}_X \oplus \mathcal{A}^{1,0}_X \oplus \mathcal{A}^{1,1}_X \), ainsi que la formule \(d = \partial + \bar{\partial} \) compatible avec ces décompositions.

Puisque les faisceaux \(\mathcal{A}^{p,q}_X \) et \(\mathcal{A}^k_X \) sont fins pour tous \(p, q, k \geq 0 \) on a par REF !!!! des égalités

\[
\begin{align*}
H^0(X, \mathbb{C}_X) &= \text{Ker}(d : \mathcal{A}^0(X) \rightarrow \mathcal{A}^1(X)) \\
H^1(X, \mathbb{C}_X) &= \text{Ker}(d : \mathcal{A}^1(X) \rightarrow \mathcal{A}^2(X)) / \text{Im}(d : \mathcal{A}^0(X) \rightarrow \mathcal{A}^1(X)) \\
H^2(X, \mathbb{C}_X) &= \mathcal{A}^2(X) / \text{Im}(d : \mathcal{A}^1(X) \rightarrow \mathcal{A}^2(X)) \\
H^0(X, \mathcal{O}_X) &= \text{Ker}(\partial : \mathcal{A}^{0,0}(X) \rightarrow \mathcal{A}^{0,1}(X)) \\
H^1(X, \mathcal{O}_X) &= \mathcal{A}^{0,1}(X) / \text{Im}(\bar{\partial} : \mathcal{A}^{0,0}(X) \rightarrow \mathcal{A}^{0,1}(X)) \\
H^0(X, \Omega^1_X) &= \text{Ker}(\bar{\partial} : \mathcal{A}^{1,0}(X) \rightarrow \mathcal{A}^{1,1}(X)) \\
H^1(X, \Omega^1_X) &= \mathcal{A}^{1,1}(X) / \text{Im}(\bar{\partial} : \mathcal{A}^{1,0}(X) \rightarrow \mathcal{A}^{1,1}(X))
\end{align*}
\]

Commençons par analyser ce qu’on obtient au niveau du \(H^0 \), où on n’utilise pas que \(X \) est de dimension un.
Lemme 5.2. — On a \(\text{Ker}(d) = \text{Ker}(\partial) \cap \text{Ker}(\bar{\partial}) \subset \mathcal{A}^0(X) \).

\textbf{Démonstration.} — Comme \(d = \partial + \bar{\partial} \) il est clair que \(\text{Ker}(\partial) \cap \text{Ker}(\bar{\partial}) \subset \text{Ker}(d) \). Puis si \(x \in \text{Ker}(d) \) on a \(\partial(x) = -\bar{\partial}(x) \in \mathcal{A}^{0,1}(X) \cap \mathcal{A}^{0,1}(X) = \{0\} \). □

Ce lemme dit qu’une fonction holomorphe et anti-holomorphe est constante, ce qui est vrai pour toute variété complexe \(X \), compacte ou pas. Mais on n’obtient pas a priori que \(H^0(X, \mathbb{C}_X) = H^0(X, \mathcal{O}_X) \), ce qui est prévu par la décomposition de Hodge mais ne sera vrai que dans le cas compact. Cela résulterait en effet de l’égalité plus fine de l’inclusion.

\textbf{Démonstration.} — Comme \(d = \partial + \bar{\partial} \) l’inclusion \(\text{Im}(d) \subset \text{Im}(\partial) + \text{Im}(\bar{\partial}) \) est évidente. Réciproquement si \((x, y) \in \mathcal{A}^1(X) \) on peut les décomposer en parties \((1, 0) \) et \((0, 1) \) et écrire \(x = x_{0,1} + x_{1,0} \) et \(y = y_{0,1} + y_{1,0} \). Mais \(\partial(x_{1,0}) = \partial(y_{1,0}) = 0 \) car \(\partial \) est nul sur \(\mathcal{A}^{1,0}(X) \). De même \(\bar{\partial}(x_{0,1}) = \bar{\partial}(y_{0,1}) = 0 \). Donc \(\partial(x) + \bar{\partial}(y) = \partial(x_{0,1} + y_{1,0}) + \bar{\partial}(x_{0,1} + y_{1,0}) = d(x_{0,1} + y_{1,0}) \) d’où l’autre inclusion. □

On n’en déduit pas non plus \(H^2(X, \mathbb{C}_X) = H^1(X, \Omega^1_X) \) prédit par la décomposition de Hodge, car cela résulterait de l’égalité \(\text{Im}(\partial) = \text{Im}(\bar{\partial}) \) qui demande plus d’arguments.

Enfin le cas de \(H^1(X, \mathbb{C}_X) \) est encore plus compliqué. En effet on avait

\[
\begin{align*}
H^1(X, \mathbb{C}_X) &= \text{Ker} \left(d = \partial + \bar{\partial} : \mathcal{A}^1(X) \to \mathcal{A}^2(X) \right) / \text{Im} \left(d = \partial + \bar{\partial} : \mathcal{A}^0(X) \to \mathcal{A}^1(X) \right) \\
H^1(X, \mathcal{O}_X) &= \mathcal{A}^{0,1}(X) / \text{Im}(\bar{\partial} : \mathcal{A}^0(X) \to \mathcal{A}^{0,1}(X)) \\
H^0(X, \Omega^1_X) &= \text{Ker}(\bar{\partial} : \mathcal{A}^{1,0}(X) \to \mathcal{A}^2(X))
\end{align*}
\]

Il n’y a aucune relation naïve entre ces espaces, et il n’est pas évident que \(H^1(X, \mathbb{C}_X) = H^1(X, \mathcal{O}_X) \oplus H^0(X, \Omega^1_X) \). La preuve a néanmoins été vue dans le cours des surfaces de Riemann et utilise dans ce cas des outils d’analyse mettant en jeu la théorie des équations différentielles au laplacien. Nous retrouverons cela et l’étendrons à la dimension quelconque dans le reste de ce chapitre.

5.4. Formes harmoniques

5.4.1. Laplaciens. — Nous allons définir le laplacien \(\Delta_d \) agissant les \(k \)-formes différentielles sur une variété riemanienne pour tout \(k \geq 0 \), puis des variantes \(\Delta_\partial \) et \(\Delta_\bar{\partial} \) dans le cas de variétés complexes hermitiennes. Ces laplaciens sont construits à l’aide d’opérateurs \(d^*, \partial^*, \bar{\partial}^* \) qui sont adjoints à \(d, \partial \) et \(\bar{\partial} \) pour des métriques \(L^2 \). Commençons par construire cette métrique puis \(d^* \) dans le cas riemannien.
5.4. FORMES HARMONIQUES

Remarque 5.5. — Le cas des surfaces de Riemann est plus simple car on n’utilise pas de choix de métrique [Fa][par.8.5].

5.5.0.1. Métriques. — Commençons par rappeler que pour toute variété différentielle X et tout fibré vectoriel réel $\pi : E \to X$, une métrique sur E est la donnée d’une section g du fibré $\text{Bil}_R(E \times E, X \times \mathbb{R})$ des applications bilinéaires sur E, qui vérifie que g_x est définie positive sur l’espace vectoriel E_x pour tout $x \in X$. On obtient alors une application bilinéaire symétrique $g : \mathcal{E} \times \mathcal{E} \to C^\infty(X, \mathbb{R})$, où \mathcal{E} est le faisceau des sections lisses de E. Par définition, on a $g(s, s')(x) = g_x(s(x), s'(x))$ pour tout $x \in X$ et toutes sections locales s et s' de E définies en x. Cette application vérifie de plus $(s_x, s_x)_x > 0$ pour toute section $s \in \mathcal{E}(U)$ ne s’annulant pas en $x \in X$.

Toute métrique sur E induit un isomorphisme de fibrés vectoriels $E \simeq E^\vee = \text{Hom}_R(E, X \times \mathbb{R})$ entre E et son dual réel. En effet il suffit de considérer l’application $E \to E^\vee$, $e \in E_x \mapsto g_x(e, \bullet)$ qui varie de manière lisse avec $x \in X$.

Remarque 5.6. — Il s’agit seulement d’un isomorphisme de fibrés vectoriels dans le cadre de la géométrie différentielle. Lorsque X est une variété complexe et que E est un fibré vectoriel holomorphe, on aura seulement un isomorphisme lisse $E \simeq E^\vee$, mais pas un isomorphisme de fibrés holomorphes, puisque l’application $E \to E^\vee$, $e \in E_x \mapsto g_x(e, \bullet)$ est lisse mais pas holomorphe.

Une structure riemannienne sur X est la donnée d’une métrique sur T_X. On rappelle qu’une telle structure existe sur toute variété différentielle, mais n’est pas unique. Il s’agit donc d’une donnée et non pas d’une condition. Dans toute ce paragraphe, on munit X d’une structure riemannienne notée g.

De plus, la donnée d’une telle métrique g sur T_X induit une métrique encore notée g sur le fibré dual $\text{Hom}_R(T_X, X \times \mathbb{R})$ en utilisant l’isomorphisme de fibrés vectoriels $T_X \simeq \text{Hom}_R(T_X, X \times \mathbb{R})$. De manière équivalente, on peut caractériser g en imposant que la base locale duale $(e_i)^*$ de $\text{Hom}_R(T_X, X \times \mathbb{R})$ soit orthonormée pour toute base locale orthonormée de T_X.

Remarque 5.7. — On vient d’utiliser que sur tout \mathbb{R}-espace vectoriel V de dimension finie, toute métrique (ou ce qui est équivalent, tout produit scalaire) est déterminée par une de ses bases orthonormées. Cela fournit d’ailleurs une bijection de $\text{GL}_n(\mathbb{R})/O_n$ vers l’ensemble des métriques sur \mathbb{R}^n.

On obtient alors une métrique toujours notée g sur le fibré $\text{Alt}_R^k(T_X, X \times \mathbb{R})$ en déclarant que $(e_i)^* \wedge (e_j)^* \wedge \cdots \wedge (e_k)^*$ forme une base orthonormée pour toute base orthonormée locale (e_i) de T_X et pour tout $\{i_1, \cdots, i_k\} \subset \{1, \cdots, \dim(X)\}$.
Exercice 5.8. — Soit V un \mathbb{R}-espace vectoriel de dimension finie muni d’une métrique (\cdot, \cdot). Ecrire sans choix de base la métrique obtenue sur le dual V^\vee et sur Λ^k_V, puis sur $\Lambda^\wedge_k (V, \mathbb{R})$.

Si n est la dimension de X, on a que $\Lambda^n_\mathbb{R}(T_X, X \times \mathbb{R})$ est un fibré en droites. Rappelons que la donnée d’une forme volume est exactement la donnée d’une trivialisation de ce fibré, et existe si et seulement si X est orientable. Le choix d’une forme volume détermine une orientation, mais la réciproque n’est pas vraie comme on le précise dans la remarque suivante.

Remarque 5.9. — Une orientation de X est par définition la donnée d’une demi-droite dans $\Lambda^n_\mathbb{R}(T_X, X \times \mathbb{R})$ privé de sa section nulle, que on appelle la direction positive du fibré $\Lambda^n_\mathbb{R}(T_X, X \times \mathbb{R})$. Par définition une demi-droite d’un fibré vectoriel est la donnée pour tout $x \in X$ d’une demi-droite de l’espace vectoriel $\Lambda^n_\mathbb{R}(T_{X,x}, X \times \mathbb{R})$ qui « varie de manière lisse avec x » (exercice : trouver une définition rigoureuse).

Une forme volume est la donnée d’une trivialisation de $\Lambda^n_\mathbb{R}(T_X, X \times \mathbb{R})$, c’est à dire d’une section s partout non nulle de $\Lambda^n_\mathbb{R}(T_X, X \times \mathbb{R})$. On lui associe alors l’orientation $\mathbb{R}^{+s} \cdot s$, et on voit que la donnée de la forme volume est plus précise que la donnée de l’orientation.

Néanmoins comme on a fixé une structure riemannienne sur X, donc sur T_X mais aussi sur $\Lambda^k_\mathbb{R}(T_X, X \times \mathbb{R})$ pour tout $k \geq 0$, on vérifie que la donnée d’une forme volume est équivalente à la donnée d’une orientation. En effet, étant donné une orientation de $T_{X,x}$ pour tout $x \in X$, on définit la forme volume la formule

$$\text{Vol}_x(e_1, \cdots, e_n) = 1$$

pour tout $x \in X$ et toute base orthonormée orientée e_1, \cdots, e_n de $T_{X,x}$. On dit que Vol est la forme volume associée à la structure riemannienne et à l’orientation. On suppose désormais dans cette section X orientée (en plus d’être riemannienne comme précédemment) et on note Vol la forme volume qui s’en déduit.

Inconditionnellement de tout choix on a un isomorphism de fibrés vectoriels induit pour tout $k \geq 0$ par le produit extérieur

$$\Lambda^{n-k}_\mathbb{R}(T_X, X \times \mathbb{R}) \xrightarrow{\sim} \text{Hom}_\mathbb{R}(\Lambda^k_\mathbb{R}(T_X, X \times \mathbb{R}), \Lambda^n_\mathbb{R}(T_X, X \times \mathbb{R}))$$

$$\xrightarrow{\sim} (\Lambda^k_\mathbb{R}(T_X, X \times \mathbb{R}))^\vee \otimes_\mathbb{R} \Lambda^n_\mathbb{R}(T_X, X \times \mathbb{R})$$

On peut composer avec la trivialisation $\Lambda^n_\mathbb{R}(T_X, X \times \mathbb{R}) \xrightarrow{\sim} X \times \mathbb{R}$ associée à la forme volume Vol et obtenir un isomorphisme de fibrés vectoriels

$$p : \Lambda^{n-k}_\mathbb{R}(T_X, X \times \mathbb{R}) \xrightarrow{\sim} \Lambda^k_\mathbb{R}(T_X, X \times \mathbb{R})^\vee$$
Par ailleurs comme X est riemanienne on dispose comme précédemment d’un isomorphisme de fibrés vectoriels induit par la métrique g

$$m : \text{Alt}_R^k(T_X, X \times \mathbb{R}) \xrightarrow{\sim} \text{Alt}_R^k(T_X, X \times \mathbb{R})^\vee$$

On peut donc composer et obtenir un isomorphisme de fibrés vectoriels

$$* = p^{-1} \circ m : \text{Alt}_R^k(T_X, X \times \mathbb{R}) \xrightarrow{\sim} \text{Alt}_R^{n-k}(T_X, X \times \mathbb{R})$$

qui induit un isomorphisme encore noté * au niveau des faisceaux de sections lisses à valeurs réelles

$$*: \mathcal{A}_R^k(X, X) \xrightarrow{\sim} \mathcal{A}_R^{n-k}(X)$$

et aussi un isomorphisme au niveau des sections globales

$$*: \mathcal{A}_R^k(X) \xrightarrow{\sim} \mathcal{A}_R^{n-k}(X)$$

Par extension des scalaires à \mathbb{C} on obtient des isomorphismes $*: \mathcal{A}_X^k \xrightarrow{\sim} \mathcal{A}_X^{n-k}$ et $*: \mathcal{A}_X^k(X) \xrightarrow{\sim} \mathcal{A}_X^{n-k}(X)$ entre formes à valeurs complexes.

Remarque 5.10. — L’isomorphisme * s’appelle opérateur de Hodge, ou étoile de Hodge. Il joue un rôle clé dans la dualité de Poincaré et la dualité de Serre (REF!!!). Il existe dès que X est riemannienne orientée.

Remarque 5.11. — Lorsque X est une surface de Riemann, l’opérateur d’étoile de Hodge $*$ a une expression très simple vue dans [Fa][par.8.5]. Cela est relié au fait que comme $n=1$, on a $*: \mathcal{A}_X^{0,1} \xrightarrow{\sim} \mathcal{A}_X^{1,0}(X)$.

Lemme 5.12. — On a $* \circ * = (-1)^{k(n-k)}$ sur $\mathcal{A}_X^k(X)$. L’étoile de Hodge est donc une involution au signe près.

Démonstration. — Pour tout $x \in X$ et tous $\alpha_x, \beta_x \in \text{Alt}_R^k(T_{X,x}, \mathbb{R})$ on a $(\alpha_x, \beta_x)_x \text{Vol}_x = \alpha_x \wedge \beta_x$ et cette identité détermine uniquement *. Mais $*: \text{Alt}_R^k(T_{X,x}, \mathbb{R}) \to \text{Alt}_R^{n-k}(T_{X,x}, \mathbb{R})$ respecte les métriques par construction, on obtient donc

$$(\alpha_x, \beta_x)_x \text{Vol}_x = ((*\alpha_x, \beta_x)_x \text{Vol}_x = ((*\beta_x) \wedge (**\alpha_x)$$

$$= (-1)^{k(n-k)}(**\alpha_x) \wedge (*\beta_x)$$

Donc en combinant les deux égalités on a pour tous α_x, β_x que $(-1)^{k(n-k)}(**\alpha_x) \wedge (*\beta_x) = \alpha_x \wedge (*\beta_x)$. On peut alors faire varier β_x en utilisant que * est un isomorphisme entre k-formes et $n-k$-formes et on en déduit $**\alpha_x = (-1)^{k(n-k)}\alpha_x$.

Supposons de plus X compacte (et comme précédemment riemannienne orientée). On obtient alors une métrique $(\bullet, \bullet)_{L^2}$ sur l’ensemble des sections lisses à valeurs réelles $\mathcal{A}_R^k(X)$.

du fibré $\text{Alt}_R^k(T_X, X \times \mathbb{R})$ pour tout $k \geq 0$ en posant

$$
(\alpha, \beta)_{L^2} = \int_X (\alpha_x, \beta_x)_x \cdot \text{Vol}_x.
$$

Exercice 5.13. — Soit $X \subset \mathbb{R}^n$ un ouvert muni de la structure riemanienne orientée évidente.

i. Ecrire la métrique obtenue sur $\text{Alt}_R^k(T_X, X \times \mathbb{R})$ pour tout $k \geq 0$.

ii. Expliciter $(\alpha, \beta)_{L^2}$, qui est définie si α, β sont à support compact.

iii. Expliciter l’isomorphisme \ast.

Lemme 5.14. — On a $(\alpha, \beta)_{L^2} = \int_X \alpha \wedge (\ast \beta)$ pour tous $\alpha, \beta \in A^k(X)$.

Démonstration. — Il suffit de retracer les définitions et de remarquer que $(\alpha, \beta)_{L^2} \cdot \text{Vol} = \alpha \wedge \ast \beta$. □

On munit l’espace des formes à valeurs complexes $A^k(X) = A^k_R(X) \otimes_R \mathbb{C}$ de la métrique hermitienne induite par $(\cdot, \cdot)_{L^2}$ sur $A^k_R(X)$, définie par

$$(z \otimes f, z' \otimes f')_{L^2} = \overline{z} z' \cdot (f, f')_{L^2}$$

On a alors $(\alpha, \beta)_{L^2} = \int_X \alpha \wedge \overline{\beta}$.

5.14.0.1. Adjoint de d. — On suppose toujours X riemannienne orientée de dimension n. On obtient donc $\ast : A^k(X) \to A^{n-k}(X)$ l’étoile de Hodge associée.

Définition 5.15. — Pour tout $k \geq 1$ on note $d^* = (-1)^{k-1} \circ d \circ \ast : A^k(X) \to A^{k-1}(X)$.

Remarque 5.16. — Par le lemme 5.12, si la dimension réelle de X est paire on a $d^* = -\ast \circ d \circ \ast$. C’est le cas lorsque X est une variété complexe.

Exercice 5.17. — Décrire d^* lorsque $X \subset \mathbb{R}^n$ est un ouvert muni de sa métrique et de son orientation naturelle.

Lorsque X est de plus compacte, on a défini la métrique $(\cdot, \cdot)_{L^2}$ sur $A^k(X)$. La proposition suivante montre que d et d^* sont adjoints pour le produit scalaire associé.

Proposition 5.18. — Lorsque X est compacte on a $(\alpha, d^* \beta)_{L^2} = (d\alpha, \beta)_{L^2}$ pour tous $\alpha \in A^k_R(X)$ et $\beta \in A^{k+1}_R(X)$.

Démonstration. — On a $(d\alpha, \beta)_{L^2} = \int_X d\alpha \wedge *\beta$. Mais

$$
d(\alpha \wedge *\beta) = d\alpha \wedge *\beta + (-1)^k \alpha \wedge d(\ast \beta)
$$

donc par Stokes

$$(d\alpha, \beta)_{L^2} - \int_X (-1)^k \alpha \wedge d(\ast \beta)$$

On conclut en remarquant que $(\alpha, d^* \beta)_{L^2} = (-1)^{k+1} \int_X \alpha \wedge d(\ast \beta)$. □
Rappelons qu’on considère lorsque on obtient à la métrique et à l’orientation.

Lemme 5.20. — On note \(\omega = -\mathcal{I}m(h) \) on peut donner une autre formule pour cette forme volume.

Lemme 5.21. — On a \(\Vol = \omega^n/n! \in \text{Alt}^{2n}(T_X, \mathbb{C}) \).

Rappelons qu’on considère lorsque \(X \) est compacte la métrique hermitienne \(L^2 \) sur les \(k \)-formes différentielles complexes égale à

\[
(\alpha, \beta)_{L^2} = \int_X \alpha \wedge \bar{\beta}
\]

Lemme 5.22. — Soient \(k,p,q \geq 0 \) tels que \(k = p + q \).

i. Vérifier que \(* : A^k(X) \to A^{2n-k}(X) \) envoie \(A^{p,q}(X) \) dans \(A^{(n-p,n-q)}(X) \).

ii. En déduire que \(\bar{\partial}^* : A^{p,q}(X) \to A^{(p-1,q)}(X) \) et \(\bar{\partial}^* : A^{p,q}(X) \to A^{(p,q-1)}(X) \)

5.22.0.1. Laplacians. — Nous allons introduire trois laplaciens associés à \(d, \partial \) et \(\bar{\partial} \).

Définition 5.23. — Soit \((X,g) \) une variété différentielle riemanienne orientée et \(k \geq 0 \).

On note \(\Delta_d = d \circ d^* + d^* \circ d : A^k(X) \to A^k(X) \) et on dit que c’est le laplacien de \(d \) associé à la métrique et à l’orientation.

Corollaire 5.19. — Pour toute \(X \) compacte on a \(\text{Ker}(d) \cap \text{Im}(d^*) = 0 \) dans \(A^k_X(X) \).

Démonstration. — Si \(\alpha = d^*(\beta) \in A^k_X(X) \) vérifie \(d\alpha = 0 \), on obtient \(0 = (d^*\beta, d^*\gamma)_{L^2} \) pour tout \(\gamma \in A^{k+1}_X(X) \). En prenant \(\gamma = \beta \) et en utilisant que \((\bullet, \bullet)_{L^2} \) est une norme il vient bien \(\alpha = 0 \). \(\square \)

5.19.0.1. Ad joints de \(\partial \) et \(\bar{\partial} \). — Supposons dans ce paragraphe que \(X \) est une variété complexe de dimension \(n \). Tout d’abord \(X \) est munie d’une orientation canonique d’après les résultats de [3.88]. D’après les résultats du paragraphe 3.88, elle admet une métrique hermitienne \(h \) et on fixe un tel choix. D’après la convention de la fin du chapitre 3, on obtient une variété riemanienne \((X,g) \), où \(g \) vérifie \(g(Iv, Iw) = g(v, w) \) pour toutes sections locales \(v, w \) de \(T_X \).

On peut donc appliquer les constructions du paragraphe 5.5.0.1 valables dans le cadre riemannien et on obtient en particulier une forme volume \(\Vol \) sur \(X \) associée à \(g \) et à l’orientation. En notant \(\omega = -\mathcal{I}m(h) \) on peut donner une autre formule pour cette forme volume.

Exercice 5.22. — Soient \(k,p,q \geq 0 \) tels que \(k = p + q \).

i. Vérifier que \(* : A^k(X) \to A^{2n-k}(X) \) envoie \(A^{p,q}(X) \) dans \(A^{(n-p,n-q)}(X) \).

ii. En déduire que \(\bar{\partial}^* : A^{p,q}(X) \to A^{(p-1,q)}(X) \) et \(\bar{\partial}^* : A^{p,q}(X) \to A^{(p,q-1)}(X) \)

5.22.0.1. Laplacians. — Nous allons introduire trois laplaciens associés à \(d, \partial \) et \(\bar{\partial} \).

Définition 5.23. — Soit \((X,g) \) une variété différentielle riemanienne orientée et \(k \geq 0 \).

On note \(\Delta_d = d \circ d^* + d^* \circ d : A^k(X) \to A^k(X) \) et on dit que c’est le laplacien de \(d \) associé à la métrique et à l’orientation.
Définition 5.24. — Soit \((X, h)\) une variété complexe hermitienne et \(k \geq 0\). On note
\(\Delta_\partial = \partial \circ \partial^* + \partial^* \circ \partial\) et \(\Delta_{\bar{\partial}} = \bar{\partial} \circ \bar{\partial}^* + \bar{\partial}^* \circ \bar{\partial} : A^k(X) \to A^k(X)\) et on dit que ce sont les
laplaciens associées à \(\partial\) et \(\bar{\partial}\) et à la métrique \(h\).

Lemme 5.25. — Lorsque \(X\) est compacte on a pour tous \(\alpha \in A^k(X)\)
\[(\alpha, \Delta_\partial \alpha)_{L^2} = (d\alpha, d\alpha)_{L^2} + (d^*\alpha, d^*\alpha)_{L^2}\]
De même pour \(\Delta_{\bar{\partial}}\) et \(\Delta_{\bar{\partial}}\).

Démonstration. — En effet
\[(\alpha, \Delta_\partial \alpha)_{L^2} = (d\alpha, d\alpha)_{L^2} + (d^*\alpha, d^*\alpha)_{L^2}\] puis on utilise l’adjonction
\[(\alpha, d^*\beta)_{L^2} = (d\alpha, \beta)_{L^2}.\]

Corollaire 5.26. — Lorsque \((X, h)\) est compacte on a
\(\ker \Delta_\partial = \ker d \cap \ker d^*\) et de même pour
\(\Delta_{\bar{\partial}}\) et \(\Delta_{\bar{\partial}}\).

Exercice 5.27. — Soit \(X \subset \mathbb{C}^n\) un ouvert muni de sa structure hermitienne naturelle.
Ecrire explicitement \(\Delta_\partial, \Delta_{\bar{\partial}}\) et \(\Delta_{\bar{\partial}}\).

5.28. Opérateurs différentiels

5.28.1. Cas d’un ouvert de \(\mathbb{R}^n\). — Soit \(U \subset \mathbb{R}^n\) un ouvert. Rappelons qu’un multi-
sous-ensemble \(I = \{i_1, i_1, \ldots, i_1, i_2, \ldots, i_2, \ldots\}\) de \(\{1, \ldots, n\}\) est un sous-ensemble de
\(\{1, \ldots, n\}\) où chaque élément \(i_r\) est muni d’une multiplicité finie \(m_r \geq 0\). On note \(|I| = \sum_r m_r\). On notera
\[\frac{\partial}{\partial x_I} = \left(\frac{\partial}{\partial x_{i_1}}\right)^{m_1} \circ \left(\frac{\partial}{\partial x_{i_2}}\right)^{m_2} \circ \cdots\]
qui est un endomorphisme de \(A^0(U)\). On a bien sûr utilisé le théorème de Schwartz de
commutation des dérivations partielles par rapport à chaque variable pour définir cette
composée.

Définition 5.29. — Soit \(P : A^0(U) \to A^0(U)\) une application \(\mathbb{C}\)-linéaire et \(k \geq 0\) un
etier. On dit que \(P\) est un opérateur différentiel scalaire à coefficients complexes d’ordre
k s’il existe une famille de fonctions lisses \(f_I \in A^0(U)\) tels que
\[P = \sum_I f_I \cdot \frac{\partial}{\partial x_I}\]
on \(I\) parcourt les multi-sous-ensembles de \(\{1, \ldots, n\}\) tels que \(|I| \leq k\) et il existe un \(I\) tel
que \(|I| = k\) et \(f_I \neq 0\).

On notera alors \(P^k = \sum_{|I|=k} f_I \cdot \frac{\partial}{\partial x_I} \in \text{End}_\mathbb{C}(A^0(U))\).
Exercice 5.30. — Vérifier que cette notion est invariante par difféomorphismes de U, c’est à dire que pour tout difféomorphisme $\phi : U \to U$, on a que P est un opérateur différentiel d’ordre k si et seulement si $Q = \phi \circ P \circ \phi^{-1}$ est un opérateur différentiel d’ordre k.

Exercice 5.31. — Vérifier qu’un opérateur différentiel P est d’ordre 0 si et seulement s’il est $A^0(U, \mathbb{C}^p)$-linéaire, et qu’il est alors de la forme $P(g) = fg$ pour $f \in A^0(U)$.

On peut également définir des opérateurs différentiels dans le cas vectoriel. Soient $p, q \geq 0$ des entiers. On note $A^0(U, \mathbb{C}^p)$ l’ensemble des fonctions lisses de U dans \mathbb{C}^p. Un opérateur différentiel différentiel d’ordre k

$$P : A^0(U, \mathbb{C}^p) \to A^0(U, \mathbb{C}^q)$$

est alors une application \mathbb{C}-linéaire telle que $P(f_1, \cdots, f_p) = (g_1, \cdots, g_q)$ où

$$g_i = \sum_{I,j} P_{i,j} \cdot \frac{\partial}{\partial x_I}$$

où $f_{I,i,j} \in A^0(U)$ est nul si $|I| > k$, et non nul pour au moins un I de cardinal k. On notera alors $P^k \in \text{Mat}_{pq}(A^0(U))$ la matrice définie par

$$P^k_{ij} = \sum_{|I| = k} P_{i,j} \cdot \frac{\partial}{\partial x_I}$$

Exercice 5.32. — Vérifier que l’ordre d’un opérateur différentiel vectoriel est invariant par difféomorphisme de U. Vérifier de plus qu’il vérifie que pour tout $A \in \text{GL}_p(A^0(U))$ et $B \in \text{GL}_q(A^0(U))$, l’opérateur $Q = B \circ P \circ A^{-1} : A^0(U)^p \to A^0(U)^q$ reste d’ordre k avec $Q^k = B \circ P^k \circ A^{-1}$.

5.32.1. Cas d’une variété. — On déduit des exercices 5.30 et 5.30 et du formalisme des cartes que la notion d’opérateur différentiel scalaire d’ordre k est bien définie pour les variétés différentielles. Si X est une telle variété, un opérateur différentiel scalaire est un morphisme \mathbb{C}-linéaire de faisceaux

$$P : A^0_X \to A^0_X$$

qui est du type précédent dans les cartes. L’ensemble des opérateurs différentiels est stable par composition et on en déduit un faisceau d’anneau D_X des opérateurs différentiels sur X.

Soit P un opérateur différentiel scalaire d’ordre k sur X. Son symbole est la section canonique P^k du faisceau $\text{Sym}^k A^0_X T_{X,\mathbb{C}}$ défini dans les cartes par la formule $\sum_{|I| = k} f_I \cdot \frac{\partial}{\partial x_I}$. D’après l’équivalence de catégories entre fibrés vectoriels et faisceaux localement libres en A^0_X-modules, on peut aussi penser au symbole de P comme à une section lisse du fibré vectoriel $\text{Sym}^k(T_{X,\mathbb{C}})$ (qu’on peut définir à l’aide de cocycles à trouver en exercice).
Remarque 5.33. — On peut donner une description intrinsèque de \mathcal{D}_X comme le sous-faisceau en anneau de $\text{End}_{\mathcal{C}_X}(\mathcal{A}_X^0)$ engendré par $T_{X,C} \subset \text{End}_{\mathcal{C}_X}(\mathcal{A}_X^0)$, où cette inclusion provient de l’action par dérivation des champs de vecteurs lisses sur les fonctions lisses. Ce qui demande de recourir aux exercices 5.30 et 5.31 est de définir l’ordre d’un opérateur différentiel.

On en déduit que le faisceau \mathcal{D}_X est muni d’une filtration croissante $\text{Fil}^k\mathcal{D}_X$ par l’ordre des opérateurs différentiels, et que cette filtration est de plus compatible à la structure d’anneau dans le sens où $\text{Fil}^k \cdot \text{Fil}^r \subset \text{Fil}^{k+r}$, ce dernier point se vérifiant dans les cartes.

On notera que \mathcal{D}_X est un faisceau en anneau non commutatif, puisque les dérivation associées à des champs de vecteurs ne commutent pas toujours. En fait \mathcal{D}_X vérifie que le commutateur $[\cdot, \cdot] : \mathcal{D}_X \times \mathcal{D}_X \to \mathcal{D}_X$, $(P, Q) \mapsto P \circ Q - Q \circ P$ est induit par le crochet de Lie $[\cdot, \cdot] : T_{X,C} \times T_{X,C} \to T_{X,C}$. On a donc $[\text{Fil}^k, \text{Fil}^l] \subset \text{Fil}^{k+l}$. En particulier l’algèbre graduée $\text{Gr}^*\mathcal{D}_X = \oplus_{k \geq 0} \text{Fil}^k\mathcal{D}_X / \text{Fil}^{k+1}\mathcal{D}_X$ est commutative. On a $\text{Gr}^0 = \mathcal{A}^0_X$ et $\text{Gr}^1 = T_{X,C}$. En fait on a tout simplement un isomorphisme canonique de faisceaux en \mathcal{A}^0_X-algèbres commutatives graduées $\text{Gr}^*\mathcal{D}_X \sim \text{Sym}^*\mathcal{A}_X^0 T_{X,C}$.

Avec ces définitions, l’ordre d’une section P de \mathcal{D}_X est le plus grand indice k tel que $P \in \text{Fil}^k$, et son symbole est sa projection sur $\text{Gr}^k \sim \text{Sym}^k(T_{X,C})$.

Remarque 5.34. — Les opérateurs différentiels scalaires à coefficients réels existent évidemment, ce sont des endomorphismes \mathbb{R}-linéaires de $\mathcal{A}^0_{X,\mathbb{R}}$. Leur symbole est une section de $\text{Sym}^k\mathcal{A}^0_{X,\mathbb{R}} T_X$.

On peut aussi globaliser le cas vectoriel. Pour toute variété différentielle X et E, F deux fibrés vectoriels complexes sur X, notons $\mathcal{A}^0_X(E)$ et $\mathcal{A}^0_X(F)$ les \mathcal{A}^0_X-modules formé par les faisceaux de sections lisses de E et F. On définit la notion d’un opérateur différentiel $P : \mathcal{A}^0_X(E) \to \mathcal{A}^0_X(F)$ d’ordre k en utilisant des cartes triviaisant E et F et l’exercice 5.32.

Remarque 5.35. — Un opérateur différentiel $P : \mathcal{A}^0_X(E) \to \mathcal{A}^0_X(F)$ est \mathcal{C}_X-linéaire. Il n’est linéaire que lorsque $k = 0$. Dans ce cas seulement, on peut utiliser l’équivalence de catégories de la proposition 3.41 pour voir que P provient d’un morphisme de fibrés vectoriels $E \to F$.

Dans le cas vectoriel, le symbole de P est une section du faisceau $\text{Hom}(E,F) \otimes_{\mathcal{A}_X^0} \text{Sym}^k_{\mathcal{A}_X^0}(T_{X,C})$ ou ce qui revient au même, une section du fibré vectoriel complexe $\text{Hom}(E,F) \otimes_{\mathbb{C}} \text{Sym}^k_{\mathbb{C}}(T_{X,C})$.

Remarque 5.36. — Soit V un \mathbb{C}-espace vectoriel de dimension finie et $W = \text{Hom}_\mathbb{C}(V, \mathbb{C})$. On dispose d’un isomorphisme canonique entre $\text{Sym}^k_{\mathbb{C}}(V)$ et l’ensemble des applications ensemblistes $\omega : W \to \mathbb{C}$ qui sont homogènes de poids k pour l’action de \mathbb{C}^*, c’est à dire vérifiant $\omega(\lambda \cdot w) = \lambda^k \omega(w)$ pour tout $w \in W$ et $\lambda \in \mathbb{C}^*$. En effet à tout élément $v_1 \otimes \cdots \otimes v_k \in \text{Sym}^k_{\mathbb{C}}(V)$ on associe ω définie par $\omega(w) = w(v_1) \cdots w(v_k)$.

Cela marche de même avec les fibrés vectoriels. Si \(X \) est une variété différentielle et \(E \) est un fibré vectoriel complexe sur \(X \) de dual \(F \), on a un isomorphisme de fibrés entre \(\text{Sym}_C^k(E) \) et le fibré des applications homogènes de poids \(k \) de \(F \) dans \(X \times \mathbb{C} \).

On peut appliquer la discussion de la remarque au symbole de \(P : \mathcal{A}_X^0(E) \to \mathcal{A}_X^0(F) \) de poids \(k \). On en déduit que le symbole de \(P \) fournit pour tout \(x \in X \) une application homogène de poids \(k \)

\[
\text{sym}_x(P) : \Omega^1_{X,x} \to \text{Hom}(E_x, F_x)
\]

où \(\Omega^1_{X,x} \) désigne l’espace des 1-formes différentielles complexes en \(x \).

Définition 5.37. — On dit que \(P \) est elliptique si \(\text{sym}_x(P)(\alpha) : E_x \to F_x \) est une injection entre \(\mathbb{C} \)-espaces vectoriels pour tout \(x \in X \) et tout \(\alpha \in \Omega^1_{X,x} \) non nul.

Exercice 5.38. — Soit \(X \subset \mathbb{R}^n \) un ouvert.

i. Soit \(P : \mathcal{A}_X^0(X) \to \mathcal{A}_X^0(X) \) un opérateur différentiel scalaire de poids \(k \). Ecrivons \(P^k = \sum_{|I|=k} P_I \cdot \partial/\partial I \). Montrer que \(\text{sym}_x(P) : \Omega^1_{X,x} \to \mathbb{C} \) est donné par

\[
\alpha \mapsto \sum_{|I|=k} P_I(x) \cdot \alpha(\partial/\partial x_1) \cdots \alpha(\partial/\partial x_n)
\]

ii. Vérifier que \(P \) est elliptique si et seulement si \(\sum_{|I|=k} P_I(x) \cdot \zeta^I \neq 0 \) pour tout \(x \in X \) et tout \((\zeta_1, \cdots, \zeta_n) \neq (0, \cdots, 0) \in \mathbb{R}^n \). On a noté \(\zeta^I = \zeta_1^{m_1} \times \cdots \times \zeta_k^{m_k} \) pour un multi-ensemble \(I \).

iii. Soit \(P : \mathcal{A}_X^0(X)^p \to \mathcal{A}_X^0(X)^q \) un opérateur différentiel vectoriel de poids \(k \). Expliciter en termes de la matrice \(P^k \) l’ellipticité de \(P \).

Lemme 5.39. — Soit \(k \geq 0 \). Les laplaciens \(\Delta_d, \Delta_\partial, \Delta_{\bar{\partial}} \) sont des opérateurs différentiels d’ordre 2 agissant sur le fibré \(\text{Alt}_C^k(T_X, X \times \mathbb{C}) \).

Démonstration. — Il est clair que \(d \) est un opérateur différentiel de degré 1 de \(\text{Alt}_C^k(T_X, X \times \mathbb{C}) \) dans \(\text{Alt}_C^{k+1}(T_X, X \times \mathbb{C}) \). On voit dans les cartes que \(d^* \) est un opérateur différentiel de degré 1 de \(\text{Alt}_C^{k+1}(T_X, X \times \mathbb{C}) \) dans \(\text{Alt}_C^k(T_X, X \times \mathbb{C}) \).

Rappelons que lorsque \((X, g)\) est une variété riemannienne, la métrique \(g \) induit une métrique sur \(\Omega^1_{X,x} \) pour tout \(x \in X \). On note \(|| \bullet || \) cette métrique dans le lemme qui suit.

Lemme 5.40. — Pour tout \(k \geq 0 \) et toute variété riemannienne \((X, g)\), le symbole \(\sigma_{\Delta_d} \) du laplacien \(\Delta_d \) agissant sur \(\mathcal{A}_X^k(X) \) est donné pour tout \(x \in X \) par

\[
\sigma_x : \Omega^1_{X,x} \to \text{End}(\Omega^k_{X,x}), \alpha \mapsto (\omega \mapsto -||\alpha||^2 \cdot \omega)
\]

En particulier \(\Delta_d : \mathcal{A}_X^k(X) \to \mathcal{A}_X^k(X) \) est elliptique.
Lemme 5.41. — Pour tout $k \geq 0$ et toute variété complexe hermitienne (X, h), les symboles $\sigma_{\Delta_{\bar{\partial}}} = \sigma_{\Delta_{\partial}}$ agissant sur $A^k(X)$ sont égaux à $\alpha \in \Omega^1_{X,x} \mapsto -\frac{1}{2} \cdot ||\alpha|| \cdot \Id$. En particulier les laplaciens $\Delta_{\bar{\partial}}$ et Δ_{∂} sont elliptiques.

5.42. Cohomologie et formes harmoniques

Un théorème clé d’analyse des variétés différentielles éclaire le comportement spectral des opérateurs différentiels elliptiques dans le cas compact. C’est le suivant.

Théorème 5.43. — Soit X une variété différentielle compacte, orientée, munie d’une forme volume et $E, F \rightarrow X$ deux fibrés vectoriels complexes de même rang, munis de métriques. Soit $P : A^0_X(E) \rightarrow A^0_X(F)$ un opérateur différentiel elliptique.

Alors $\ker(P)$ est de dimension finie, $\text{Im}(P) \subset A^0_X(F)$ est fermé de codimension finie et on a une décomposition en somme directe orthogonale pour la métrique L^2

$$A^0_X(E) = \ker(P) \oplus \text{Im}(P^*)$$

où P^* est l’adjoint de P.

Remarque 5.44. — Voir [Vo][p.124] pour la construction de l’adjoint P^* de P. On utilise l’hypothèse que X est orientée munie d’une forme volume et que E, F sont munis de métrique. La construction est locale dans les cartes car par définition, l’adjoint est unique-ment caractérisé s’il existe et donc des constructions locales se recollent. Les opérateurs différentiels qu’on considère dans ce texte sont auto-adjoints.

Remarque 5.45. — Vous avez vu dans le cours de surfaces de Riemann la preuve dans le cas particulier où X est une surface de Riemann, $P = \Delta_d$, $E = F = \Omega^k_X$ pour tout $k \geq 0$ et $P = \Delta_d$ qui est auto-adjoint (puisque $\Delta_d = dd^* + d^*d$ avec d^* l’adjoint de d). On est amené à introduire la définition de formes harmoniques.

Définition 5.46. — Soit $k \geq 0$. L’espace des k-formes différentielles d-harmoniques est $\mathcal{H}_d^k := \ker(\Delta) \subset A^k(X)$.

On obtient alors le théorème fondamental suivant qui représente de manière unique les classes de cohomologie de de Rham par des formes Δ_d-harmoniques.
Théorème 5.47. — Soit X une variété différentielle compacte, riemannienne orientée. L’application naturelle

$$H^k_d \to H^k_{dR}(X, \mathbb{C})$$

est un isomorphisme pour tout $k \geq 0$. En particulier ces \mathbb{C}-espaces vectoriels sont de dimension finie.

Démonstration. — Fixons k. On en déduit $\Delta_d = dd^* + d^*d$ qui est un opérateur différentiel elliptique autoadjoint agissant sur le fibré $\text{Alt}^k_c(T_X, X \times \mathbb{C})$. Par le corollaire 5.26 on a $H^k_d = \text{Ker}(\Delta_d) \subset \text{Ker}(d)$ et par définition $H^k_{dR}(X, \mathbb{C}) = \text{Ker}(d : A^k(X) \to A^{k+1}(X)) / \text{Im}(d : A^{k-1}(X) \to A^k(X))$. L’application naturelle $\Phi : H^k_d \to H^k_{dR}(X, \mathbb{C})$ à laquelle il est fait référence dans l’énoncé du théorème est bien sûr la composée de l’inclusion $\text{Ker}(\Delta_d) \subset \text{Ker}(d)$ et de la surjection $\text{Ker}(d) \to H^k_{dR}(X, \mathbb{C})$. Le théorème 5.43 fournit la décomposition

$$A^k(X) = H^k_d \oplus \Delta_d(A^k(X))$$

Soit $\beta \in A^k(X)$ fermée et écrivons $\beta = \alpha + \Delta_d(\gamma) = \alpha + dd^*\gamma + d^*d\gamma$ avec α harmonique. On a donc $dd^*d\gamma = 0$ donc $d^*d\gamma \in \text{Ker}(d) \cap \text{Im}(d^*)$. Il résulte donc du corollaire 5.19 que $d^*d\gamma = 0$ et donc $\beta = \bar{\alpha}$ dans $H^k_{dR}(X, \mathbb{C})$. Ainsi Φ est surjective.

Et si $\beta = d\alpha \in H^k_d$, on a $d^*\beta = 0$ par le corollaire 5.26. Ainsi $\beta \in \text{Im}(d) \cap \text{Ker}(d^*)$ qui est nul par la version duale du corollaire 5.19. Ainsi Φ est injective.

Remarque 5.48. — La finitude de la cohomologie de de Rham est possible à établir sans recours aux formes harmoniques. Il faut en effet l’interpréter comme la cohomologie du C-faisceau recours aux formes harmoniques. Il faut en effet l’interpréter comme la cohomologie du C-faisceau recours aux formes harmoniques. Il faut en effet l’interpréter comme la cohomologie du C-faisceau

$$R^n$$

(voir la remarque 1.37). Par compacté cela se fait en utilisant un recouvrement fini, d’où la finitude de la cohomologie de Cech.

Remarque 5.49. — Dans le cours de surfaces de Riemann (voir la remarque 5.45), vous avez appliqué les mêmes arguments pour montrer que $H^2(X, \mathbb{C}) \cong \text{Ker}(\Delta_d) \cong \text{Coker}(\Delta_d) \cong A^2(X) / \text{Ker}(\int_X : A^2(X) \to \mathbb{C}) \cong \mathbb{C}$. C’est évidemment le calcul attendu de la cohomologie de de Rham d’une surface réelle compacte orientable, et on voit bien la difficulté des arguments analytiques utilisés pour calculer ce groupe de cohomologie en termes de formes différentielles (et non pas de formes fermées modulo des formes exactes).

On peut ensuite traiter le cas de Δ_∂ et de $\Delta_\bar{\partial}$ de manière similaire. Soit X une variété complexe hermitienne compacte, munie de son orientation canonique. On commence par remarquer que par par l’exercice 5.22, l’opérateur $\Delta_\bar{\partial} : A^k(X) \to A^k(X)$ stabilise $A^{p,q}(X) \subset A^k(X)$ pour tous $k = p + q$. On obtient par le théorème 5.43 l’égalité

$$A^k(X) = \text{Ker}(\Delta_\bar{\partial}) \oplus \text{Im}(\Delta_\bar{\partial})$$
et la finitude de $\text{Ker}(\Delta_\bar{\partial})$. En passant à la partie de type (p, q), on obtient

$$A^{p,q}(X) = \text{Ker}(\Delta_\bar{\partial} : A^{p,q}(X) \to A^{p,q}(X)) \oplus \Delta_\bar{\partial}(A^{p,q}(X))$$

avec la finitude du noyau. On a par ailleurs

$$H^q(X, \Omega^p_X) = \text{Ker} (\bar{\partial} : A^{p,q}(X) \to A^{p,q+1}(X)) / \text{Im} (\bar{\partial} : A^{p,q-1}(X) \to A^{p,q})$$

Définition 5.50. — Soit $k = p + q$ des entiers positifs. Une k-forme différentielle $\alpha \in A^k(X)$ est $\bar{\partial}$-harmonique si $\Delta_\bar{\partial}(\alpha) = 0$. On note $H^k_\bar{\partial} = \text{Ker}(\Delta_\bar{\partial})$ l’espace des k-formes $\bar{\partial}$-harmoniques et $H^{p,q}_\bar{\partial} = H^k_\bar{\partial} \cap A^{p,q}(X)$ l’espace des formes $\bar{\partial}$-harmoniques de type (p, q).

On prouve comme dans le cas de Δ_d le théorème suivant.

Théorème 5.51. — Soit X une variété complexe hermitienne compacte. L’application naturelle $H^{p,q}_\bar{\partial} \to H^q(X, \Omega^p_X)$ est un isomorphisme. De plus cet espace est un \mathbb{C}-espace vectoriel de dimension finie.

Remarque 5.52. — Il est difficile de prouver la finitude de $H^q(X, \Omega^p_X)$ sans recourir à la théorie des formes harmoniques. La preuve donnée ici peut s’étendre pour donner la finitude de $H^q(X, E)$ pour tout fibré vectoriel holomorphe E sur X [Ve[coro.5.25].

Une autre preuve est due à Cartan-Serre [Str] et montre plus généralement la finitude de la cohomologie cohérente des variétés complexes compactes.

La preuve de la finitude de la cohomologie cohérente (algébrique) des variétés algébriques propres sur \mathbb{C} est assez facile. Lorsque X est une variété complexe projective, le principe GAGA de Serre montre que X est algébrique et que sa cohomologie cohérente analytique coïncide avec sa cohomologie cohérente algébrique, ce qui fournit si on veut une autre preuve de la finitude dans ce cas. C’est néanmoins un peu formel car la finitude de la cohomologie cohérente analytique est utilisée dans la démonstration de GAGA.

Remarque 5.53. — On peut bien sûr définir les formes ∂-harmoniques (éventuellement de type (p, q)) puis relier la cohomologie du complexe $\cdots \to A^{p,q}(X) \to A^{p,q+1}(X) \to \cdots$ de différentielle ∂ avec $H^{p,q}_\partial$. Cela ne nous servira pas car la cohomologie de ce complexe n’est pas relié à un objet aussi naturel que $H^q(X, \Omega^p_X)$.

Exercice 5.54. — Soit $k \geq 0$ et $X \subset \mathbb{R}^n$ un ouvert muni de sa métrique et de son orientation naturelles. Calculer $\Delta_d : A^k(X) \to A^k(X)$. En déduire que $\alpha = \sum_I f_I \cdot dx_I$ est d-harmonique si et seulement les fonctions lisses f_I sont harmoniques pour tout $I \subset \{1, \cdots, n\}$.

Remarque 5.55. — Le lecteur attentif aura remarqué que H^k_d dépend du choix de la métrique riemannienne et de l’orientation sur X variété différentielle compacte, alors que $H^k_{dR}(X, \mathbb{C})$ n’en dépend pas. De même $H^k_\bar{\partial}$ dépend du choix de la métrique hermitienne sur X variété complexe compacte, alors que $H^q(X, \Omega^p_X)$ n’en dépend pas.
5.56. Les théorèmes de dualité

Deux théorèmes concernent le calcul du dual de la cohomologie : la dualité de Poincaré traite de la cohomologie de de Rham, et la dualité de Serre de la cohomologie de faisceaux de formes différentielles holomorphes. Montrons rapidement en exercice comment obtenir ces deux théorèmes.

Exercice 5.57. — Soit X une variété différentielle compacte de dimension réelle n. On considère la cohomologie de de Rham à coefficients réel. Soit $k \geq 0$.

i. Montrer que l’application $H^k_{dR}(X) \otimes H^{n-k}_{dR} \to \mathbb{R}$, $(\alpha, \beta) \mapsto \int_X \alpha \wedge \beta$ est bien définie, et qu’elle induit une application $H^k_{dR}(X) \to (H^{n-k}_{dR})^\vee$, où \vee désigne le dual comme \mathbb{R}-espace vectoriel.

ii. Montrer que $*$ commute à Δ_d.

iii. Montrer que $*: H^k_{dR} \to H^{n-k}_{dR}$ est un isomorphisme.

iv. En déduire que $H^k_{dR}(X) \cong (H^{n-k}_{dR})^\vee$.

Exercice 5.58. — Soit X une variété complexe compacte de dimension complexe n. Soit $p, q \geq 0$. Adapter l’exercice précédent pour prouver l’existence d’une dualité canonique entre les \mathbb{C}-espaces vectoriels de dimension finie $H^q(X, \Omega^p_X)$ et $H^{n-q}(X, \Omega^{n-p}_X)$.

5.59. Variétés kählériennes

Nous avons montré que pour toute variété complexe hermitienne compacte X, on dispose d’isomorphismes naturels entre espaces de formes harmoniques et groupes de cohomologie

$$H^k_d \cong H^k_{dR}(X, \mathbb{C}) \ \forall k$$

$$H^{p,q}_{\bar{\partial}} \cong H^q(X, \Omega^p_X) \ \forall p, q$$

Pour en déduire la décomposition de Hodge

$$H^k_{dR}(X, \mathbb{C}) \cong \bigoplus_{p+q=k} H^q(X, \Omega^p_X)$$

il est donc naturel de relier les conditions de d-harmonicité et de $\bar{\partial}$-harmonicité. Puisque $A^k(X) = \oplus_{p+q=k} A^{p,q}(X)$ et que

$$H^k_d = \text{Ker}(\Delta_d : A^k(X) \to A^k(X))$$

$$H^{p,q}_{\bar{\partial}} = \text{Ker}(\Delta_{\bar{\partial}} : A^{p,q}(X) \to A^{p,q}(X))$$

il est naturel de chercher un lien entre $\Delta_d : A^k(X) \to A^k(X)$ et $\Delta_{\bar{\partial}} : A^k(X) \to A^k(X)$. Ce lien n’est absolument pas formel, ni automatique, et sera fourni par la condition que X est une variété kählérienne, que nous allons étudier dans ce paragraphe.
CHAPITRE 5. DÉCOMPOSITION DE HODGE

Soit \((X, h)\) une variété complexe hermitienne. Conformément à notre habitude, on note

\[T_X \rightarrow T_X \]

l’endomorphisme induit par la structure complexe sur le fibré tangent. D’après la section 3.88 à \(h \) est associée une 2-forme alternée réelle de type \((1, 1)\)

\[\omega = -\text{Im}(h) \in A^{1,1}(X) \cap A^2(X) \]

qui détermine \(h \) en retour par la formule \(g(u, v) = \omega(u, Iv) \) et \(h(u, v) = g(u, v) - i\omega(u, v) \).

De plus comme \(h \) est une métrique hermitienne, \(g \) est une métrique euclidienne et \(\omega \) est non-dégénérée. Ainsi \(u \mapsto \omega(u, \bullet) \) induit un isomorphisme de \(T_X \) dans son fibré dual réel.

Définition 5.60. — La variété complexe hermitienne \((X, h)\) est kählérienne si \(d(\omega) = 0 \) dans \(A^3(X) \). On dira que \(\omega \) est la forme de Kahler de \((X, h)\) et on notera indifféremment \((X, h)\) ou \((X, \omega)\) une variété kählérienne.

Remarque 5.61. — Il est difficile de caractériser les variétés kählérienne autrement que par leur définition. Du point de vue du rédacteur de ces notes, cette définition est essentiellement motivée par le fait qu’elle mènera simplement à une preuve de la décomposition de Hodge pour la classe de variétés concernées.

Remarque 5.62. — La notion d’être kählérien dépend de \((X, h)\) et pas seulement de \(h \), comme on le voit dans la remarque 5.65.

Exemple 5.63. — Soit \(X \) une surface de Riemann et \(h \) n’importe quelle métrique hermitienne sur \(X \). Alors \((X, h)\) est kählérienne car \(dw \) est une 3-forme sur une variété de dimension réelle deux, donc nécessairement nulle.

Exemple 5.64. — Soit \(X \subset \mathbb{C}^n \) un ouvert muni de sa métrique naturelle. On a donc \(h_x(u, v) = \sum_{k=1}^n u_k \bar{v}_k \) pour tout \(x \in X \) et \(u = (u_1, \ldots, u_n) \) et \(v = (v_1, \ldots, v_n) \in \mathbb{C}^n = T_{X,x} \). En posant \(u_k = a_k + ib_k \) et \(v_k = a_k + i\beta_k \) pour tout \(k \), il vient

\[h_x(u, v) = \sum_{k=1}^n (a_k a_k + b_k \beta_k) - i \sum_{k=1}^n (a_k b_k - b_k a_k) \]

Ainsi \(g_x \) est la métrique euclidienne usuelle sur \(\mathbb{C}^n = \mathbb{R}^{2n} \) et \(\omega_x \) la forme alternée non-dégenerate usuelle sur \(\mathbb{C}^n = \mathbb{R}^{2n} \). Donc par définition des 1-formes \(dx_k \) et \(dy_k \) sur \(\mathbb{R}^{2n} \) on obtient

\[\omega = \sum_{1 \leq k \leq n} dx_k \wedge dy_k = i \sum_{k=1}^n dz_k \wedge d\bar{z}_k \]

Ainsi \(d(\omega) = 0 \) et \((X, h) \) est kählérienne.

Remarque 5.65. — Soit toujours \(X \subset \mathbb{C}^n \) un ouvert. On vérifie qu’il existe un choix de fonctions lisses \(f_k : X \rightarrow \mathbb{C} \) telles que \(h_x(u, v) = \sum_{k=1}^n f_k(x) \cdot u_k \cdot \bar{v}_k \) soit une métrique hermitienne et telles que \(\omega \) ne soit pas fermée.
Exemple 5.66. — Soit $\Lambda \subset \mathbb{C}^n$ un réseau. Il est clair que la métrique h et la forme ω de l'exemple 5.64 sont invariants par translation par Λ sur \mathbb{C}^n et induisent donc par passage au quotient une métrique \bar{h} et une forme alternée $\bar{\omega}$ sur le tore complexe \mathbb{C}^n/Λ. Comme l'application de passage au quotient $\pi: \mathbb{C}^n \to \mathbb{C}^n: \Lambda$ est un homéomorphisme local, $d\bar{\omega}$ est le passé au quotient de $d\omega = 0$. Ainsi les tores complexes munis de leur métrique quotient sont kähleriens. On notera que d'après REF ??? ces variétés ne sont pas nécessairement projectives.

Exemple 5.67. — L'espace projectif complexe $\mathbb{P}^n_{\mathbb{C}}$ est kähleriens. A DEVELOPPER!!

Les variétés kähleriennes vérifient peu de stabilité. On notera néanmoins que la classe des variétés kähleriennes est stable par éclatement [Vo][prop.3.24] ou par fibré projectif [Vo][prop.3.18]. Elle est également stable par passage à une sous-variété comme le montre le lemme suivant.

Lemme 5.68. — Soit (X, h) une variété complexe kähleriennne et $Y \subset X$ une sous-variété. On dispose alors du sous-fibré vectoriel $T_Y \subset T_X|_Y$ et donc de la métrique h_Y induite par h sur T_Y. La variété complexe hermitienne (Y, h_Y) est kähleriennne.

Démonstration. — On a évidemment que $\omega_Y = \omega|_Y$ où $\omega \in A^{(2,2)}(X)$ est la forme alternée associée à h et $\omega_Y \in A^{(2,2)}(Y)$ celle associée à h_Y. Donc $d(\omega_Y) = (d\omega)|_Y = 0$. □

Corollaire 5.69. — Les variétés algébriques complexes projectives sont kähleriennes.

Mentionnons enfin le lemme suivant, qui permet par contraposée de prouver que les variétés complexes compactes X de dimension n vérifiant $H^{2k}(X, \mathbb{C}) = 0$ pour un $1 \leq k \leq n$ ne sont pas kähleriennes.

Lemme 5.70. — Soit (X, h) kähleriennne compacte de dimension n. La k-forme différentielle ω^k est fermée et non exacte pour tout $1 \leq k \leq n$.

Démonstration. — La différentielle vérifie la règle de Leibniz et on en déduit $d(\omega^k) = 0$. Si $\omega^k = d(\gamma)$ est exacte, avec $\gamma \in A^{k-1}(X)$ on a $\omega^n = d(\omega^{n-k} \wedge \gamma)$ en utilisant que ω^{n-k} est fermée. Donc on se ramène à supposer ω^n exacte. Mais alors par la formule de Stokes, on a $\int_X \omega^n = 0$ ce qui contredit le lemme 5.20, puisque X est de volume non nul. □

Remarque 5.71. — Le lemme 5.70 est cohérent avec le calcul de la cohomologie de de Rham des tores complexes et de l'espace projectif : leurs groupes de cohomologie de degrés pairs sont non nuls. Combiné avec le corollaire 5.69, on obtient également une obstruction au caractère projectif des variétés complexes compactes.
Voir [Vo] [th.3.13] pour d'autres caractérisations des variétés kählériennes, par exemple en termes de \mathbb{C}-linéarité de la connexion de Lévi-Civita.

Terminons par un énoncé de formes locales des métriques kählériennes. On rappelle pour tout $x \in X$ qu'un système de coordonnées locales centré en x est par définition une carte $\phi : X \supset U \rightarrow V \subset \mathbb{C}^n$ avec $x \in U$ et $\phi(x) = 0$. On note alors $z_k : U \rightarrow \mathbb{C}$ la fonction qui est la k-ème coordonnée de ϕ. Ecrire n’importe quelle quantité définie sur X dans ce système de coordonnées revient à écrire explicitement cette quantité précomposée par ϕ^{-1}.

Lemme 5.72. — Soit (X,h) une variété kählérienne de dimension n. Pour tout $x \in X$, il existe un système de coordonnées locales z_1, \ldots, z_n centrées en x telles que la matrice $h_{ij} = h(\partial/\partial z_i, \partial/\partial \bar{z}_j)$ de h soit égale à

$$(h_{ij})_{ij} = I_n + O(\sum_{k=1}^n |z_k|^2)$$

Démonstration. — On commence par choisir une base locale (z_1, \ldots, z_n) centrée en x, telle que $(\partial/\partial z_i)$, soit une base orthonormée de h_x. On a donc $(h_x(\partial/\partial z_i, \partial/\partial \bar{z}_j))_{i,j} = I_n$. Autrement dit on a $h_x = \sum_{k=1}^n dz_k \cdot \bar{dz}_k$ où il s’agit d’un produit symétrique sur \mathbb{R} de 1-formes différentielles complexes, c’est à dire d’un élément de $\text{Sym}_2^\mathbb{R}(\text{Hom}_\mathbb{R}(T_x, \mathbb{C}))$. Au voisinage de x, c’est à dire de 0 dans la carte, il vient

$$h = \sum_{k=1}^n dz_k \cdot \bar{dz}_k + \sum_{i,j} (\varepsilon_{i,j}) \cdot dz_i \cdot \bar{dz}_j + O(|z|^2)$$

où $(\varepsilon_{i,j})_{i,j}$ est une matrice hermitienne dont les entrées sont des combinaisons linéaires en les z_k, \bar{z}_k. Ecrivons $(\varepsilon_{i,j}) = (\varepsilon_{i,j})^{\text{hol}} + (\varepsilon_{i,j})^{\text{antihol}}$, la décomposition en partie holomorphe (ie \mathbb{C}-linéaire, ie combinaisons linéaires en les dz_k et partie anti-holomorphe (ie combinaisons linéaires en les $d\bar{z}_k$). Par hermitienneté de $(\varepsilon_{i,j})$ on a

$$\varepsilon_{i,j}^{\text{antihol}} = \bar{\varepsilon}_{ji}^{\text{hol}}$$

\[\square\]

Remarque 5.73. — Inversement, il est facile de vérifier que toute métrique hermitienne h localement de la forme $I_n + O(\sum_{k=1}^n |z_k|^2)$ a une forme alternée associée ω telle que $d\omega = 0$, et définit donc une structure de Kähler.

5.74. Identités kählériennes

Définition 5.75. — L’opérateur de Lefschetz d’une variété kählérienne (X,ω) est l’application A^0_X-linéaire

$$L : A^k_X \rightarrow A^{k+2}_X, \; \alpha \mapsto \alpha \land \omega$$
Remarque 5.76. — Comme ω est une 2-forme on a $\alpha \wedge \omega = \omega \wedge \alpha$ pour tout α.

Remarque 5.77. — Etant donné l’équivalence de catégories REF!!!, cet opérateur peut être vu comme un morphisme de fibrés vectoriels $\text{Alt}_R^k(T_X, X \times \mathbb{C}) \to \text{Alt}_R^{k+2}(T_X, X \times \mathbb{C})$. Comme ω n’est pas de type $(2,0)$ mais de type $(1,1)$, l’opérateur L n’est pas sous-jacent à un morphisme de fibré vectoriel $\text{Alt}_C^k(T_X, X \times \mathbb{C}) \to \text{Alt}_C^{k+2}(T_X, X \times \mathbb{C})$ et encore moins à un morphisme de fibrés vectoriels holomorphes.

Remarque 5.78. — L’opérateur L au niveau des sections globales est $A^k(X) \to A^{k+2}(X)$, $\alpha \mapsto \alpha \wedge \omega$. Il passe au quotient à la cohomologie de de Rham en $L : H^k_{dR}(X, \mathbb{C}) \to H^{k+2}_{dR}(X, \mathbb{C})$. Cet opérateur n’est autre que le cup-produit avec $[\omega] \in H^2_{dR}(X, \mathbb{C})$. Dans le cas où X est projective et ω est associée à la métrique de Fubini-Study, on peut aussi interpréter L comme le cup-produit avec la classe de Chern $c_1(O_X(1))$ d’un fibré très ample sur X. Voir la remarque ??.

Notons $\Lambda : A^k_X \to A^{k-2}_X$ l’adjoint de L respectivement à la métrique $(\cdot, \cdot)_x$ induite par h_x sur $\text{Alt}_R^k(T_X, x, \mathbb{C})$ pour tout $x \in X$ et $k \geq 0$. Comme

$$(L\alpha, \beta \text{Vol})_x = (L\alpha) \wedge (\beta) = \alpha \wedge \omega \wedge (\beta)$$

on obtient $\Lambda \beta = \ast^{-1}L\ast = (-1)^k(\ast L\ast)$.

La proposition suivante est à la base de la théorie de Hodge pour les variétés kählériennes.

Proposition 5.79. — Soit (X, h) une variété kählérienne. On a

$$[\Lambda, \bar{\partial}] = -i\partial^* : A^k_X \to A^{k-1}_X$$

$$[\Lambda, \partial] = i\bar{\partial}^* : A^k_X \to A^{k-1}_X$$

où $[\cdot, \cdot]$ désigne le commutateur.

Démonstration. — Il s’agit d’un énoncé local sur X, que l’on peut traiter dans des cartes. On remarque que dans des coordonnées locales, les opérateurs L, Λ, ∂^* et $\bar{\partial}^*$ ne font intervenir que les termes d’ordre ≤ 1 de la métrique h. Plus précisément, $L(\alpha) = \omega \wedge \alpha$ donc la valeur en $x \in X$ de $L(\alpha)$ ne dépend que de la valeur en x de ω et donc de h_x, et pas de ses dérivées. \qed

Corollaire 5.80. — Soit (X, h) une variété kählérienne. On a $\Delta_d = 2\Delta_\partial = 2\Delta_{\bar{\partial}}$.

Corollaire 5.81. — Soit (X, h) une variété kählérienne. Le laplacien $\Delta_d : A^k(X) \to A^k(X)$ préserve le type des formes différentielles. Pour tout $k = p + q$ on a donc $\Delta_d(A^{p,q}(X)) \subset A^{p,q}(X)$.

Démonstration. — En effet Δ_∂ préserve le type puisque $\partial : A^{p,q}(X) \to A^{(p+1,q)}(X)$ et $\bar{\partial}^* : A^{p,q}(X) \to A^{(p-1,q)}(X)$. \qed
Corollaire 5.82. — Soit \((X,h)\) une variété kählérienne et \(\alpha \in \mathcal{H}_d^k\) une \(k\)-forme d-harmonique. Ses composantes de type \((p,q)\) sont d-harmoniques pour tout \(k = p + q\).

Démonstration. — En effet utilisant \(A^k(X) = \bigoplus_{p+q=k} A^{p,q}(X)\) on écrit \(\alpha = \sum_{p+q=k} \alpha^{p,q}\). Donc \(\Delta_d(\alpha) = \sum \Delta_d(\alpha^{p,q})\) et cela est la décomposition en type de \(\Delta_d(\alpha)\) par le corollaire 5.81. Donc \(\Delta_d(\alpha) = 0\) implique \(\Delta_d(\alpha^{p,q}) = 0\) pour tous \(p, q\) d’où le résultat. □

Corollaire 5.83. — Soit \((X,h)\) une variété kählérienne. On a une décomposition

\[
\mathcal{H}_d^k = \bigoplus_{p+q=k} \mathcal{H}_d^{p,q}
\]

où \(\mathcal{H}_d^{p,q} = \mathcal{H}_d^k \cap A^{p,q}(X)\) désigne les formes harmoniques de type \((p,q)\). De plus \(\mathcal{H}_d^{p,q} = \mathcal{H}_{\bar{\partial}}^{p,q}\) est l’ensemble des formes de type \((p,q)\) qui sont \(\bar{\partial}\)-harmoniques.

5.84. Le théorème principal

Les résultats principaux de la théorie de Hodge sont maintenant gratuits. Tout d’abord pour toute variété kählérienne \((X,h)\), on obtient en combinant le corollaire 5.83 et les théorèmes 5.47 et 5.51 un isomorphisme d’espaces vectoriels dépendant du choix de \(h\)

\[
i : H^{k,\text{dR}}(X, \mathbb{C}) \sim \bigoplus_{p+q=k} H^q(X, \Omega^p_X)
\]

Plus précisément la donnée de \(h\) fournit un isomorphisme canonique

\[
H^{k,\text{dR}}(X, \mathbb{C}) \sim \mathcal{H}_d^k = \bigoplus_{p+q=k} \mathcal{H}_{\bar{\partial}}^{p,q}
\]

et un isomorphisme canonique \(\mathcal{H}_{\bar{\partial}}^{p,q} \sim H^q(X, \Omega^p_X)\). En notant \(H^{p,q} = i^{-1} \mathcal{H}_{\bar{\partial}}^{p,q} \subset H^{k,\text{dR}}(X, \mathbb{C})\), on obtient des sous-espaces vectoriels de \(H^{k,\text{dR}}(X, \mathbb{C})\) tels que

\[
H^{k,\text{dR}}(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}
\]

Lemme 5.85. — Les sous-espaces vectoriels \(H^{p,q}\) de \(H^{k,\text{dR}}(X, \mathbb{C})\) sont indépendants du choix de \(h\). En conséquence la décomposition \(H^{k,\text{dR}}(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}\) est canonique.

En conséquence cette décomposition existe pour les variétés kählériennes mais ne dépend pas de la métrique. Du coup, on appelle parfois variétés kählériennes des variétés complexes qui admettent une métrique kählérienne, sans la fixer. On rappelle (REF!!!) que les métriques kählériennes sont nombreuses sur \(X\) lorsqu’elles existent.
Remarque 5.86. — Ce qui est plus difficile est de montrer que l’isomorphisme composé $H^{p,q} \to H^{p,q}_\partial \to H^q(X, \Omega^p_X)$ est lui aussi indépendant du choix de h. Cela demande la théorie des suites spectrales, et cette question sera abordée dans le cours de Claire Voisin.

Remarque 5.87. — On utilise souvent la décomposition $H^k_{dR}(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}$ et l’isomorphisme $H^{p,q} \to H^q(X, \Omega^p_X)$ uniquement pour comparer les dimensions. Il n’y a alors aucun intérêt à se poser des questions de canonicité.

[Fa] E. Falbel, Surfaces de Riemann, cours de M2, TODO!!

[Vo] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours spécialisé de la SMF