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Abstract. We show that the automorphic étale cohomology of a (possibly

noncompact) PEL-type or Hodge-type Shimura variety in characteristic zero
is canonically isomorphic to the cohomology of the associated nearby cycles

over most of their mixed characteristics models constructed in the literature.
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1. Introduction

The étale cohomology of Shimura varieties are arguably one of the most cen-
trally important geometric objects in modern algebraic number theory, because
they provide natural grounds for relating automorphic representations to Galois
representations. To study any representation of the Galois group of number fields,
it is important to understand its restriction to the various decomposition subgroups.
In the case of the étale cohomology of Shimura varieties, such restrictions to decom-
positions groups can be analyzed by considering the cohomology of the associated
nearby cycles over the reductions of Shimura varieties, namely the positive char-
acteristic fibers of certainly naturally defined integral models, at least when the
integral models in question are proper. The goal of this article is to show that
this assumption of properness is redundant for most of the mixed characteristics
models of Shimura varieties constructed in the literature. As byproducts, we obtain
generalizations of many results previous known only in the proper case.

Let us explain our goal in more details. Suppose X→ S = Spec(R0) is a model
of a Shimura variety in mixed characteristics over the spectrum of a Henselian
discrete valuation ring of residue characteristic p > 0. Let j : η = Spec(K) → S
(resp. i : s = Spec(k)→ S) denote the generic (resp. special) point of S = Spec(R0),
with its structural morphism. Let K̄ be an algebraic closure of K, let R̄0 denote
the integral closure of R0 in K̄, with residue field k̄ an algebraic closure of k, and
let j̄ : η̄ := Spec(K̄) → S̄ := Spec(R̄0) (resp. ī : s̄ := Spec(k̄) → S̄) denote the
corresponding geometric point lifting i (resp. j). For simplicity, we shall denote
by subscripts the pullbacks of various schemes over S to η, η̄, s, or s̄. Consider
any rational prime number ` 6= p. Then we have the (complex of) nearby cycles
RΨQ` := ī∗Rj̄∗Q` over Xs̄, which is nothing but the constant sheaf Q` when the
morphism X→ S is smooth (see [3, XV, 2.1] and [13, XIII, 2.1.5]).

When the morphism X → S is proper, it is a consequence of the proper base
change theorem (see [3, XII, 5.1]) that we have a canonical isomorphism

(1.1) Hi
ét(Xη̄,Q`)

∼→ Hi
ét(Xs̄, RΨQ`)

of Gal(K̄/K)-modules, for each i. There are similar isomorphisms when we replace
the coefficient sheaf Q` with more general automorphic étale sheaves. As an imme-
diate consequence, when X→ S is proper and smooth, Hi

ét(Xη̄,Q`) and its analogues
for more general automorphic étale sheaves are unramified as Gal(K̄/K)-modules.
More generally, such isomorphisms allow us to study their left-hand sides by an-
alyzing their right-hand sides, often using the geometry of Xs̄. They serve as the
foundation of, for example, the important works [25], [47], [48], and [60], and hence
of the subsequent works [62] and [61] based on them.

In fact, in the above-mentioned works, the analysis of the cohomology of nearby
cycles were carried out without the assumption that the model X → S is proper.
It is only in their initial steps—or final steps, depending on one’s viewpoint—that
they assume the existence of some isomorphisms as in (1.1), in order to relate
their results to the étale cohomology in characteristic zero. (Such a relation to the
cohomology in characteristic zero is crucial for the results to be useful.)

The goal of this article, as we repeat now again in more detail, is to show that iso-
morphisms as in (1.1), and their analogues for the compactly supported cohomology
and for the intersection cohomology (of the associated minimal compactifications),
exist for most constructions of mixed characteristics models in the literature, not
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just for the trivial coefficients but also for more general sheaves (which we call au-
tomorphic sheaves), without assuming that X → S is proper. (Certainly, X → S
cannot be arbitrary—isomorphisms such as (1.1) can be destroyed by removing
closed subschemes from the special fiber. We will show that the integral models
we consider are natural in the sense that, intuitively speaking, there are no such
missing subschemes.) Consequently, we will obtain almost for free several gener-
alizations of the above-mentioned works to the nonproper case, without having to
repeat their delicate arguments.

The existence of isomorphisms as in (1.1) is essentially known when X → S
admits proper smooth compactifications whose boundaries are given by divisors
with relative normal crossings, as in the case in [17, Ch. IV] of the Siegel moduli
of principally polarized abelian schemes, or more generally as in the case in [37]
(resp. [46]) of smooth integral models of PEL-type (resp. Hodge-type) Shimura
varieties with hyperspecial levels at the residue characteristics (resp. odd residue
characteristics), where nice toroidal compactifications are known to exist. In these
cases, it follows from [13, XIII, 2.1.10] that there are also isomorphisms like (1.1)
for the case of trivial coefficients (namely, Q`). Moreover, as explained in [17, Ch.
VI, Sec. 6], it follows from the constructions of good toroidal compactifications of
the Kuga families as in [17, Ch. VI] and [36] that there are also analogues of (1.1)
for automorphic sheaves. (We warn the reader that the argument in [26, Sec. 7], for
the usual and compactly supported cohomology in the setting of this paragraph,
is unfortunately incomplete—the first step in the proof of [26, Lem. 7.1] should
require some tameness assumption as in [13, XIII, 2.1.10]. To clarify the matters,
we will also include these essentially known cases in our treatment.)

However, the good reduction cases (as they are often called) in the previous para-
graph require the algebraic data defining the integral models of Shimura varieties
to be unramified in the strongest possible sense. While these unramified cases are
already very useful, we now also know good constructions of integral models of
PEL-type and even Hodge-type Shimura varieties and their toroidal and minimal
compactifications, in all ramified cases, thanks to the more recent developments in
[66], [65], [46], [41], [40], and [39]. As we shall explain in later sections, the con-
structions we shall consider are good in a precise sense. Roughly speaking, étale
locally, the natural inclusions from the integral models of the Shimura varieties or
Kuga families in question into their toroidal compactifications are direct products
of some affine toroidal embeddings with the identity morphisms on some schemes
(about which we know little), and it is only the factors of affine toroidal embed-
dings which matter for showing the compatibility between the formations of direct
images (under the above natural inclusions) and of nearby cycles. Once we have
such an étale local description of the toroidal boundary, the remaining arguments
are straightforward, thanks to an idea due to Laumon (see [21, 7.1.4] and Remark
5.33).

As a special case, we have established [23, Conj. 10.3] in all PEL-type cases for
integral models at parahoric levels whose associated flat local models are known
to be normal (including the cases considered in [51] and [52]; see Remark 6.15).
Our results subsume some closely related results by Imai and Mieda in [28] for the
supercuspidal parts of the cohomology, although we have learned from them that
their assumptions in [28] can be much relaxed (see Remark 5.42 for more details).
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Here is an outline of this article. In Section 2, we introduce the integral mod-
els of PEL-type and Hodge-type Shimura varieties that we consider, together with
their toroidal and minimal compactifications, and summarize some of their impor-
tant properties. (We note that none of the three PEL-type cases we consider is
completely subsumed by the Hodge-type case. This is about the actual choices of
integral models, but not about the classification in characteristic zero.) In Section 3,
we define the automorphic sheaves we shall consider, first by using finite étale cover-
ings of our Shimura varieties, and then by using the relative cohomology of certain
Kuga families, which are isogenous to self-fiber products of the universal abelian
schemes over some PEL-type Shimura varieties. In Section 4, we explain how to
realize such Kuga families as some toroidal boundary strata of larger Shimura va-
rieties, and realize their toroidal compactifications as closures of such strata. In
Section 5, we review the definition and some basic properties of nearby cycles, and
prove our main results of comparisons for the usual cohomology, the compactly
supported cohomology, and the intersection cohomology. In Section 6, we explain
some applications of such results, including the unipotency of inertial actions on
the cohomology of PEL-type Shimura varieties at parahoric levels (for the flat inte-
gral models considered in [51] and [52] that are normal); and the above-mentioned
generalizations of [47] and [48], and of (a slightly weaker form of) [60].

During the preparation of this article, we observed that the supports of nearby
cycles over the good integral models of Shimura varieties we consider, even in the
trivial coefficient case, enjoy some intriguing nice features near the toroidal and
minimal boundary, which make it possible to talk about good toroidal and minimal
compactifications of such supports. Moreover, the same can be said for several
other kinds of subschemes over the integral models we consider. We shall pursue
this topic in more detail in our next article [43].

We shall follow [37, Notation and Conventions] unless otherwise specified. While
for practical reasons we cannot explain everything we need from the various con-
structions of toroidal and minimal compactifications we need, we recommend the
reader to make use of the reasonably detailed indices and tables of contents in [37]
and [42], when looking for the numerous definitions. For references to [37] and
[36], the reader should also consult the errata available on the author’s website for
corrections to known errors and imprecisions.

2. Integral models with good compactifications

2.1. The cases we consider. Let p > 0 be a rational prime number.

Assumption 2.1. Let XH → S be a scheme over the spectrum of a discrete valua-
tion ring R0 of mixed characteristics (0, p), which is the pullback of one the following

integral models in the literature: (The various notations S0, ~S0, etc below are those
in the works we cited, which we will freely use, but mostly only in proofs.)

(Sm) A smooth integral model MH2 → S0 = Spec(OF0,(2)) defined as a mod-
uli problem of abelian schemes with PEL structures at a neat level H2 ⊂
G(Ẑ2), as in [37, Ch. 1, 2, and 7], with p ∈ 2 and H = H2×

∏
q∈2

G(Zq).

(When 2 = {p}, it is shown in [37, Prop. 1.4.3.4] that the definition in [37,
Sec. 1.4.1] by isomorphism classes agrees with the one in [37, Sec. 1.4.2] by
Z×(p)-isogeny classes, the latter being Kottwitz’s definition in [33, Sec. 5].)
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(Nm) A flat integral model ~MH → ~S0 = Spec(OF0,(p)) of a moduli problem MH →
S0 = Spec(F0) at a neat level H ⊂ G(Ẑ) (essentially the same as above,
but with 2 = ∅) defined by taking normalizations over certain auxiliary
good reduction models as in [41, Sec. 6] (which allow bad reductions due to
arbitrarily high levels, ramifications, polarization degrees, and collections of
isogenies). (In this case, we also allow F0 to be a finite extension of the
reflex field, with MH etc replaced with their pullbacks.) For simplicity, we
shall assume that, in the choice of the collection {(Lj, 〈 · , · 〉j)}j∈J in [41,
Sec. 2], we have (Lj0 , 〈 · , · 〉j0) = (pr0L, p−2r0〈 · , · 〉) for some j0 ∈ J and
some r0 ∈ Z.

(Spl) A flat integral model ~Mspl
H → Spec(OK) of MH ⊗

F0

K → Spec(K) defined by

taking normalizations as in [39, Sec. 2.4] over the splitting models defined
by Pappas–Rapoport as in [51, Sec. 15]. (By taking normalizations, we
mean we also allow H to be arbitrarily higher levels, not just the same
levels considered in [51, Sec. 15].) For simplicity, we shall assume that, in
the choice of the collection {(Lj, 〈 · , · 〉j)}j∈J in [39, Choices 2.2.9], we have
(Lj0 , 〈 · , · 〉j0) = (pr0L, p−2r0〈 · , · 〉) for some j0 ∈ J and some r0 ∈ Z.

(Hdg) A flat integral model SK → Spec(OE,(v)) in the notation of [46, Intro-
duction] at a neat level K. For consistency with the notation in other
cases, we shall denote K, E, and SK as H, F0, and MH, respectively,
in what follows. Essentially by construction, there exists some auxiliary
good reduction Siegel moduli MHaux

→ Spec(Z(p)) in Case (Sm) above, with
a finite morphism MH → MHaux

⊗
Z(p)

OF0,(v) extending a closed immersion

MH⊗
Z
Q→ MHaux

⊗
Z
F0.

In all cases, there is some group functor G over Spec(Z), and some reflex field F0.

• In Cases (Sm), (Nm), and (Spl), the integral models are defined by
(among other data) an integral PEL datum (O, ?, L, 〈 · , · 〉, h0) (cf. [37,
Def. 1.2.1.3]), which defines the group functor G as in [37, Def. 1.2.1.6],
and the reflex field F0 as in [37, Def. 1.2.5.4]. For technical reasons, we
shall insist that [37, Cond. 1.4.3.10] is satisfied. In Cases (Nm) and (Spl),
we allow the level H to be arbitrarily high at p.

• In Case (Hdg), we still have an integral PEL datum defining the auxil-
iary good reduction Siegel moduli MHaux , which we abusively denote as
(O, ?, L, 〈 · , · 〉, h0) (with O = Z, without “aux” in the notation), which also
defines a group functor Gaux with an injective homomorphism G→ Gaux.

We shall say that we are in Case (Sm), (Nm), (Spl), or (Hdg) depending on the
case in Assumption 2.1 from where XH → S is pulled back.

2.2. Qualitative description of good compactifications. The upshot is that
the integral models considered in Assumption 2.1 are known to have good toroidal
and minimal compactifications, constructed as in [37], [41], [40], [39], and [46]. Let
us summarize some of their properties, which will be used later:

Proposition 2.2. Let XH → S be as above. Then there is a minimal compactifi-
cation

JXmin
H

: XH ↪→ Xmin
H
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over S, together with a collection of toroidal compactifications

JXtor
H,Σ

: XH ↪→ Xtor
H,Σ

over S, labeled by certain compatible collections Σ of cone decompositions, satisfying
the following properties:

(1) The structural morphism Xmin
H → S is proper. For each Σ, there is a proper

surjective structural morphism
∮
H,Σ : Xtor

H,Σ → Xmin
H , which is compatible

with JXmin
H

and JXtor
H,Σ

in the sense that JXmin
H

=
∮
H,Σ ◦JXtor

H,Σ
.

(2) Xmin
H admits a stratification by locally closed subschemes Z flat over S, each

of which is isomorphic to an analogue of XH (in Cases (Sm), (Nm), or
(Spl)) or a finite quotient of it (in Case (Hdg)). Moreover, the same inci-
dence relation among strata holds on fibers.

(3) Each Σ is a set {ΣZ}Z of cone decompositions ΣZ with the same index set
as that of the strata of Xmin

H —The elements of this index set can be called
the cusp labels for XH. For simplicity, we shall suppress such cusp labels
and denote the associated objects with the subscripts given by the strata Z.

(4) For each stratum Z, the cone decomposition ΣZ is a cone decomposition of
some P, where P is the union of the interior P+ of a homogenous self-
adjoint cone (see [4, Ch. 2]) and its rational boundary components, which is
admissible with respect to some arithmetic group Γ acting on P (and hence
also on ΣZ). (For example, in the case of Siegel moduli, each P+ can be
identified with the space of r × r symmetric positive definite pairings for
some integer r, and P can be identified with the space of r × r symmetric
positive semi-definite pairings with rational radicals.) Then ΣZ has a subset
Σ+

Z forming a cone decomposition of P+. If τ is a cone in ΣZ that is not in

Σ+
Z , then there exists a stratum Z′ of Xmin

H whose closure in Xmin
H contains Z,

and a cone τ ′ in Σ+
Z′ , whose Γ′-orbit is uniquely determined by the Γ-orbit

of τ (where Γ′ is the analogous arithmetic group acting on ΣZ′ .)
We may and we shall assume that Σ is smooth and projective, and that,

for each Z and σ ∈ Σ+
Z , its stabilizer Γσ in Γ is trivial.

(5) For each Σ, the associated Xtor
H,Σ admits a stratification by locally closed

subschemes Z[σ] flat over S, labeled by the strata Z of Xmin
H and the orbits

[σ] ∈ Σ+
Z /Γ. The stratifications of Xtor

H,Σ and Xmin
H are compatible with each

other in a precise sense: The preimage of a stratum Z of Xmin
H is the (set-

theoretic) disjoint union of the strata Z[σ] of Xtor
H,Σ with [σ] ∈ Σ+

Z /Γ. If τ is

a face of a representative σ of [σ], which is identified (as in (4) above) with
the Γ′-orbit [τ ′] of some cone τ ′ in Σ+

Z′ , where Z′ is a stratum whose closure
in Xmin

H contains Z, then Z[σ] is contained in the closure of Z[τ ′]. The same
incidence relation among strata holds on fibers.

(6) For each stratum Z of Xmin
H , there is a proper surjective morphism C → Z

from a normal scheme which is flat over S, together with a morphism Ξ→ C
of schemes which is a torsor under the pullback of a split torus E with some
character group S over Spec(Z), so that we have

Ξ ∼= Spec
OC

( ⊕
`∈S

Ψ(`))

for some invertible sheaves Ψ(`). (Each Ψ(`) can be viewed as the subsheaf
of (Ξ → C)∗OΞ on which E acts via the character ` ∈ S.) This character
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group S admits a canonical action of Γ, and its R-dual S∨R := HomZ(S,R)
canonically contains the above P as a subset with compatible Γ-actions.

(7) For each σ ∈ ΣZ, consider the canonical pairing 〈 · , · 〉 : S×S∨R → R and

σ∨ := {` ∈ S : 〈`, y〉 ≥ 0, ∀y ∈ σ},
σ∨0 := {` ∈ S : 〈`, y〉 > 0, ∀y ∈ σ},

σ⊥ := {` ∈ S : 〈`, y〉 = 0, ∀y ∈ σ} ∼= σ∨/σ∨0 .

Then we have the affine toroidal embedding

Ξ ↪→ Ξ(σ) := Spec
OC

( ⊕
`∈σ∨

Ψ(`)).

The scheme Ξ(σ) has a closed subscheme Ξσ defined by the ideal sheaf
corresponding to ⊕

`∈σ∨0
Ψ(`), so that Ξσ ∼= Spec

OC
( ⊕
`∈σ⊥

Ψ(`)). Then Ξ(σ)

admits a natural stratification by Ξτ , where τ are the faces of σ in ΣZ.
(8) For each representative σ ∈ Σ+

Z of an orbit [σ] ∈ Σ+
Z /Γ, let Xσ denote the

formal completion of Ξ(σ) along Ξσ, and let (Xtor
H,Σ)∧Z[σ]

denote the formal

completion of Xtor
H,Σ along Z[σ]. Then there is a canonical isomorphism

Xσ ∼= (Xtor
H,Σ)∧Z[σ]

inducing a canonical isomorphism Ξσ ∼= Z[σ].

(9) Let x be a point of Ξσ, which can be canonically identified with a point of Z[σ]

via the above isomorphism. Let us equip Ξ(σ) with a coarser stratification
induced by the Γ-orbits [τ ] of τ , where τ are the faces of σ. Each such
orbit [τ ] can be identified with the Γ′-orbits [τ ′] of some cone τ ′ in Σ+

Z′ ,
where Z′ is a stratum whose closure in Xmin

H contains Z. Then there exists

an étale neighborhood U → Xtor
H,Σ of x and an étale morphism U → Ξ(σ)

such that the stratification of U induced by that of Xtor
H,Σ coincides with the

stratification of U induced by that of Ξ(σ), in the sense that the preimage of
the stratum Z[τ ′] of Xtor

H,Σ coincides with the preimage of the [τ ]-stratum of

Ξ(σ) when [τ ] determines [τ ′] as explained above; and such that the pullbacks
of these étale morphisms to Z[σ] and to Ξσ are both open immersions. (In
particular, Xtor

H,Σ and Ξ(σ), equipped with their stratifications as explained

above, are étale locally isomorphic at x.)

The proof of Proposition 2.2 will be postponed until Section 2.3.

Lemma 2.3. Zariski locally over C, the scheme Ξ(σ) → C is isomorphic to
E(σ) ×

Spec(Z)
C → C.

Proof. This is because the invertible sheaves Ψ(`) over C are Zariski locally trivial,
and because the semigroup σ∨ is finitely generated (see [29, Ch. I, Sec. 1, Lem.
2]). �

Corollary 2.4. Let x be any point of Xtor
H,Σ, which we may assume to lie on some

stratum Z[σ]. Let σ be any representative of [σ], and let E ↪→ E(σ) and Eσ be the
affine toroidal embedding and the closed σ-stratum of E(σ) over Spec(Z) (defined
analogously as in the case of Ξ ↪→ Ξ(σ) and Ξσ, but are simpler). Then there exists
an étale neighborhood U → Xtor

H,Σ of x and an étale morphism U → E(σ) ×
Spec(Z)

C

such that the stratifications of U induced by that of Xtor
H,Σ and by that of E(σ)
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coincide with each other; and such that the pullbacks of these morphisms to Z[σ]

and to Eσ ×
Spec(Z)

C are both open immersions.

Suppose τ is a face of σ. Then the preimage of the stratum Z[τ ′] of Xtor
H,Σ in

U , where [τ ′] is determined by [τ ] as in the property (9) of Proposition 2.2, is the
preimage of the stratum Eτ of E(σ). If we denote by Ztor

[τ ′] the closure of Z[τ ′] in

Xtor
H,Σ, and by Eτ (σ) the closure of Eτ in E(σ), then the above implies that, étale

locally at x, the open immersion JZtor
[τ′]

: Z[τ ′] ↪→ Ztor
[τ ′] can be identified with the

product of the canonical open immersion JEτ (σ) : Eτ ↪→ Eτ (σ) with the identity
morphism on C.

In particular, when τ = {0}, this means the preimage U of X in U coincides
with the preimage of E. Moreover, étale locally at x, the open immersion JXtor

H,Σ
:

X ↪→ Xtor
H,Σ can be identified with the product of the canonical open immersion

JE(σ) : E ↪→ E(σ) with the identity morphism on C.

Proof. The first paragraph is a consequence of Proposition 2.2, especially the prop-
erties (7) and (9), and of Lemma 2.3. The second and third paragraphs are straight-
forward consequences of the first paragraph, and of the various definitions. �

Remark 2.5. Under Assumption 2.1, the results stated in Proposition 2.2 also in-
corporated some earlier constructions of integral models of toroidal and minimal
compactifications as special cases, such as those in [17], [66], and [65] for the Siegel
moduli with hyperspecial or parahoric levels at the residue characteristics.

Remark 2.6. Similar assertions can be made for the integral models of Hilbert mod-
uli and their compactifications, including the cases of splitting models, considered
in [55], [15], [59], and [58]. (Or one can consider the even older theories for modular
curves.) We leave the precise statements of these cases to the interested readers.

2.3. Existence of good compactifications.

Proof of Proposition 2.2 in Case (Sm). In this case, XH → S is the pullback of
some integral model MH2 → S0 defined in [37, Ch. 1], and we can take Xtor

H,Σ → S

and Xmin
H → S to be the pullbacks of the toroidal and minimal compactifications

Mtor
H2,Σ → S0 and Mmin

H2 → S0 in [37, Thm. 6.4.1.1, 7.2.4.1, and 7.3.3.4], where

the collections Σ can be any smooth and projective ones as in [37, Def. 6.3.3.4 and
7.3.1.3] (satisfying the [37, Cond. 6.2.5.25]). Then the properties (2)–(8) follow from
the statements there (where the last requirement in the property (4) is satisfied by
[37, Lem. 6.2.5.27]), and the property (9) follows from the construction of Mtor

H2,Σ

(with its stratification) by gluing good algebraic models as in [37, Sec. 6.3]. �

Remark 2.7. In Case (Sm), the isomorphism Xσ ∼= (Xtor
H,Σ)∧Z[σ]

in the property

(8) of Proposition 2.2 is the pullback under S → S0 of the canonical isomor-
phism XΦH2 ,δH2 ,σ

∼= (Mtor
H2,Σ)∧Z[(ΦH2 ,δH2 ,σ)]

in [37, Thm. 6.4.1.1(5)]. Since both

ΞΦH2 ,δH2 (σ) and Mtor
H2,Σ are separated and of finite type over the excellent Dedekind

base scheme S0 = Spec(OF0,(2)), it follows from Artin’s approximation (see [2, Thm.
1.12, and the proof of the corollaries in Sec. 2]) that there exists an étale neigh-
borhood U → Xtor

H,Σ of x and an étale morphism U → E(σ) ×
Spec(Z)

C such that the

pullbacks of these morphisms to Ξσ and to Z[σ] are both open immersions. But the
isomorphisms obtained using this more abstract argument are not automatically
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compatible with stratifications—we need to also approximate the closures of strata
to ensure that. For simplicity, we resorted to the more involved construction in [37,
Sec. 6.3], which is nevertheless also based on Artin’s approximation.

Proof of Proposition 2.2 in Case (Nm). In this case, XH → S is the pullback of

some integral model ~MH → ~S0 as in [41, Sec. 6], and we can take Xtor
H,Σ → S

and Xmin
H → S to be the pullbacks of the toroidal and minimal compactifications

~Mtor
H,Σ → ~S0 and ~Mmin

H → ~S0 in [40, Thm. 6.1] and [41, Prop. 6.4], where Σ can be

any collections which are projective and smooth, and satisfy [37, Cond. 6.2.5.25].
Then the properties (2)–(8) follow from [40, Thm. 6.1] (and the references from
there to various results in [41]) and [41, Thm. 12.1 and 12.6].

It remains to verify the property (9). Given the isomorphism Xσ = (Ξ(σ))∧Ξσ
∼=

(Xtor
H,Σ)∧Z[σ]

in the property (8), which is the pullback of the isomorphism

~XΦH,δH,σ = (~ΞΦH,δH(σ))∧~ΞΦH,δH,σ

∼→ (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

given by [40, Thm. 6.1(4)] (see also [41, (10.3) and Thm. 10.14]), since both
~ΞΦH,δH(σ) and ~Mtor

H,Σ are separated and of finite type over the excellent Dedekind

base scheme ~S0 = Spec(OF0,(p)), it follows from Artin’s approximation (see [2,
Thm. 1.12, and the proof of the corollaries in Sec. 2]) that, at each point x of
~ΞΦH,δH,σ

∼= ~Z[(ΦH,δH,σ)], there exist an étale neighborhood U → ~ΞΦH,δH(σ) of x

and an étale morphism U → ~Mtor
H,Σ such that the pullbacks of these morphisms

to ~ΞΦH,δH,σ and to ~Z[(ΦH,δH,σ)] are both open immersions. By also approximat-
ing in characteristic zero the various additional structures as in the proof of [37,
Prop. 6.3.2.1] (cf. Remark 2.7), we can ensure in the above that the pullbacks of

the stratifications of ~ΞΦH,δH(σ) and ~Mtor
H,Σ to U are compatible with each other

in characteristic zero. Since the strata of these stratifications are flat over ~S0 (see
[41, Cor. 10.15] and [40, Thm. 6.1(5)]), they are induced by their restrictions to
the characteristic zero fiber, and hence they are also compatible with each other

in mixed characteristics. Since the images of such U → ~Mtor
H,Σ cover ~Z[(ΦH,δH,σ)],

by considering their pullbacks under S → S0 = Spec(OF0,(p)), the property (9)
follows. �

Proof of Proposition 2.2 in Case (Spl). In this case, XH → S is the pullback of

some integral model ~Mspl
H → Spec(OK) as in [39, Def. 2.4.5], and we can take

Xtor
H,Σ → S and Xmin

H → S to be the pullbacks of the toroidal and minimal compact-

ifications ~Mspl,tor
H,Σ → Spec(OK) and ~Mspl,min

H → Spec(OK) in [39, Thm. 3.4.1 and

4.3.1], where Σ can be any compatible collections which are projective and smooth,
and satisfy the mild [37, Cond. 6.2.5.25]. Then the properties (2)–(8) follow from
the statements there, and the property (9) follows from the same argument as in
the above proof of Proposition 2.2 in Case (Nm), using the analogous canonical iso-
morphism between formal completions in [39, Thm. 3.4.1(3)], the flatness of strata
in [39, Thm. 3.4.1(2)], and Artin’s approximation. (Note that the stratification of
~Mspl,tor
H,Σ is the pullback of the one of ~Mtor

H,Σ, by [39, Def. 3.1.8 and (3.1.9)], which is

just a base change from F0 to K in characteristic zero, by [39, Prop. 2.3.10].) �

Proof of Proposition 2.2 in Case (Hdg). In this case, XH → S is the pullback of
some integral model SK → Spec(OE,(v)) as in [46, Introduction], and we can take
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Xtor
H,Σ → S and Xmin

H → S to be the pullbacks of the toroidal and minimal com-

pactifications S Σ
K → Spec(OE,(v)) and S min

K → Spec(OE,(v)) in [46, Thm. 4.1.5

and 5.2.11], where Σ is induced by some auxiliary choice Σ̃ for SK as in [46, Sec.
4.1.4], or some refinement of it (see [46, Rem. 4.1.6]) which can be assumed to be
projective and smooth. Hence, the properties (2)–(8) follow from the statements
there. By the proof of [46, Prop. 4.2.11], each stratum Z[σ] of Xtor

H,Σ is open and
closed in the preimage of a stratum of an auxiliary good reduction toroidal com-
pactification in Case (Sm), and the isomorphism in the property (8) is compatible
with the pullback of the corresponding isomorphism in Case (Sm). Therefore, the
property (9) follows from also approximating such open and closed subsets of the
preimages in the argument in Case (Nm). �

3. Automorphic sheaves and their geometric constructions

3.1. Construction using finite étale coverings. Let ` > 0 be a rational prime
number. Let us fix the choice of an algebraic closure Q̄` of Q`.

For simplicity of notation, let us assume the following:

(1) In Case (Sm), we have ` 6∈ 2 and H = H`H` in G(Ẑ2) for some open

compact subgroups H` ⊂ G(Ẑ2∪{`}) and H` ⊂ G(Z`).
(2) In Cases (Nm), (Spl), and (Hdg), we have H = H`H` in G(Ẑ) for some

open compact subgroups H` ⊂ G(Ẑ`) and H` ⊂ G(Z`).
For each integer r > 0, let U`(`r) := ker(G(Z`) → G(Z/`rZ)), and consider

H(`r) := H`U`(`r), which is contained in H when r is sufficiently large. For such
sufficiently large r, in all cases in Assumption 2.1, we have a finite cover XH(`r) →
XH which induces a finite Galois étale cover XH(`r)⊗

Z
Q → XH⊗

Z
Q with Galois

group H`/U`(`r), where XH(`r) is defined as in the case of XH but with H replaced
with its normal subgroup H(`r). If ` 6= p, then the finite cover XH(`r) → XH is
étale (and Galois) over all of S.

Consider any algebraic representation ξ of G⊗
Z
Q on a finite-dimensional vector

space Vξ over Q̄`. By the general procedure explained in [33, Sec. 6] and [25,
Sec. III.2], there is an associated lisse `-adic étale sheaf Vξ over X⊗

Z
Q. (Since

X⊗
Z
Q is often not connected, the construction is not based on the consideration of

representations of its étale fundamental group. Instead, it uses systems of possibly
disconnected finite étale covers XH(`r)⊗

Z
Q → XH⊗

Z
Q as mentioned above.) If

` 6= p, this lisse `-adic étale sheaf over X⊗
Z
Q extends over all of X, which we still

abusively denote as Vξ.
Let us briefly spell out the procedure in our special case. As explained in [25,

Sec. III.2], by the Baire category theorem (see, for example, the proof of [7, 2.2.1.1]
or the beginning of [63, Sec. 2]), there exists a finite extension E of Q` in Q̄`, and
an OE-lattice Vξ,0 with a continuous action of G(Z`) (with respect to the `-adic
topology), such that Vξ ∼= Vξ,0 ⊗

OE
Q̄` as continuous representations of G(Q`). For

each m > 0, by the continuity of the action of G(Z`) on Vξ,0, there exists an integer

r(m) > 0 such that H(`r(m)) ⊂ H and U`(`r(m)) acts trivially on the finite quotient
Vξ,0,`m := Vξ,0 ⊗

Z`
(Z/`mZ). By abuse of notation, let us also denote by V ξ,0,`m

the constant group scheme over Spec(Z), which carry an action of H`/U`(`r(m)).
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Let us define Vξ,0,`m to be the torsion étale sheaf of sections over XH⊗
Z
Q of the

contraction product (XH(`r(m))⊗
Z
Q)
H`/U`(`r(m))

× V ξ,0,`m , and define the étale sheaves

Vξ,0 := lim←−
m

Vξ,0,`m and Vξ := Vξ,0 ⊗
OE

Q̄` over XH⊗
Z
Q as usual. Then it is elementary

(though tedious) to verify that such a construction is independent of the various
choices, is functorial in various natural senses, and allows us to define the Hecke
actions on the cohomology groups if we take the limit over H. We are admittedly
being vague here, and we shall refer the readers to [33, Sec. 6] and [25, Sec. III.2] for
more details. When ` 6= p, the same construction defines the étale sheaf extensions
of Vξ,0 and Vξ to all of XH. This construction certainly also works if we replace Vξ
with a continuous representations of G(Z`) on a (possibly torsion) finite Z`-module
W0, without reference to any representation over Q̄`.

3.2. Construction using Kuga families. There is an alternative approach using
the relative cohomology of Kuga families over the Shimura varieties, which is less
systematic but crucially useful.

Consider the abelian scheme f : A→ XH defined as follows:

(1) In Case (Sm), it is the pullback of A → MH2 , which is part of the tauto-
logical object (A, λ, i, αH2)→ MH2 .

(2) In Case (Nm), it is the pullback of ~Aj0 → ~MH, which is part of the tauto-

logical objects ( ~Aj, ~λj,~ij, ~αHj) → ~MH (with all j ∈ J) as in [41, Prop. 6.1],
under the assumption that (Lj0 , 〈 · , · 〉j0) = (L, 〈 · , · 〉) for some j0 ∈ J,

(3) In Case (Spl), it is the pullback of ~Aj0 → ~MH as in Case (Nm) above, via

the composition of X→ ~Mspl
H with the structural morphism ~Mspl

H → ~MH.
(4) In Case (Hdg), it is the pullback of Aaux → MHaux

, which is part of the
tautological object over the auxiliary good reduction moduli MHaux

(which
we assumed to be in Case (Sm)), under the composition of canonical mor-
phisms XH → MH → MHaux

(see Assumption 2.1).

Lemma 3.1. The general construction in Section 3.1 of étale sheaves over XH⊗
Z
Q

associates HomZ(L,R) with the étale sheaf R1(f ⊗
Z
Q)∗R, where R can be either Q̄`,

Q`, or any finite (and possibly torsion) Z`-module. When ` 6= p, the construction
also works over all of XH and associates HomZ(L,R) with the étale sheaf R1f∗R.

Proof. It suffices to prove these in Cases (Sm), (Nm), and (Spl), because the con-
struction in Case (Hdg) is the pullback of the analogous construction in Case (Sm).
In all of these three cases, the abelian scheme f : A → XH extends to some object
(A, λA, iA, αA,H2), where λA : A → A∨ is a polarization, iA : O → EndXH(A) is an
O-endomorphism structure for (A, λA) as in [37, Def. 1.3.3.1], and where αA,H2 is a
level-H2 structure for (A⊗

Z
Q, λA⊗

Z
Q, iA⊗

Z
Q), with 2 = ∅ in Cases (Nm) and (Spl),

such that (A⊗
Z
Q, λA⊗

Z
Q, iA⊗

Z
Q, αA,H2) defines an object of MH2 over XH⊗

Z
Q as

in [37, Def. 1.4.1.4]. (In Case (Sm), this follows from the definition of MH2 in [37,
Sec. 1.4]. In Cases (Nm) and (Spl), this is because XH⊗

Z
Q is isomorphic to a base

change of some MH defined in [37, Sec. 1.4], and because A → XH is isomorphic

to the pullback of ~Aj0 → ~MH.) For any geometric point s̄ → XH of residue char-
acteristic zero, αA,H2 induces, in particular, a π1(XH⊗

Z
Q, s̄)-invariant H`-orbit of
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isomorphisms L⊗
Z
Z`
∼→ T` As̄ matching the pairing 〈 · , · 〉 on L with the λA-Weil

pairing on T` As̄ up to scalar multiples, compatible with the O-module structures
of L and of T` As̄ given by iA. If ` 6= p, then this isomorphism also extends to
similar isomorphisms at geometric points s̄ → XH of characteristic p. Hence, the
lemma follows from the very definitions of the various objects. �

Proposition 3.2. Suppose ξ is an irreducible algebraic representation of G⊗
Z
Q

on a finite-dimensional vector space Vξ over Q̄`. Then there exist tξ ∈ Z and
nξ ∈ Z≥0 such that the associated étale sheaf Vξ over XH⊗

Z
Q is a direct summand

of (R(f×nξ ⊗
Z
Q)∗Q̄`)(−tξ)[nξ], where f×nξ : A×nξ → XH is the nξ-fold self-fiber-

product of A → XH, and where (−tξ) denotes the Tate twist. If ` 6= p, then Vξ
extends over all of XH as a direct summand of (Rf

×nξ
∗ Q̄`)(−tξ)[nξ]. The integer

mξ := nξ + 2tξ depends only on the irreducible representation ξ (and the data
defining XH); and Vξ is pointwise pure of weight mξ.

Proof. By [37, Def. 1.2.1.6] and the assumption that G⊗
Z
Q is a subgroup of

Gaux⊗
Z
Q in Case (Hdg), L⊗

Z
Q is a faithful representation of the reductive group

G⊗
Z
Q. By [12, Prop. 3.1(a)], the irreducible representation Vξ is a direct summand

of (L⊗
Z
Q̄`)⊗ aξ ⊗(L∨⊗

Z
Q̄`)⊗ bξ , for some integers aξ, bξ ≥ 0, where the tensor

products are over Q̄`, and where L∨ := HomZ(L,Z). Since 〈 · , · 〉 induces a perfect
pairing (L⊗

Z
Q`)×(L⊗

Z
Q`) → Q`(1) (where the Tate twist is formal, by tensor

product with Z(1) := ker(exp : C→ C×)), which is matched via the level structure
(in the proof of Lemma 3.1) with the λ-Weil pairing (V` As̄)×(V` As̄) → V` Gm,s̄

up to scalar multiples at each geometric point s̄ → XH of residue characteristic
zero, we obtain an isomorphism L⊗

Z
Q` ∼= HomZ(L,Q`)(1), which is matched

with the isomorphism HomQ`(R
1(f ⊗

Z
Q)∗Q`,Q`) ∼= R1(f ⊗

Z
Q)∗Q`(1) between

étale sheaves. Hence, the proposition follows from Lemma 3.1, from [11,
6.2.5(b) and 6.2.6], from the fact that (R1(f ⊗

Z
Q)∗Q̄`)⊗nξ is a direct summand

of Rnξ(f×nξ ⊗
Z
Q)∗Q̄` ∼= ∧nξ ((R1(f ⊗

Z
Q)∗Q̄`)⊕nξ), and from the fact that

Rnξ(f×nξ ⊗
Z
Q)∗Q̄` is a direct summand of R(f×nξ ⊗

Z
Q)∗Q̄`[nξ] thanks to

Lieberman’s trick (cf. [44, Sec. 3.2]). �

Remark 3.3. While the proof of Proposition 3.2 is abstract, and so the integers tξ
and nξ are not effective, by using Weyl’s construction for representations of classical
groups, we can write down explicit choices of tξ and nξ, depending on the highest
weights of ξ. This is the approach taken in, for example, [25, Sec. III.2] and [48],
and is spell out in precise detail in [44, Sec. 2–4], the last of which also pinned down
the optimal values of tξ and nξ in all PEL-type cases. (More precisely, there were
some representations that were ignored when G⊗

Z
Q is disconnected, because they

were not needed; but by the explanation in [44, Rem. 2.25], the same methods can
also be used to pin down the optimal values of tξ and nξ in those cases.)

For torsion coefficients, we have the following subtler statements:
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Proposition 3.4. Suppose K0 is a finite extension of Q in a fixed choice of alge-
braic closure Q̄ of Q, and suppose W0 is a finite flat OK0-module with an algebraic
action of G. Suppose W := W0 ⊗

OK0

K0 is an irreducible representation of G⊗
Z
K0.

Then there exist integers tW ∈ Z and nW , cW ∈ Z≥0 (depending only on G⊗
Z
K0,

L⊗
Z
K0, and the weights of W ) such that, as long as ` > cW , for each finite exten-

sion field K of the w-adic completion K0,w of K0 at a place w|` such that G⊗
Z
K

is split, and for each finite OK-module M , the étale sheaf W0,M associated with
W0 ⊗
OK0

M is a direct summand of (R(f ⊗
Z
Q)×nW∗ M)(−tW ). If ` 6= p, then W0,M

extends over all of XH as a direct summand of (Rf×nW∗ M)(−tW ). In Cases (Sm),
(Nm), or (Spl), the integers tW , nW , and cW can be explicitly determined using
only the PEL datum (O, ?, L, 〈 · , · 〉, h0) and the weights of W .

Proof. By [12, Prop. 3.1(a)], there exist aW , bW ∈ Z≥0 such that W = W0 ⊗
OK0

K0

is a direct summand of (L⊗
Z
K0)⊗ aW ⊗(L∨⊗

Z
K0)⊗ bW . For all sufficiently large

`, and for each K as in the statement of the proposition, the weights of W ⊗
K0

K

and (L⊗
Z
K)⊗ aW ⊗(L∨⊗

Z
K)⊗ bW are all `-small, and there are no nontrivial exten-

sions between admissible G⊗
Z
OK-lattices in irreducible representations of G⊗

Z
K

of such `-small weights (see, for example, [54, Sec. 1] and the references there,
which are applicable because G⊗

Z
K is split). Hence, there exists some integer

cW ≥ 0 (as in the statement of the proposition) such that the induced pairing
〈 · , · 〉⊗

Z
Z` : (L⊗

Z
Z`)×(L⊗

Z
Z`) → Z`(1) is perfect, and such that W0 ⊗

OK0

OK is

a direct summand of (L⊗
Z
OK)⊗ aW ⊗(L∨⊗

Z
OK)⊗ bW , whenever ` > cW and K is

as above; and we can conclude as in the proof of Proposition 3.2. In Cases (Sm),
(Nm), or (Spl), since we are in PEL-type cases with residue characteristics prime
to `, we can explicitly determine tW , nW , and cW using only the PEL datum
(O, ?, L, 〈 · , · 〉, h0) and the weights of W , as in [44, Sec. 2–4]. �

4. Kuga families as toroidal boundary strata

4.1. General statements. In this section, we explain in Cases (Sm), (Nm), and
(Spl) how to realize the scheme A×n (for any fixed choice of an integer n ≥ 0)
as a toroidal boundary stratum of a larger analogue of XH, not just over S⊗

Z
Q

but over all of S, based on an argument in [36] (which is closely related to similar
considerations in the context of mixed Shimura varieties in [53]). At the end of this
section, we explain how the realization in Case (Sm) is also useful in Case (Hdg).

Proposition 4.1. In Cases (Sm), (Nm), or (Spl), let XH → S and f : A→ XH be

as above. Let n ≥ 0 be an integer. Then there exist some (noncanonical) X̃H̃ → S
(depending on n and certain auxiliary choices) as in Assumption 2.1 (in which

case we denote all associated objects below with a wide tilde) and some Σ̃ as in

Proposition 2.2 such that there exists a stratum Z̃ of X̃min
H̃

and a stratum Z̃[σ̃] of

X̃tor
H̃,Σ̃

such that there is an isomorphism Z̃
∼→ XH identifying the canonical morphism
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[σ̃]

: Z̃[σ̃] → Z̃ (induced by the structural morphism
∮̃
H̃,Σ̃ : X̃tor

H̃,Σ̃
→ X̃min

H̃
) with

an abelian scheme over XH that is Z×(`)-isogenous to the n-fold self-fiber product

f×n : A×n → XH of f : A→ XH.

Proposition 4.2. In Proposition 4.1, given each Σ for XH, there exist some choices

of Σ̃ and σ̃ such that the canonical morphism
∮̃

[σ̃]
: Z̃[σ̃] → Z̃ ∼= XH extends to a

(proper surjective) morphism from the closure Z̃tor
[σ̃] of Z̃[σ̃] in X̃tor

H̃,Σ̃
to Xtor

H,Σ.

4.2. Constructions in Case (Sm). We shall follow the arguments in [36, Sec. 3A]
and [42, Sec. 1.2.4] closely. (We will be rather brief in our explanations, but the
proofs will still be rather lengthy because we need to introduce many definitions.
They will be needed in the later proofs in Cases (Nm) and (Spl).)

Proof of Proposition 4.1 in Case (Sm). Let (O, ?, L, 〈 · , · 〉, h0) be the integral PEL
datum defining MH. By assumption, there exists a maximal order O′ in O⊗

Z
Q such

that the action of O on L extends to an action of O′ on L. Consider

Q := O⊕n,

Q−2 := (Diff−1
O′/Z(1))⊕n ∼= HomO(Q,Diff−1

O′/Z(1)) ⊂ Q∨⊗
Z
Q(1), and

Q0 := (O′)⊕n ∼= O′ ·Q ⊂ Q⊗
Z
Q,

where the O-actions on

Q∨ := HomZ(Q,Z) ∼= HomO(Q,Diff−1
O/Z)

and similar dual modules are induced by the right action of Oop (and the anti-

isomorphism ? : O ∼→ Oop), and consider the canonical pairing

〈 · , · 〉Q : Q−2×Q0 → Z(1)

given by

〈(x−2, x0), (y−2, y0)〉Q = Tr(O⊗
Z
Q)/Q( tx−2 y0 − tx0 y−2).

Consider the integral PEL datum (O, ?, L̃, 〈 · , · 〉̃ , h̃) defined as follows:

• L̃ := Q−2⊕L⊕Q0.

• 〈 · , · 〉̃ : L̃× L̃→ Z(1) is defined (symbolically) by the matrix

〈x, y〉̃ := t

x−2

x−1

x0

 〈 · , · 〉Q
〈 · , · 〉

− t〈 · , · 〉Q

y−2

y−1

y0

 .

• h̃ : C→ EndO⊗
Z
R(L̃⊗

Z
R) is defined by

z = z1 +
√
−1 z2

7→ h̃(z) :=

 z1 IdQ−2⊗
Z
R −z2((2π

√
−1) ◦ j−1

Q )

h(z)
z2(jQ ◦ (2π

√
−1)−1) z1 IdQ0⊗

Z
R

 ,
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where 2π
√
−1 : Z ∼→ Z(1) and (2π

√
−1)−1 : Z(1)

∼→ Z stand for the
isomorphisms defined by the choice of

√
−1 in C, and where

jQ : (Diff−1
O′/Z)⊕n⊗

Z
R ∼= Q∨⊗

Z
R ∼→ Q⊗

Z
R ∼= (O′)⊕n⊗

Z
R

can be identified with the identity morphism on O⊕n⊗
Z
R.

These define a group functor G̃ as in [37, Def. 1.2.1.6] (and the same reflex field

F0). By construction, there is a fully symplectic admissible filtration Z̃ on L̃⊗
Z
Ẑ2

(see [37, Def. 5.2.7.3]) induced by

Z̃−3 := 0 ⊂ Z̃−2 := Q−2⊗
Z
Ẑ2

⊂ Z̃−1 := (Q−2⊕L)⊗
Z
Ẑ2

⊂ Z̃0 := (Q−2⊕L⊕Q0)⊗
Z
Ẑ2 = L̃⊗

Z
Ẑ2,

so that there are canonical isomorphisms GrZ̃−2
∼= Q−2⊗

Z
Ẑ2, GrZ̃−1

∼= L⊗
Z
Ẑ2, and

GrZ̃0
∼= Q0⊗

Z
Ẑ2 matching the pairings GrZ̃−2×GrZ̃0 → Ẑ2(1) and GrZ̃−1×GrZ̃−1 →

Ẑ2(1) induced by 〈 · , · 〉̃ with 〈 · , · 〉Q and 〈 · , · 〉, respectively. Let

X̃ := HomO(Q−2,Diff−1
O/Z(1)) ∼= (O′)⊕n

and

Ỹ := Q0 = (O′)⊕n.
Then the pairing 〈 · , · 〉Q : Q−2×Q0 → Z(1) induces a canonical embedding φ̃ :

Ỹ ↪→ X̃, which can be identified with the identity morphism on (O′)⊕n in this

case, and there are canonical isomorphisms ϕ̃−2 : GrZ̃−2
∼→ HomẐ2(X̃ ⊗

Z
Ẑ2, Ẑ2(1))

and ϕ̃0 : GrZ̃0
∼→ Ỹ ⊗

Z
Ẑ2 (of Ẑ2-modules). These data define a torus argument

Φ̃ := (X̃, Ỹ , φ̃, ϕ̃−2, ϕ̃0)

for Z̃ as in [37, Def. 5.4.1.3]. Let

δ̃ : GrZ̃ = GrZ̃−2⊕GrZ̃−1⊕GrZ̃0
∼→ L⊗

Z
Ẑ2

be the obvious splitting of Z̃ induced by the equality Q−2⊕L⊕Q0 = L̃.

For any Ẑ2-algebra R, let P̃Z̃(R) denote the subgroup of G̃(R) consisting of

elements g such that g(Z̃−2 ⊗
Ẑ2

R) = Z̃−2 ⊗
Ẑ2

R and g(Z̃−1 ⊗
Ẑ2

R) = Z̃−1 ⊗
Ẑ2

R. Then we

have a homomorphism GrZ̃−1 : P̃Z̃(Ẑ2) → G(Ẑ2) defined by taking graded pieces.

Let P̃′
Z̃
(Ẑ2) be the kernel of GrZ̃−2×GrZ̃0, where the homomorphisms GrZ̃−2 and GrZ̃0

are defined analogously. Let H̃2 be any neat open compact subgroup of G̃(Ẑ2)
satisfying the following conditions:

(1) GrZ̃−1(H̃2 ∩ P̃′
Z̃
(Ẑ2)) = GrZ̃−1(H̃2 ∩ P̃Z̃(Ẑ2)) = H2. (Both equalities are

conditions. Then H2 is a direct factor of GrZ̃(H̃2 ∩ P̃Z̃(Ẑ2)).)

(2) The splitting δ̃ defines a (group-theoretic) splitting of the surjection

H̃2 ∩ P̃′
Z̃
(Ẑ2) � H2 induced by GrZ̃−1.
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(Such an H̃2 exists because the pairing 〈 · , · 〉̃ is the direct sum of the pairings on

Q−2⊕Q0 and on L.) The data of O, (L̃, 〈 · , · 〉̃ , h̃), 2, and H̃2 ⊂ G̃(Ẑ2) define a

moduli problem M̃H̃ as in [37, Def. 1.4.1.4]. Let H̃ := H̃2×
∏
q∈2

G̃(Zq).

Take any projective smooth Σ̃ for M̃H̃2 , which defines a toroidal compactifica-

tion M̃tor
H̃2,Σ̃

which is projective and smooth over S0 by [37, Thm. 7.3.3.4]. Let

(Z̃, Φ̃, δ̃) be as above, and let (Z̃H̃2 , Φ̃H̃2 = (X̃, Ỹ , φ̃, ϕ̃−2,H̃2 , ϕ̃0,H̃2), δ̃H̃2) be the

induced triple at level H̃2, inducing a cusp label [(Z̃H̃2 , Φ̃H̃2 , δ̃H̃2)] at level H̃2.

Let σ̃ ⊂ P+

Φ̃H̃2

be any top-dimensional nondegenerate rational polyhedral cone in

the cone decomposition Σ̃Φ̃H̃2
in Σ̃. By [37, Thm. 6.4.1.1(2) and 7.2.4.1(5); see

also the errata], the stratum Z̃[(Φ̃H̃2 ,δ̃H̃2 ,σ̃)] of M̃tor
H̃2

is a zero-dimensional torus

bundle over the abelian scheme C̃Φ̃H̃2 ,δ̃H̃2
over MH2 . (We have canonical isomor-

phisms Z̃[(Φ̃H̃2 ,δ̃H̃2 )]
∼= M̃

Φ̃H̃2

H̃2
∼= M̃

Z̃H̃2

H̃2
∼= MH2 because of the condition (1) above

on the choice of H̃2. The abelian scheme torsor C̃Φ̃H̃2 ,δ̃H̃2
→ M̃

Φ̃H̃2

H̃2
is an abelian

scheme because of the condition (2) above on the choice of H̃2.) In other words,

Z̃[(Φ̃H̃2 ,δ̃H̃2 ,σ̃)]
∼= C̃Φ̃H̃2 ,δ̃H̃2

. By the construction of C̃Φ̃H̃2 ,δ̃H̃2
as in [37, Sec. 6.2.3–

6.2.4], and by the same arguments as in the proofs of [42, Lem. 8.1.3.2 and 8.1.3.5],
it is Z×(2)-isogenous to the abelian scheme HomO(Q,A)◦ ∼= A×n over MH2 . Since

` 6∈ 2, a Z×(2)-isogeny is a Z×(`)-isogeny.

To conclude, it suffices to take X̃H̃ → S, X̃min
H̃

→ S, X̃tor
H̃,Σ̃

→ S, and

Z̃[σ̃] → Z̃ to be the respective pullbacks (under S → Spec(OF0,(2))) of

M̃H̃2 → Spec(OF0,(2)), M̃min
H̃2
→ Spec(OF0,(2)), M̃tor

H̃2,Σ̃
→ Spec(OF0,(2)), and

Z̃[(Φ̃H̃2 ,δ̃H̃2 ,σ̃)] → Z̃[(Φ̃H̃2 ,δ̃H̃2 )]. �

Proof of Proposition 4.2 in Case (Sm). In this case, the proposition follows [36,
Sec. 3B, the paragraph following Cond. 3.8]. �

4.3. Constructions in Case (Nm).

Proof of Proposition 4.1 in Case (Nm). Let us proceed with the same choices made
in the proof of Proposition 4.1 in Case (Sm), with 2 = ∅. (We shall henceforth

omit all the superscripts with 2.) In this case, ~MH → ~S0 = Spec(OF0,(p)) is defined

with some choice of {(Lj, 〈 · , · 〉j)}j∈J, with (Lj0 , 〈 · , · 〉j0) = (pr0L, p−2r0〈 · , · 〉) for

some j0 ∈ J and some r0 ∈ Z, which allows us to take f : A→ XH to be ~Aj0 → ~MH.

For each j ∈ J, let (L̃j, 〈 · , · 〉̃j ) be defined as in the case of (L̃, 〈 · , · 〉̃ ), but

with 〈 · , · 〉Q and (L, 〈 · , · 〉) replaced with rj〈 · , · 〉Q and (Lj, r
′
j〈 · , · 〉j) for some

sufficiently large integers rj, r
′
j ≥ 1 such that 〈 · , · 〉̃j is induced by the restriction of

rj〈 · , · 〉̃ ⊗
Z
Q.

For any Ẑ-algebra R, let ŨZ̃(R) denote the subgroup of P̃(R) consisting of el-

ements g such that g(Z̃−i ⊗
Ẑ2

R) ⊂ Z̃−i−1 ⊗
Ẑ2

R, for all i; let ŨZ̃,−2(R) denote the
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subgroup of ŨZ̃(R) consisting of elements g such that g(Z̃−i ⊗
Ẑ2

R) ⊂ Z̃−i−2 ⊗
Ẑ2

R, for

all i; and let ŨZ̃,−1(R) := ŨZ̃(R)/ŨZ̃,−2(R).

Each element g ∈ ŨZ̃,−1(Ẑ) is determined by its induced morphisms

g12 : GrZ̃−1 = L⊗
Z
Ẑ→ GrZ̃−2 = Q−2⊗

Z
Ẑ = (Diff−1

O′/Z)⊕n

and

g01 : GrZ̃0 = (O′)⊕n → GrZ̃−1 = L⊗
Z
Ẑ

on the graded pieces, and gm induces mg12 and mg01 for each integer m, which
satisfy

mg12(Lj⊗
Z
Ẑ) ⊂ (Diff−1

O′/Z)⊕n

and

mg01((O′)⊕n) ⊂ Lj⊗
Z
Ẑ

for all j ∈ J and all sufficiently large m. Consequently, up to replacing H̃ with
an open compact subgroup, we may and we shall assume that it also satisfies the
following additional requirements:

(3) H̃ stabilizes all the lattices L̃j⊗
Z
Ẑ.

(4) The subgroup (H̃ ∩ ŨZ̃(Ẑ))/(H̃ ∩ ŨZ̃,−2(Ẑ)) of ŨZ̃,−1(Ẑ) is of the form

(ŨZ̃,−1(Ẑ))m for some integer m ≥ 1 satisfying mL ⊂ Lj for all j ∈ J.

These choices of {(L̃j, 〈 · , · 〉̃j )}j∈J and H̃ (and, in particular, the condition (3)

above) allow us to define a moduli problem M̃H̃ → Spec(F0) as in [37, Def. 1.4.1.4]

and an integral model
~̃
MH̃ → Spec(OF0,(p)) as in [41, Prop. 6.1], and its minimal

compactification M̃min
H̃
→ Spec(F0) has an integral model

~̃
M

min

H̃ → Spec(OF0,(p)) as

in [41, Prop. 6.4, and Thm. 12.1 and 12.16]. Moreover, for any projective smooth

Σ̃ for M̃, the toroidal compactification M̃tor
H̃,Σ̃
→ Spec(F0) as in [37, Thm. 6.4.1.1

and 7.3.3.4] extends to an integral model
~̃
M

tor

H̃,Σ̃ → Spec(OF0,(p)) as in [40, Thm.

6.1]. Then the pullbacks of
~̃
MH̃ → Spec(OF0,(p)),

~̃
M

min

H̃ → Spec(OF0,(p)), and

~̃
M

tor

H̃,Σ̃ → Spec(OF0,(p)), for all projective smooth Σ̃, define the models X̃H̃ → S,

X̃min
H̃
→ S, and X̃tor

H̃,Σ̃
→ S, which satisfy the analogue of Proposition 2.2 for X̃H̃ etc.

We claim that the pullback Z̃[σ̃] → Z̃ of
~̃
Z[(Φ̃H̃,δ̃H̃,σ̃)] →

~̃
Z[(Φ̃H̃,δ̃H̃)] under S →

Spec(OF0,(p)) is isomorphic to the abelian scheme f×n : A×n → XH we want.

Firstly, by the constructions of
~̃
M

Z̃H̃

H̃ and
~̃
M

Φ̃H̃

H̃ by taking normalizations (see

[41, Prop. 7.4 and 8.1]), the canonical isomorphisms M̃
Φ̃H̃
H̃
∼= M̃

Z̃H̃
H̃
∼= MH over

Spec(F0) (because of the condition (1) on the choice of H̃ in the proof in Case

(Sm)) induce canonical isomorphisms
~̃
M

Φ̃H̃

H̃
∼= ~̃

M
Z̃H̃

H̃
∼= ~MH over Spec(OF0,(p)).

Secondly, the condition (2) above on the choice of H̃ implies that the abelian

scheme torsor C̃Φ̃H̃,δ̃H̃
→ M̃

Φ̃H̃
H̃

over Spec(F0) is an abelian scheme. Moreover,
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the condition (4) above on the choice of H̃ implies that the canonical morphism

C̃Φ̃H̃,δ̃H̃
→ HomO(Q,A)◦ ∼= A×n over Z̃[(Φ̃H̃,δ̃H̃)]

∼= M̃
Z̃H̃
H̃
∼= MH (where A → MH

is the tautological abelian scheme) can be identified with [m] : A×n → A×n (the
multiplication by m over MH). Since pr0L = Lj0 and mL ⊂ Lj, for all j ∈ J,
there exists some integer r1 ≥ 0 (depending on r0) such that [mpr1 ] : A×n → A×n

extends to isogenies ~A×nj0
→ ~A×nj over ~MH for all j ∈ J, by [37, Cor. 1.3.5.4,

Prop. 1.4.3.4, and Prop. 3.3.1.5] and the normality of ~MH. By the construc-

tion of
~̃
CΦ̃H̃,δ̃H̃

by taking normalization over the product of the auxiliary mod-

els indexed by j ∈ J (see [41, Prop. 8.4]), and by Zariski’s main theorem (see

[22, III-1, 4.4.3, 4.4.11]), the canonical finite morphism ~A×nj0
→

∏
j∈J

~A×nj (de-

fined by the above isogenies) induces the composition of [pr1 ] : ~A×nj0
→ ~A×nj0

and

an isomorphism ~A×nj0

∼→ ~̃
CΦ̃H̃,δ̃H̃

. Finally, since σ̃ is top-dimensional, we have

Z̃[(Φ̃H̃,δ̃H̃,σ̃)]
∼= C̃Φ̃H̃,δ̃H̃

and
~̃
Z[(Φ̃H̃,δ̃H̃,σ̃)]

∼= ~̃
CΦ̃H̃,δ̃H̃

, which are compatible with their

structural morphisms to Z̃[(Φ̃H̃,δ̃H̃)]
∼= MH and

~̃
Z[(Φ̃H̃,δ̃H̃)]

∼= ~MH, respectively, by [41,

Lem. 8.20 and Thm. 12.16] and [40, Thm. 6.1(5)]. Thus, by pulling back everything
under S → Spec(OF0,(p)), the above claim follows. �

Proof of Proposition 4.2 in Case (Nm). Let us proceed with the same setting of
the proof of Proposition 4.1 in Case (Nm).

Since Σ̃ satisfies [37, Cond. 6.2.5.25] by assumption, by the same argument as

in the proof of [37, Lem. 6.2.5.27], the closure of each stratum of
~̃
M

tor

H̃,Σ̃ has no self-
intersection. Therefore, by the étale local description spelled out in the property
(9) of Proposition 2.2 and in Corollary 2.4, and by the geometric normality of affine
toroidal embeddings over their base schemes as explained in the proof of [41, Prop.

8.14], the closure of each stratum of
~̃
M

tor

H̃,Σ̃ is noetherian and normal. In particular,

this is the case for the closure
~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)] of
~̃
Z[(Φ̃H̃,δ̃H̃,σ̃)].

Following the same strategy as in [36, Sec. 3B], we would like to show that, for

suitable choices of Σ̃ and σ̃, the noetherian normal scheme
~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)] carries some

object parameterized by ~Mtor
H,Σ, which satisfies the condition in [40, Thm. 6.1(6)].

Compared with the condition in [37, Thm. 6.4.1.1(6)], the main difference is that
the condition in [40, Thm. 6.1(6)] also requires a collection of semi-abelian degener-
ations parameterized by j ∈ J, whose pullback to the generic point in characteristic
zero is Q×-isogenous to the tautological object parameterized by MH. Without re-
peating (essentially verbatim) all the steps in [36, Sec. 3B], we shall at least explain
how to create such a collection.

Consider the tautological semi-abelian objects (
~̃
Gj,

~̃
λj,
~̃
ij, ~̃αH̃)→ ~̃

M
tor

H̃,Σ̃. By con-

struction of
~̃
CΦ̃H̃,δ̃H̃

, the pullbacks ~G
j,
~̃
Z

[(Φ̃H̃,δ̃H̃,σ̃)]

of ~Gj to
~̃
Z[(Φ̃H̃,δ̃H̃,σ̃)] is an extension

of the pullback of the abelian scheme ~Aj → MH by a split torus
~̃
T

j,
~̃
Z

[(Φ̃H̃,δ̃H̃,σ̃)]

. Since
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~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)] is noetherian and normal, by [37, Prop. 3.3.1.7], for each j ∈ J, the

subtorus
~̃
T

j,
~̃
Z

[(Φ̃H̃,δ̃H̃,σ̃)]

of
~̃
G

j,
~̃
Z

[(Φ̃H̃,δ̃H̃,σ̃)]

extends to a subtorus
~̃
T

j,
~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)]

of the

pullback
~̃
G

j,
~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)]

of
~̃
Gj to

~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)], which allows us to define a quotient

semi-abelian scheme ~Gj :=
~̃
G

j,
~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)]

/
~̃
T

j,
~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)]

over
~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)]. On the

other hand, in characteristic zero, the pullback of the tautological semi-abelian ob-

ject (G̃, λ̃, ĩ, α̃H̃)→ M̃tor
H̃,Σ̃

to the closure Z̃tor
[(Φ̃H̃,δ̃H̃,σ̃)]

of Z̃[(Φ̃H̃,δ̃H̃,σ̃)] in M̃tor
H̃,Σ̃

defines

the semi-abelian scheme G := G̃Z̃tor

[(Φ̃H̃,δ̃H̃,σ̃)]

/T̃Z̃tor

[(Φ̃H̃,δ̃H̃,σ̃)]

over Z̃tor
[(Φ̃H̃,δ̃H̃,σ̃)]

, exactly

as in [36, Sec. 3B]. By construction, these quotient semi-abelian schemes G and

{~Gj}j∈J are Q×-isogenous to each other over Z̃tor
[(Φ̃H̃,δ̃H̃,σ̃)]

∼= ~̃
Z

tor

[(Φ̃H̃,δ̃H̃,σ̃)]⊗
Z
Q. By

the same argument as in [36, Sec. 3B], they also carry the additional PEL struc-
tures, providing the collection we need, and satisfying the condition in [40, Thm.
6.1(6)] as long as the same combinatorial [36, Cond. 3.8] is satisfied. Thus, the
proposition follows. �

4.4. Constructions in Case (Spl).

Proof of Proposition 4.1 in Case (Spl). Let us proceed with the setting of the proof

of Proposition 4.1 in Case (Nm), so that
~̃
CΦ̃H̃,δ̃H̃

→ ~MH is isomorphic to the

abelian scheme ~A×nj0
→ ~MH, which is smooth. Since

~̃
C

spl

Φ̃H̃,δ̃H̃
is the normalization of

~̃
CΦ̃H̃,δ̃H̃

×
~MH

~Mspl
H (see [39, Def. 3.2.3 and Lem. 3.2.4]), and since this fiber product is

already normal (by the smoothness of
~̃
CΦ̃H̃,δ̃H̃

→ ~MH and the normality of ~Mspl
H ),

the induced morphism
~̃
C

spl

Φ̃H̃,δ̃H̃
→ ~Mspl

H is isomorphic to the pullback of ~A×nj0
→ ~MH

under ~Mspl
H → ~MH. Again, since σ̃ is top-dimensional, by [39, Prop. 3.2.11, Thm.

3.4.1(2), and Thm. 4.3.1(5)], the pullback Z̃[σ̃] → Z̃ of
~̃
Z

spl

[(Φ̃H̃,δ̃H̃,σ̃)] →
~̃
Z

spl

[(Φ̃H̃,δ̃H̃)]

under S→ Spec(OK) is isomorphic to f×n : A×n → XH, as desired. �

Proof of Proposition 4.2 in Case (Spl). In this case, by the same argument as in the
proof of Proposition 4.2 in Case (Nm), the pullbacks of the semi-abelian objects over

~̃
M

spl,tor

H̃,Σ̃ to the closure ~Zspl,tor

[(Φ̃H̃,δ̃H̃,σ̃)]
of ~Zspl

[(Φ̃H̃,δ̃H̃,σ̃]
in
~̃
M

spl,tor

H̃,Σ̃ define quotient objects

which also carry the splitting structures given by the analogue of the recipe [39,

(3.3.12)] (for
~̃
M

spl,tor

H̃,Σ̃ instead of ~Mspl,tor
H,Σ ). Hence, the condition in [39, Thm. 3.4.1(4)]

applies to these quotient objects, which is satisfied under the same combinatorial
[36, Cond. 3.8], by the same argument as in [36, Sec. 3B] (again). �

4.5. Application to Case (Hdg). Let XHaux
→ S denote the pullback of MHaux

→
Spec(Z(p)) under S→ Spec(Z(p)), and let faux : Aaux → XHaux

denote the pullback
of Aaux → MHaux

(see the beginning of Section 3.2) under the canonical morphism
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XHaux
→ MHaux

, so that A → XH is the pullback of Aaux → XHaux
under the

canonical morphism XH → XHaux induced by MH → MHaux ⊗Z(p)

OF0,(v).

Let n ≥ 0 be an integer. Suppose that XH ↪→ Xtor
H,Σ is induced by some XHaux

↪→
Xtor
Haux,Σaux

(see the proof of Proposition 2.2 in Case (Hdg), in Section 2.3). By

Propositions 4.1 and 4.2 (in Case (Sm)), there exists some integral model X̃H̃ → S

and some toroidal compactification X̃tor
H̃,Σ̃

such that the structural morphism f×naux :

Yaux := A×naux → XHaux
can be identified with the canonical morphism from some

stratum Z̃[σ̃] of X̃tor
H̃,Σ̃

to some stratum Z̃ of X̃min
H̃

, and such that f×naux (necessarily

uniquely) extends to a morphism from the closure Y aux := Z̃tor
[σ̃] of Z̃[σ̃] in X̃tor

H̃,Σ̃
to

some toroidal compactification Xtor
Haux,Σaux

.

Consider the canonical morphism Y := A×n → Yaux. Let Y denote the normal-
ization of Y aux under the composition Y → Yaux → Y aux of canonical morphisms,
which induces an open immersion Y ↪→ Y because Y (being an abelian scheme over
XH) is normal. We have the following étale local description of Y ↪→ Y :

Proposition 4.3. At each point x of Y , there exist a scheme Cx of finite type
over S; an affine toroidal embedding Ex ↪→ Ex(τx), where Ex is a split torus over
Spec(Z) and τx is some cone in the R-dual of the character group of Ex; an étale
neighborhood x → U → Y ; and an étale morphism U → Ex(τx)×

S
Cx such that

U := U ×
Y

Y ∼= U ×
Ex(τx)

Ex (as open subschemes of U).

Proof. Without loss of generality, we may assume that S = Spec(OF0,(v)). Suppose

that x is mapped to the stratum Z[τ̆ ] of X̃tor
H̃,Σ̃

, which is above some stratum Z̆ (in

the closure of Z̃ ∼= XHaux
) of X̃min

H̃
. Suppose that x is mapped to the stratum Z[τ ]

of Xtor
H,Σ, which is above some stratum Z of Xmin

H . Suppose that x is mapped to the

stratum Z[τaux] of Xtor
Haux,Σaux

, which is above some stratum Zaux of Xmin
Haux

.

By the property (9) of Proposition 2.2 (see also the second paragraph of Corollary
2.4), étale locally at each point of Z[τ̃ ], for each representative τ̃ of [τ̃ ], and for some
representative τ̃ ′ of [τ̃ ′], where [σ̆] determines [σ̃] as in the case of [τ ] determining [τ ′]
in the property (9) of Proposition 2.2, the canonical open immersion Yaux = Z[σ̃] ↪→
Y aux = Ztor

[σ̃] is isomorphic to the affine toroidal embedding Ξ̆σ̆ ↪→ Ξ̆σ̆(τ̆) over the C̆

over Z̆, where Ξ̆σ̆(τ̆) is the closure of Ξ̆σ̆ in Ξ̆(τ̆). (Such notation with ˘ instead of˜ is to make it clear that τ̆ ∈ Σ+

Z̆
and σ̃ ∈ Σ+

Z̃
cannot be directly compared; cf. [36,

Sec. 2D].) Similarly, étale locally at each point of Z[τaux], for each representative τaux

of [τaux], the canonical open immersion XHaux ↪→ Xtor
Haux,Σaux

is isomorphic to the

affine toroidal embedding Ξaux ↪→ Ξaux(τaux) over the Caux over Zaux. As explained
in [46, the proof of Thm. 1, after Rem. 4.1.6], étale locally at each point of Z[τ ], for
each representative τ , the canonical open immersion XH ↪→ Xtor

H,Σ is isomorphic to

the affine toroidal embedding Ξ ↪→ Ξ(τ) over the C over Z.

As explained in [36, Sec. 3B], we have Z̆ ∼= Zaux, together with canonical mor-

phisms C̆ → Caux, Ξ̆σ̆ → Ξaux, and Ξ̆σ̆(τ̆) → Ξaux(τaux). By [36, Lem. 4.9], C̆ →
Caux is an abelian scheme torsor, and hence so is the pullback Cx := C ×

Caux

C̆ → C.

Let Ξx := Ξ ×
Ξaux

Ξ̆σ̆, which is a torsor over Cx under the subtorus Ex := E ×
Eaux

Ĕσ̆
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of Ĕσ̆. By [24, Lem. 3.2], the normalization of Ξ̆σ̆(τ̆) under the canonical mor-

phism Ξx → Ξ̆σ̆(τ̆) is an affine toroidal embedding over Cx, which we can write as
Ξx ↪→ Ξx(τx) for some cone τx induced by τ̆ .

Since the canonical morphism Y aux → Xtor
Haux,Σaux

is induced by [37, Thm.

6.4.1.1(6)] (see [36, Sec. 3B]), whose proof is based on the properties of good al-
gebraic models (constructed by Artin’s approximation), on which the proof of (9)
of Proposition 2.2 in Case (Sm) (in Section 2.3) is also based, it follows that, étale
locally at each point of Z[τ̃ ], the canonical morphisms Yaux ↪→ Y aux and XHaux

↪→
Xtor
Haux,Σaux

are compatibly isomorphic to Ξ̆σ̆ ↪→ Ξ̆σ̆(τ̆) and Ξaux ↪→ Ξaux(σaux), re-

spectively. By using the nested approximation in [68, 2.9] and [64, Thm. 11.4 and
11.5] instead of Artin’s approximation, where the hypothesis (in the notation there)
that Ai ⊗

Ai−1

Bi−1 is noetherian is satisfied because the canonical isomorphism Xτ =

(Ξ(τ))∧Ξτ
∼→ (Xtor

H,Σ)∧Z[τ]
in [46, Thm. 4.1.5(5); see the proof of Prop. 4.2.11] is induced

by the canonical isomorphism Xτaux
= (Ξaux(τaux))∧Ξaux,τaux

∼→ (Xtor
Haux,Σaux

)∧Z[τaux]
, it

follows that Y ↪→ Y and XH ↪→ Xtor
H,Σ are compatibly isomorphic to Ξx ↪→ Ξx(τx)

and Ξ ↪→ Ξ(τ), respectively, étale locally at x. Hence, the proposition follows. �

5. Nearby cycles and main comparisons

5.1. Basic setup. Suppose moreover that the base scheme S = Spec(R0) is
Henselian. Let j : η = Spec(K)→ S (resp. i : s = Spec(k)→ S) denote the generic
(resp. special) point of S = Spec(R0), with its structural morphism. Let K̄ be an
algebraic closure of K, let R̄0 denote the integral closure of R0 in K̄, with residue
field k̄ an algebraic closure of k, and let j̄ : η̄ := Spec(K̄) → S̄ := Spec(R̄0) (resp.
ī : s̄ := Spec(k̄) → S̄) denote the corresponding geometric point lifting i (resp. j).
For simplicity, we shall denote by subscripts the pullbacks of various schemes over
S to η, η̄, s, or s̄.

Consider any rational prime number ` 6= p. Let Λ be a coefficient ring that is
either Z/`mZ (for some integer m ≥ 1), Z`, Q`, Q̄`, or a finite extension of any
of these. (These are the coefficient rings accepted in, for example, [27, 3.1].) For
simplicity, we shall also denote by Λ the constant étale sheaf with values in Λ.
For each scheme X separated and of finite type over S, we denote by Db

c(Xη,Λ)
the bounded derived category of Λ-étale constructible sheaves over Xη, and by
Db
c(Xs̄× η̄,Λ) the bounded derived category of Λ-étale constructible sheaves over

Xs̄ with compatible continuous Gal(K̄/K)-actions. (See [11, 1.1] and [16] when Λ
is not torsion.) Then we have the functor of nearby cycles:

(5.1) RΨX : Db
c(Xη,Λ)→ Db

c(Xs̄× η̄,Λ) : F 7→ ī∗Rj̄∗(Fη̄),

where Fη̄ denotes the pullback of F to Xη̄. (See [13, XIII], [10, Th. finitude, Sec.
3], and [27, Sec. 4] for more details.)

Suppose we have a morphism ϕ : X → Y of schemes of finite type over S. Then
we have the adjunction morphisms

(5.2) RΨY Rϕη,∗(F)→ Rϕs̄,∗RΨX(F),

and

(5.3) Rϕs̄,!RΨX(F)→ RΨY Rϕη,!(F),
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which are isomorphisms when ϕ is proper, by the proper base change theorem (cf.
[3, XII, 5.1] and [13, XIII, (2.1.7.1) and (2.1.7.3)]). In the opposite direction, we
have the adjunction morphism

(5.4) ϕ∗s̄ RΨY (F)→ RΨX ϕ
∗
η(F),

which is an isomorphism when ϕ is smooth, by the smooth base change theorem
(see [3, XVI, 1.2] and [13, XIII, (2.1.7.2)]). We will freely use these facts without
repeating these references.

Lemma 5.5. Let E be a split torus over S with character group S, and let

JE : E ↪→ E = ∪
σ∈Σ

E(σ)

be a toroidal embedding over S defined by some rational polyhedral cone decomposi-
tion Σ of a cone in S∨R. Then the adjunction morphisms

(5.6) RΨE RJEη,∗(ΛEη )→ RJEs̄,∗RΨE(ΛEη )

and

(5.7) JEs̄,!RΨE(ΛEη )→ RΨE JEη,!(ΛEη )

are isomorphisms in Db
c(E s̄× η̄,Λ).

Proof. Without loss of generality, by enlarging the collection Σ if necessary, we may
assume that E is proper over S. Note that we have not assumed that Σ is smooth.
Nevertheless, there exists a smooth refinement Σ′ of Σ, so that the corresponding
toroidal embedding

JE′ : E ↪→ E
′

= ∪
σ′∈Σ′

E(σ′)

is between smooth schemes over Spec(Z), and so that E
′ − E (with its reduced

structure) is a simple normal crossings divisor flat over S. By [29, Ch. I, Sec. 2,

Thm. 8], E and E
′

are proper over S, and there is a canonical proper morphism

ϕ : E
′ → E

satisfying

JE = ϕ ◦ JE′ .
Therefore, by [13, XIII, 2.1.9], the adjunction morphisms

(5.8) RΨE
′ RJE′η,∗

(ΛEη )→ RJE′s̄,∗
RΨE(ΛEη )

and

(5.9) JE′s̄,!
RΨE(ΛEη )→ RΨE

′ JE′η,!
(ΛEη )

are isomorphisms. The proper morphism ϕ then induces canonical isomorphisms

RΨE RJEη,∗(ΛEη ) ∼= RΨE Rϕη,∗RJE′η,∗
(ΛEη )

∼→ Rϕs̄,∗RΨE
′ RJE′η,∗

(ΛEη )

and

RJEs̄,∗RΨE(ΛEη ) ∼= Rϕs̄,∗RJE′s̄,∗
RΨE(ΛEη ),

which are compatible with each other under the adjunction morphisms (5.6) and
(5.8). It also induces canonical isomorphisms

JEs̄,!RΨE(ΛEη ) ∼= Rϕs̄,∗RJE′s̄,!
RΨE(ΛEη )
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and

RΨE JEη,!(ΛEη ) ∼= RΨE Rϕη,∗ JE′η,!
(ΛEη )

∼→ Rϕs̄,∗RΨE
′ JE′η,!

(ΛEη ),

which are compatible with each other under the adjunction morphisms (5.7) and
(5.9). Thus, we can conclude because (5.8) and (5.9) are isomorphisms. �

Lemma 5.10. Let JY : Y ↪→ Y be an open immersion between schemes separated
and of finite type over S, which satisfies the following condition: For each geometric
point x → Y , there exist a scheme C of finite type over S, a toroidal embedding
JE : E ↪→ E as in Lemma 5.5 (which defines the adjunction morphisms (5.6) and

(5.7)), an étale neighborhood x → U → Y , and an étale morphism U → E×
S
C

such that U := U ×
Y

Y ∼= U ×
E

E (as open subschemes of U). Then the adjunction

morphisms

(5.11) RΨY RJY η,∗(ΛYη )→ RJY s̄,∗RΨY (ΛYη )

and

(5.12) JY s̄,!RΨY (ΛYη )→ RΨY JY η,!(ΛYη )

are isomorphisms in Db
c(Y s̄× η̄,Λ).

Proof. Note that Yη → η might not be smooth. Since the assertion of the lemma can

be verified étale locally over Y , it suffices to show that the adjunction morphisms

(5.13) RΨE×
S
C RJ(E×

S
C)η,∗(Λ(E×

S
C)η )→ RJ(E×

S
C)s̄,∗RΨE×

S
C(Λ(E×

S
C)η )

and

(5.14) J(E×
S
C)s̄,!

RΨE×
S
C(Λ(E×

S
C)η )→ RΨE×

S
C J(E×

S
C)η,!

(Λ(E×
S
C)η )

are isomorphisms, where

JE×
S
C = JE ×

S
IdC : E×

S
C ↪→ E×

S
C

is the canonical open immersion. By the Künneth isomorphisms as in [3, XVII,
5.4.3] and [5, 4.2.7], and by Gabber’s theorem (see [27, 4.7]) on nearby cycles over
products of schemes of finite type over S, we have canonical isomorphisms

(RΨE RJEη,∗(ΛEη ))
L

�
s̄

(RΨC(ΛCη ))
∼→ RΨE×

S
C((RJEη,∗(ΛEη ))

L

�
η

ΛCη )

∼→ RΨE×
S
C RJ(E×

S
C)η,∗(Λ(E×

S
C)η ),

(RJEs̄,∗RΨE(ΛEη ))
L

�
s̄

(RΨC(ΛCη ))
∼→ RJ(E×

S
C)s̄,∗((RΨE(ΛEη ))

L

�
s̄

(RΨC(ΛCη )))

∼→ RJ(E×
S
C)s̄,∗RΨE×

S
C(Λ(E×

S
C)η ),

(JEs̄,!RΨE(ΛEη ))
L

�
s̄

(RΨC(ΛCη ))
∼→ J(E×

S
C)s̄,!

((RΨE(ΛEη ))
L

�
s̄

(RΨC(ΛCη )))

∼→ J(E×
S
C)s̄,!

RΨE×
S
C(Λ(E×

S
C)η ),
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and

(RΨE JE,!(ΛEη ))
L
�
s̄

(RΨC(ΛCη ))
∼→ RΨE×

S
C((JEη,!(ΛEη ))

L
�
η

ΛCη )

∼→ RΨE×
S
C J(E×

S
C)η,!

(Λ(E×
S
C)η ),

where the former (resp. latter) two isomorphisms are compatible with each other
under the adjunction morphisms (5.6) and (5.13) (resp. (5.7) and (5.14)) (and
the identity morphism on RΨC(ΛCη )). Hence, (5.13) and (5.14) are isomorphisms
because (5.6) and (5.7) are, by Lemma 5.5. �

5.2. Compatibility with good compactifications. Let S, i, j, ī, j̄, etc be as
in Section 5.1. Consider any XH → S as in Assumption 2.1, with toroidal and
minimal compactifications JXtor

H,Σ
: XH ↪→ Xtor

H,Σ and JXmin
H

: XH ↪→ Xmin
H over S, as

in Proposition 2.2. Consider any étale sheaf V that is either of the form Vξ as in
Proposition 3.2, associated with some irreducible representation ξ of G⊗

Z
Q on a

finite-dimensional vector space Vξ over Q̄`, in which case we take Λ = Q̄`; or of the
form W0,M as in Proposition 3.4, where we assume that M is a ring that is a finite
free module over either Z` or Z/`mZ (for some integer m ≥ 1), for some ` > cW
there, in which case we take Λ = M .

Theorem 5.15. The adjunction morphisms

(5.16) RΨXtor
H,Σ

RJ(Xtor
H,Σ)η,∗(V)→ RJ(Xtor

H,Σ)s̄,∗RΨXH(V)

and

(5.17) J(Xtor
H,Σ)s̄,!RΨXH(V)→ RΨXtor

H,Σ
J(Xtor

H,Σ)η,!(V)

are isomorphisms in Db
c((X

tor
H,Σ)s̄× η̄,Λ).

Proof. Let t = tξ and n = nξ if V = Vξ as in Proposition 3.2, in which case we take
Λ = Q̄`; or let t = tW and n = nW if V =W0,M as in Proposition 3.4 for some ring
M that is a finite free module over either Z` or Z/`mZ (for some integer m ≥ 1),
for some ` > cW there, in which case we take Λ = M .

In Cases (Sm), (Nm), or (Spl), let Z̃[σ̃] → Z̃ be as in Proposition 4.1, which

realizes the abelian scheme f×n : A×n → XH up to Z×(`)-isogeny. Let Y := Z̃[σ̃];

and let Y := Z̃tor
[σ̃] , the closure of Z̃[σ̃] in X̃tor

H̃,Σ̃
. Let JY : Y ↪→ Y denote the canon-

ical open immersion. By Proposition 4.2, up to modifying the choices of Σ̃ and
σ̃, we may assume that the induced morphism h : Y → XH extends to a (neces-
sarily proper surjective) morphism h : Y → Xtor

H,Σ. In Case (Hdg), we simply take

Y ↪→ Y as in the paragraph preceding Proposition 4.3, with canonical morphisms
h : Y → XH and h : Y → Xtor

H,Σ. In all cases, we know that V is a direct sum-

mand of Rh∗(ΛY )(−t)[n], and therefore RJ(Xtor
H,Σ)η,∗(V) and J(Xtor

H,Σ)η,!(V) are direct

summands of Rhη,∗RJY η,∗(ΛYη )(−t)[n] and Rhη,∗JY η,!(ΛYη )(−t)[n], respectively.

By the proper base change theorem (applied to h), and by shifting and Tate
twisting, it suffices to note that the adjunction morphisms

(5.18) RΨY RJY η,∗(ΛYη )→ RJY s̄,∗RΨY (ΛYη )
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and

(5.19) JY s̄,!RΨY (ΛYη )→ RΨY JY η,!(ΛYη )

are isomorphisms: In Cases (Sm), (Nm), and (Spl), this follows from Lemma 5.10

and the second paragraph of Corollary 2.4 (applied to the strata of X̃tor
H̃,Σ̃

). In Case

(Hdg), this follows from Lemma 5.10 and Proposition 4.3. �

Corollary 5.20. We have canonical isomorphisms

(5.21) RΓ((XH)η̄,V)
∼→ RΓ((XH)s̄, RΨXH(V))

and

(5.22) RΓc((XH)s̄, RΨXH(V))
∼→ RΓc((XH)η̄,V),

which are compatible with their natural continuous Gal(K̄/K)-actions.

Proof. Since Xtor
H,Σ → S is proper, by the proper base change theorem, these follow

from the two canonical isomorphisms (5.16) and (5.17) in Db
c((X

tor
H,Σ)s̄× η̄,Λ). �

Corollary 5.23. The adjunction morphisms

(5.24) RΨXmin
H

RJ(Xmin
H )η,∗(V)→ RJ(Xmin

H )s̄,∗RΨXH(V)

and

(5.25) J(Xmin
H )s̄,!RΨXH(V)→ RΨXmin

H
J(Xmin

H )η,!(V)

are isomorphisms in Db
c((X

min
H )s̄× η̄,Λ).

Proof. Since the structural morphism
∮
H,Σ : Xtor

H,Σ → Xmin
H is proper (for any choice

of Σ), this follows from Theorem 5.15 and the proper base change theorem. �

Let d := dim((XH)η). Suppose Λ = Q` or Q̄`. Then Λ[d] is a perverse sheaf
on (XH)η, and we can consider its middle perversity extension J(Xmin

H )η,!∗(Λ[d]). By

[27, 4.5], RΨXH(Λ[d]) is a perverse sheaf on (XH)s̄. The analogous assertions are
true for Vξ[d], for each Vξ as in Proposition 3.2 (with ` 6= p and Λ = Q̄`).

Theorem 5.26. We have a canonical isomorphism

(5.27) RΨXmin
H

J(Xmin
H )η,!∗(Vξ[d])

∼→ J(Xmin
H )s̄,!∗RΨXH(Vξ[d])

in the category of perverse sheaves over (Xmin
H )s̄ with compatible continuous

Gal(K̄/K)-actions.

Proof. Let us denote by pH0 the zeroth perverse cohomology of a Q̄`-sheaf, which
is a perverse sheaf. By definition, we have

J(Xmin
H )?,!∗ = Im(pH0 ◦ J(Xmin

H )?,! →
pH0 ◦RJ(Xmin

H )?,∗),

for ? = η or s̄, where the image is taken in the abelian category of perverse sheaves.
Therefore, it suffices to show that there are canonical isomorphisms

(5.28) pH0(J(Xmin
H )s̄,!RΨXH(Vξ[d]))

∼→ RΨXmin
H

pH0(J(Xmin
H )η,!(Vξ[d]))

and

(5.29) RΨXmin
H

pH0(RJ(Xmin
H )η,∗(Vξ[d]))

∼→ pH0(RJ(Xmin
H )s̄,∗RΨXH(Vξ[d]))
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which are compatible with the canonical morphisms induced by the canonical mor-
phisms

J(Xmin
H )?,! → RJ(Xmin

H )?,∗

of functors, for ? = η and s̄. By [27, 4.5] again, we have a canonical isomorphism
pH0 ◦RΨ ∼= RΨ ◦ pH0

of functors, because the functor RΨ is t-exact for the middle perversity. Therefore,
by applying the functor pH0 to (5.25) and (5.24), we obtain the desired isomor-
phisms (5.28) and (5.29). �

Remark 5.30. Theorem 5.26 is interesting already in Case (Sm), when there is no
level at p and when everything is unramified in the strongest sense. Then we have

RΨXmin
H

J(Xmin
H )η,!∗(Vξ[d])

∼→ J(Xmin
H )s̄,!∗(Vξ[d])

over (Xmin
H )s̄ by the smoothness of XH → S (see [3, XV, 2.1] and [13, XIII, 2.1.5]),

where we abusively denote by the same symbols the extension of Vξ[d] over all
of XH and its pullback to (XH)s̄. Intuitively (but imprecisely), while the mini-
mal compactification Xmin

H → S is not smooth, it has “compatible singularities”
when moving between the geometric fibers: On one hand, J(Xmin

H )η,!∗(Vξ[d]) and

J(Xmin
H )s̄,!∗(Vξ[d]) take care of the singularities of the fibers of Xmin

H → S over η and

s̄, respectively. On the other hand, RΨXmin
H

takes care of the “bad reduction” of

Xmin
H → S.

Corollary 5.31. We have a canonical isomorphism

(5.32) RΓ((Xmin
H )η̄, J(Xmin

H )η̄,!∗(Vξ[d]))
∼→ RΓ((Xmin

H )s̄, J(Xmin
H )s̄,!∗RΨ(Vξ[d])),

which is compatible with the natural continuous Gal(K̄/K)-actions.

Proof. Since Xmin
H → S is proper, by the proper base change theorem, these follow

from the canonical isomorphism (5.27) in the category of perverse sheaves over
(Xmin
H )s̄ with compatible continuous Gal(K̄/K)-actions. �

Remark 5.33. Our strategies thus far are essentially the same ones as in the special
case of Siegel moduli at parahoric levels in [67, Sec. 4], which was inspired by [21,
7.1.1], based on the crucial [21, 7.1.4] due to Laumon. With our better knowledge
today, we can extend them to all cases considered in Assumption 2.1.

Remark 5.34. It should be possible to avoid the use of Propositions 4.1 and 4.2,
and hence also the assertions about stratifications in the property (9) of Proposition
2.2 and in Corollary 2.4, by requiring instead that the approximations match the
automorphic étale sheaves at torsion levels, which still preserves the filtrations
induced by the actions of the parabolic subgroups associated with the boundary
strata, whose graded pieces descend to C. (Such an idea is perhaps more appealing
in Case (Hdg).) We shall leave the details to the interested readers.

Remark 5.35. Let us conclude by briefly explaining why the isomorphisms (5.16),
(5.17), and (5.27) are compatible with Hecke actions. While there are many different
ways of defining them, the essential setup is as follows: Let H and H′ be two neat
open compact subgroups of G(Ẑ), and let g ∈ G(A∞) be an element such that
gHg−1 ⊂ H′ and such that there are a proper morphism

[g] : XH → XH′
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and a morphism

(5.36) [g]∗V → V
over XH, where we abusively denote the analogous sheaf V over XH′ by the same
symbols. In Cases (Sm) and (Hdg), due to the restrictions on the levels at p, and
hence also on the p-part of g, this proper morphism [g] is necessarily finite. In
Cases (Nm) and (Spl), it is also finite if XH and XH′ are defined by the same
collection J as in [41, Sec. 2], and if g stabilizes J—but in general, we need to use
different J’s for XH and XH′ in these cases, and allow the morphism to be proper
but not necessarily finite in positive characteristics. (Nevertheless, this means our
arguments are compatible with the variation of the choices of J’s.) By definition,
(5.36) induces by adjunction a morphism

(5.37) V → R[g]∗ [g]∗V → R[g]∗V
over XH′ . Since [g] is proper, this induces a morphism

(5.38) RΨXH′ (V)→ RΨXH′ R[g]η,∗(V)
∼→ R[g]s̄,∗RΨXH(V)

over (XH′)s̄. Hence, there are commutative diagrams

(5.39) RΓ((XH′)η̄,V) //

��

RΓ((XH′)s̄, RΨXH′ (V))

��

RΓ((XH)η̄,V) // RΓ((XH)s̄, RΨXH(V))

and

(5.40) RΓc((XH′)s̄, RΨXH′ (V)) //

��

RΓc((XH′)η̄,V)

��

RΓc((XH)s̄, RΨXH(V)) // RΓc((XH)η̄,V)

in which the vertical morphisms are induced by (5.36) and (5.38), which are com-
patible with each other under the canonical morphisms. Consequently, the isomor-
phisms (5.21) and (5.22) in Corollary 5.20 are also compatible with Hecke actions.

Remark 5.41. The compatibility with the actions of Hecke correspondences on co-
homology requires more explanation. Suppose H and H′ are as above, satisfying
moreover the condition that H ⊂ H′, so that there is also a proper morphism

[1] : XH → XH′ .

The two morphisms [1], [g] : XH → XH′ extend to proper morphisms

[1]
min

, [g]
min

: Xmin
H → Xmin

H′

and

[1]
min

, [g]
tor

: Xtor
H,Σ → Xtor

H′,Σ′

between integral models of minimal and toroidal compactifications (at the expense
of using different J’s and, in general, the replacement of Σ with a refinement that
is simultaneously a 1-refinement and g-refinement of Σ′), by [41, Prop. 13.15], [40,
Prop. 7.3], [39, Prop. 2.4.17], and [46, Sec. 4.1.12 and 5.2.12]. (The upshot is that
the compatibility between stratifications ensures that the Hecke correspondence
realized by integral models at higher level stays proper over the integral models at
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the original level, both before and after compactifications.) For definitions requiring
finite morphisms even in positive characteristics, we have such morphisms between
the integral models of Shimura varieties when g stabilizes the same collection J at
levels H and H′, which also extend to finite morphisms between the integral models
of minimal compactifications. Consequently, we can define the actions of Hecke
correspondences on the cohomology (for both the usual and compactly supported
cohomology of the Shimura varieties, and the associated nearby cycles over their
integral models) by the general arguments in [20, Lem. 1.3.1] and [18, Sec. 5.1.7],
which are compatible with the canonically defined isomorphisms (5.21) and (5.22)
in Corollary 5.20.

Remark 5.42. For the special cases of bad reductions which arise only because of
higher levels at p above a hyperspecial one, our results subsume the closely related
results by Imai and Mieda, matching the supercuspidal parts of the two sides of
(1.1) (and their analogues), in their current form in [28, Thm. 4.2, and Rem. 4.3
and 4.4]. Nevertheless, their method based on the consideration of adic spaces is
quite flexible and of some independent interest. We have learned from them that,
still for comparing the supercuspidal parts, their condition can be much relaxed.
This is because they can make use of morphisms to a good reduction Siegel moduli
rather than to integral models associated with the same Shimura datum.

6. Applications

6.1. Notation system. In this section, unless otherwise stated, we shall consider
mainly Cases (Sm), (Nm), and (Spl). In these cases, we shall consider the following
notation system, which might differ from those in the works we cite (including our
own ones). Consider a fixed choice of an integral PEL datum (O, ?, L, 〈 · , · 〉, h0) as
in [37, Def. 1.4.1.1], which defines XH → S in any of the three cases in Assumption
2.1, which are based on the definition of moduli problems of abelian schemes with
additional PEL structures up to isomorphism as in [37, Sec. 1.4.1].

For many applications in the literature, which are based on moduli problems of
abelian schemes with additional structures up to Z×(p)-isogeny in [33], it is only the

base extension (O⊗
Z
Z(p), ?, L⊗

Z
Z(p), 〈 · , · 〉⊗

Z
Z(p), h0) that matters, or even the one

with Z(p) replaced with Zp. We note that the condition for p to be good as in [37,
Def. 1.4.1.1], which determines whether we can be in Case (Sm), can be verified
using only such base extensions of the integral PEL datum to Z(p) or Zp.

As in [37, (1.2.5.1)], the polarization h0 : C→ EndO⊗
Z
R(L⊗

Z
R) defines a decom-

position L⊗
Z
C ∼= V0⊕V c0 of O⊗

Z
C-modules, where c denotes the complex conjuga-

tion, and where h0(z) acts on V0 and V c0 as 1⊗ z and 1⊗ zc, respectively. This is
a Hodge decomposition with V0 and V c0 denoting the parts of weights (−1, 0) and
(0,−1), respectively. This induces a cocharacter µ : Gm⊗

Z
C→ G⊗

Z
C which sends

z ∈ C× to the O⊗
Z
C-module automorphism of L⊗

Z
C acting as z on V0 and as 1 on

V c0 , whose (G⊗
Z
C)-conjugacy class [µ] is well defined and has a field of definition

the subfield F0 of C. (This does not require V0 to have a model over F0.)
Let Q̄p denote a fixed choice of an algebraic closure of Qp, and let F0 → Q̄p be

any fixed choice of a Q-algebra homomorphism, which determines, in particular, a
p-adic place v of F0. By abuse of language, we can also talk about the corresponding
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(G⊗
Z
Q̄p)-conjugacy class [µ] of cocharacters µ : Gm⊗

Z
Q̄p → G⊗

Z
Q̄p. The pair

(G⊗
Z
Qp, [µ]) can be viewed (up to a sign convention on [µ]) as a local Shimura

datum at p—Indeed, this is the viewpoint taken in many works on local models.
Consider OF0,v, the v-adic completion of the ring OF0

of integers in the reflex
field F0. Let K := Frac(OF0,v), let K̄ := Q̄p, and let Kur denote the maximal
unramified extension of K in K̄. Let ΓK := Gal(K̄/K) and Γur

K := Gal(Kur/K).
Then we also have the inertia group IK := ker(ΓK → Γur

K ) and the Weil group WK

in ΓK . We shall also denote OF0,v by OK (for simplicity); the ring of integers in
Kur by OKur ; and the residue fields of OK and OKur by k and k̄, respectively.

Let F denote the center of the semisimple Q-algebra O⊗
Z
Q, which is a finite

product of totally real or CM fields. Suppose that K̃ is the smallest (finite) exten-
sion of K in K̄ which contains all the images τ(F ), where τ : F → K̄ runs through
all possible Q-algebra homomorphisms, and over which G⊗

Z
Qp splits. (Then this

is an acceptable choice of K in [39, Sec. 2.3]. Please do not confuse the notation
K there with the K here.) Then we similarly define ΓK̃ , IK̃ , and WK̃ . We denote

the ring of integers in K̃ by OK̃ , and denote its residue field by k̃.
Throughout this section, we fix the choice of a prime ` > 0 different from p,

and assume that the requirements in Section 3.1 are satisfied by our choices of H.
Unless otherwise specified, V will denote an étale sheaf of the form Vξ or W0,M as
in the beginning of Section 5.2. Since ` 6= p, we may and we shall assume that V is
not just defined over XH⊗

Z
Q, but also over all of XH. For simplicity, we shall often

denote the pullbacks of V by the same symbol.

6.2. Unipotency of inertial actions. Our first application is unsurprising and
considered known in the folklore, but has not been documented in the literature:

Theorem 6.1. Suppose we are in Case (Sm), with S = Spec(OK) = Spec(OF0,v).
Suppose V is any étale sheaf over X→ S as above. For each i, we have the following
canonical isomorphisms of ΓK-modules: for the usual cohomology,

(6.2) Hi
ét((XH)η̄,V)

∼→ Hi
ét((XH)s̄,V);

for the compactly supported cohomology,

(6.3) Hi
ét,c((XH)s̄,V)

∼→ Hi
ét,c((XH)η̄,V);

and, when V is of the form Vξ, for the intersection cohomology
(6.4)

Hi
ét((X

min
H )η̄, (J(Mmin

H )η̄,!∗(Vξ[d]))[−d])
∼→ Hi

ét((X
min
H )s̄, (J(Mmin

H )s̄,!∗(Vξ[d]))[−d])

(of the minimal compactification), where d = dim((XH)η). In particular, these
ΓK-modules are unramified (namely, IK acts trivially on them). If mξ is the
integer such that Vξ is pointwise pure of weight mξ as in Proposition 3.2, then both
sides of (6.2) (resp.(6.3)) are mixed of weights ≥ i+mξ (resp. ≤ i+mξ), and both
sides of (6.4) are pure of weight i+mξ.

Proof. With the choices η̄ = Spec(K̄) and s̄ = Spec(k̄) of geometric points above
the generic and special points η = Spec(K) and s = Spec(k) of S = Spec(OK),
these follow from Corollary 5.20, from Remark 5.30 and Corollary 5.31, and from
[11, 3.3.4, 3.3.5, and 6.2.6] and [5, 5.3.2]. �
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Corollary 6.5. The analogous cohomology groups for MH ⊗
OF0,(p)

F̄0, where F̄0 is

an algebraic closure of F0, are unramified as representations of Gal(F̄0/F0) at the
places above 2, and at any places above a rational prime q 6= ` such that q is good as
in [37, Def. 1.4.1.1] and such that H is maximal at q in the sense that H = HqHq for

some open compact subgroup Hq ⊂ G(Ẑ2∪{q}) and Hq = G(Zq). (The étale sheaves
and their cohomology groups are also defined over the localizations of Spec(OF0,(q)),
for all q as above, and they are compatible with each other over Spec(F0).)

Proof. For each q as above, by [37, Lem. 1.4.4.2], we may and we shall replace 2 with
2∪{q}, and assume that p = q ∈ 2. Hence, the corollary follows from Theorem 6.1
because, by [10, Arcata, V, 3.3], any base change from F̄0 to K̄ induces a canonical
isomorphism between the étale cohomology groups (which is then equivariant with
respect to the actions of ΓK = Gal(K̄/K), canonically embedded as a subgroup of
Gal(F̄0/F0)). �

Remark 6.6. In the special case of Siegel moduli in [17], this is recorded in [17, Ch.
VI, Sec. 6, Prop. 6.1]. In fact, our use of Kuga families and their good toroidal
compactifications is based on the idea outlined there.

By [30, Thm. 2.3.8], and by the same argument of the proof of Theorem 6.1:

Theorem 6.7. Suppose we are in Case (Hdg), with K := OF0,v, the v-adic com-
pletion of OF0

at a place v|p, and with H = HpHp, where Hp is a hyperspecial
maximal open compact subgroup of G(Qp). If p = 2, suppose moreover that the
condition [30, (2.3.4)] holds. Then the analogues of the assertions of Theorem 6.1
also hold here.

Next, let us turn to the more interesting examples of integral models with para-
horic levels at p, or more particularly those with local models considered by [51] and
[52] that are known to agree with the normalizations of the naive integral models in
[57] (or more precisely the normalizations of the images of the generic fibers in the
naive integral models). There are two stages of such a theory, both important for
our purpose: One first constructs certain nice “local models”, which can be defined
by certain linear algebraic data, and shows that the nearby cycles over such “local
models” have certain good behavior. Then one shows that these nice “local models”
are indeed local models for some integral models of Shimura varieties, in the sense
that the latter is up to smooth morphisms isomorphic to the former. (However,
while there is a rich literature in the former stage, the corresponding latter stage
has not always been carried out.) We shall record several instances where we have
useful information for both stages, which are covered by Cases (Nm) and (Spl) in
Assumption 2.1 (so that our results apply).

Following [52], assume for simplicity that p > 2 and that O⊗
Z
Zp is a maximal

order inO⊗
Z
Qp (stable under ?). Suppose L is a (periodic and self-dual) multichain

of (O⊗
Z
Zp)-lattices in L⊗

Z
Qp, as in [57, Def. 3.4] and [39, Sec. 2.1].

On one hand, as explained in [57, 3.2] and [39, Choices 2.2.9], there exists a finite
subset LJ = {Λj}j∈J of L such that an O⊗

Z
Zp-lattice Λ in L⊗

Z
Qp belongs to L

if and only if there exist some r ∈ Z and j ∈ J such that Λ = prΛj, and there exists
a collection {(1, Lj, 〈 · , · 〉j)}j∈J (with the same index set) for the consideration in

[41, Sec. 2] such that Λj = Lj⊗
Z
Zp in L⊗

Z
Qp, such that Lj⊗

Z
Ẑp = L⊗

Z
Ẑp, and
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such that Lj0 = pr0L for some j0 ∈ J. Let H be any open compact subgroup of

G(A∞) such that its image Hp under the canonical homomorphism G(Ẑ)→ G(Ẑp)
is a neat (see [37, Def. 1.4.1.8]) open compact subgroup of G(Ẑp), in which case H
is also neat; and such that the image Hp of H under the canonical homomorphism

G(Ẑ) → G(Zp) is the connected stabilizer (i.e., the identity component of the
stabilizer) of the multichain L (cf. [39, Def. 2.1.10 and Choices 2.2.10]) (which
is then a parahoric subgroup of G(Qp)), so that the collection {(1, Lj, 〈 · , · 〉j)}j∈J

defines a flat integral model ~MH → Spec(OF0,(p)) as in [41, Prop. 6.1].
On the other hand, as in [52, Sec. 8.2.4], suppose that G⊗

Z
Qp is connected

and splits over a tamely ramified extension of Qp. (This is the case, for example,

when K̃ is tamely ramified over Qp. Since p is odd, it also satisfies the condition
p - π1(G(Qp)der) there.) Then the local Shimura datum (G⊗

Z
Qp, [µ]) (up to a

sign convention) and the parahoric subgroup Hp of G(Qp) define a local model
M loc, which is normal by [52, Thm. 1.1; see also the explanations in Rem. 8.2 and
8.3]. Therefore, by [39, Prop. 2.2.11 and Rem. 2.4.13], the pullback XH → S =

Spec(OK) = Spec(OF0,v) of the above ~MH → Spec(OF0,(p)), which fits into Case
(Nm) of Assumption 2.1, is isomorphic to the flat integral model in [52, Thm. 1.2;
see also the explanation in Sec. 8.2.5] (with the OK = OF0,v here denoted OEP

there).

Theorem 6.8. Let XH → S be defined as above, in Case (Nm). For each i, we have
the following canonical isomorphisms of ΓK-modules: for the usual cohomology,

(6.9) Hi
ét((XH)η̄,V)

∼→ Hi
ét((XH)s̄, RΨXH(V));

for the compactly supported cohomology,

(6.10) Hi
ét,c((XH)s̄, RΨXH(V))

∼→ Hi
ét,c((XH)η̄,V);

and for the intersection cohomology (of the minimal compactification),

Hi
ét((X

min
H )η̄, (J(Mmin

H )η̄,!∗(Vξ[d]))[−d])
∼→ Hi

ét((X
min
H )s̄, (J(Mmin

H )s̄,!∗RΨXH(Vξ[d]))[−d]),
(6.11)

where d = dim((XH)η). Moreover, the restrictions of the ΓK-actions of these mod-
ules to IK̃ (but not IK) are all unipotent, and even trivial when Hp is a very
special subgroup of G(Qp) (see [52, Sec. 10.3.2]).

Proof. With the choices η̄ = Spec(K̄) and s̄ = Spec(k̄) of geometric points above
the generic point η = Spec(K) and special point s = Spec(k) of S = Spec(OK),
these follow from Corollaries 5.20 and 5.31, from the fact that the M loc above is a
local model for XH (which means the latter is up to smooth morphisms isomorphic
to the former), and from [52, Thm. 1.4, and more detailed results in Sec. 10.3]. �

Remark 6.12. The assumption that G⊗
Z
Qp splits over a tamely ramified extension

of Qp can be relaxed, at least when p ≥ 5, thanks to [45], as soon as the local
models defined in [45] is shown to be provide local models for any XH → S in Case
(Nm) in Assumption 2.1. This possibility is now known in the folklore, although
we did not spell it out only because such a link was not explicitly provided in [45].
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More generally, we can still define a flat integral model ~MH → ~S0 = Spec(OF0,(p))
as in [41, Sec. 6] and [39, Choices 2.2.10], with the assumptions that O⊗

Z
Zp is a

maximal order in O⊗
Z
Qp (stable under ?) and that the image Hp of H under the

canonical homomorphism G(Ẑ) → G(Zp) is the connected stabilizer of L , but
without the assumptions that p > 2 and that G⊗

Z
Qp is connected and splits over a

tamely ramified extension of Qp. By making the choices as in [39, Choices 2.3.1], we

can define the corresponding splitting models ~Mspl
H → Spec(OK̃) as in [39, Sec. 2.4]

(with the K there given by the K̃ here), which coincides with the normalizations
of the integral models introduced in [51, Sec. 15]. Then we take XH → S to be this
~Mspl
H → Spec(OK̃), which fits into Case (Spl) of Assumption 2.1.

Theorem 6.13. With the choice of XH → S = Spec(OK̃) as above in Case
(Spl), the isomorphisms in Theorem 6.8, which are now for ΓK̃-modules instead of
ΓK-modules, also exist. Moreover, the analogous assertions concerning the unipo-
tency and triviality of the restrictions of the ΓK̃-actions of these modules to IK̃ are
valid if our context fits into one of the following cases:

(1) ~MH → S is defined as in the paragraphs preceding Theorem 6.8.
(2) The context of [51, Part I], where G⊗

Z
Qp is (up to center) of the form

ResK′/Qp GLd for some finite extension K ′ of Qp.
(3) The context of [51, Part II], where G⊗

Z
Qp is (up to center) of the form

ResK′/Qp GSp2g for some finite extension K ′ of Qp.

Proof. With the choices η̄ = Spec(K̄) and s̄ = Spec(k̄) of geometric points above

the generic point η = Spec(K̃) and special point s = Spec(k̃) of S = Spec(OK̃),
the isomorphisms as in Theorem 6.8, which are now for ΓK̃-modules instead of
ΓK-modules, follow from Corollaries 5.20 and 5.31. As for the restrictions of the
ΓK̃-actions of these modules to IK̃ , since the left-hand sides of the isomorphisms
as in Theorem 6.8 have the same restrictions to IK̃ as those of the original ones in
Theorem 6.8, the case (1) is nothing but a repetition of Theorem 6.8; the case (2)
follows from [51, Thm. 13.1 and Rem. 13.2(a)] (see also [50, Rem. 7.4]); and the case
(3) follows from [51, Rem. 13.2(b)]. (In cases (2) and (3), the splitting models were
involved in the proofs in [51], but not explicitly mentioned in the conclusions.) �

Remark 6.14. The two cases (2) and (3) in Theorem 6.13 cover, for example, the
two cases spelled out in [41, Lem. 14.6 and 14.7].

Remark 6.15. The isomorphism (6.10) in Theorem 6.8 and its analogue in Theo-
rem 6.13 established [23, Conj. 10.3] for all integral models of PEL-type Shimura
varieties (with parahoric levels at p) considered in [52] and [51].

Remark 6.16. As soon as we have analogues of the results we cited from [52] and
[51] in Case (Hdg), and also the constructions of their splitting models (and their
toroidal and minimal compactifications) in that context, the analogues of Theorem
6.8 and 6.13 can be proved by exactly the same arguments.

6.3. Mantovan’s formula. Let us follow the setting in [47] and [48]. Assume
that p is a good prime for an integral PEL datum (O, ?, L, 〈 · , · 〉, h0) as in [37,
Def. 1.4.1.1], and consider the trivial collection J = {j0} with {(gj0 , Lj0 , 〈 · , · 〉j0} =
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{(1, L, 〈 · , · 〉}, as in [41, Ex. 2.3]. For simplicity, assume that O⊗
Z
Q is simple and

involves no factor of type D, in the sense of [37, Def. 1.2.1.15].

Let H be any neat open compact subgroup of G(Ẑ), let Hp denote the image

of H under the canonical homomorphism G(Ẑ)→ G(Ẑp), and let H0 := HpG(Zp).
Since p is a good prime for (O, ?, L, 〈 · , · 〉, h0), we have a good reduction integral
model MHp → Spec(OF0,(p)) as in [37, Sec. 1.4.1]. Since O⊗

Z
Q is simple, by [37,

Prop. 1.4.4.3] and [33, Sec. 8], the canonical morphism MH0 → MHp ⊗
Z
Q is an

isomorphism. Since the schemes ~MH0
and ~MH over ~S0 = Spec(OF0,(p)) in [41,

Prop. 6.1] are independent of the choices of auxiliary models, by taking MHp as an

auxiliary good reduction model, we have ~MH0
∼= MHp , and we can take ~MH to be

the normalization of ~MH0
under the composition MH → MH0

→ ~MH0
∼= MHp of

canonical morphisms.
Let us take S to be Spec(OK) = Spec(OF0,v) as in Section 6.1, and take XH → S

to be the pullback of ~MH → Spec(OF0,(p)), as in Case (Nm) in Assumption 2.1. In
this case, the prime p is unramified in the linear algebraic data, except that the
level at p might be higher than G(Zp).

Given the local datum (G⊗
Z
Qp, [µ]), there is a partially ordered finite subset

B of B(G⊗
Z
Qp) (see [31], [56], and [34, Sec. 6]), whose elements parameterize,

roughly speaking, quasi-isogeny classes of Barsotti–Tate groups over k̄ with
quasi-polarizations and endomorphism structures of the type defined by
(O, ?, L, 〈 · , · 〉)⊗

Z
Qp and by the conjugacy class [µ] determined by h0. By

classifying the quasi-isogeny classes of Barsotti–Tate groups associated with the
pullbacks of the tautological object (A, λ, i, αHp) → MHp to the geometric points
of (MHp)s, we can write (XH0

)s ∼= (MHp)s as a (set-theoretic) disjoint union of
locally closed subschemes (XH0

)bs, labeled by elements b ∈ B, and we know that

∪
b′≤b

(XH0)b
′

s is closed for each b ∈ B. Then (XH)s is the (set-theoretic) disjoint

union of the (locally closed) preimages (XH)bs of (XH0
)bs under the canonical

morphism (XH)s → (XH0
)s, and ∪

b′≤b
(XH)b

′

s is closed for each b ∈ B. (This is often

called the Newton stratification. However, in general, the closure of (XH)bs might

be strictly smaller than the union ∪
b′≤b

(XH)b
′

s . To avoid confusion, we shall avoid

the terminology of stratifications in the remainder of this subsection.) We shall
replace s with s̄ when denoting their pullbacks to s̄.

For each g ∈ G(A∞) and any two neat open compact subgroups H and H′ of

G(Ẑ) such that H ⊂ H′ ∩ gH′g−1, by applying [41, Prop. 13.15] with the same
J = {j0} and {(gj0 , Lj0 , 〈 · , · 〉j0} = {(1, L, 〈 · , · 〉} as above, we obtain two proper
morphisms

~[1], ~[g] : ~MH,g := ~MH,{0,1}× J → ~MH′

extending the two finite étale morphisms [1], [g] : MH → MH′ defining Hecke ac-

tions in characteristic zero. Let us take XH,g → S to be the pullback of ~MH,g →
Spec(OF0,(p)), and take

[1], [g] : XH,g → XH′
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to be the pullbacks of the above two morphisms ~[1], ~[g] : ~MH,g → ~MH′ . By [41, Prop.

13.19 and 13.1], ~MH,g can be identified with the normalization of ~MH′ ×
~S0

~MH′ under

the composition of canonical morphisms MH
([1],[g])→ MH′ ×

S0

MH′ → ~MH′ ×
~S0

~MH′ , and

the morphism [1] : ~MH,g → ~MH′ factors as a composition of canonical morphisms
~MH,g → ~MH → ~MH′ , where the first morphism is proper and extends the iden-
tity morphism of MH, and where the second morphism is finite. The analogous
assertions for the pullback XH,g are also true. Let A→ XH be the pullback of the

tautological abelian scheme ~A = ~Aj0 → ~MH, as in Section 3.2. As explained in the

proof of [41, Prop. 13.19], we have a canonical Q×-isogeny ~[1]
∗
~A→ ~[g]

∗
~A (respect-

ing the additional PEL structures, in a sense that can be made precise) between

their pullbacks over ~MH,g, whose pullback is a canonical Q×-isogeny [1]∗A→ [g]∗A
over XH,g. Consequently, the morphisms [1] and [g] respect Newton stratifications
in the sense that [1]−1((XH′)

b
s) = [g]−1((XH′)

b
s) as locally closed subsets of (XH,g)s,

for each b ∈ B.
For each b ∈ B, there is a formal schemeMb

0 over Spf(OKur) as in [57, Def. 3.21,
Cor. 3.40, and onwards], which carries an action of a group Jb(Qp), where Jb is

an algebraic group over Qp associated with b. Let Mb,rig
0 denote the rigid analytic

generic fiber of Mb
0 over Kur. As in [57, 5.32 and onwards], one can also define

coveringsMb,rig
Hp ofMb,rig

0 parameterized by open compact subgroups Hp ⊂ G(Zp).
(These are the Rapoport–Zink spaces.) Consider the étale cohomology of eachMb,rig

Hp
(following, for example, [6]), and consider the limit

(6.17) Hi
ét,c(Mb,rig, Q̄`) := lim−→

Hp⊂G(Zp)

Hi
ét,c(M

b,rig
Hp ⊗

Kur
K̄, Q̄`)

for each i, where the notation of Mb,rig is only symbolic, which is a
smooth/smooth/continous representation of G(Qp)× Jb(Qp)×WK . As explained
in [48, Sec. 2.4.2], there is a well-defined functor (called the Mantovan functor)

(6.18) Eb : Groth(Jb(Qp))→ Groth(G(Qp)×WK)

from the Grothendieck group of admissible representations of Jb(Qp) to the
Grothendieck group of admissible/continuous representations of G(Qp)×WK ,
which assigns to each admissible virtual representation ρ of Jb(Qp) the admissible
virtual representation

(6.19) Eb(ρ) :=
∑
i,j

(−1)i+j [ExtiJb(Qp)-smooth(Hj
ét,c(M

b,rig, Q̄`), ρ)(−dim(Mb,rig))]

of G(Qp)×WK , where (−dim(Mb,rig)) denotes the Tate twist. This extends to a
functor

(6.20) Eb : Groth(G(A∞,p)× Jb(Qp))→ Groth(G(A∞)×WK)

by combining the above functor with the identity functor on Groth(G(A∞,p)), the
Grothendieck group of admissible representations of G(A∞,p).

For each b ∈ B such that (XH0)bs̄ is nonempty, and for any fixed choice of a closed
point x of (XH0)bs̄, there is a central leaf CbHp passing through x, which is a reduced
closed subscheme of (XH0

)bs̄, which contains x and is smooth over s̄. There is a



NEARBY CYCLES OF AUTOMORPHIC ÉTALE SHEAVES 35

tower of schemes IgbHp,m → CbHp (the Igusa varieties) parameterized by integers
m ≥ 1. (See [47, Sec. 4] and [48, Sec. 2.5.2–2.5.4] for more details.)

For each irreducible algebraic representation ξ of G⊗
Z
Q on a finite-dimensional

vector space Vξ over Q̄`, which defines an étale sheaf Vξ over XH0
(because ` 6= p)

as in Proposition 3.2, consider the limits

(6.21) Hi
ét,c(Xη̄,Vξ) := lim−→

H
Hi

ét,c((XH)η̄,Vξ)

and

(6.22) Hi
ét,c(Xs̄, RΨX(Vξ)) := lim−→

H
Hi

ét,c((XH)s̄, RΨXH(Vξ))

for each i, where the notations of Xη̄, Xs̄, and RΨX are only symbolic, and where

the limits are over neat open compact subgroups H of G(Ẑ), which are admissi-
ble/continuous representations of G(A∞)×WK . Here the action of each g ∈ G(A∞)
on Hi

ét,c(Xs̄, RΨX(Vξ)) is defined using the proper morphisms [1], [g] : XH,g → XH′

and XH,g → XH introduced above, by Remark 5.35 and the proper base change the-

orem, with the isomorphism [g]∗Vξ
∼→ [1]∗Vξ over XH,g defined by using Proposition

3.2 and the Q×-isogeny [1]∗A→ [g]∗A over XH,g.
For each b ∈ B, consider the limit

(6.23) Hi
ét,c(X

b
s̄, (RΨX(Vξ))|Xbs̄) := lim−→

H
Hi

ét,c((XH)bs̄, (RΨXH(Vξ))|(XH)bs̄
)

for each i, where the notations of Xbs̄ and (RΨXVξ)|Xbs̄ are only symbolic, and where

the limits are over neat open compact subgroups H of G(Ẑ), which is an admissi-
ble/continuous representation of G(A∞)×WK . Here the action of each g ∈ G(A∞)
is similarly defined, because the morphisms [1], [g] : XH,g → XH′ respect Newton
stratifications, as explained above. Since (XH)s is the disjoint union of the locally

closed subschemes (XH)bs as b runs through all elements in B, and since ∪
b′≤b

(XH)b
′

s

is closed for each b ∈ B, we have the equality

(6.24)
∑
i

(−1)i [Hi
ét,c(Xs̄, RΨX(Vξ))] =

∑
b∈B

∑
i

(−1)i [Hi
ét,c(X

b
s̄, (RΨX(Vξ))|Xbs̄)]

between virtual representations of G(A∞)×WK .

For each b ∈ B, let us denote by the same symbols the pullbacks of Vξ to IgbHp,m
under the composition IgbHp,m → CbHp → (XH0)s̄ → XH0 of canonical morphisms,
for each m ≥ 1. Consider the limit

(6.25) Hi
ét,c(Ig

b,Vξ) := lim−→
Hp,m

Hi
ét,c(Ig

b
Hp,m,Vξ),

for each i, where the notation of Igb is only symbolic, and where the limit is over neat
open compact subgroups Hp of G(Ẑp) and integers m ≥ 1, which is an admissible
representation of G(A∞,p)× Jb(Qp) (see [47, Sec. 4, Prop. 7] and [48, Sec. 2.5.5]).

We can finally state our reformulation of Mantovan’s formula:

Theorem 6.26. With the setting as above, for each b ∈ B, we have an equality

(6.27)
∑
i

(−1)i [Hi
ét,c(X

b
s̄, (RΨX(Vξ))|Xbs̄)] =

∑
j

(−1)j Eb([Hj
ét,c(Ig

b,Vξ)])
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between virtual representations of G(A∞,p)×G(Qp)+×WK , where

G(Qp)+ := {gp ∈ G(Qp) : g−1
p (L⊗

Z
Zp) ⊂ L⊗

Z
Zp}

is a sub-monoid of G(Qp) (cf. [47, p. 599]). (Note that each gp ∈ G(Qp) is of the
form gp = g+

p · (pr IdL⊗
Z
Qp) for some g+

p ∈ G(Qp)+ and some sufficiently large

r ∈ Z.)

Remark 6.28. Theorem 6.26 is not exactly what Mantovan proved. In [47] and [48],
the integral model at a level H higher than H0, which we shall denote by XDr

H , is
defined by introducing Drinfeld level structures at p, which is generally different
from our definition in Case (Nm) by taking normalizations as in [41, Prop. 6.1].

Proof of Theorem 6.26. For each H, let us denote by πDr
H : XDr

H → XH0
the forgetful

morphism, which is finite by [47, Sec. 6, Prop. 15]. For each b ∈ B, let us denote by
(XDr
H )bs the preimage of (XH0

)bs in (XDr
H )s. We shall replace s with s̄ when denoting

their pullbacks to s̄. By the proper base change theorem (see [3, XII, 5.1]), the
adjunction morphism

(6.29) RΨXH0
R(πDr

H )η,∗(Vξ)→ R(πDr
H )s̄,∗RΨXDr

H
(Vξ)

is an isomorphism. On the other hand, let us denote by πH : XH → XH0
the

canonical finite morphism. Then, similarly, the adjunction morphism

(6.30) RΨXH0
R(πH)η,∗(Vξ)→ R(πH)s̄,∗RΨXH(Vξ)

is also an isomorphism. Since (πDr
H )η can be identified with (πH)η under the canon-

ical identifications (XDr
H )η ∼= (XH)η (because they have the same moduli interpreta-

tion in characteristic zero), the left-hand sides of (6.29) and (6.30) are canonically
isomorphic to each other, and we have a canonical isomorphism

R(πDr
H )s̄,∗RΨXDr

H
(Vξ) ∼= R(πH)s̄,∗RΨXH(Vξ).

By the proper base change theorem again, this induces a canonical isomorphism

(6.31) Hi
ét,c((X

Dr
H )bs̄, (RΨXDr

H
(Vξ))|(XDr

H )bs̄
) ∼= Hi

ét,c((XH)bs̄, (RΨXH(Vξ))|(XH)bs̄
)

for each b ∈ B and each i, by taking global sections over (XH0
)bs̄. In [47, pp. 599–600],

the Hecke actions of elements g ∈ G(A∞,p)×G(Qp)+ are also defined by proper
morphisms of the form [1], [g] : XDr

H,g → XDr
H′ (with certain conditions on H and H′,

depending on g), which coincide with the proper morphisms [1], [g] : XH,g → XH′
in characteristic zero. Moreover, the treatment of nontrivial coefficients in [48] also
used Kuga families, in essentially the same way we used Kuga families in Proposition
3.2. Consequently, by the proper base change theorem yet again (and by considering
adjunction morphisms as in Remark 5.35), the isomorphisms (6.31) are compatible
with the Hecke actions of G(A∞,p)×G(Qp)+, asH varies. Therefore, for each b ∈ B
and each i, the limit of Hi

ét,c((X
Dr
H )bs̄, (RΨXDr

H
(Vξ))|(XDr

H )bs̄
) is canonically isomorphic

to (6.23), as representations of G(A∞,p)×G(Qp)+×WK . Thus, the first identity
in [48, Thm. 3.1] implies the identity (6.27), as desired. �

Without requiring the morphism XH → S to be proper as in the case of [47, Sec.
8, Thm. 22] and [48, Thm. 3.1], we can deduce from Theorem 6.26 the following:
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Theorem 6.32. With the setting as above, we have an equality

(6.33)
∑
i

(−1)i [Hi
ét,c(Xη̄,Vξ)] =

∑
b∈B

∑
j

(−1)j Eb([Hj
ét,c(Ig

b,Vξ)])

between virtual representations of G(A∞)×WK .

Proof. By Corollary 5.20 and Remark 5.35, the identities (6.24) and (6.27) imply
the identity (6.33) between virtual representations of G(A∞,p)×G(Qp)+×WK ,
which then extends to an identity between virtual representations of G(A∞)×WK

(cf. [47, Sec. 8]). �

Remark 6.34. Mantovan and Moonen announced in 2008 their joint work on the
construction of toroidal compactifications for integral models XDr

H with Drinfeld
level structures (as in Remark 6.28), and mentioned as an application the general-
ization of Mantovan’s formula to the nonproper case by analyzing the contribution
of the boundary. Nevertheless, our statement of Theorem 6.32 contains no bound-
ary terms, and our proof of it uses only the known results in [47] and [48] (and the
comparison results in Section 5.2).

Remark 6.35. It is possible to generalize Mantovan’s formula to some cases where p
is not a good prime. See, for example, the explanation in [62, Sec. 5.2]. (The earlier
work [25], up to suitable reformulation, can be considered another example.) Our
method should also allow one to remove the properness assumption in such cases.

6.4. Scholze’s formula. Let us follow the setting of [60, Sec. 5]. Consider any
integral PEL datum (O, ?, L, 〈 · , · 〉, h0) satisfying the following properties:

(1) O⊗
Z
Z(p) is maximal (and stable under ?) in O⊗

Z
Q.

(2) O⊗
Z
Q is simple, so that its center F is a field, and splits as an F -algebra.

(3) All places of F+ := F ?=Id above p are unramified in F .
(4) O⊗

Z
Q involves no factor of type D, in the sense of [37, Def. 1.2.1.15].

Consider the trivial collection J = {j0} with {(gj0 , Lj0 , 〈 · , · 〉j0} = {(1, L, 〈 · , · 〉},
as in [41, Ex. 2.3]. Let H be any neat open compact subgroup of G(Ẑ), let Hp
denote the image of H under the canonical homomorphism G(Ẑ)→ G(Ẑp), and let
H0 = HpG(Zp).

Let us take S to be Spec(OK) = Spec(OF0,v) as in Section 6.1, and take XH →
S to be the pullback of ~MH → Spec(OF0,(p)), as in Case (Nm) in Assumption
2.1. While this is very similar to the setting of Section 6.3, we do not assume
that p is good as in [37, Def. 1.4.1.1]. Although we no longer have the moduli
MHp → Spec(OF0,(p)) as in [37, Sec. 1.4.1], we can still define a naive one over

S = Spec(OK), which we denote by Mnaive
Hp → S, as in [60, Def. 5.1]. In general, we

cannot claim that Mnaive
Hp is flat. Nevertheless, given the above properties (3) and

(4), as explained in [52, Sec. 8.2.5 (a)], the closure MHp of Mnaive
Hp ⊗Z

Q in Mnaive
Hp

is already normal. Hence, by [41, Prop. 6.1 and its proof], XH0 is canonically
isomorphic to MHp over S. (This will suffice for our purpose, because the nearby
cycles defined by Mnaive

Hp are necessarily supported on the closed subscheme (MHp)s̄
of (Mnaive

Hp )s̄.)
Let ξ be an irreducible algebraic representation of G⊗

Z
Q on a finite-dimensional

vector space Vξ over Q̄`, which defines an étale sheaf Vξ over XH0
(because ` 6= p)
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as in Proposition 3.2. Let us abusively define Hi
ét,c(Xη̄,Vξ) as in (6.21), for each

i. By [61, Prop. 5.5], this is compatible with the definition in the next paragraph
there, which carries commuting actions of ΓK , G(Zp), and G(A∞,p) needed below.

The following is [60, Thm. 5.7] when XH (or equivalently XH0) is proper over S,
with the best possible lower bound j0(fp) = 1 (which is then independent of fp):

Theorem 6.36. With the setting as above, suppose fp ∈ C∞c (G(A∞,p)). Then
there exists a positive integer j0(fp) such that, for all integers j ≥ j0(fp), all
element τ ∈WK that is mapped to the j-th power of the geometric Frobenius Frob ∈
Gal(k̄/k), and all h ∈ C∞c (G(Zp)), we have the following formula based on the
Langlands–Kottwitz method and a test function φτ,h introduced by Scholze:∑

i

(−1)i tr(τ ×hfp|Hi
ét,c(Xη̄,Vξ))

= ker1(Q,G⊗
Z
Q)

∑
(γ0; γ, δ) :

α(γ0; γ, δ) = 1

c(γ0; γ, δ)Oγ(fp)TOδσ(φτ,h) tr(ξ(γ0)),(6.37)

where the notation means the following:

(1) ker1(Q,G⊗
Z
Q) is the locally trivial elements in the Galois cohomology group

H1(Q,G⊗
Z
Q), as in [33, p. 393].

(2) The sum at the right-hand side runs over a complete set of representatives
of degree j Kottwitz triples (γ0; γ, δ) as in [60, Def. 5.6] and [61, Def. 2.1]
with invariant α(γ0; γ, δ) = 1, where α(γ0; γ, δ) is the invariant constructed
in [32, Sec. 2]. (For the readability of the remaining statements, let us
mention that γ0 ∈ G(Q), γ ∈ G(A∞,p), and δ ∈ G(Qpr ).)

(3) The Haar measures on G(Qp) and G(Qpr ) are normalized such that G(Zp)
and G(Zpr ) have volume 1, where pr = (#k)j, and where Zpr and Qpr are
the unique unramified extensions of Zp and Qp, respectively, whose residue
field has pr elements. We shall denote by σ the automorphisms of Zpr and
of Qpr inducing the p-th power automorphism of the residue field Fpr .

(4) c(γ0; γ, δ) is the volume factor defined in [32, p. 172].
(5) Oγ(fp) =

∫
G(A∞,p)γ\G(A∞,p)

fp(x−1γx) dx is the orbital integral, where

G(A∞,p)γ is the centralizer of γ in G(A∞,p).
(6) φτ,h is the test function in C∞c (G(Qpr )) introduced in [60, Def. 4.1].
(7) TOδσ(φτ,h) =

∫
(G(Qpr )δ)σ\G(Qpr )

φτ,h(y−1δσ(y)) dy is the twisted orbital in-

tegral, where (G(Qpr )δ)σ is the subgroup of σ-invariants in the centralizer
G(Qpr )δ of δ in G(Qpr ).

(8) ξ(γ0) ∈ EndQ̄`(Vξ) and its trace tr(ξ(γ0)) are defined by the algebraic rep-

resentation ξ of G⊗
Z
Q on the finite-dimensional vector space Vξ over Q̄`.

Remark 6.38. Most of the terms above, except for the test function φτ,h, were
introduced by Kottwitz (see [32] and related works). The crucial test function
φτ,h introduced by Scholze in [60, Def. 4.1] is defined using the cohomology of
certain deformation spaces (of Barsotti–Tate groups with additional structures)
constructed in [60, Sec. 3], which depends only on the data at p and is local in
nature. On the contrary, the properness of XH → S depends on the existence of
rational parabolic subgroups of G⊗

Z
Q (see the discussions in [37, Sec. 5.3.3], [35,
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Sec. 4.2], and [38]), which is global in nature. This convinced us that it is reasonable
to consider the generalization of [60, Thm. 5.7] to the nonproper case.

Proof of Theorem 6.36. The arguments in [60, Sec. 6] make no reference to the
properness of XH → S. Hence, our main task is to generalize the arguments in [60,
Sec. 7]. Even in mixed characteristics, we have the analogue of the commutative
diagram in the beginning of [60, Sec. 7] for the minimal compactifications, consisting
of finite morphisms (possibly highly ramified at the boundary). (Since g ∈ G(Zp),
we do not have to introduce any other choices of J.) Hence, by Corollary 5.20,
by the proper base change theorem (see [3, XII, 5.1]), by Remark 5.41 (and its
references to [20, Lem. 1.3.1] and [18, Sec. 5.1.7]), and by the same argument as
in [60, Sec. 7], tr(τ ×hfp|Hi

ét,c(Xη̄,Vξ)) is equal to the trace of the action of a
correspondence on the associated cohomology of nearby cycles over s̄.

We need this latter trace to be computable by some Lefschetz–Verdier trace for-
mula (over nonproper schemes). The upshot is that this correspondence can be
defined using only the finite étale morphisms [1], [gp] : (XH1)s̄ → (XH0)s̄ and the
geometric Frobenius correspondence on (XH0)s̄ induced by Frob ∈ Gal(k̄/k), where
H1 := (Hp ∩(gp)−1Hp(gp))G(Zp), together with a more complicated correspon-
dence between the sheaves of nearby cycles (defined by pushforwards from higher
levels at p, using also τ and h). We obtain the analogue of [60, Thm. 7.1] in our
context (for j ≥ j0(fp)) by also referring to [70, Thm. 2.3.2 (b)], with the bound
j0(fp) here given by the ramification bound d in [70, Thm. 2.3.2(c)] determined by
X = (Xmin

H0
)s̄, U = (XH0

)s̄, and (c1, c2) = ([1], [gp]) : C = (Xmin
H1

)s̄ → X ×
s̄
X. (In

the proper case in [60, Thm. 7.1], there is no need to introduce compactifications,
and one can take j0(fp) = d = 1 because the morphism [gp] : C → X is étale.)

Once the analogue of [60, Thm. 7.1] is known (for j ≥ j0(fp)), we can conclude
with the same arguments as in the last paragraph of [60, Sec. 7], which are pointwise
in nature over (XH0

)s̄ and do not require XH0
→ S to be proper. �
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Math. France 138 (2010), no. 2, 259–315.

66. , Compactification minimale et mauvaise réduction, Ann. Inst. Fourier. Grenoble 60
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68. B. Teissier, Résultats récents sur l’approximation des morphismes en algèbre commutative
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