Série n°3 : Fourier sur L^2

1) On considère la fonction $h(x) = e^{-|x|}$ (voir l'exercice 1 de la série n°2). Montrer qu'on peut lui appliquer l'identité de Parseval. En déduire l'égalité

$$\int_{\mathbb{R}} \frac{1}{(1+x^2)^2} \, dx = \frac{\pi}{2}.$$

2) Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = e^{-x}$$
 pour $x \ge 0$ et $f(x) = -e^{x}$ pour $x < 0$.

- a) Calculer \widehat{f} . A-t-on $\widehat{f} \in L^1(\mathbb{R})$? $\widehat{f} \in L^2(\mathbb{R})$?
- b) Montrer que la fonction $x \mapsto \frac{x}{1+x^2}$ appartient à $L^2(\mathbb{R})$ et calculer sa transformée de Fourier.
- c) Montrer à l'aide de l'identité de Parseval que

$$\int_{\mathbb{R}} \frac{x^2}{(1+x^2)^2} \, dx = \frac{\pi}{2}.$$

3) Montrer que la fonction $x \mapsto \frac{\sin x}{x}$ appartient à $L^2(\mathbb{R})$. Quelle est sa transformée de Fourier? À l'aide de l'identité de Parseval, établir l'égalité suivante :

$$\int_{-\infty}^{+\infty} \frac{\sin^2 x}{x^2} \, dx = \pi.$$

- 4) a) Montrer que la fonction $f(x) = \arctan\left(\frac{1}{x}\right)$ appartient à $L^2(\mathbb{R})$.
 - b) Soit $\xi \in \mathbb{R}^*$. À l'aide d'une intégration par parties, montrer l'existence de l'intégrale généralisée $\int_{-\infty}^{+\infty} f(x)e^{-i\xi x} dx$ et calculer cette intégrale. Qu'en est-il pour $\xi = 0$?
 - c) En déduire \widehat{f} .
- 5) On reprend les notations de l'exercice 3 de la série n°2. Pour tout $a \in \mathbb{R}$ et toute fonction f définie sur \mathbb{R} , on note $M_a(f)$ la fonction $x \mapsto e^{iax} f(x)$.
 - a) Montrer que M_a , τ_a et θ_{λ} sont des applications linéaires continues de $L^2(\mathbb{R})$ dans lui-même, quels que soient $a \in \mathbb{R}$ et $\lambda > 0$.
 - b) En déduire que le formulaire de l'exercice cité est également valable pour $f \in L^2(\mathbb{R})$.
- 6) a) À l'aide d'une intégration par parties, montrer l'existence de l'intégrale généralisée

$$\int_{1}^{+\infty} \frac{e^{itx}}{x} \, dx \,,$$

pour tout $t \neq 0$.

- b) Montrer que l'application : $t \mapsto \int_1^{+\infty} \frac{e^{itx}}{x} dx$ est continue sur \mathbb{R}^* .
- c) En déduire l'existence de l'intégrale généralisée $\int_{-\infty}^{+\infty} \frac{\sin x}{x} e^{-i\xi x} dx$, pour tout $\xi \neq \pm 1$, et la continuité de l'application $\xi \mapsto \int_{-\infty}^{+\infty} \frac{\sin x}{x} e^{-i\xi x} dx$ sur $\mathbb{R} \setminus \{-1, +1\}$.
- d) En utilisant l'exercice 2 de la série $n^{\circ}2$, montrer que

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x} e^{-i\xi x} dx = \begin{cases} \pi & \text{si } |\xi| < 1 \\ 0 & \text{si } |\xi| > 1. \end{cases}$$

7) a) À l'aide du théorème de Fubini, établir l'identité :

$$\forall f, g \in L^1(\mathbb{R}) \quad \int_{\mathbb{R}} f(x)\widehat{g}(x) \, dx = \int_{\mathbb{R}} \widehat{f}(x)g(x) \, dx.$$

- b) Montrer que cette identité s'étend au cas où f et g appartiennent à $L^2(\mathbb{R})$.

 Indication: on pourra utiliser les deux suites de fonctions de $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ définies par $f_n = f.1_{[-n,+n]}$ et $g_n = g.1_{[-n,+n]}$ (qui tendent respectivement vers f et g dans $L^2(\mathbb{R})$).
- c) Montrer que pour $\lambda > 0$ on a

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x} e^{-\lambda|x|} dx = \int_{-1}^{+1} \frac{\lambda}{x^2 + \lambda^2} dx$$

et en déduire

$$\int_0^{+\infty} \frac{\sin x}{x} e^{-\lambda x} \, dx = \arctan \frac{1}{\lambda}.$$

Que "devient" cette formule quand on fait tendre λ vers 0?

8) à l'aide d'une intégration par parties, montrer l'existence de l'intégrale généralisée

$$\int_{-\infty}^{+\infty} \frac{x}{1+x^2} \sin(\xi x) \, dx$$

pour tout $\xi \neq 0$; montrer qu'elle est égale à $\frac{1}{\xi} \int_{-\infty}^{+\infty} \frac{1-x^2}{(1+x^2)^2} \cos(\xi x) dx$ et continue par rapport à ξ sur $\mathbb{R} \setminus \{0\}$.

b) En déduire les égalités suivantes ($\xi \neq 0$ pour la première) :

$$\int_0^{+\infty} \frac{x}{1+x^2} \, \sin(\xi x) \, dx = \frac{\pi}{2} e^{-|\xi|} \mathrm{sgn}(\xi) \quad \text{ et } \quad \int_0^{+\infty} \frac{1-x^2}{(1+x^2)^2} \, \cos(\xi x) \, dx = \frac{\pi}{2} |\xi| e^{-|\xi|} \, ,$$

 2

où $\operatorname{sgn}(\xi)$ vaut 1 pour $\xi > 0$ et -1 pour $\xi < 0$.