Rappel. Si une suite (f_n) converge vers f dans L^p , il existe des sous-suites qui convergent presque partout vers f. Ce principe peut se révéler commode dans des situations où on a deux types d'information, une information en moyenne et une information ponctuelle.

Donnons un exemple avec des séries de Fourier : si f est continue, 2π -périodique et de classe C^1 par morceaux, on peut montrer que les coefficients de Fourier

$$c_n(f) = \int_{-\pi}^{\pi} f(x) e^{-inx} \frac{\mathrm{d}x}{2\pi}, \quad n \in \mathbb{Z}$$

sont absolument sommables,

$$M := \sum_{n \in \mathbb{Z}} |c_n(f)| < +\infty.$$

On a alors une série normalement convergente de fonctions continues,

$$g(x) = \sum_{n \in \mathbb{Z}} c_n(f) e^{i nx}$$

dont la somme g est par conséquent continue. D'un autre côté, comme f est de carré sommable, la théorie des bases hilbertiennes entraı̂ne que les fonctions $S_N f$ (polynômes trigonométriques) définies par

$$(\mathbf{S}_{\mathbf{N}}f)(x) = \sum_{n=-\mathbf{N}}^{\mathbf{N}} c_n(f) \, \mathrm{e}^{\mathrm{i} nx}$$

convergent vers f dans L². Peut-on assurer que f=g, autrement dit, peut-on assurer que f est bien égale, en tout point, à la somme de sa série de Fourier?

Dans le cas présent, l'extraction de suites presque partout convergentes donne une solution sans peine, et sans qu'on ait besoin de trop réfléchir : pour tout x, la suite numérique $(S_N f)(x)$ tend vers g(x), et on peut extraire une sous-suite (N_k) d'entiers telle que $(S_{N_k} f)(x)$ converge vers f(x) presque partout. On a donc g(x) = f(x) presque partout. Mais comme les deux fonctions g et f sont continues, l'égalité presque partout pour la mesure de Lebesgue entraîne l'égalité partout : $si\ f$ est continue, 2π -périodique de classe C^1 par morceaux, on a pour tout x

$$f(x) = \sum_{n \in \mathbb{Z}} c_n(f) e^{i nx}.$$

Ici, on pouvait procéder autrement, mais en réfléchissant un tout petit peu plus. Pour tout x, la suite $((S_N f)(x))$ est bornée par M, donc la fonction $|f - S_N f|^2$ admet le majorant $(|f| + M)^2$, intégrable sur $[-\pi, \pi]$, et $|f - S_N f|^2$ tend ponctuellement vers $|f - g|^2$. D'après Lebesgue dominé,

$$\int_{-\pi}^{\pi} |f(x) - g(x)|^2 \frac{\mathrm{d}x}{2\pi} = \lim_{N} \int_{-\pi}^{\pi} |f(x) - (S_N f)(x)|^2 \frac{\mathrm{d}x}{2\pi} = 0$$

d'après la théorie hilbertienne. La fonction continue $|f-g|^2$, d'intégrale nulle, est donc identiquement nulle.

Norme sur $L^{\infty}(X, \mathcal{F}, \mu)$

Ici on a le quotient d'un espace de Banach, $\mathcal{L}^{\infty}(X, \mathcal{F})$ muni de la norme uniforme, par le sous-espace vectoriel fermé $\mathcal{N}_{\infty} = \mathcal{N} \cap \mathcal{L}^{\infty}$. On a un espace quotient qui est complet, par la théorie générale. Si f est une fonction \mathcal{F} -mesurable telle que la classe $f + \mathcal{N}$ contienne une fonction bornée f_1 , alors

$$\widehat{f} = f_1 + \mathcal{N} \cap \mathcal{L}^{\infty}$$

est une classe de fonctions mesurables bornées, élément de L $^{\infty}$, dont la norme quotient $\|\hat{f}\|_{\infty}$ est donnée par le sup essentiel de f,

$$M_{\infty} = \inf\{M \ge 0 : |f| \le M \text{ μ-presque partout }\}.$$

On peut trouver une fonction f_2 dans la classe \hat{f} qui vérifie $|f_2| \leq M_{\infty}$ partout.

Densité dans $L^p(\mathbb{R})$ des fonctions continues

Proposition. Les fonctions continues à support compact sur \mathbb{R} sont denses dans $L^p(\mathbb{R})$ quand $1 \leq p < +\infty$.

Attention! C'est faux dans $L^{\infty}(\mathbb{R})$. La norme de L^{∞} induit la norme uniforme sur les fonctions continues; si une suite de fonctions continues converge pour la norme de L^{∞} , elle est de Cauchy uniforme et la limite est une fonction continue. Il est donc impossible d'approcher ainsi les éléments de L^{∞} qui n'ont aucun représentant continu. C'est le cas pour $\mathbf{1}_{[0,1]}$ par exemple.

Preuve. — Désignons par V_p l'adhérence dans $L^p(\mathbb{R})$ des fonctions continues à support compact ; c'est un sous-espace vectoriel, fermé par définition. On a vu que pour tout borélien borné A de \mathbb{R} et tout $\varepsilon > 0$, il existe une fonction φ continue à support compact telle que $0 \le \varphi \le 1$ et

$$\int_{\mathbb{D}} |\mathbf{1}_{A} - \varphi| \, \mathrm{d}x < \varepsilon.$$

Comme $|\mathbf{1}_{A} - \varphi| \leq 1$, on a aussi

$$\int_{\mathbb{R}} |\mathbf{1}_{A} - \varphi|^{p} dx \le \int_{\mathbb{R}} |\mathbf{1}_{A} - \varphi| dx < \varepsilon,$$

ce qui montre que $\mathbf{1}_A$ est approché au sens de L^p , donc $\mathbf{1}_A \in V_p$ pour tout borélien borné A.

Considérons maintenant une fonction \mathcal{B} -mesurable f, réelle ou complexe, telle que $f \in L^p(\mathbb{R})$; puisque la fonction f est \mathcal{B} -mesurable, on sait qu'il existe une suite (ψ_n) de fonctions \mathcal{B} -étagées qui tend simplement vers f et vérifie $|\psi_n| \leq |f|$; posons

$$\chi_n = \mathbf{1}_{[-n,n]} \, \psi_n \, ;$$

on voit que la suite (χ_n) tend encore simplement vers f, et $|\chi_n| \leq |\psi_n| \leq |f|$ pour tout entier n. La fonction χ_n est une fonction \mathcal{B} -étagée, qui est combinaison linéaire de fonctions indicatrices de boréliens bornés, donc χ_n appartient à l'espace vectoriel V_p . La suite $|f - \chi_n|^p$ tend simplement vers 0 en étant majorée par la fonction intégrable $2^p|f|^p$, donc χ_n tend vers f en norme L^p et $f \in V_p$: l'adhérence des fonctions continues à support compact contient toutes les fonctions de L^p (réel ou complexe).

Remarque. Le résultat vaut pour toute mesure μ sur $(\mathbb{R}, \mathcal{B})$ qui donne une mesure finie à tous les bornés, par exemple $d\mu(x) = \mathbf{1}_{(0,1)}(x) dx$. Le résultat pour cette mesure revient à dire que les fonctions continues sur [0,1] sont denses dans $L^p([0,1])$, $p < +\infty$.

Par l'unicité du complété d'un espace métrique, dire que C([0,1]) est dense dans $L^2([0,1])$ revient à dire que $L^2([0,1])$ est « le » complété de l'espace normé C([0,1]) muni de la norme induite par L^2 , point de vue adopté dans le cours d'espaces de Hilbert.

Développons : désignons par E l'espace vectoriel normé C([0,1]), muni de la norme

$$\|\varphi\|_2 = \left(\int_0^1 |\varphi(t)|^2 dt\right)^{1/2}.$$

Cette norme coïncide avec la norme induite par l'espace $L^2([0,1])$ défini dans ce cours d'intégration. La théorie définit sur le complété \widehat{E} une norme qui étend la norme de E, pour laquelle \widehat{E} est complet, et E est dense dans son complété.

Si F est un élément du complété \widehat{E} , il existe, puisque E est dense dans son complété, une suite (φ_n) de fonctions continues qui tend vers F; cette suite est donc de Cauchy pour la norme de E, qui est la norme de L²: puisque L² est complet, la suite (φ_n) converge vers un élément $f \in L^2([0,1])$. On pourra vérifier que cette correspondance $F \in \widehat{E} \to f \in L^2$ est linéaire, bijective, isométrique.

IV.3. Inégalités classiques

Inégalité de Hölder

On donne $1 < p, q < +\infty$ tels que

$$\frac{1}{p} + \frac{1}{q} = 1,$$

qu'on appelle un couple d'exposants conjugués, par exemple (2,2) ou (3,3/2). On peut donner plusieurs formes équivalentes utiles de cette relation,

$$\frac{p+q}{pq} = 1$$
, $p+q = pq$, $\frac{q}{p} = q-1$, $q = p(q-1)$, $p = q(p-1)$.

On note que si $a, b \geq 0$,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

par exemple par la convexité de l'exponentielle : si ab = 0 c'est clair, sinon a, b > 0 et on pose $a = e^{u/p}$, $b = e^{v/q}$,

$$ab = e^{u/p+v/q} \le \frac{e^u}{p} + \frac{e^v}{q} = \frac{a^p}{p} + \frac{b^q}{q}$$

Si $f \in L^p$, $g \in L^q$, on en déduit que fg est intégrable,

$$(*) \qquad \int_{\mathcal{X}} |fg| \, \mathrm{d}\mu \leq \frac{1}{p} \int_{\mathcal{X}} |f|^p \, \mathrm{d}\mu + \frac{1}{q} \int_{\mathcal{X}} |g|^q \, \mathrm{d}\mu < +\infty.$$

On étend la notion d'exposants conjugués aux cas limites $(1, +\infty)$ et $(+\infty, 1)$, pour lesquels on peut encore prétendre que $1/1 + 1/(+\infty) = 1$.

Proposition : inégalité de Hölder. On suppose que p,q réels vérifient $1 \le p,q \le +\infty$ et la relation de conjugaison 1/p + 1/q = 1. Si $f \in L^p(X, \mathcal{F}, \mu)$ et $g \in L^q(X, \mathcal{F}, \mu)$, le produit fg est intégrable et

$$\left| \int_{\mathcal{X}} f g \, \mathrm{d}\mu \right| \le \|f\|_p \|g\|_q.$$

De plus, pour $p < +\infty$,

$$||f||_p = \max \left\{ \int_X fg \, d\mu : ||g||_q \le 1 \right\};$$

pour $p = +\infty$, et à condition que tout ensemble $A \in \mathcal{F}$ de mesure infinie contienne un ensemble $B \in \mathcal{F}$ tel que $0 < \mu(B) < +\infty$, on a

$$||f||_{\infty} = \sup \left\{ \int_{\mathcal{X}} fg \, \mathrm{d}\mu : ||g||_1 \le 1 \right\}.$$

Preuve. — Le premier résultat est évident pour $(1, +\infty)$ ou $(\infty, 1)$; si $f \in L^1$ et $g \in L^{\infty}$, on sait que $|g| \leq ||g||_{\infty}$ presque partout, donc

$$\left| \int_{\mathcal{X}} f g \, \mathrm{d}\mu \right| \le \int_{\mathcal{X}} |fg| \, \mathrm{d}\mu = \int_{\{|g| \le \|g\|_{\infty}\}} |f| \, |g| \, \mathrm{d}\mu \le \|g\|_{\infty} \int_{\mathcal{X}} |f| \, \mathrm{d}\mu = \|f\|_{1} \, \|g\|_{\infty}.$$

On suppose maintenant que $1 < p, q < +\infty$ et $||f||_p, ||g||_q > 0$ (sinon, f ou g est nulle presque partout, $\int_X fg \, d\mu = 0$ et ce cas est clair). On va choisir $\alpha > 0$ plus loin; pour l'instant on écrit avec (*)

$$\left| \int_{\mathcal{X}} fg \, \mathrm{d}\mu \right| \leq \int_{\mathcal{X}} |fg| \, \mathrm{d}\mu = \int_{\mathcal{X}} |(\alpha f)(g/\alpha)| \, \mathrm{d}\mu \leq \frac{\alpha^p}{p} \int_{\mathcal{X}} |f|^p \, \mathrm{d}\mu + \frac{\alpha^{-q}}{q} \int_{\mathcal{X}} |g|^q \, \mathrm{d}\mu;$$

on choisit α pour que

$$\mathcal{I}:=\alpha^p\int_{\mathcal{X}}|f|^p\,\mathrm{d}\mu=\alpha^p\|f\|_p^p=\alpha^{-q}\|g\|_q^q=\alpha^{-q}\int_{\mathcal{X}}|g|^q\,\mathrm{d}\mu=:\mathcal{J},$$

donc on choisit $\alpha^{pq} = \alpha^{p+q} = ||g||_q^q ||f||_p^{-p}$, et on a $\alpha^p = ||g||_q ||f||_p^{-p/q}$. Alors

$$\left| \int_{\mathcal{X}} fg \, \mathrm{d}\mu \right| \le \frac{\mathrm{I}}{p} + \frac{\mathrm{J}}{q} = \mathrm{I},$$

et

$$I = \alpha^p ||f||_p^p = ||g||_q ||f||_p^{-p/q+p} = ||g||_q ||f||_p$$

ce qui termine la démonstration de la première partie.

La première partie montre que $||f||_p$ est un majorant pour le terme de droite de l'égalité à prouver. Inversement, si f est dans $L^p(X, \mathcal{F}, \mu)$, non nulle, posons

$$g(x) = \alpha |f(x)|^p / f(x)$$

si $f(x) \neq 0$ et 0 sinon. Si p = 1, on choisit $\alpha = 1$; sinon, $1 < p, q < +\infty$, et on choisit α pour que

$$\int_{X} |g|^{q} d\mu = \alpha^{q} \int_{\{f \neq 0\}} |f|^{(p-1)q} d\mu = \alpha^{q} \int_{\{f \neq 0\}} |f|^{p} d\mu = \alpha^{q} \int_{X} |f|^{p} d\mu = 1,$$

et alors

$$\int_{X} f g \, d\mu = \alpha \int_{\{f \neq 0\}} |f|^{p} \, d\mu = \left(\int_{X} |f|^{p} \, d\mu \right)^{-1/q+1} = \|f\|_{p},$$

on a donc réalisé le maximum possible avec cette fonction g de la boule unité de L^q .

Le cas L^{∞} est spécial. Si la norme L^{∞} de f est $M = ||f||_{\infty} > 0$, l'ensemble

$$A = \{|f| > M - \varepsilon\} \in \mathcal{F}$$

où on a choisi $0 < \varepsilon < M$, est de mesure > 0, peut-être infinie. D'après l'hypothèse additionnelle, l'ensemble A contient un ensemble B de mesure > 0 et finie (si A est de mesure finie, on prend B = A). On pose

$$g = \mathbf{1}_{\mathrm{B}} \frac{|f|}{\mu(\mathrm{B})f}$$

qui est de norme un dans L¹. Alors

$$\int_{\mathbf{X}} f g \, \mathrm{d}\mu = \frac{1}{\mu(\mathbf{B})} \int_{\mathbf{B}} |f| \, \mathrm{d}\mu > \mathbf{M} - \varepsilon.$$

Remarques.

— La condition pour $p=+\infty$ est satisfaite quand la mesure μ est σ -finie : on dit que μ est une mesure σ -finie sur (X, \mathcal{F}) s'il existe une suite $(C_n) \subset \mathcal{F}$, qu'on peut supposer croissante, telle que $X=\bigcup_n C_n$ et que $\mu(C_n)<+\infty$ pour tout n. L'exemple typique est la mesure de Lebesgue sur \mathbb{R} , avec par exemple $C_n=[-n,n]$.

Si μ est σ -finie et si $A \in \mathcal{F}$ est de mesure infinie, les ensembles $B_n = A \cap C_n$ sont de mesure finie mais $\mu(B_n) \to +\infty = \mu(A)$; il en résulte que pour n assez grand, on a $B_n \subset A$ et $0 < \mu(B_n) < +\infty$.

- Le cas p=2 de l'inégalité de Hölder est un cas particulier de l'inégalité de Cauchy-Schwarz des espaces de Hilbert.
- Si $p = +\infty$, si f(x) = x sur X = [0, 1], on voit que dans le cas $p = +\infty$ le sup en $g \in L^1([0, 1], \lambda)$ n'est pas atteint. On a $||f||_{\infty} = 1$ mais pour toute g telle que $||g||_1 \le 1$, la fonction (1 x)g(x) est ≥ 0 sur [0, 1] et n'est pas presque partout nulle, donc

$$0 < \int_0^1 (1 - x)g(x) \, \mathrm{d}x \le 1 - \int_0^1 xg(x) \, \mathrm{d}x,$$

et par conséquent on a toujours $\int_0^1 xg(x) dx < 1$, pour toute g de norme ≤ 1 dans $L^1([0,1])$. Le sup en g de ces intégrales est égal à 1, mais n'est atteint par aucune g.

Conséquence : inclusion des espaces en mesure finie. Lorsque la mesure μ est finie, les espaces L^p sont décroissants avec p: on a $L^p(\mu) \subset L^1(\mu)$ pour tout $p \ge 1$,

$$\int_{X} |f| d\mu = \int_{X} |f| \cdot 1 d\mu \le ||f||_{p} \left(\int_{X} 1^{q} d\mu \right)^{1/q} = \mu(X)^{1/q} ||f||_{p}.$$

En appliquant cette inégalité à $|f|^s$ et p=r/s on voit que $\mathcal{L}^r(\mu)\subset\mathcal{L}^s(\mu)$ pour tous $r\geq s\geq 1$.

Dualité

Pour toute fonction $f \in \mathcal{L}^p,$ définissons une forme linéaire ℓ_f sur \mathcal{L}^q en posant

$$\forall g \in L^q, \quad \ell_f(g) = \int_X fg \, \mathrm{d}\mu.$$

La première partie de l'inégalité de Hölder montre que ℓ_f est continue sur L^q , avec $\|\ell_f\| \leq \|f\|_p$. La deuxième partie montre que les deux normes sont égales (sous une condition si $p = +\infty$, par exemple à condition que μ soit σ -finie).

Proposition : injection isométrique dans le dual de L^q. Si (X, \mathcal{F}, μ) est un espace mesuré quelconque et 1 , <math>1/p + 1/q = 1, l'application j_p de L^p (X, \mathcal{F}, μ) dans le dual (topologique) de L^q (X, \mathcal{F}, μ) est une isométrie linéaire ; si μ est σ -finie, l'application j_{∞} est une isométrie linéaire de L^{\infty} (X, \mathcal{F}, μ) dans le dual (topologique) de L¹ (X, \mathcal{F}, μ) .

Remarque. Le théorème de représentation vu dans le cours sur les espaces de Hilbert permet de dire que toute forme linéaire continue sur L² peut être obtenue de la façon précédente, c'est à dire que j_2 est une bijection linéaire de L² sur le dual topologique de L². Il faut faire attention à un petit détail dans le cas complexe. Il n'y avait aucune raison de placer une barre de conjugaison dans la définition de ℓ_f , ce qui fait que j_2 est \mathbb{C} -linéaire dans le cas complexe. Au contraire, on doit mettre une barre de conjugaison dans le produit scalaire hilbertien, qui fait que l'identification hilbertienne i_H générale entre un Hilbert H et son dual topologique H' est antilinéaire, $i_H(\alpha x) = \overline{\alpha}i_H(x)$ pour tout scalaire α et tout $x \in H$.

Si ℓ est une forme linéaire continue sur l'espace de Hilbert L², il existe un vecteur $F \in L^2$ qui représente par produit scalaire cette forme linéaire,

$$\forall g \in L^2, \quad \ell(g) = \langle g, F \rangle = \int_X g(x) \overline{F(x)} d\mu(x).$$

On voit donc que ℓ est l'image par j_2 de la fonction $f = \overline{F} \in L^2$, complexe conjuguée de la fonction F.

On admettra la généralisation suivante : pour tout p tel que $1 et tout espace mesuré <math>(X, \mathcal{F}, \mu)$, l'application j_p est une bijection linéaire isométrique de $L^p(X, \mathcal{F}, \mu)$ sur le dual topologique de $L^q(X, \mathcal{F}, \mu)$, où 1/p + 1/q = 1. Si la mesure μ est σ -finie, l'application j_{∞} est une bijection linéaire isométrique de $L^{\infty}(X, \mathcal{F}, \mu)$ sur le dual topologique de $L^1(X, \mathcal{F}, \mu)$.

On peut déduire le cas $1 \le p \le 2$ du théorème hilbertien du cas p=2. Les autres cas passent par le théorème de Radon-Nikodym, qui est en fait une autre conséquence du cas hilbertien.

Inégalité de Jensen

Proposition. Si φ est convexe sur l'intervalle I, si f est réelle intégrable à valeurs dans I et si μ est une probabilité sur (X, \mathcal{F}) , on a

$$\varphi\left(\int_{\mathbf{X}} f(x) d\mu(x)\right) \le \int_{\mathbf{X}} \varphi(f(x)) d\mu(x).$$

Il est possible que l'intégrale de droite soit égale à $+\infty$.

La fonction convexe φ admet des minorantes affines, de la forme $t \in \mathbb{R} \to at + b$; la fonction $\varphi(f)$ est donc minorée par la fonction intégrable af + b: la partie négative de $\varphi(f)$ a une intégrale finie, ce qui permet de donner un sens généralisé, fini ou égal à $+\infty$, à l'intégrale de $\varphi(f)$.

Preuve. — On pose $m = \int_X f d\mu$; si m minore l'intervalle I, la fonction f - m est ≥ 0 d'intégrale nulle,

$$\int_{X} (f - m) d\mu = \int_{X} f d\mu - m \mu(X) = m - m = 0,$$

donc f-m est presque partout nulle; il en résulte que f(x)=m μ -presque partout, en particulier m est une valeur de f, donc $m \in I$ est le minimum de I; puisque f=m μ -presque partout et que $m \in I$, on a $\varphi(f(x))=\varphi(m)$ pour presque tout x, donc

$$\int_{\mathcal{X}} \varphi(f(x)) \, \mathrm{d}\mu(x) = \varphi(m) = \varphi\left(\int_{\mathcal{X}} f(x) \, \mathrm{d}\mu(x)\right);$$

on procède de même si m est un majorant de I.

On suppose donc maintenant que m est intérieur à I; alors $\varphi'_g(m)$, $\varphi'_d(m)$ existent; si α est la dérivée (à droite, à gauche) de φ au point m, on a

$$\forall t \in I, \quad \varphi(t) - \varphi(m) \ge \alpha (t - m)$$

donc

$$\int_{\mathbf{X}} (\varphi(f(x)) - \varphi(m)) d\mu(x) \ge \alpha \int_{\mathbf{X}} (f(x) - m) d\mu(x) = 0.$$

Jensen pour $\varphi(t) = |t|^p$ et une mesure finie

On suppose que μ est une mesure finie sur (X, \mathcal{F}) . On considère la probabilité ν sur (X, \mathcal{F}) définie par $\nu = (\mu(X))^{-1}\mu$; si f est \mathcal{F} -mesurable ≥ 0 , d'intégrale finie pour commencer, on peut appliquer directement le résultat précédent à la fonction convexe $t \in \mathbb{R} \to |t|^p$,

$$\left(\int_{\mathbf{X}} f d\nu\right)^p \le \int_{\mathbf{X}} f^p d\nu.$$

Si l'intégrale de droite est $+\infty$, l'inégalité est vraie; sinon on trouve des fonctions étagées intégrables qui croissent vers f et on généralise l'inégalité précédente à toutes les fonctions mesurables à valeurs dans $[0, +\infty]$. En revenant à μ , on obtient que pour toute fonction mesurable à valeurs dans $[0, +\infty]$, on a

$$\left(\int_{\mathbf{X}} f d\mu\right)^p \le \mu(\mathbf{X})^{p-1} \int_{\mathbf{X}} f^p d\mu$$

valeur $+\infty$ admise, et avec la convention $(+\infty)^p = +\infty$.

Retrouver Hölder avec Jensen

On suppose $f,g\geq 0$, non nulles, $g\in \mathbf{L}^q$, on pose $\mathbf{B}=\{g>0\}$ et pour la mesure finie $\mathrm{d}\nu=g^q\,\mathrm{d}\mu$, on va appliquer la version de Jensen pour $t\to |t|^p$; là où g>0, on peut écrire $g=g^{1-q}g^q$: cette décomposition aura donc un sens sur l'ensemble B. On obtient

$$\left(\int_{X} f g \, d\mu\right)^{p} = \left(\int_{X} f \mathbf{1}_{B} g \, d\mu\right)^{p} = \left(\int_{B} f g \, d\mu\right)^{p} = \left(\int_{B} f g^{1-q} g^{q} \, d\mu\right)^{p} = \left(\int_{B} f g^{1-q} \, d\nu\right)^{p}
\leq \left(\nu(X)\right)^{p-1} \left(\int_{B} f^{p} g^{p(1-q)} \, d\nu\right) = \left(\nu(X)\right)^{p-1} \left(\int_{B} f^{p} g^{-q} \, d\nu\right)
= \left(\int_{X} g^{q} \, d\mu\right)^{p-1} \left(\int_{B} f^{p} g^{-q} g^{q} \, d\mu\right) = \|g\|_{q}^{q(p-1)} \left(\int_{X} f^{p} \mathbf{1}_{B} \, d\mu\right) \leq \|g\|_{q}^{p} \|f\|_{p}^{p}.$$

On a ainsi retrouvé l'inégalité de Hölder.