Exemple: la fonction indicatrice $\mathbf{1}_Q$ de l'ensemble $Q = \mathbb{Q} \cap [0, 1]$ des rationnels de [0, 1] n'est pas R-intégrable.

Preuve. — Si $\varphi_1 \leq \mathbf{1}_Q$ est en escalier et si π est une subdivision adaptée à φ_1 , tout intervalle (x_{i-1}, x_i) de la subdivision π contient des nombres irrationnels x, pour lesquels on a $\mathbf{1}_Q(x) = 0$, donc φ_1 est ≤ 0 sur tous les intervalles ouverts de π , et il en résulte que $\int_0^1 \varphi_1 \leq 0$. Si $\mathbf{1}_Q \leq \varphi_2$ on voit de même que $\varphi_2 \geq 1$, en utilisant cette fois la densité des rationnels, donc $\int_0^1 \varphi_2 \geq 1$. On ne peut pas rapprocher les intégrales de φ_1 et de φ_2 , et $\mathbf{1}_Q$ n'est pas R-intégrable.

Intégration Par Parties

Si f, g sont de classe C^1 sur [a, b], le produit fg est de classe C^1 et la dérivée est f'g + fg', donc

$$\int_{a}^{b} (f'g + fg')(t) dt = (fg)(b) - (fg)(a) = \left[f(t)g(t) \right]_{t=a}^{b},$$

d'où l'écriture habituelle

$$\int_a^b f'(t)g(t) dt = \left[f(t)g(t) \right]_{t=a}^b - \int_a^b f(t)g'(t) dt.$$

Produits

On commence par une remarque. Si f est Riemann-intégrable, elle est bornée, disons par M. On peut supposer que les fonctions en escalier φ_1, φ_2 utilisées pour encadrer f sont elles aussi bornées par M : si $f \leq \varphi_2$, on aura aussi $f \leq \varphi_2^* = \min(M, \varphi_2)$ qui donne un nouveau majorant φ_2^* en escalier ; l'encadrement $\varphi_1^* = \max(-M, \varphi_1) \leq f \leq \varphi_2^*$ donne une meilleure approximation de f (qui diminue l'erreur sur l'intégrale, puisque $\int_a^b (\varphi_2^* - \varphi_1^*) \leq \int_a^b (\varphi_2 - \varphi_1)$), et il utilise des fonctions en escalier bornées par M.

Proposition. Si f_1, f_2 sont R-intégrables, le produit f_1f_2 est R-intégrable.

Preuve. — Les fonctions f_1 , f_2 sont bornées par M_1 , M_2 , on introduit les approximations $|f_j - \varphi_j| \le \psi_j$, j = 1, 2, et on peut supposer que $|\varphi_2| \le M_2$. On écrit

$$|f_1 f_2 - \varphi_1 \varphi_2| = |f_1 (f_2 - \varphi_2) + (f_1 - \varphi_1) \varphi_2| \le M_1 \psi_2 + M_2 \psi_1$$

et la fonction en escalier $\psi = M_1\psi_2 + M_2\psi_1$ a une intégrale qui peut être rendue arbitrairement petite. Il en résulte que la fonction f_1f_2 est R-intégrable.

I.1.3. Cas complexe (ou vectoriel)

Fonctions en escalier complexes ou vectorielles : la fonction φ en escalier est constante sur chaque intervalle ouvert (x_{i-1}, x_i) d'une subdivision π de [a, b], avec valeur v_i dans \mathbb{C} ou dans un espace vectoriel E, qu'on supposera normé et complet pour la suite.

L'intégrale de la fonction en escalier φ est définie comme avant,

$$\int_a^b \varphi = \sum_{i=1}^{N} (x_i - x_{i-1}) v_i \in E.$$

En désignant par |v| le module d'un nombre complexe v, ou bien la norme d'un vecteur v de l'espace vectoriel E, on obtient par l'inégalité triangulaire pour $v \to |v|$

$$\left| \int_{a}^{b} \varphi \right| \leq \sum_{i=1}^{N} (x_i - x_{i-1}) |v_i|,$$

qui est l'intégrale de la fonction en escalier réelle $t \to |\varphi(t)|$; on a donc la majoration

$$\left| \int_{a}^{b} \varphi \right| \le \int_{a}^{b} |\varphi|.$$

Définition : on dit que f complexe (ou vectorielle à valeurs dans \mathbb{R}^d , ou encore plus généralement à valeurs dans un espace vectoriel normé complet E) est R-intégrable si pour tout $\varepsilon > 0$, il existe φ en escalier, à valeurs complexes (ou à valeurs dans E) et ψ en escalier réelle telles que

$$|f - \varphi| \le \psi, \quad \int_a^b \psi < \varepsilon.$$

Si f est R-intégrable à valeurs complexes ou à valeurs dans un espace vectoriel normé complet E, il existe un nombre complexe (ou un vecteur de E) unique I tel que

$$|f - \varphi| \le \psi, \quad \int_a^b \psi < \varepsilon \Rightarrow \left| \mathbf{I} - \int_a^b \varphi \right| < \varepsilon.$$

Cette valeur I est l'intégrale de Riemann de f, notée comme avant $I = \int_a^b f(t) dt$, mais maintenant l'intégrale est un élément de E.

Prouvons l'existence de I. Supposons qu'on prenne une suite (φ_n) de fonctions en escalier complexes (ou vectorielles) et (ψ_n) en escalier réelles telles que

$$|f - \varphi_n| \le \psi_n \quad \text{et} \quad \int_a^b \psi_n \to 0.$$

Alors la suite des intégrales $(\int_a^b \varphi_n)$ est de Cauchy dans E : en effet, on a la majoration $|\varphi_n - \varphi_m| \le |f - \varphi_n| + |f - \varphi_m| \le \psi_n + \psi_m$, donc par la propriété (*) de majoration des intégrales des fonctions en escalier,

$$\left| \int_{a}^{b} (\varphi_{n} - \varphi_{m}) \right| \leq \int_{a}^{b} |\varphi_{n} - \varphi_{m}| \leq \int_{a}^{b} (\psi_{n} + \psi_{m}),$$

qui tend vers 0 quand m, n tendent vers l'infini, ce qui prouve le caractère Cauchy de la suite $(\int_a^b \varphi_n)$. Puisque l'espace E des valeurs est complet, il existe une limite $I \in E$ pour cette suite de Cauchy. Si $|f - \varphi| \le \psi$, on aura

$$|\varphi_n - \varphi| \le \psi_n + \psi$$

pour tout n, donc par la majoration d'intégrale

$$\left| \int_{a}^{b} \varphi_{n} - \int_{a}^{b} \varphi \right| \leq \int_{a}^{b} |\varphi_{n} - \varphi| \leq \int_{a}^{b} \psi_{n} + \int_{a}^{b} \psi,$$

ce qui donne à la limite

$$\left| \mathbf{I} - \int_{a}^{b} \varphi \right| \leq \int_{a}^{b} \psi.$$

Dans le cas vectoriel, on retrouve une bonne partie des propriétés déjà vues dans le cas réel : les fonctions continues, complexes ou vectorielles, sont intégrables ; l'intégrale est linéaire et on a la majoration

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \leq \int_{a}^{b} |f(t)| \, \mathrm{d}t;$$

on a la relation de Chasles, on a des primitives pour les fonctions continues, et on a encore la formule fondamentale : si f est complexe (ou vectorielle) de classe C^1 ,

$$\int_a^b f'(t) dt = f(b) - f(a).$$

I.1.4. Théorème de Riemann

On définit ainsi une subdivision pointée (π, ξ) de l'intervalle [a, b]: étant donnée une subdivision $\pi: x_0 < \ldots < x_N$ de [a, b], on choisit (arbitrairement) un point ξ_i dans chaque intervalle fermé $[x_{i-1}, x_i]$ de la subdivision π ; on définit la somme de Riemann associée à la subdivision pointée (π, ξ) par

$$\Sigma_{\pi,\xi}(f) = \sum_{i=1}^{N} (x_i - x_{i-1}) f(\xi_i).$$

Si la subdivision pointée (π, ξ) est fixée, il est clair que l'application $f \to \Sigma_{\pi, \xi}(f)$ est linéaire et vérifie la majoration de la valeur absolue $|\Sigma_{\pi, \xi}(f)| \leq \Sigma_{\pi, \xi}(|f|)$.

Le pas d'une subdivision π est le maximum des longueurs des intervalles de la subdivision,

$$\delta(\pi) = \max\{x_i - x_{i-1} : i = 1, \dots, N\}.$$

Théorème. Si f est R-intégrable sur [a,b], la somme de Riemann $\Sigma_{\pi,\xi}(f)$ tend vers l'intégrale de f sur [a,b] quand le pas $\delta(\pi)$ de la subdivision π de [a,b] tend vers 0,

$$\int_{a}^{b} f(t) dt = \lim_{\delta(\pi) \to 0} \Sigma_{\pi,\xi}(f).$$

Preuve. — On regarde d'abord une fonction indicatrice d'intervalle $\psi = \mathbf{1}_{[c,d]}$, avec $a \leq c \leq d \leq b$. Il y a au plus quatre intervalles $[x_{i-1}, x_i]$ qui contiennent l'un des points c ou d. Pour tous les autres segments $[x_{k-1}, x_k]$, la fonction ψ est constante sur $[x_{k-1}, x_k]$ donc sa valeur sur ce segment est $\psi(\xi_k)$ et

$$(x_k - x_{k-1})\psi(\xi_k) = \int_{x_{k-1}}^{x_k} \psi.$$

Pour chacune des exceptions (au plus quatre), on note que $0 \le \psi(\xi_k), \psi(t) \le 1$ donc $|\psi(\xi_k) - \psi(t)| \le 1$ et

$$\left| (x_k - x_{k-1})\psi(\xi_k) - \int_{x_{k-1}}^{x_k} \psi \right| = \left| \int_{x_{k-1}}^{x_k} (\psi(\xi_k) - \psi(t)) \, \mathrm{d}t \right| \le x_k - x_{k-1}$$

qui est majoré par le pas de π , donc

$$\left| \Sigma_{\pi,\xi}(\psi) - \int_a^b \psi \right| = \left| \sum_{k=1}^N \left((x_k - x_{k-1}) \psi(\xi_k) - \int_{x_{k-1}}^{x_k} \psi \right) \right| \le 4\delta(\pi),$$

d'où le résultat dans ce cas $\psi = \mathbf{1}_{[c,d]}$.

Dans le cas d'une fonction en escalier φ , on utilise la linéarité et le cas des fonctions indicatrices : si $\varphi = \sum \lambda_j \psi_j$, avec $\psi_j = \mathbf{1}_{[c_j,d_j]}$,

$$\int_{a}^{b} \varphi = \sum_{j} \lambda_{j} \int_{a}^{b} \psi_{j} = \sum_{j} \lambda_{j} \lim \Sigma_{\pi,\xi}(\psi_{j}) = \lim \Sigma_{\pi,\xi} \left(\sum_{j} \lambda_{j} \psi_{j}\right).$$

En général, on approche f avec φ , ψ et on utilise le cas en escalier. En effet, la majoration $|f - \varphi| \le \psi$ entraı̂ne

$$\left| \int_a^b f - \int_a^b \varphi \right| \le \int_a^b \psi \quad \text{et} \quad \left| \Sigma_{\pi,\xi}(f) - \Sigma_{\pi,\xi}(\varphi) \right| \le \Sigma_{\pi,\xi}(\psi).$$

On choisit ψ telle que $\int_a^b \psi < \varepsilon/3$. Pour $\delta(\pi) < \delta_0$ assez petit, on aura

$$\left| \int_{a}^{b} \varphi - \Sigma_{\pi,\xi}(\varphi) \right| < \varepsilon/3, \quad \Sigma_{\pi,\xi}(\psi) < \varepsilon/3.$$

On en déduit pour $\delta(\pi) < \delta_0$

$$\left| \int_{a}^{b} f - \Sigma_{\pi,\xi}(f) \right| < \varepsilon.$$

Exemple: quand $n \to +\infty$,

$$\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+k/n} \to \int_{0}^{1} \frac{\mathrm{d}x}{1+x} = \ln 2.$$

I.2. Intégrale de Riemann généralisée

L'extension de l'intégrale de Riemann se fait dans deux directions : dans la première, l'ensemble où on intègre reste borné, mais la fonction intégrée n'est plus bornée, comme par exemple

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}};$$

dans la deuxième direction, on étend l'intégrale à un intervalle non borné, comme dans

$$\int_0^{+\infty} e^{-x} dx.$$

Dans ces deux cas, il est naturel de dire que la fonction est définie sur un intervalle semiouvert,]0,1] dans le premier cas et $[0,+\infty[$ dans le second. Pour unifier la présentation de la théorie, on mettra l'extrémité c « ouverte » à droite. On aura donc une fonction définie sur [a,c[, où c>a est réel ou bien égal à $+\infty$. Bien entendu, dans les exemples, il est possible que le problème soit à gauche, avec un intervalle]a,b], a réel ou bien $a=-\infty$.

Définition. Soit f une fonction réelle définie sur [a, c]; on dira que l'intégrale généralisée

$$\int_{a}^{c} f(x) \, \mathrm{d}x$$

est convergente si f est R-intégrable sur tout intervalle [a,b] plus petit, $a \leq b < c$, et si la limite

$$\lim_{b \to c} \int_{a}^{b} f(x) \, \mathrm{d}x$$

existe. On pose alors

$$\int_{a}^{c} f(x) dx = \lim_{b \to c} \int_{a}^{b} f(x) dx.$$

Exemples faciles à traiter par calcul de primitive.

— Cas des $x^{-\alpha}$, en 0 ou en $+\infty$

$$\int_0^1 \frac{\mathrm{d}x}{x^\alpha}, \quad \int_1^{+\infty} \frac{\mathrm{d}x}{x^\alpha} \; ;$$

on trouve que $\int_0^1 x^{-\alpha} dx$ converge si et seulement si $\alpha < 1$, alors que $\int_1^{+\infty} x^{-\alpha} dx$ converge si et seulement si $\alpha > 1$.

— Pour $\lambda > 0$ on calcule

$$\int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

Cas positif

Si $f \ge 0$ sur [a, c), la fonction F définie par

$$F(x) = \int_{a}^{x} f(t) dt$$

est croissante; elle tend donc vers une limite réelle quand $x \to c$ si et seulement si elle est majorée sur [a, c). Pour une fonction f positive, il est naturel d'indiquer la convergence de l'intégrale par la notation

$$\int_{a}^{c} f(x) \, \mathrm{d}x < +\infty.$$

Étude par majoration, par comparaison (en utilisant des équivalents par exemple) : si $0 \le g(x) \le f(x)$ et si l'intégrale de f converge, celle de g converge aussi.

Comparaison intégrale-séries

On retrouve la nature des séries de Riemann $\sum_{n\geqslant 1} n^{-\alpha}$ en les comparant aux intégrales de la forme $\int_1^{+\infty} x^{-\alpha} dx$.

Il peut y avoir deux problèmes (ou plus) dans une même intégrale généralisée, par exemple dans

$$\int_{-\infty}^{+\infty} e^{-x^2} dx \text{ ou } \int_{0}^{+\infty} x^{-1/2} e^{-x} dx.$$

Exemple: étude de l'intégrale généralisée

$$\int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x.$$

Par intégration par parties,

$$\int_0^A \frac{\sin x}{x} \, dx = \left[\frac{1 - \cos x}{x} \right]_{x=0}^A + \int_0^A \frac{1 - \cos x}{x^2} \, dx.$$

L'étude de cette intégrale se ramène à celle de

$$\int_0^{+\infty} \frac{1 - \cos x}{x^2} \, \mathrm{d}x.$$

Cette dernière intégrale converge car elle n'a pas de problème en 0 (le quotient tend vers 1/2 à l'origine), et

$$0 \le g(x) = \frac{1 - \cos x}{x^2} \le \frac{2}{x^2} = f(x)$$

dont l'intégrale converge sur $[1, +\infty[$.

Intégrale absolument convergente

Définition. On dit que l'intégrale $\int_a^c f(x) dx$ est absolument convergente si

$$\int_{a}^{c} |f(x)| \, \mathrm{d}x < +\infty.$$

Proposition. La convergence absolue implique la convergence.

Preuve. — Pour chaque nombre réel y on introduit

$$y^+ = \max(y, 0), \quad y^- = \max(-y, 0),$$

de sorte que $y^+, y^- \geq 0$, que $y = y^+ - y^-$ et $|y| = y^+ + y^-$. Si f est définie sur [a,c), R-intégrable sur chaque [a,b], on définit la fonction f^+ par $f^+(x) = (f(x))^+$ pour tout x et de même pour f^- . Les fonctions $y \to y^+$ et $y \to y^-$ sont lipschitziennes, donc f^+ et f^- sont aussi R-intégrables sur chaque [a,b], et leurs intégrales convergent car $0 \leq f^+, f^- \leq |f|$. Il en résulte que l'intégrale de f^- converge sur [a,c).

Exemple-exercice. Fonction Γ : on pose pour tout s>0

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx.$$

On voit que $\Gamma(s+1)=s\Gamma(s)$, il en résulte que $\Gamma(n+1)=n!$ pour tout entier $n\geq 0$.