Rappel de théorème. Si X est une variable aléatoire sur un espace de probabilité (Ω, \mathcal{F}, P) , on a pour tous a < b réels

$$P(a < X \le b) + P(a \le X < b) = 2 \lim_{\varepsilon \searrow 0} \int_a^b \left(\frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx - \varepsilon^2 t^2/2} \varphi_X(t) dt \right) dx.$$

Dans un autre langage, si μ est une mesure positive finie sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, on a

$$\mu(]a,b]) + \mu([a,b]) = 2\lim_{\varepsilon \searrow 0} \int_a^b \left(\frac{1}{2\pi} \int_{\mathbb{R}} e^{itx - \varepsilon^2 t^2/2} \widehat{\mu}(t) dt\right) dx.$$

Dans beaucoup d'exemples, on a affaire à une mesure μ qui n'a pas de masse ponctuelle, c'est-à-dire telle que $\mu(\{x\}) = 0$ pour tout $x \in \mathbb{R}$ (en langage probabiliste : une fonction de répartition F_X qui est continue sur \mathbb{R}). Dans ce cas, la formule se simplifie légèrement en

$$\mu(]a,b[) = \mu([a,b]) = \lim_{\varepsilon \searrow 0} \int_a^b \left(\frac{1}{2\pi} \int_{\mathbb{R}} e^{itx - \varepsilon^2 t^2/2} \widehat{\mu}(t) dt\right) dx.$$

Avant de passer à ce cas plus habituel, traitons un exemple où les complications des intervalles semi-ouverts prennent tout leur sens.

Exemple. Soit (Ω, \mathcal{F}, P) un espace de probabilité; si X est une variable de Bernoulli symétrique définie sur Ω , qui ne prend presque sûrement que les valeurs -1 et +1, et de façon que $P(X = \pm 1) = 1/2$, sa loi est

$$\mu = P_X = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1,$$

demi-somme des mesures de Dirac aux points -1 et 1. En modifiant X sur un ensemble négligeable $N \in \mathcal{F}$, on pourra supposer dans la suite, sans changer la loi de X, que X ne prend vraiment que les valeurs -1 et 1 (tout cela pour dire : mentionner la variable aléatoire X ici n'est pas très sérieux, c'est un habillage probabiliste inutile; seule la mesure P_X importe).

La fonction caractéristique de X est égale à

$$\varphi_{\mathbf{X}}(t) = \widehat{\mu}(-t) = \frac{e^{\mathrm{i}t} + e^{-\mathrm{i}t}}{2} = \cos t = \widehat{\mu}(t).$$

Si on choisit justement a=-1, b=1 dans le théorème rappelé, pour le plaisir de compliquer un peu les choses, on observe que, puisque X ne prend que les valeurs -1 et 1,

$$\{-1 < X \le 1\} = \{X = 1\}$$
 et $\{-1 \le X < 1\} = \{X = -1\};$

on trouve donc d'après le théorème rappelé ci-dessus

$$P(-1 < X \le 1) + P(-1 \le X < 1) = P(X = 1) + P(X = -1) =$$

$$= 1 = 2 \lim_{\varepsilon \searrow 0} \int_{-1}^{1} \left(\frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx - \varepsilon^2 t^2/2} \cos(t) dt \right) dx.$$

Ensuite par Fubini on obtient

$$\pi = \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}^2} \mathbf{1}_{[-1,1]}(x) e^{-itx - \varepsilon^2 t^2/2} \cos(t) dt dx = \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}} \left(\int_{-1}^1 e^{-itx} dx \right) e^{-\varepsilon^2 t^2/2} \cos(t) dt,$$

qui devient

$$\pi = \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}} \frac{2\sin(t)}{t} e^{-\varepsilon^2 t^2/2} \cos(t) dt = \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}} \frac{\sin(2t)}{t} e^{-\varepsilon^2 t^2/2} dt.$$

En effectuant le changement de variable u = 2t, on obtient

$$\pi = \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}} \frac{\sin(u)}{u} e^{-\varepsilon^2 u^2/8} du.$$

On peut raisonnablement espérer que cette expression va tendre, quand $\varepsilon \to 0$, vers

$$\int_{\mathbb{R}} \frac{\sin(u)}{u} \, \mathrm{d}u,$$

et on va le démontrer par la même méthode d'intégration par parties qui nous avait permis de justifier la convergence (simple) de l'intégrale de $\sin(t)/t$, en prouvant que

$$\int_0^{+\infty} \frac{\sin t}{t} dt = \int_0^{+\infty} \frac{1 - \cos t}{t^2} dt,$$

ramenant ainsi l'intégrale semi-convergente à une intégrale absolument convergente. On a par parité

$$\int_{\mathbb{R}} \frac{\sin(u)}{u} e^{-\varepsilon^2 u^2/8} du = 2 \int_{0}^{+\infty} \sin(u) \frac{e^{-\varepsilon^2 u^2/8}}{u} du$$

$$= 2 \left[(1 - \cos u) \frac{e^{-\varepsilon^2 u^2/8}}{u} \right]_{0}^{+\infty} + 2 \int_{0}^{+\infty} (1 - \cos u) \left(\frac{e^{-\varepsilon^2 u^2/8}}{u^2} + \frac{\varepsilon^2}{4} e^{-\varepsilon^2 u^2/8} \right) du$$

$$= 2 \int_{0}^{+\infty} \frac{1 - \cos u}{u^2} e^{-\varepsilon^2 u^2/8} du + \frac{\varepsilon}{2} \int_{0}^{+\infty} \left(1 - \cos(v/\varepsilon) \right) e^{-v^2/8} dv$$

(on a posé $v = \varepsilon u$ dans le deuxième terme); le deuxième terme tend évidemment vers 0 et le premier tend, par Lebesgue dominé, vers

$$2\int_0^{+\infty} \frac{1 - \cos u}{u^2} du = 2\int_0^{+\infty} \frac{\sin u}{u} du.$$

Comme la limite de l'expression était égale à π , on déduit le résultat classique

$$\int_0^{+\infty} \frac{\sin u}{u} \, \mathrm{d}u = \frac{\pi}{2}.$$

Remarque 1. Si deux mesures positives à densité $f_1(x) dx$ et $f_2(x) dx$ sur $(\mathbb{R}, \mathcal{B})$, finies sur les bornés, sont égales, alors $f_1 = f_2$ Lebesgue-presque partout.

Preuve. — On se ramène au cas de mesure finie en considérant pour tout entier n > 0 les deux densités intégrables

$$f_1^* = \mathbf{1}_{(-n,n)} f_1, \quad f_2^* = \mathbf{1}_{(-n,n)} f_2.$$

On considère $f = f_1^* - f_2^*$, dont l'intégrale sur tout borélien est nulle par hypothèse ; on pose

$$A = \{f > 0\} \in \mathcal{B},$$

et on voit que $f^+ = \mathbf{1}_{A} f$, donc

$$\int_{\mathbb{R}} f^+(x) \, \mathrm{d}x = \int_{A} f(x) \, \mathrm{d}x = 0.$$

On en déduit que f^+ est nulle Lebesgue-presque partout, et le raisonnement analogue pour f^- montre que f^- est nulle presque partout. Finalement, f est nulle presque partout, comme annoncé.

Lemme 1. Si la fonction k réelle ou complexe est intégrable sur \mathbb{R} , on a

$$\lim_{\varepsilon \searrow 0} \int_{a}^{b} \left(\int_{\mathbb{R}} e^{itx - \varepsilon^{2}t^{2}/2} k(t) dt \right) dx = \int_{a}^{b} \left(\int_{\mathbb{R}} e^{itx} k(t) dt \right) dx.$$

Preuve. — On peut procéder sans Fubini avec deux Lebesgue dominés, ou bien avec Fubini et un seul Lebesgue. Prenons le deuxième chemin ; par Fubini,

$$\int_a^b \left(\int_{\mathbb{D}} e^{itx - \varepsilon^2 t^2/2} k(t) dt \right) dx = \int_{\mathbb{D}^2} \mathbf{1}_{[a,b]}(x) e^{itx - \varepsilon^2 t^2/2} k(t) dt dx.$$

L'intégrale double sur \mathbb{R}^2

$$F(\varepsilon) = \int_{\mathbb{R}^2} \mathbf{1}_{[a,b]}(x) e^{itx - \varepsilon^2 t^2/2} k(t) dt dx,$$

dépendant du paramètre réel ε , fait intervenir la fonction

$$f(\varepsilon, x, t) = \mathbf{1}_{[a,b]}(x) e^{itx - \varepsilon^2 t^2/2} k(t)$$

qui est continue en ε , mesurable en (x,t) et vérifie

$$|f(\varepsilon, x, t)| \le \mathbf{1}_{[a,b]}(x)|k(t)|,$$

qui est un majorant intégrable en $\mathrm{d}x\mathrm{d}t$ d'après l'hypothèse sur k et d'après la finitude de la mesure de [a,b]. On en déduit que F est continue sur \mathbb{R} , donc

$$F(0) = \int_{\mathbb{R}^2} \mathbf{1}_{[a,b]}(x) e^{itx} k(t) dt dx$$

est la limite de $F(\varepsilon)$ quand $\varepsilon \to 0$.

Cas où φ_X est intégrable

Proposition. Si la fonction caractéristique φ_X est intégrable sur \mathbb{R} , la loi de X admet la densité

$$f_{\mathbf{X}}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ixv} \varphi_{\mathbf{X}}(v) dv;$$

cette densité est une fonction continue et bornée. En langage d'analyste : si μ est une mesure positive finie sur (\mathbb{R},\mathcal{B}) et si sa transformée de Fourier $\widehat{\mu}$ est intégrable sur \mathbb{R} , alors μ admet la densité

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ixv} \,\widehat{\mu}(v) \,dv$$

par rapport à la mesure de Lebesgue.

Preuve. — Le lemme 1 permet de calculer la limite quand $\varepsilon \searrow 0$ qui figure dans le théorème rappelé; on obtient ainsi

$$P(a < X \le b) + P(a \le X < b) = 2 \int_a^b \left(\frac{1}{2\pi} \int_{\mathbb{R}} \varphi_X(v) e^{-ivx} dv \right) dx,$$

pour tous a < b. Posons

$$g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_{\mathbf{X}}(v) e^{-ivx} dv;$$

cette fonction g est continue et bornée sur \mathbb{R} (c'est la transformée de Fourier de la fonction supposée intégrable φ_X). La majoration

$$F_X(b) - F_X(a) = P(a < X \le b) \le$$

$$\leq P(a < X \leq b) + P(a \leq X < b) = 2 \int_{a}^{b} g(x) dx \leq 2 ||g||_{\infty} (b - a),$$

valable pour tous a < b, implique que la fonction de répartition F_X est continue, donc $P(X = t_0)$ est nul pour tout réel t_0 , et l'expression du théorème se simplifie légèrement en

$$P(a < X < b) = P(a \le X \le b) = F_X(b) - F_X(a) = \int_a^b g(x) dx;$$

comme g est continue, cela montre que g est la dérivée de F_X (il en résulte en particulier que $g = F_X'$ est une fonction réelle ≥ 0), et par conséquent, la loi de X admet la densité

$$f_{\mathbf{X}}(x) = g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ixv} \varphi_{\mathbf{X}}(v) dv.$$

Cela termine la preuve du cas probabiliste. Le cas des transformées de Fourier de mesures est identique, au signe près dans l'exponentielle $e^{\pm ixv}$.

On approche de l'inversion de Fourier. Si f est positive, intégrable sur \mathbb{R} ainsi que sa transformée de Fourier, la mesure positive finie $d\mu(x) = f(x) dx$ admet \widehat{f} comme transformée de Fourier, donc par la proposition précédente,

$$g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ixt} \, \widehat{f}(t) \, dt$$

est une autre densité pour μ , donc elles sont égales presque partout d'après la remarque 1. La classe dans $L^1(\mathbb{R})$ de la fonction f admet donc le représentant continu g.

Le théorème d'inversion est vrai dans le cas d'une fonction f non nécessairement positive. On va le démontrer par une méthode un peu artificielle, qui nous est imposée par le fait que nous n'avons traité que le cas des mesures positives.

Théorème (inversion de Fourier). Si $f \in L^1(\mathbb{R})$ a une transformée de Fourier \widehat{f} qui est intégrable sur \mathbb{R} , alors f admet le représentant continu

$$x \in \mathbb{R} \to \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(t) e^{itx} dt.$$

En particulier, si f est une fonction continue sur \mathbb{R} , si f et sa transformée de Fourier \hat{f} sont intégrables sur \mathbb{R} , on a pour tout x réel

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(t) e^{itx} dt.$$

Preuve. — Il suffit de traiter le cas des fonctions réelles ; en effet, supposons que f soit complexe, intégrable sur $\mathbb R$ ainsi que $\widehat f$; la transformée de Fourier de la conjuguée $\overline f$ est la fonction

$$t \to \int_{\mathbb{R}} e^{-itx} \overline{f(x)} dx = \overline{\int_{\mathbb{R}} e^{itx} f(x) dx} = \overline{\widehat{f}(-t)},$$

qui est intégrable aussi ; il en résulte que Re f et Im f sont réelles, intégrables ainsi que leur transformée de Fourier. Si la formule d'inversion est vraie pour Re f et Im f, elle est vraie pour f par la linéarité de la formule d'inversion.

Supposons que f soit réelle, intégrable ainsi que sa transformée de Fourier \widehat{f} . Considérons les deux mesures positives finies $\mathrm{d}\mu(x) = (|f(x)| + f(x))\,\mathrm{d}x$ et $\mathrm{d}\nu(x) = |f(x)|\,\mathrm{d}x$. Ces deux mesures à densité donnent une mesure nulle à tous les singletons, ce qui permet d'écrire le résultat général rappelé au début de ce cours sous une forme légèrement simplifiée,

$$\nu([a,b]) = \lim_{\varepsilon \searrow 0} \int_a^b \left(\frac{1}{2\pi} \int_{\mathbb{R}} \widehat{\nu}(t) e^{itx - \varepsilon^2 t^2/2} dt\right) dx,$$

même chose pour μ , et par différence

$$\mu([a,b]) - \nu([a,b]) = \lim_{\varepsilon \searrow 0} \int_a^b \left(\frac{1}{2\pi} \int_{\mathbb{R}} (\widehat{\mu}(t) - \widehat{\nu}(t)) e^{itx - \varepsilon^2 t^2/2} dt \right) dx,$$

c'est-à-dire

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{\varepsilon \searrow 0} \int_a^b \left(\frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(t) \, \mathrm{e}^{\mathrm{i} tx - \varepsilon^2 t^2/2} \, \, \mathrm{d}t \right) \mathrm{d}x.$$

Puisque \hat{f} est intégrable, on obtient d'après le lemme 1, par limite quand $\varepsilon \to 0$,

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left(\frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(t) e^{itx} dt \right) dx.$$

La fonction

$$g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(t) e^{itx} dt$$

est continue, et on a pour tous a < b

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b g(x) \, \mathrm{d}x;$$

on a donc pour s variant dans \mathbb{R} ,

$$F(s) := \int_0^s f(x) dx = \int_0^s g(x) dx;$$

comme g est continue, F est dérivable, et comme f est réelle, F est réelle et sa dérivée g est réelle.

Commençons par le cas plus simple où on sait déjà que f est continue. Alors la formule précédente montre que f = F' = g partout.

Si on suppose seulement que f est une fonction mesurable qui est un représentant d'une classe de $L^1(\mathbb{R})$, on peut dire que $f_1 = f + |f| + |g|$ et $f_2 = g + |f| + |g|$ sont deux fonctions positives, intégrables sur tout borné, et pour tous a < b on a

$$\int_{a}^{b} f_{1}(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} (|f(x)| + |g(x)|) dx = \int_{a}^{b} f_{2}(x) dx;$$

les deux mesures positives $d\mu_1(x) = f_1(x) dx$ et $d\mu_2(x) = f_2(x) dx$, finies sur les bornés, coïncident sur tous les intervalles [a, b], donc elles sont égales. Il en résulte que f_1 et f_2 sont égales Lebesgue-presque partout, d'après la remarque 1; on en déduit que f = g presque partout, donc g est un autre représentant de la classe de f.

Exemple. Considérons la fonction intégrable et continue $f(t) = e^{-|t|}$. Calculons

$$\widehat{f}(x) = \int_{\mathbb{R}} e^{-|t|} e^{-ixt} dt;$$

on obtient

$$\widehat{f}(x) = \int_{\mathbb{R}} e^{-|t|} e^{-ixt} dt = \int_{0}^{+\infty} e^{-t-ixt} dt + \int_{0}^{+\infty} e^{-u+ixu} du$$

$$= \int_0^{+\infty} \left(e^{-(1+ix)u} + e^{-(1-ix)u} \right) du = \frac{1}{1+ix} + \frac{1}{1-ix} = \frac{2}{1+x^2}.$$

Cette transformée de Fourier est intégrable. L'inversion de Fourier permet de trouver la fonction caractéristique de la loi de Cauchy,

$$\forall t \in \mathbb{R}, \quad \int_{\mathbb{R}} e^{ixt} \frac{dx}{\pi(1+x^2)} = e^{-|t|}.$$

Fonctions bosses

Lemme. Si f est \mathbb{C}^2 à support compact sur \mathbb{R} , sa transformée de Fourier \widehat{f} est intégrable sur \mathbb{R} .

Preuve. — Si f est à support compact, il existe un intervalle]a,b[hors duquel f est nulle; par conséquent, la fonction continue f' est nulle aussi hors de]a,b[. Par intégration par parties,

$$\int_{\mathbb{R}} f'(x) e^{-itx} dx = \int_{a}^{b} f'(x) e^{-itx} dx = \left[f(x) e^{-itx} \right]_{a}^{b} + it \int_{a}^{b} f(x) e^{-itx} dx$$
$$= 0 + it \int_{\mathbb{R}} f(x) e^{-itx} dx = it \widehat{f}(t),$$

donc

$$\forall t \in \mathbb{R}, \quad \widehat{f}'(t) = it \widehat{f}(t).$$

En appliquant l'égalité précédente à la fonction f' de classe C^1 , on obtient

$$\widehat{f''}(t) = it\widehat{f'}(t) = -t^2\widehat{f}(t);$$

comme f'' est continue à support compact, elle est intégrable sur \mathbb{R} , sa transformée de Fourier $\widehat{f''}$ est donc bornée sur \mathbb{R} , par conséquent

$$|\widehat{f}(t)| = \frac{|\widehat{f''}(t)|}{t^2} = O(t^{-2})$$

à l'infini, et il en résulte que \widehat{f} est intégrable sur $\mathbb{R}.$

Remarque. Si f est de classe C^k à support compact sur \mathbb{R} , sa transformée de Fourier est $O(t^{-k})$ à l'infini.

On veut construire des fonctions \mathbb{C}^2 à support compact sur \mathbb{R} , plus spécifiquement, une fonction f de classe \mathbb{C}^2 telle que

$$\mathbf{1}_{[a,b]} \le f \le \mathbf{1}_{[a-h,b+h]}$$

pour a < b et h > 0 arbitrairement petit. On note que cette fonction f doit être constante égale à 1 sur [a,b], et constante égale à 0 sur les deux intervalles $]-\infty, a-h]$ et $[b+h, +\infty[$. Il faut (et il suffit d') expliquer comment raccorder de façon C^2 la fonction constante 0 à la fonction constante 1, par exemple en faisant le raccord sur un intervalle [u,v], u < v. On procédera de façon analogue pour redescendre de 1 à 0.

Si le raccord avec les fonctions constantes est C², et comme toutes les dérivées des fonctions constantes sont nulles, on doit avoir

$$f'(u) = f'(v) = 0, \quad f''(u) = f''(v) = 0.$$

Cherchons f' sous la forme

$$g(x) = c \mathbf{1}_{[u,v]}(x)(x-u)^2(v-x)^2,$$

où c > 0 est une constante à déterminer; alors g est de classe C^1 sur \mathbb{R} , g s'annule, ainsi que sa dérivée, aux points u et v; de plus, on a g > 0 dans]u, v[, donc

$$\int_{u}^{v} g(x) \, \mathrm{d}x > 0,$$

ce qui permet d'adapter c pour que

$$\int_{\mathbb{R}} g(x) \, \mathrm{d}x = \int_{u}^{v} g(x) \, \mathrm{d}x = 1.$$

Alors

$$f(x) = \int_{u}^{x} g(s) \, \mathrm{d}s$$

est de classe C² sur \mathbb{R} , croissante, vérifie f(x)=1 pour tout $x\geq v$ et f(x)=0 pour tout $x\leq u$.

Sur [0, 1], on trouve, explicitement, la fonction polynomiale

$$f(x) = 10x^3 - 15x^4 + 6x^5,$$

qui est nulle en x=0, vaut 1 en x=1 et est « plate » en 0 et 1 ; la dérivée de f est multiple de $x^2(1-x)^2$.

Remarque. On a essentiellement tout fondé sur la remarque suivante : la fonction

$$g_0(x) = \mathbf{1}_{x>0} x^2$$

est de classe C¹ sur \mathbb{R} ; on a obtenu la fonction g sous la forme $g(x) = g_0(x-u)g_0(v-x)$. Si on était parti de l'observation à peine plus délicate que

$$g_0(x) = \mathbf{1}_{x>0} e^{-1/x}$$

est de classe C^{∞} sur \mathbb{R} , on aurait trouvé des bosses de classe C^{∞} .

Proposition. Pour toute bosse f de classe \mathbb{C}^2 sur \mathbb{R} et toute variable aléatoire réelle X, on a

$$E f(X) = \int_{\mathbb{R}} \varphi_X(t) \widehat{f}(t) dt.$$

Preuve. — Puisque la « fonction bosse » f est à support compact et de classe \mathbb{C}^2 sur \mathbb{R} , sa transformée de Fourier est intégrable et on obtient par inversion de Fourier

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{itx} \widehat{f}(t) dt;$$

par Fubini,

$$E f(X) = \int_{\Omega} f(X(\omega)) dP(\omega) = \int_{\Omega} \left(\frac{1}{2\pi} \int_{\mathbb{R}} e^{itX(\omega)} \widehat{f}(t) dt \right) dP(\omega)$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\Omega} e^{itX(\omega)} dP(\omega) \widehat{f}(t) dt = \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_X(t) \widehat{f}(t) dt.$$

De Moivre-Laplace

Théorème (de Moivre-Laplace). Si les $(X_n)_{n\geqslant 1}$ sont des variables de Bernoulli indépendantes, telles que $P(X_n = \pm 1) = 1/2$ pour tout $n \ge 1$, la loi de

$$s_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$

tend vers la loi gaussienne centrée réduite, dans le sens suivant : pour tous a < b, on a

$$P(a < s_n < b) \longrightarrow \int_a^b e^{-x^2/2} \frac{dx}{\sqrt{2\pi}}$$

Preuve. — On a vu que pour chaque entier $n \geq 1$,

$$\varphi_{\mathbf{X}_n}(t) = \cos(t).$$

Par l'indépendance, on sait que l'espérance d'un produit est le produit des espérances,

$$\varphi_{s_n}(t) = \operatorname{E} e^{\mathrm{i} t s_n} = \operatorname{E} \left(e^{\mathrm{i} (t/\sqrt{n}) X_1} e^{\mathrm{i} (t/\sqrt{n}) X_2} \dots e^{\mathrm{i} (t/\sqrt{n}) X_n} \right) = \left(\cos(t/\sqrt{n}) \right)^n,$$

qui tend simplement vers $e^{-t^2/2}$; en effet, en passant au logarithme,

$$\ln(\cos(t/\sqrt{n}))^n = n \ln\cos(t/\sqrt{n}) = n \ln(1 - t^2/(2n) + o(1/n)) \longrightarrow -t^2/2.$$

Pour toute bosse f, de classe C^2 à support compact, on a par la proposition précédente

$$\mathbf{E} f(s_n) = \int_{\mathbb{R}} \widehat{f}(t) \varphi_{s_n}(t) \, \mathrm{d}t;$$

la fonction sous l'intégrale tend simplement, en étant dominée par la fonction intégrable $|\hat{f}(t)|$, vers le produit de $\hat{f}(t)$ et de la fonction caractéristique $\varphi_{\rm G}(t)={\rm e}^{-t^2/2}$ d'une gaussienne centrée réduite G,

$$\widehat{f}(t)\varphi_{s_n}(t) dt \rightarrow \widehat{f}(t)\varphi_{G}(t),$$

donc par Lebesgue dominé

$$E f(s_n) = \int_{\mathbb{R}} \widehat{f}(t) \varphi_{s_n}(t) dt \rightarrow \int_{\mathbb{R}} \widehat{f}(t) \varphi_{G}(t) dt = E f(G).$$

Supposons a < b, et soit $\varepsilon > 0$ tel que $2\varepsilon < b - a$; comme la densité de la loi gaussienne réduite P_G est une fonction < 1 en tout point de \mathbb{R} (le maximum de la densité est $(2\pi)^{-1/2} < 1$, atteint au point 0), on a

$$\int_{x}^{x+\varepsilon} \mathrm{dP_G} < \varepsilon$$

pour tout x. Si f_0 est une bosse égale à 1 sur [a,b], nulle en dehors de $[a-\varepsilon,b+\varepsilon]$, telle que

$$\mathbf{1}_{[a,b]} \le f_0 \le \mathbf{1}_{[a-\varepsilon,b+\varepsilon]},$$

on aura pour n assez grand, quand $n \geq n_0$,

$$P(a < s_n < b) \le E f_0(s_n) < E f_0(G) + \varepsilon \le \int_{a-\varepsilon}^{b+\varepsilon} dP_G + \varepsilon < \int_a^b dP_G + 3\varepsilon.$$

On procède de même pour la minoration : si f_1 est une bosse égale à 1 sur $[a + \varepsilon, b - \varepsilon]$, nulle en dehors de [a, b], on aura pour n assez grand, quand $n \ge n_1$

$$P(a < s_n < b) \ge E f_1(s_n) > E f_1(G) - \varepsilon \ge \int_{a+\varepsilon}^{b-\varepsilon} dP_G - \varepsilon > \int_a^b dP_G - 3\varepsilon.$$

Quand $n \ge \max(n_0, n_1)$, on obtient ainsi que

$$\left| P(a < s_n < b) - \int_a^b dP_G(x) \right| < 3\varepsilon,$$

ce qui termine la preuve.

Remarque. On a seulement utilisé dans la preuve le fait que

$$\varphi_{X}(t) = 1 - t^{2}/2 + o(t^{2})$$

quand $t \to 0$. On verra à la rentrée des vacances le théorème de la limite centrale, qui généralise la convergence en loi de s_n vers la loi gaussienne, sans presque rien changer à la preuve précédente, aux lois centrées ayant un moment d'ordre 2.