Rappel, théorème : continuité en un point. On suppose que f est une fonction réelle ou complexe, définie sur $X \times Y$, où (X, \mathcal{F}, μ) est un espace mesuré et (Y, d) un espace métrique. On fixe un point y^* de Y, et on suppose aussi que

 $\mathbf{1_m}$ – pour tout $y \in Y$, la fonction $x \to f(x,y)$ est \mathcal{F} -mesurable définie μ -presque partout;

2 – pour μ -presque tout $x \in X$, la fonction $y \to f(x,y)$ est continue au point y^* ;

3 – il existe une fonction μ -intégrable $g: x \in X \to g(x)$ telle que pour tout $y \in Y$, on ait μ -presque partout la majoration $|f(x,y)| \leq g(x)$.

Alors, la fonction F définie sur Y par

$$F(y) = \int_{X} f(x, y) d\mu(x)$$

est continue au point y^* .

Exemple 1. On suppose donnée une fonction réelle ou complexe h définie et Lebesgue-intégrable sur $[0, +\infty[$. On pose, pour tout $y \ge 0$,

$$F(y) = \int_0^y h(x) \, \mathrm{d}x.$$

Dans le cas où h est continue, on a vu dans les rappels sur l'intégrale de Riemann que F est dérivable (de dérivée h), donc F est continue. Quand h est seulement supposée intégrable, il n'y a aucune chance que F soit partout dérivable, mais on va montrer que F est continue sur $[0, +\infty[$, en utilisant le théorème de continuité précédent.

On peut récrire F sous la forme

$$\forall y \in Y, \quad F(y) = \int_{[0,+\infty[} \mathbf{1}_{[0,y]}(x)h(x) \, d\lambda(x) = \int_X f(x,y) \, d\lambda(x),$$

où $X = Y = [0, +\infty[$ et où la fonction f utilisée est

$$f(x,y) = \mathbf{1}_{[0,y]}(x)h(x).$$

On fixe $y^* \geq 0$, par ailleurs quelconque. Si $x \geq 0$ est donné, la fonction

$$f_x : y \in Y \to f(x,y) = \mathbf{1}_{x < y} h(x)$$

est nulle quand $y \in [0, x[$, puis constante égale à h(x) quand $y \ge x$: elle a au plus un point de discontinuité, le point $y_0 = x$; la fonction f_x est donc continue au point y^* quand $x \ne y^*$; comme le singleton $\{y^*\}$ est de mesure de Lebesgue nulle, on voit que l'hypothèse 2 est satisfaite; de plus, la majoration 3 est facile à obtenir,

$$|f(x,y)| = |\mathbf{1}_{[0,y]}(x)h(x)| \le |h(x)| =: g(x),$$

majorant intégrable indépendant du paramètre y, donc F est continue au point y^* , et ceci pour tout $y^* \in Y$.

On notera que l'hypothèse « globale » $\mathbf{2_g}$ de continuité du corollaire énoncé au cours précédent n'est pas satisfaite : au contraire, pour tout $x \in X$ tel que $h(x) \neq 0$, la fonction $y \to f(x,y)$ est discontinue sur Y!

Exemple : transformée de Fourier.

Si f est une fonction intégrable sur \mathbb{R} , on pose

$$\forall y \in \mathbb{R}, \quad \widehat{f}(y) = \int_{\mathbb{R}} f(x) e^{-ixy} dx.$$

C'est la transformée de Fourier de f; quand f est intégrable, \widehat{f} est une fonction continue bornée sur \mathbb{R} . En effet,

$$|\widehat{f}(y)| \le \int_{\mathbb{R}} |f(x) e^{-ixy} dx| = \int_{\mathbb{R}} |f(x)| dx < +\infty$$

donne le caractère borné; pour la continuité, posons

$$h(x,y) = f(x) e^{-ixy};$$
 alors $\widehat{f}(y) = \int_{\mathbb{R}} h(x,y) d\lambda(x).$

Pour tout x, la fonction $y \to h(x,y)$ est continue (l'exponentielle est continue), et on a

$$|h(x,y)| = |f(x)e^{-ixy}| = |f(x)|,$$

un majorant indépendant du paramètre y, et qui est intégrable par hypothèse.

Transformée de Fourier : cas gaussien

Posons

$$\forall x \in \mathbb{R}, \quad \gamma(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}.$$

C'est une fonction positive d'intégrale 1. On a vu que

$$\forall z \in \mathbb{C}, \quad \int_{\mathbb{R}} \gamma(x) e^{xz} dx = \int_{\mathbb{R}} e^{-x^2/2 + xz} \frac{dx}{\sqrt{2\pi}} = e^{z^2/2}.$$

En appliquant à z = -iy on obtient

$$\widehat{\gamma}(y) = \int_{\mathbb{R}} e^{-x^2/2 - ixy} \frac{\mathrm{d}x}{\sqrt{2\pi}} = e^{-y^2/2},$$

un résultat important qu'on reverra de plusieurs façons.

Dérivation

Maintenant on va essayer de dériver la fonction F définie par une intégrale dépendant du paramètre y, en recherchant la limite quand h tend vers 0 de la quantité

$$\frac{F(y^* + h) - F(y^*)}{h} = \int_{\mathcal{X}} \frac{f(x, y^* + h) - f(x, y^*)}{h} d\mu(x).$$

Le chemin est tout tracé : si (h_n) tend vers 0, on va devoir étudier la convergence d'une suite d'intégrales. On va se placer dans une situation de convergence dominée.

Théorème. On suppose que I est un intervalle ouvert de \mathbb{R} , y^* un point fixé de I, (X, \mathcal{F}, μ) un espace mesuré et f une fonction sur $X \times I$ telle que

- **1** pour tout $y \in Y$, la fonction $x \to f(x, y)$ est μ -intégrable;
- 2' pour μ -presque tout $x \in X$, la fonction $y \to f(x,y)$ est dérivable au point y^* , de dérivée notée $\frac{\partial f}{\partial y}(x,y^*)$;
- $\mathbf{3}'$ il existe une fonction μ -intégrable $x \to g(x)$ telle que pour tout $y \in I$, on ait pour μ -presque tout $x \in X$ la majoration

$$|f(x,y) - f(x,y^*)| \le g(x)|y - y^*|.$$

Alors la fonction F définie par $F(y) = \int_X f(x,y) \, d\mu(x)$ est dérivable au point y^* et

$$F'(y^*) = \int_{X} \frac{\partial f}{\partial y}(x, y^*) d\mu(x).$$

Si I est de la forme [a,b] on obtiendra si $y^* = a$ une dérivée à droite $F'_d(a)$, si on a supposé dans 2' la dérivabilité à droite au point a de la fonction $y \to f(x,y)$; même chose pour une dérivée à gauche au point b.

Preuve. — On considère une suite (h_n) réelle tendant vers 0, avec $h_n \neq 0$ assez petit pour que $y^* + h_n \in I$ pour tout n; on pose

$$\Delta_n(x) = \frac{f(x, y^* + h_n) - f(x, y^*)}{h_n};$$

par l'hypothèse de dérivabilité, on a

$$\Delta_n(x) \to \frac{\partial f}{\partial y}(x, y^*)$$

quand n tend vers l'infini, avec, d'après l'hypothèse $\mathbf{3}'$, la majoration $|\Delta_n(x)| \leq g(x)$ par la fonction intégrable q. D'après le théorème de convergence dominée,

$$\int_{X} \Delta_{n}(x) d\mu(x) = \int_{X} \frac{f(x, y^{*} + h_{n}) - f(x, y^{*})}{h_{n}} d\mu(x) = \frac{F(y^{*} + h_{n}) - F(y^{*})}{h_{n}}$$

tend vers l'intégrale de $\lim_n \Delta_n(x)$,

$$\frac{F(y^* + h_n) - F(y^*)}{h_n} \rightarrow \int_{X} \frac{\partial f}{\partial y}(x, y^*) d\mu(x),$$

et comme cette limite est indépendante de la suite (h_n) qui tend vers 0, c'est bien la dérivée de F au point y^* .

Exemple 2. On donne une fonction h Lebesgue-intégrable sur \mathbb{R} . On pose

$$F(y) = \int_{\mathbb{R}} h(x) e^{-|x-y|} dx.$$

On voit que la fonction $\varphi(t) = e^{-|t|}$ est lipschitzienne de constante 1 sur \mathbb{R} , dérivable en tout point $t \neq 0$, avec $\varphi'(t) = -\operatorname{sign}(t)\varphi(t)$. On vérifie 1, 2' et 3', qui impliquent pour tout y^* réel

$$F'(y^*) = \int_{\mathbb{R}} h(x) \operatorname{sign}(x - y^*) e^{-|x - y^*|} dx.$$

Pour vérifier les hypothèses, posons

$$f(x,y) = h(x) e^{-|x-y|} = h(x)\varphi(x-y).$$

On a $|f(x,y)| \leq |h(x)|$, ce qui donne 1; comme φ est lipschitzienne,

$$|f(x,y) - f(x,y^*)| = |h(x)| |\varphi(x-y) - \varphi(x-y^*)| \le |h(x)| |y-y^*|,$$

donc **3**' est vraie; enfin, quand y^* est fixé et $x \neq y^*$, la fonction $f_x(y) = h(x)\varphi(x-y)$ est dérivable au point y^* , donc **2**' est vraie. La dérivée de f_x en un point $y \neq x$ vaut $f'_x(y) = -h(x)\varphi'(x-y) = \operatorname{sign}(x-y)h(x)\varphi(x-y)$, d'où le résultat.

En utilisant le théorème de continuité en un point fixé (comme on l'a fait dans l'exemple 1) on pourra voir que F' est continue.

Corollaire. On suppose que I est un intervalle ouvert de \mathbb{R} , (X, \mathcal{F}, μ) un espace mesuré et f une fonction sur $X \times I$ qui vérifie les propriétés suivantes :

1 – pour tout $y \in Y$, la fonction $x \to f(x, y)$ est μ -intégrable;

 $\mathbf{2}'_{\mathbf{g}}$ – pour μ-presque tout $x \in X$, la fonction $y \to f(x,y)$ est dérivable sur I, de dérivée notée $\frac{\partial f}{\partial y}(x,y)$;

 $\mathbf{3}'_{\ell}$ – pour tout $y^* \in Y$, il existe un voisinage V^* de y^* dans Y et une fonction intégrable g_{V^*} tels que pour μ -presque tout $x \in X$, on ait

$$y \in V^* \Rightarrow \left| \frac{\partial f}{\partial y}(x, y) \right| \le g_{V^*}(x).$$

Alors la fonction F définie par $F(y) = \int_X f(x,y) d\mu(x)$ est dérivable en tout point de I, et

$$\forall y^* \in I, \quad F'(y^*) = \int_X \frac{\partial f}{\partial y}(x, y^*) d\mu(x).$$

De plus, si pour presque tout x la fonction $y \in I \to f(x,y)$ est de classe C^1 , alors F est de classe C^1 sur I.

Preuve. — Fixons y^* dans I; on va se ramener à l'application du théorème précédent à la restriction de F à un voisinage convenable de y^* , ce qui suffira pour évaluer la dérivée au point y^* . Par l'hypothèse $\mathbf{2}'_{\mathbf{g}}$, il existe un ensemble μ -négligeable N_1 tel que, pour tout x en dehors de N_1 , la fonction $f_x: y \to f(x,y)$ soit dérivable sur I; par l'hypothèse $\mathbf{3}'_{\ell}$, il existe un voisinage V^* de y^* et une fonction intégrable $g = g_{V^*}$ tels que, pour tout x en dehors d'un certain ensemble μ -négligeable $N_2 \supset N_1$, la dérivée de f_x soit majorée sur V^* par g(x). Considérons un intervalle ouvert J tel que $y^* \in J \subset V^*$. Pour tout

 $x \notin \mathbb{N}_2$, on aura par le Théorème des Accroissements Finis, pour tout $y \in \mathbb{J}$, l'existence d'un point c_x entre y et y^* tel que

$$f_x(y) - f_x(y^*) = (y - y^*) f_x'(c_x);$$

comme c_x est entre y et y^* , qui sont dans l'intervalle J, on a aussi $c_x \in J \subset V^*$, ce qui permet d'utiliser la majoration de l'hypothèse $\mathbf{3}'_{\ell}$,

$$|f(x,y) - f(x,y^*)| = |f_x(y) - f_x(y^*)| = |(y-y^*)f_x'(c_x)| \le g(x)|y-y^*|;$$

on a donc la majoration du type $\mathbf{3}'$ voulue pour appliquer le théorème précédent. L'hypothèse $\mathbf{2}'_{\mathbf{g}}$ globale donne évidemment l'hypothèse $\mathbf{2}'$; d'après le théorème précédent, la dérivée de F en y^* existe, et elle est égale à

$$F'(y^*) = \int_{X} \frac{\partial f}{\partial y}(x, y^*) d\mu(x).$$

Si f_x est C^1 pour μ -presque tout x, cette dérivée F' est continue d'après le théorème de continuité des intégrales à paramètre.

Remarque. L'exemple 2 plus haut (avec $e^{-|t|}$) ne peut pas être obtenu par le résultat global : dans cet exemple, la fonction $y \to h(x) e^{-|y-x|}$ n'était dérivable sur $I = \mathbb{R}$ tout entier que si h(x) = 0, ce qui pouvait ne jamais arriver!

Exemple, dérivées de Γ : on voit que $s \to x^s = e^{s \ln x}$ admet pour dérivée $(\ln x)x^s$, donc la fonction $f(x,y) = e^{-x}x^{s-1}$ dont l'intégrale sur $[0,+\infty[$ donne $\Gamma(s)$ admet pour dérivée partielle par rapport à s, pour tout x > 0

$$(\ln x) e^{-x} x^{s-1} = (\ln x) f(x, s);$$

on peut réutiliser le majorant de f(x,s) introduit au cours précédent pour prouver la continuité de Γ ; on avait obtenu le majorant intégrable g_1 pour f(x,s), valable dans le voisinage $V^* =]s^*/2, 2s^*[$ d'un $s^* > 0$,

$$g_1(x) = \mathbf{1}_{]0,1]}(x) e^{-x} x^{s^*/2-1} + \mathbf{1}_{]1,+\infty[}(x) e^{-x} x^{2s^*-1}.$$

On peut donc écrire la majoration

$$\left| \frac{\partial f}{\partial s}(x,s) \right| \le \left| \ln x \right| g_1(x)$$

dont on vérifiera l'intégrabilité sur $[0, +\infty[$, en utilisant pour $\varepsilon > 0$ petit et $x \ge 1$

$$x^{\varepsilon} \le e^{x^{\varepsilon}} \implies \varepsilon \ln x \le x^{\varepsilon}, \quad \text{et} \quad (0 < x \le 1) \implies \varepsilon \ln(1/x) \le x^{-\varepsilon},$$

donc pour $\varepsilon < s^*/2$,

$$\varepsilon \int_0^{+\infty} |\ln(x)| \, g_1(x) \, \mathrm{d}x \le \int_0^1 \mathrm{e}^{-x} \, x^{s^*/2 - 1 - \varepsilon} \, \mathrm{d}x + \int_1^{+\infty} \mathrm{e}^{-x} \, x^{2s^* + \varepsilon - 1} \, \mathrm{d}x < +\infty.$$

Par conséquent,

$$\forall s > 0, \quad \Gamma'(s) = \int_0^{+\infty} e^{-x} \ln(x) x^{s-1} dx,$$

puis on peut recommencer pour obtenir

$$\Gamma''(s) = \int_0^{+\infty} e^{-x} (\ln(x))^2 x^{s-1} dx \ge 0,$$

donc Γ est convexe sur $]0, +\infty[$. On voit facilement que Γ est de classe C^{∞} en continuant de la même façon.

Exemple 3. Soit f une fonction sur \mathbb{R} ; on suppose que f' existe partout et est bornée; on pose

$$\forall y \in \mathbb{R}, \quad F(y) = \int_a^b f(x+y) \, \mathrm{d}x.$$

La fonction f est continue puisque dérivable, et on obtient par changement de variable dans l'intégrale de Riemann une deuxième expression,

$$F(y) = \int_{a}^{b} f(x+y) dx = \int_{a+y}^{b+y} f(t) dt.$$

On a deux façons de calculer la dérivée de F, ce qui donne

$$F'(0) = \int_{a}^{b} f'(x) dx = f(b) - f(a).$$

Pour justifier le premier calcul, on écrit

$$h(x,y) = \mathbf{1}_{[a,b]}(x) f(x+y),$$

qui est dérivable par rapport à y, pour tout x

$$\frac{\partial h}{\partial y}(x,y) = \mathbf{1}_{[a,b]}(x) f'(x+y),$$

et par hypothèse f' est bornée, disons par M, donc

$$\left| \frac{\partial h}{\partial y}(x,y) \right| \le \mathbf{M} \mathbf{1}_{[a,b]}(x) =: g(x)$$

qui est intégrable. Le deuxième calcul est le calcul habituel de la dérivée de l'intégrale dépendant des bornes, dans le cas d'une fonction continue sous l'intégrale.

Remarque. Supposons que f, fonction lipschitzienne de constante M sur \mathbb{R} , soit dérivable presque partout (en fait, ça n'est pas une hypothèse, c'est toujours vrai d'après un théorème de dérivation de Lebesgue); on pourra encore conclure que

$$f(b) - f(a) = \int_a^b f'(t) dt$$

où f' est la fonction mesurable définie presque partout provenant de l'hypothèse. On le verra en appliquant le théorème sur la dérivée en un point, au lieu de son corollaire. L'hypothèse $\mathbf{3}'$ est garantie par l'hypothèse Lipschitz, et la dérivabilité en y^* pour presque tout x est vraie parce que le translaté d'un ensemble Lebesgue-négligeable est négligeable.

En revanche, il existe des fonctions continues, qui admettent une dérivée presque partout, dérivée bornée, mais telles que f(b)-f(a) ne soit pas égal à l'intégrale de f' entre a et b: la fonction de Cantor est continue sur [0,1], $f(1) \neq f(0)$ et admet presque partout une dérivée nulle.