Intégration et Probabilités 7, supplément

Exercice I

Soient $P = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0, y \geq 0\}$ et A un borélien de P. On note \tilde{A} le sous-ensemble de \mathbb{R}^3 engendré par la rotation de A autour de l'axe Oz. Montrer que \tilde{A} est borélien et que $\lambda(\tilde{A}) = 2\pi \int_A y dy dz$.

Calculer le volume du tore \tilde{A} associé à $A = \{(0, y, z) \mid (y - a)^2 + z^2 \le r^2\}$ où a > r > 0.

Exercice II

Soit $f:]0, \infty[\to \mathbb{R}$ définie par $f(t) = \int_0^\infty \exp(-t(x-1)^2) dx$.

- 1) On pose $I_n = \iint_{\mathbb{R}^2} \exp(-n(x^2 + y^2 1)^2) dx dy$, $(n \in \mathbb{N}^*)$. Calculer I_n au moyen de f et $\lim_{n \to \infty} I_n$.
- 2) Soit h une fonction continue bornée sur \mathbb{R}^2 . Calculer $\lim_{n\to\infty} \sqrt{n} \iint_{\mathbb{R}^2} h(x,y) \exp(-n(x^2+y^2-1)^2) dx dy$.

Exercice III

On pose $\Omega = \{(x,y) \mid x > 0, y > 0, 1 < x^2 + 4y^2 < 4\}, G = \{(x,y) \in \Omega \mid y < x\}, \Omega' = \{(x,y) \mid 1 < x < 4, y > 0\} \text{ et } G' = \{(x,y) \in \Omega' \mid y < 1\}.$

- 1) Trouver un C^1 -difféomorphisme $T:\Omega\to\Omega'$ tel que T(G)=G'.
- 2) Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = \frac{x^2 4y^2}{4x^2}$ si $x \neq 0$, f(0,y) = 0. Montrer que f est borélienne intégrable sur G et calculer l'intégrale. La fonction f est-elle intégrable sur Ω ?

Exercice IV

Soit $f:]0, \infty[\to \mathbb{C}$ telle que $x \mapsto \frac{f(x)}{1+x^2}$ soit λ -intégrable.

- 1) Montrer que la fonction $g:]0, \infty[\to \mathbb{R}, g(u) = \int_0^\infty f(x) \exp(-ux) dx$ est continue.
- 2) Pour 0 < a < b, montrer que, si $I_{a,b} =_{\text{def}} \int_a^b g(u) \sin u \ du$, on a

$$I_{a,b} = \int_0^\infty f(x) \int_a^b \sin u \exp(-ux) du dx.$$

3) Montrer que $\lim_{a\to 0,b\to\infty} I_{a,b} = \int_0^\infty \frac{f(x)}{1+x^2} dx$.

Exercice V

Soient $(\Omega, \mathcal{T}, \mu)$ un espace mesuré σ -fini et $f: \Omega \to \mathbb{R}_+$ une fonction mesurable. On rappelle que le graphe et l'hypographe de f sont $\mathcal{T} \otimes \mathcal{B}(\mathbb{R})$ -mesurables. Montrer que, pour $p \geq 1$, on a $\int_{\Omega} f^p dd\mu = p \int_0^{\infty} y^{p-1} \mu(\{x \mid 0 \leq y \leq f(x)\} dy$.

Exercice VI

- 1) Montrer que la mesure image de λ_n par l'application $\phi: \mathbb{R}^n \to \mathbb{R}_+, x \mapsto ||x||$ est la mesure de densité $t \mapsto a_n t^{n-1}$ (où a_n est une constante) par rapport à la mesure de Lebesgue sur \mathbb{R}_+ .
 - 2) Montrer que, sur \mathbb{R}^n , on a :

$$\int_{\{x \mid \|x\| \le 1\}} \frac{dx}{\|x\|^{\alpha}} < \infty \text{ si et seulement si } \alpha < n$$

$$\int_{\{x \mid ||x|| \ge 1\}} \frac{dx}{\|x\|^{\alpha}} < \infty \text{ si et seulement si } \alpha > n.$$

Exercice VII

Soient f, g les fonctions définies par :

$$f(x) = \frac{1}{\pi\sqrt{1-x^2}} \mathbf{1}_{|x|<1}, \quad g(x) = x \exp(-\frac{x^2}{2}) \mathbf{1}_{x>0}.$$

On veut calculer $\iint_{P(a)} f(x)g(y)dxdy$ où P(a) est l'ensemble des couples (x,y) tels que $xy \le a$. On commencera par faire le changement de variable $(x,y) \mapsto (z,y) = (xy,y)$ puis on posera $u = \sqrt{y^2 - z^2}$.

Exercice VIII

Soient a, b tels que -1 < a < b. Montrer que la fonction $f(x, y) = y^x$ est intégrable dans le rectangle $a \le x \le b$, $0 \le y \le 1$. Calculer l'intégrale $\int_0^1 \frac{y^b - y^a}{\ln y} dy$.

Exercice IX

Calcul du volume de la boule euclidienne unité

Soient $n \ge 1$ et V_n le volume de la boule euclidienne unité B_n définie par

$$B_n = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n, x_1^2 + \dots + x_n^2 \le 1\}.$$

- 1) Calculer V_1 et V_2 .
- 2) Soit $n \geq 3$. Etablir que $V_n = \frac{2\pi}{n} V_{n-2}$. On remarquera que

$$(x_1^2 + \dots + x_n^2 \le 1) \iff (x_{n-1}^2 + x_n^2 \le 1 \text{ et } x_1^2 + \dots + x_{n-2}^2 \le 1 - x_{n-1}^2 - x_n^2).$$

2

3) En déduire $V_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$.