Intégration et Probabilités 8, supplément

Exercice I

On pose
$$K(x) = \frac{1}{2\pi} \left(\frac{\sin(x/2)}{x/2} \right)^2 = \frac{1}{2\pi} \int_{-1}^{+1} (1-|t|)e^{ixt}dt$$
, pour tout $x \in \mathbb{R}$ et $K_{\lambda}(x) = \lambda K(\lambda x)$, pour tout $\lambda > 0$.

- 1. Montrer (par intégration curviligne) que $\int K(x)dx = 1$. Ainsi la convolution par (K_{λ}) a les propriétés considérées dans l'exercice 8-5 (au remplacement près de h par $1/\lambda$) : on dit que (K_{λ}) est une approximation de l'unité.
- 2. Vérifier que, pour $f \in L^1(\mathbb{R})$, on a $\lim_{\lambda \to \infty} ||f K_{\lambda} * f||_1 = 0$.
- 3. Pour $f, h \in L^1(\mathbb{R})$ telles que $h(x) = \int H(t)e^{2i\pi xt}dt$ avec $H \in L^1(\mathbb{R})$, montrer que $(f*h)(x) = \int H(t)\widehat{f}(t)e^{2i\pi xt}dt.$ où l'on a $\widehat{f}(t) = \int f(x)e^{-2i\pi tx}dx$.
- 4. Montrer que ("théorème de Fejer")

$$f(x) = L^{1} - \lim_{\lambda \to +\infty} \left(\int_{-\lambda}^{\lambda} (1 - \frac{|t|}{\lambda}) \widehat{f}(t) e^{2i\pi tx} dt \right) .$$

5. Montrer que si $f \in L^1$ et $\hat{f} \in L^1$, on a $\hat{f} = \check{f}$. où l'on a $\check{f}(t) = f(-t)$.

Exercice II

Soit (E, \mathcal{A}, μ) un espace mesuré fini et $f \in L^1(\mu)$ une fonction positive. On pose pour t réel positif ou nul :

$$u(t) = \int_{E} \frac{f}{1 + tf} d\mu.$$

- 1) Montrer que cela a un sens, que u est continue sur $[0, +\infty[$ et indéfiniment dérivable sur $]0, +\infty[$.
- 2) Soit $n \ge 1$ un entier. Montrer que u est n fois continûment dérivable sur $[0, +\infty[$ si et seulement si $f \in \bigcap_{1 \le p \le n+1} L^p(\mu)$. Calculer dans ces conditions $u^{(n)}(0)$.

Exercice III

Pour
$$\sigma \in [0, 1]$$
, on pose $f_{\sigma}(t) = \int_0^1 \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(t-x)^2}{2\sigma^2}} dx$. On rappelle que $\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du = 1$.

- 1) Montrer que f_{σ} est C^{∞} pour tout $\sigma \in]0,1[$.
- 2) On fixe $p \in [1, +\infty[$. En faisant le changement de variable $u = \frac{t-x}{\sigma}$ dans la définition de f_{σ} , montrer que:

$$\int_{\mathbb{R}} |f_{\sigma} - 1_{[0,1]}|^p d\lambda \le \int_{\mathbb{R}^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} |1_{[\sigma u, \sigma u + 1]}(t) - 1_{[0,1]}(t)|^p d\lambda(u, t).$$

3) En déduire que $1_{[0,1]}$ est limite dans L^p d'une suite de fonctions C^{∞} . Comparer ce résultat avec celui de l'exercice 1..

1

Exercice IV

Soit $t \in \mathbb{R}$.

- 1) Soit $f:[0,+\infty[\to\mathbb{C}$ une application borélienne, λ -intégrable.

 - a) Etudier la limite : $\lim_{t\to +\infty} \int_{]0,+\infty[} e^{-tx} f(x) d\lambda(x)$. b) On suppose que f est bornée et que $\lim_{x\to 0^+} f(x) = \gamma_0 \in \mathbb{C}$. Etudier les limites suivantes :

$$\lim_{t\to +\infty} t \int_{]0,+\infty[} e^{-tx} f(x) d\lambda(x); \quad \lim_{t\to +\infty} \int_{]0,+\infty[} \frac{t f(x)}{1+t^2 x^2} d\lambda(x).$$

- 2) Soit $f:[0,1] \to \mathbb{C}$ une application borélienne, λ -intégrable.
 - a) Etudier la limite : $\lim_{n \to +\infty} \int_{[0,1]} nx^n f(x^n) d\lambda(x)$.
- b) On suppose que $\lim_{x\to 1^-} f(x) = \gamma_1 \in \mathbb{C}$. Etudier la limite: $\lim_{n\to +\infty} \int_{]0,1[} nx^n f(x) d\lambda(x)$. 3) Soit $f:]1,e[\to \mathbb{C}$ une application borélienne, λ -intégrable. Etudier la limite :

$$\lim_{n \to +\infty} n \int_{]1,1+\frac{1}{n}[} f(x^n) d\lambda(x).$$

4) Soit $f:]a, b[\to \mathbb{C}$ une application borélienne, bornée et telle que: $\lim_{x \to a^+} f(x) = \gamma \in \mathbb{C}$. Etudier la limite: $\lim_{t \to a^+} \int_{]a,t[} \frac{f(x)}{\sqrt{(x-a)(t-x)}} d\lambda(x).$

Exercice V

Soient $f \in L^1(\mathbb{R}, \lambda), g \in L^p(\mathbb{R}, \lambda), (1 \le p < \infty)$. On pose $f * g(x) \int f(y)g(x-y)dy$. Montrer que f * g(x) est défini presque partout et que $f * g \in L^p(\mathbb{R}, \lambda)$. (Indication: Hölder pour la mesure de densité |f|.)

Exercice VI

Soient $f \in L^2(\mathbb{R}, \lambda), k \in L^2(\mathbb{R}^2, \lambda_2)$.

- 1) Montrer que $Kf(x) = \int_{\mathbb{R}} f(y)k(x,y)dy$ est défini pour λ -presque tout x, que l'on a $Kf \in L^2(\mathbb{R}, \lambda) \text{ et } ||Kf||_2 \le ||k||_2 ||f||_2.$
- 2) Soit $g \in L^2(\mathbb{R}^2, \lambda_2)$. Montrer que $h(x, y) = \int_{\mathbb{R}} k(x, z)g(z, y)dz$ est défini pour λ_2 -presque tout (x,y), que l'on a $h \in L^2(\mathbb{R}^2, \lambda_2)$ et que $||h||_2 \leq ||k||_2 ||g||_2$.

Exercice VII

On pose, pour $(x,y) \in]-1,1[\times]0,\infty[$, $F(x,y)=\int_0^\infty \frac{t^x}{1+t^2}(\ln(t+1))^y dt$. Montrer que F est bien définie et appartient à $C^{\infty}(]-1,1[\times]0,\infty[)$.

Exercice VIII

Comment choisir $p \in \mathbb{R}$ pour que la fonction $f_y(x) =_{\text{def}} \frac{1}{|x-y|^p} - \frac{1}{|x|^p}$ soit λ -intégrable sur \mathbb{R} ? Si cette condition est remplie, montrer qu'il existe une constante C_p telle que, pour tous $y, y' \in \mathbb{R}$, on ait $\int f_y f_{y'} ds = C_p(|y|^a + |y'|^a - |y - y'|^a)$ où a = 1 - 2p. (Indication: considérer $\int f_y^2 dx$.)

2