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1 Introduction

Several natural questions about the linear structure of infinite-dimensional
normed spaces, that were asked since the early days of the theory, remained
without answer for many years. Here are two examples (in this article, Banach
space means infinite-dimensional Banach space, real or complex):

A. Is it true that every Banach space is isomorphic to its (closed) hyperplanes?

B. If a Banach space X is isomorphic to every infinite-dimensional subspace
of itself, does it follow that X is isomorphic to `2?

These two questions come from Banach’s book [Ba]. Question B was called the
homogeneous Banach space problem in modern times. Question A is attributed
to Banach; actually, Banach’s book contains a weaker question, formulated in
terms of linear dimension, which amounts to asking whether every Banach
space embeds isomorphically in its hyperplanes; this simply asks whether X
is isomorphic to some proper subspace of itself. Let us formulate two other
general questions, less ancient than the first two. Recall that a sequence (en)n≥0

of non zero vectors is unconditional if there exists a constant C such that

‖
m∑

i=1

±aiei‖ ≤ C ‖
m∑

i=1

aiei‖

for every m ≥ 0, all scalars (ai)
m
i=1 and every choice of signs ±1; the best

constant C is called unconditionality constant of (en)n≥0. An unconditional
sequence is a basis for its closed linear span; unconditional bases were earlier
called absolute bases, see [BP].

C. Does every Banach space contain an infinite unconditional basic sequence?

D. Is it possible to decompose every Banach space as a topological sum of two
infinite-dimensional subspaces?

Question D was formulated around 1970 by Lindenstrauss [L2]. Question C
appears in Bessaga-PeÃlczyński [BP] in 1958, but was considered several years
before, since it asks for a natural improvement of the classical result from
Banach’s book, according to which every Banach space contains a subspace
with basis.

All these questions have been answered during the last decade, most of them
in the negative direction that seems to indicate that there is no hope for
a structure theory of general Banach spaces. There is one notable example
though of a positive answer, the homogeneous space problem; interestingly
enough, one of the “negative” objects discovered during the period 1990–95
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plays a little rôle in the positive solution of Question B: at some point in the
proof, one has to exclude the possibility that the homogeneous space could be
hereditarily indecomposable. Despite my rather pessimistic comments above,
the results and examples obtained since 1990 represent a significant progress of
our understanding of infinite-dimensional Banach spaces. The solutions of the
different problems have various points of contact, and introduce new notions
that underlie several of the constructions and proofs.

Let us agree that for the rest of this paper, the word subspace will always
indicate an infinite-dimensional vector subspace of a Banach space (but not
necessarily a closed subspace). Beside the preceding problems, one of the main
questions that remained a mystery for years is the following: does every Banach
space contain a subspace isomorphic to some `p (for 1 ≤ p < +∞) or to
c0? This question was settled negatively in 1974 by the famous example of
Tsirelson [Ts], who constructed a reflexive Banach space that does not contain
any `p. Tsirelson’s solution has had an enormous influence on most of what is
discussed here. After being disappointed by Tsirelson’s example, the structure-
seekers had to look for more modest questions, for example the following.

E. Does every Banach space contain a reflexive subspace, or else a subspace
isomorphic to either c0 or `1?

This question conforms to the common experience that non reflexivity is often
related to the presence of c0 or `1; indeed, a theorem of James [J1] says that a
Banach space X with unconditional basis is reflexive if and only if it does not
contain isomorphs of c0 or `1. There is therefore a loose connection between
Questions E and C; any counterexample to E has to be a counterexample to
C as well.

As we have said before, it is obvious when we look back that the first giant step
in the direction of all the results mentioned in this article was done around 1974
by Tsirelson, (in his only paper about Banach spaces, as he likes to point out!).
As far as I know, Tsirelson’s space was the first example of a space where the
norm is defined by an inductive procedure that “forces” some specific property
to hold, but somehow, nothing more than the desired property. The same year,
Krivine proved the finite-dimensional counterpart, that goes in the opposite
(positive) direction and says roughly that every Banach space contains `n

p ’s of
arbitrary large finite dimension n. Almost 20 years passed before Tsirelson’s
breakthrough was extended to a solution of the above mentioned problems;
during these years, it was still hoped by many that techniques using Krivine’s
ideas could lead, for example, to a positive solution of question C.

A difficulty common to these questions is that one has to analyze whether
or not some particular phenomenon will occur in every subspace of a given
Banach space X; this rather vague question can be put to precise terms as
follows: what do we know about subsets A of the unit sphere of X that meet
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every infinite-dimensional vector subspace? Here, I want to call such a set A
a (linearly) inevitable set (these sets were called in [GM1] by the inexpressive
term asymptotic; I feel that one should reform this poor terminology). Can
we say that two inevitable sets A1, A2 are in a sense so big that they must
intersect, or at least almost intersect, meaning that dist(A1, A2) = 0? An
equivalent question asks whether every enlargement Aε of an inevitable set
A must contain an infinite-dimensional vector subspace. This type of prob-
lem reminds Ramsey theory, but nobody could exploit this analogy before
Gowers, in his dichotomy theorem (see below). It was realized by V. Milman
(see [M1,M2]), a few years before Tsirelson’s example, that if we can prove
that any two inevitable sets A1 and A2 in the unit sphere of a given space
X almost intersect, then X must contain some `p, p ∈ [1,∞), or c0. In [M1],
Milman defines a notion of spectrum for a uniformly continuous function on
the unit sphere, and shows that when the spectrum of every such function is
non-empty, then X contains some `p or c0; if inevitable sets almost intersect,
then this spectrum is non empty. This question about intersecting inevitable
sets is not totally absurd, since the answer is positive in one case: the result of
Gowers’ paper [G1] implies that any two inevitable subsets of the unit sphere
of c0 almost intersect.

It follows indirectly that Tsirelson gave the first example of two inevitable sets
A1 and A2 that are separated by some δ > 0, that is ‖a1−a2‖ ≥ δ for all a1 ∈
A1, a2 ∈ A2. Tsirelson’s space thus gives us a first clue, but the real start was
the modification of Tsirelson’s space constructed by Schlumprecht [Sc], which
provides us with an infinite sequence (An)n≥0 of such separated inevitable
sets, giving a lot of possibilities for coding things in the sphere. This will be
explained in section 4.

For Gowers and the author of this article, this was the decisive information
for constructing a space with no infinite unconditional sequence; during the
summer of 1991, after hearing Schlumprecht at the Banach space conference in
Jerusalem, we both constructed an example of a space with no unconditional
sequence; the two examples X(G) and X(M) were very similar. Gowers’ ex-
ample was the first to be presented to a few specialists. The construction will
be indicated in section 7; it is rather intricate, but the fundamental principle,
that seems to me very clear, is presented in a separated section (section 4)
containing the following partial result: if we have a sequence of well separated
inevitable sets in a Banach space X, then for any given C ≥ 1 we can renorm
X in such a way that any infinite basic sequence in X has unconditionality
constant larger than this C in the new norm. Obviously we are on the way to
a negative answer to question C. The reader who wants to get an idea about
what is going on with the failure of unconditionality must read section 4. The
technical problem for solving question C itself is to mix the simple idea from
section 4 with an inductive definition of a norm a la Tsirelson-Schlumprecht.
This will be done in section 7.

4



Schlumprecht’s example is an ad hoc example of a space containing a sequence
of separated inevitable subsets (An), but this strange situation did not seem
likely to happen in the most regular of all spaces, namely `2. It was therefore a
big surprise when Odell and Schlumprecht showed that one can move the sets
(An) from Schlumprecht’s space S to `2 by a non linear procedure, and get a
sequence (Bn) of inevitable subsets in the unit sphere of `2 that are somewhat
orthogonal [OS]. On the other hand, it is still unknown whether Tsirelson’s
space T contains a sequence of well separated inevitable subsets, or whether
T satisfies the opposite property of having bounded distortion. This subject of
distortion will not be discussed here. The reader may consult [BLi, Chapter
13] for a complete description, that includes the results of [OS].

The space X(G) (or X(M)) was basically intended to be a counterexample
to the unconditional sequence problem C, but it quickly appeared to have a
very radical property: when seeing Gowers’ preprint about X(G), W.B. John-
son observed that the space had the additional property that for every pair
(Y, Z) of subspaces, we have that inf ‖y − z‖ is zero, when y and z run in
the unit spheres of Y and Z. This means that Y and Z can never form a
topological sum; in other words, every subspace of X(G) is indecomposable.
The paper [GM1] therefore introduced the first example Xgm of a hereditarily
indecomposable space (in short: HI), thus solving negatively question D. As it
happens sometimes, question D was solved by proving much more than asked.
Obviously, a HI space cannot contain an infinite unconditional sequence, since
the span of such a sequence is clearly decomposable (in odd and even, for ex-
ample), and Xgm of course solves negatively question C. Finding examples of
indecomposable spaces that are not HI took some more time (the shift space
Xs mentioned later in this introduction is such an example; other examples are
given by non-HI duals of HI spaces, as given by Ferenczi or Argyros-Felouzis,
see below); at this point of the story, it seems easier to get a HI space than a
genuine indecomposable space (one that is not HI)!

The HI spaces are very rigid, in the following sense: every bounded linear
operator T on a complex HI space X has the form λId + S, where λ ∈ C and
S is a strictly singular operator. Let us recall that a famous open question
is the existence of a Banach space X such that every operator on X would
have the form λId + K, with K compact. The existence of HI spaces is far
from solving this “λId + K problem”, but it does give comparable spectral
consequences, because it is known that strictly singular operators allow to
extend the classical Riesz spectral theory of compact operators (see [LT, 2.c]
for example). It follows that operators on a complex HI space X have a discrete
spectrum, consisting of a converging sequences of eigenvalues, together with
the limit (that ought to be λ, if T = λId + S); if T is Fredholm on a HI space
X, it has always index 0 (this result also holds in the real case). This implies
easily that a HI space is not isomorphic to any proper subspace, thus solving
negatively question A (it solves exactly the question from Banach’s book,
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but the question had become more popular under the weaker form that asks
whether hyperplanes are isomorphic to the whole space; as for question D, this
weaker form was solved by proving much more). These relatively easy spectral
consequences of the HI property are presented in section 5; the interested
reader can jump directly to that section.

Gowers has constructed several further examples; the most striking is a space
Xg not containing any reflexive subspace, and containing no c0 or `1 [G3]; this
is a counterexample to question E. The construction is partly similar to that
of [GM1], but in a much more difficult context which requires new ideas; I like
to think that this example Xg is a sort of generalized James-tree space (see
[J3,LS]), where every vector in the unit ball of X∗ is a potential node for the
tree. To some extent, constructing this space Xg is like building Xgm on this
abstract tree.

It was very tempting to relate the HI property of a Banach space X to the
fact that X does not contain any infinite unconditional sequence. This was
done by T. Gowers in his beautiful “dichotomy Theorem” [G5], see also [G6].

Let X be an arbitrary infinite-dimensional Banach space. Either X contains
an infinite unconditional sequence, or X contains a HI subspace.

For proving this theorem, Gowers has found a very satisfactory way to extend
Ramsey theory to a linear setting. This result also explains why it is not so
surprising to get a HI space when one simply looks for a space with no infinite
unconditional sequence. It also gives a profound reason for introducing HI
spaces. Some questions about general Banach spaces can then be divided into
two cases: the “usual” case, where unconditional bases exist, and the “exotic”
case, where we may find a HI space in the middle of our road. This dichotomy
was the missing piece for the solution of question B, for which Komorowski
and Tomczak had proved the following result: a Banach space X with uncon-
ditional basis, non trivial type and not containing `2, contains a subspace not
isomorphic to X (see [KT,KTb]). They deduce the following partial solution
to question B: if a homogeneous Banach space X contains an infinite uncondi-
tional sequence, then X is isomorphic to `2. Now, by the dichotomy theorem,
a homogeneous space X must contain an unconditional sequence: otherwise,
it contains a HI subspace, hence it is HI itself by homogeneity, but clearly a
HI space is not homogeneous! Combining [KT] and [G5] solves question B:
every homogeneous space X is isomorphic to `2.

As we have said, every operator on a complex HI space X has the form λId+S,
where S is strictly singular. Ferenczi [F2] proved a more general result (which
was previously checked by hand in [GM1] for the specific example Xgm): every
operator from a subspace Y ⊂ X to X has the form λi + S, where i is the
inclusion map and S is strictly singular. Actually, this property of a complex
Banach space X is clearly equivalent to the fact that X is HI. One could
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be fully satisfied to have examples of spaces that have as few operators as
possible. However, there are other questions which assume some structure for
the space and then ask whether further structure follows. Roughly speaking,
the results of [GM2] state that given an algebra of maps satisfying certain
conditions, one can replace the multiple of the inclusion map in the state-
ment above by the restriction to Y of some element of the algebra. These
examples illustrate the following principle: you will find inside the space con-
structed in this way, nothing more than what you decide to put at the start;
we obtain in this way a space Xs with an isometric right shift S but no in-
finite unconditional sequence; every operator T ∈ L(Xs) is a perturbation of
an absolutely summable series of iterates of the shift S and its adjoint. In
this space all complemented subspaces are trivial (finite-dimensional or finite-
codimensional), which makes this space a bizarre example of a prime space
(a Banach space isomorphic to every infinite-dimensional complemented sub-
space; here the shift and its iterates provide isomorphisms between Xs and the
finite-codimensional subspaces). Recall that the “normal” known prime spaces
are c0, `p, for p ∈ [1, +∞) (see [Pe]) and also `∞ (see [L1]). These results
from [GM2] are described in section 9. This paper [GM2] also gives a space
isomorphic to its subspaces of codimension two but not to its hyperplanes and
a space isomorphic to its cube but not to its square (Gowers had previously
given in [G4] the first example of this cube-not-square phenomenon).

The shift space Xs provides a good illustration for Gowers’ dichotomy theorem.
Indeed, this space Xs does not contain any infinite unconditional sequence;
but Xs is not HI, because it has a non trivial operator, the shift S; one can also
see directly that for every λ ∈ C with modulus one, we may find a subspace
Yλ of X on which the shift S is almost equal to λId (we generate Yλ from a
sequence of almost eigenvectors of S, corresponding to the spectral value λ);
when µ 6= λ, the two subspaces Yλ and Yµ can be chosen to form a topological
direct sum, and this explains why X is not HI. By Gowers’ dichotomy theorem,
every subspace of Xs must contain a further subspace which is HI. One can
check that the subspaces Yλ are examples of such HI subspaces.

Let us mention further results in the HI direction. Kalton [Ka] has constructed
an example of a quasi-Banach space X with the very strange property that
there is a vector x 6= 0 such that every closed infinite-dimensional subspace
of X contains x. It follows that this quasi-Banach space does not contain any
infinite basic sequence. This example is related to an example of Gowers [G2]
of a space with unconditional basis not isomorphic to its hyperplanes; Kalton’s
construction uses the technique of twisted sums together with the properties of
the space in [G2]. Argyros and Deliyanni [AD] constructed HI spaces without
using Schlumprecht’s space, by a technique called mixed Tsirelson’s norms ;
their example is also an asymptotically-`1 space. V. Ferenczi [F1] constructed
a uniformly convex HI space, by adding to the tools from [GM1] the tool of
complex interpolation for families of Banach spaces developed by Coifman,
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Cwikel, Rochberg, Sagher and Weiss. P. Habala [Ha] constructed a space such
that no infinite-dimensional subspace has the Gordon-Lewis property (this
property is a weak form of unconditional structure for a Banach space), and
Ferenczi-Habala unite in [FH].

Ferenczi showed that the dual of the example Xgm in [GM1] is also HI and
that every quotient of this space is still HI [F4]. This type of question is not yet
clarified in general. What is clear is that the dual of a reflexive indecomposable
space is indecomposable; therefore, if every quotient of a reflexive space is HI,
then every subspace of a quotient is indecomposable and this property clearly
passes to the dual. However Ferenczi [F4] gave an example of a HI space such
that the dual is not HI. This phenomenon was widely extended by Argyros
and Felouzis [AF], who showed that for every p > 1, the space `p (or c0 when
p = +∞) is isomorphic to a quotient of some HI space Xp (the corresponding
result is obviously false for `1). The dual space X∗

p , which contains `q, is
clearly not a HI space. This sheds more light on the non stability of the HI
property under duality. Argyros and Felouzis obtain this quotient result as
a consequence of a factorization theorem through HI spaces: every operator
which is thin in some sense factors through a HI space. This is, in a way,
a very perverse result, as one is normally trying to factor operators through
nice spaces, like what Davis, Figiel, Johnson and PeÃlczyński did in [DFJP]
for weakly compact operators! A sketch for the results of [AF] is presented in
section 8. A variant of the interpolation method of [DFJP] will be used for the
general factorization result. Obtaining `p as quotient of a HI space requires a
clever construction which is also sketched in section 8.

1.1 Other spaces with few operators

As we have said, complex HI spaces have few operators. But HI spaces are
not the first examples of spaces that have, in some sense, few operators, and
there is a series of works on this theme. The space constructed in [GM1]
could be regarded as the infinite-dimensional analogue of the random finite-
dimensional spaces introduced by Gluskin [Gl1,Gl2]. It was shown by Szarek,
that operators on Gluskin’s spaces all approximate, in a certain precise sense,
multiples of the identity. Although the proofs in [GM1] and [Gl1] are very
different, there are some points of contact, such as the idea of constructing
a unit ball with just a few “spikes”. Since these spikes must, under a well-
bounded operator, map to other spikes, if they can be chosen in a very non-
symmetrical way, a well-bounded operator is forced to approximate a multiple
of the identity. Gluskin achieved the lack of symmetry by choosing the spikes
randomly, whereas in [GM1] they were constructed directly (in the dual space)
using some infinite (and not too difficult) combinatorics.

Gluskin’s spaces were “glued” together to produce several infinite-dimensional
examples of interest by, amongst others, Bourgain [Bo], Szarek [Sz1,Sz2],
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Mankiewicz [Ma] and Read [Re]. Some of these gluing methods were not at
all straightforward. Several of the properties of these spaces are shared by the
spaces constructed in [GM1] and [GM2]. For instance, Bourgain’s example is
a complex Banach space X such that X and its opposite space X are not
isomorphic complex spaces. Szarek’s example is a real reflexive Banach space
X that does not admit a complex structure (because X does not have any
operator T such that T 2 = −Id). The complex HI space from [GM1] has
Bourgain’s property, while its real version satisfies Szarek’s conclusion (but
these two facts are not stated in [GM1]).

A related direction is the search for examples in Banach algebras. One partic-
ular question is the existence of non-zero homomorphisms from the algebra of
bounded linear operators L(X) to C, or equivalently of closed ideals I such
that L(X)/I is C, or more generally a commutative Banach algebra. The result
on the “shift space” in [GM2] can be compared to those of Mankiewicz [Ma]:
we have in [GM2] another example of a complex Banach space such that there
exists a (unital) algebra homomorphism from L(X) into a commutative Ba-
nach algebra. It follows (as is recalled in [Ma]) that X is not isomorphic to any
power Y n of a Banach space Y , for any n ≥ 2 (see also Figiel [Fi] for an early
related example of a reflexive space not isomorphic to its square). Indeed, if ϕ
is a non zero multiplicative functional from L(X) to C, and if X = Y n, there
is a natural homomorphism i from Mn to L(X). But then ϕ◦ i would be a non
zero multiplicative functional on Mn, which is not possible, as soon as n ≥ 2.

Let us mention two results that have little in common with the present paper,
apart from their statements. Kalton and Roberts [KR] have given results for
quasi-Banach spaces. They constructed subspaces of Lp, 0 < p < 1, where
the only continuous linear operators are the multiples of the identity. She-
lah [Sh] has constructed examples of non-separable Banach spaces for which
every bounded linear operator has the form λId + S, where S has separable
range. The proof used some heavy machinery from logic (diamond axiom, or
V = L) which was avoided later in [ShS]. In the fall of 1999, Argyros and
Tolias announced that they can obtain the same conclusion as Shelah, from
a space Xa that is a relative of the HI family (see [AT]). This new example
lies somewhere between the spaces from [AD] and [G3]. As in the case of the
James tree space, the space Xa is a space of sequences indexed by a tree. The
dual X∗

a is non separable, but every operator on X∗
a has the form λId + S,

where S has separable range.

At the end of this introduction, I must confess that part of this paper has
been realized by the well-known cut-and-paste technique, applied to the two
papers [GM1] and [GM2]; as a result, some portions of the present paper may
sound curiously too English to the reader: they were stolen from T. Gowers’
writing of our papers.
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2 Ancestors

In order that the reader sees where our methods come from, we have to say a
few words about the ancestor of this story, namely the space T constructed by
Tsirelson [Ts] (see also [FJ,CS]). Let us first fix some notation about sequence
spaces. Let c00 denote the space of finitely supported scalar sequences. Given
two subsets E, F ⊂ N, we say that E < F if max E < min F . Let (en)∞n=0 be
the standard basis of c00. Given a vector x =

∑+∞
n=0 xnen its support, denoted

supp(x), is the set of n such that xn 6= 0. If x, y ∈ c00, we write x < y when
supp(x) < supp(y). We also write n < x when n ∈ N and n < min supp(x). If
x1 < . . . < xn, then we say that the vectors x1, . . . , xn are successive.

Let C > 1 be fixed and let B∗
T be the smallest convex subset of B(c0) ∩ c00

that contains ±ei for each i ≥ 0 and such that

x∗1 + · · ·+ x∗n ∈ C B∗
T

whenever x∗1, . . . , x
∗
n are successive in B∗

T and n < x∗1. The Tsirelson norm is
then defined on c00 by

‖x‖T = sup{|x∗(x)| : x∗ ∈ B∗
T}

and T is the completion of c00 under this norm. This point of view agrees
with Tsirelson’s original presentation. A dual formulation, given by Figiel
and Johnson [FJ], introduces the Tsirelson norm as the smallest norm on c00

satisfying ‖ei‖ = 1 for every i ≥ 0 and

‖x1 + · · ·+ xn‖ ≥ 1

C

n∑

i=1

‖xi‖

for every n ≥ 2 and all n < x1 < . . . < xn. The original choice of C was C = 2;
very interesting effects can be achieved by varying the constant C and mixing
the norms obtained in this way (see [AD] as one example). Recall briefly why T
is a counterexample to the `p-containment problem: since ‖x1+· · ·+xn‖ ≥ 1

2
n

whenever n norm one vectors satisfy n < x1 < . . . < xn, it is quite clear that
among `p spaces, only `1 can embed into T ; Tsirelson excluded this possibility
by showing that T is reflexive; Figiel and Johnson gave a quantitative proof,
which is closer to the spirit of this paper; they showed that T does not contain
a (9/8)-isomorph of `1 (see also [LT, 2.e.1]). But James [J2] proved (by the
well-known James’ blocking technique) that if X contains an isomorph of `1,
then X contains a (1+ε)-isomorph of `1 for every ε > 0. Therefore T does not
contain `1, and as a consequence, T does not contain any subspace isomorphic
to an `p space or to c0.
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A second example, extremely important for us, is the space S constructed by
Schlumprecht [Sc], which is a very useful variation of the construction of T .
The constant factor C in Tsirelson’s construction

x∗1 + · · ·+ x∗n ∈ C B∗
T

is replaced by a variable value f(n) depending upon the number n of vectors
in the sum; this function f should tend to infinity, but slowlier than any power
nα, α > 0. Schlumprecht chooses f(n) = log2(n + 1). Let B∗

S be the smallest
convex subset of B(c0) ∩ c00 containing ±ei for each i ≥ 0 and such that

x∗1 + · · ·+ x∗n ∈ f(n) B∗
S

whenever x∗1, . . . , x
∗
n are successive in B∗

S and n ≥ 2. The norm is then defined
on c00 by

‖x‖S = sup{|x∗(x)| : x∗ ∈ B∗
S}

and S is the completion of c00 for this norm. It is useful to observe that B∗
S is

obtained as the union of an increasing family of convex sets (Bn)n≥0, where
B0 is the intersection of c00 with the unit ball of `1, and Bn+1 is obtained from
Bn by adding all vectors x of the form x = f(m)−1(x1 + · · ·+xm) with m ≥ 2
arbitrary and x1, . . . , xm successive elements of Bn, and letting Bn+1 be the
convex hull of this extended set. This remark helps to show several properties
of the space, for example the fact that the unit vector basis is 1-unconditional
in S, by checking this inductively for ‖ . ‖n = sup{|x∗(x)| : x∗ ∈ Bn}.

An alternative description of S defines the norm as the solution of some im-
plicit equation. We could say that the Schlumprecht norm on c00 is the smallest
norm ‖ . ‖ on c00 such that the unit vector basis is normalized and

‖x1 + · · ·+ xn‖ ≥ (
n∑

i=1

‖xi‖)/f(n)

for every integer n ≥ 2 and every sequence of n successive vectors in S. In
other words, the Schlumprecht norm is the solution to the implicit equation

‖x‖S = max
(
‖x‖c0 , sup{ f(n)−1(

n∑

i=1

‖xi‖S) :

n ≥ 2, x =
n∑

i=1

xi, x1 < . . . < xn}
)
.
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3 Inevitable behaviours

In order to support some intuition for the notion of inevitable set (formally
defined in the next section), we recall some easy facts, together with a few
words about Schlumprecht’s space S. We begin by a well known blocking
procedure for constructing `n

1 , originating in James [J2].

Lemma 1 Let n ≥ 2 be an integer and 0 < ε < 1; suppose that N is an
integer that can be written as N = nk for some k ≥ 1, and let (xi)

N
i=1 be norm

one vectors in a normed space X, such that

‖
N∑

i=1

±xi‖ ≥ (1− ε/n)kN = (n− ε)k

for all signs ±1. There exists a sequence of n blocks y1, . . . , yn from (xi)
N
i=1

that is (1− ε)−1-equivalent to the unit vector basis of `n
1 .

Let us briefly sketch the proof: we consider successive generations of blockings,
the first one being the obvious blocks xi of length one, i = 1, . . . , nk, and for
` = 0, . . . , k − 1 the next generation (numbered ` + 1) consists of nk−`−1 new
vectors z =

∑n
j=1 εjzj, that are blocks of n consecutive elements z1, . . . , zn

from the preceding generation, with some signs εj = ±1 chosen such that
‖∑n

j=1 εjzj‖ is minimal. The last generation is just one single block using all
nk vectors. If on our way from ` = 0 to ` = k we never encounter an inequality
of the form

‖
n∑

j=1

εjzj‖ ≥ (n− ε) max
1≤j≤n

‖zj‖,

we get at the end a choice of signs (εi)
nk

i=1 such that ‖∑N
i=1 εixi‖ < (n − ε)k,

which contradicts the hypothesis. We must therefore get at some stage a family
of n blocks (zj) that give, after we rescale them into (yj)

‖yj‖ ≤ 1, j = 1, . . . , n; ‖
n∑

j=1

±yj‖ ≥ n− ε

for all signs. It is easy to conclude, using simple convexity arguments, that
this sequence (yj) is well equivalent to the unit vector basis of `n

1 .

Let us give an application of this lemma. Suppose that X is a Banach space
with basis, and that f is a non-decreasing function on [1, +∞) that tends to
+∞ at infinity, but slowlier than any power function tα (α > 0, for example
f(t) = log t). Suppose that for every N ≥ 2, all sequences of successive norm
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one vectors x1, . . . , xN in X satisfy ‖∑N
i=1±xi‖ ≥ N/f(N). This is of course

true for `1, or for an Orlicz sequence space `M with M(t) ∼ t/ log(1/t) as
t → 0; it is also true, and more interesting in our context, for the Tsirelson
space T or Schlumprecht’s space S.

If ε > 0 and n ≥ 2 are given, we can choose k large enough so that f(nk) ≤
(1−ε/n)−k. If N = nk, we are in a position to apply Lemma 1. It follows easily
that every subspace Y of X contains almost isometric copies of `n

1 , spanned
by small perturbations of successive vectors. We can describe a scheme L1 for
getting subsets of the unit sphere of X which intersect every subspace, namely
we can describe a decreasing sequence of sets Ln

1 that intersect every subspace:
let Ln

1 consist of all norm one vectors x ∈ X such that there exist successive
vectors y1 < . . . < yn that are (1 + 2−n)-equivalent to the unit vector basis of
`n
1 , and

‖x− 1

n

n∑

i=1

yi‖ < 2−n.

Then Ln
1 intersects every subspace of X. Of course the intersection of the

classes (Ln
1 )n≥1 is in general empty; what we call L1 is not a class of vectors,

but a symbolic notation that is meant to represent the “idea” of any Ln
1 with

large n. In the present case, we say that the scheme L1 is inevitable in X.

The next natural thing to do, if we want to know whether X contains, not
only `n

1 s, but also `1, is to look for sums x + y, where x is in Lm
1 and y in

some Ln
1 , with n much larger than m and much larger than the “size” of x;

if (x + y)/‖x + y‖ is again in some Lk
1, with k large, then we are in the right

direction for building `1. Let us write symbolically this set of vectors x + y,
with x ∈ Lm

1 , y ∈ Ln
1 , as Lm

1 ∗ Ln
1 , and let the notation L1 ∗ L1 represent the

scheme limm limn Lm
1 ∗Ln

1 . This scheme L1∗L1 is related to the limit behaviour
of the norm of sums x+y, where a first large m is given, with a vector x ∈ Lm

1 ,
and where n is then chosen much larger than m and than the “size” of x, with
a vector y ∈ Ln

1 ; the notion of size of a vector x as to be precised: it could
be for example the `1-norm of x, or the product of the `∞-norm of x by the
smallest N such that supp(x) ≤ N . When the scheme L1 is inevitable, then
obviously L1 ∗ L1, L1 ∗ L1 ∗ L1, and so on, are also inevitable (extending here
the use of the word inevitable from subsets of the unit sphere to bounded sets
A ⊂ X on which the norm function is bounded below by some κ > 0). When
we look for `1, our first step is to check whether the schemes 2L1 and L1 ∗ L1

have something in common. Indeed, when x and y are blocks of a given `1

basis, with x ∈ Lm
1 , y ∈ Ln

1 , x < y and m < n, then 1
2
(x+ y) belongs to L

k(m)
1 ,

with k(m) → +∞.

This is precisely this first step that goes wrong with T . When we look for
the scheme S2 = L1 ∗ L1, we get a new inevitable scheme, distinct from 2L1.

13



Indeed, the Figiel-Johnson argument for proving that T does not contain `1

shows that the inevitable set Lm
1 ∗ Ln

1 is well separated from the inevitable
sets 2 Lk

1, when n is very large and k > 20, say. We may go further, and look
for S3 = L1 ∗ L1 ∗ L1, and so on; in T , we do not seem to get much more by
having this infinity of possibilities; what we do get is that, in some sense, we
cannot get more from T than what was input at the start: if we have xj ∈ L

nj

1 ,
j = 1, . . . , k, with nj+1 very large with respect to the “size” of x1, . . . , xj, then
(taking the defining constant C equal to 1/2)

k

2
≤ ‖

k∑

j=1

xj‖ ≤ (1 + ε)
k

2
.

Let us turn now to Schlumprecht’s space S. Since f(n) = log2(n + 1) grows
slowlier than any power of n, we get `n

1 s everywhere, hence the scheme L1

is inevitable in S, and so are the next schemes Sk, k ≥ 2. But now we get
something new and very interesting.

Lemma 2 Schlumprecht’s lemma. If x1, . . . , xk is a successive sequence in S,
such that xj ∈ L

nj

1 for j = 1, . . . , k, with nj+1 very large compared to ε−1, to
the size of x1, . . . , xj and to n1, . . . , nj, then

k

f(k)
≤ ‖x1 + · · ·+ xk‖ ≤ (1 + ε)

k

f(k)
.

A sequence such as x1, . . . , xk will be called a rapidly increasing sequence (of
`n
1 s), in short RIS. Schlumprecht’s Lemma states that for a RIS, we almost

get an equality between the norm of the sum ‖∑k
i=1 xi‖ and the lower bound

k/f(k) that was imposed by the definition of the space. Recall the observation
made before the statement of the Lemma, that implies that for every k ≥ 1
and every subspace Y ⊂ S, we may find a RIS of length k consisting of small
perturbations of vectors in Y . In other words, the normalized sums of RIS of
length k form a nearly inevitable set Ak in S.

Since f(k) tends to infinity with k, it is clear that we get now infinitely many
different inevitable classes in S. This was the first known example of this
situation, and it was used (implicitly) by Schlumprecht in order to show that
S is arbitrarily distortable. We obtain in this way what is for us the most
important feature of Schlumprecht’s example: on one hand, we can find `n

1 in
every subspace; on the other hand, we can always combine very different `ni

1

in a RIS and get a behaviour arbitrarily far from the `1 behaviour. There is
an endless interplay between these classes of vectors: we see that Sk deviates
more and more from the `k

1 behaviour; if x1, . . . , xk is as above then clearly it
is not a good `k

1 basis, since f(k) can get as big as we want, but by Lemma 1

it can be blocked to give a good `
√

k
1 , say. Applying this blocking procedure
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with successive RIS of increasing lengths kj will give a new RIS built from

pieces in L
√

kj

1 ; the sum of this RIS can again be blocked to `n
1 , and so on. . .

This remark is crucial for the construction of the example Xgm in [GM1], and
it is used intensively in section 7.

We can precise what we mean by “well separated” inevitable sets, in the
framework of S. Schlumprecht’s Lemma does not only say that RIS deviate
more and more from the `n

1 behaviour, but it gives a precise estimate for the
norm of the sum. With this information, it is possible to associate a class
of functionals that almost norm the sums of RIS. For every n > 1, let An

denote the set of normalized vectors which are multiple of the sum of a RIS
sequence of length n; we define a class A∗

n of functionals on S, consisting of all
functionals of the form f(n)−1(x∗1 + · · · + x∗n), with ‖x∗i ‖ ≤ 1, i = 1, . . . , n. If
x ∈ An, then we may easily find x∗ ∈ A∗

n such that x∗(x) > 1/2. Indeed, this
vector x has the form c n−1f(n)

∑n
i=1 xi, where (xi) is a RIS and 1

2
< c ≤ 1

(apply Lemma 2 with ε < 1); we select for each i a norming functional x∗i
for xi, with supp(x∗i ) = supp(xi), and we set x∗ = f(n)−1(x∗1 + · · · + x∗n). We
have ‖x∗‖ ≤ 1 by the definition of S, and x∗(x) ≥ c > 1/2. Furthermore, it
can be shown (see [GM1,OS], or [BLi, Theorem 13.30]) that |x∗m(xn)| is small
–depending upon min(m,n)– when x∗m ∈ A∗

m, xn ∈ An and m,n are very
different. This gives a weak form of orthogonality, which is what we name
almost biorthogonal inevitable system in the next section.

4 Coding with inevitable sets

Let X be a normed space and let S(X) be its unit sphere. We shall say that a
subset A ⊂ S(X) is inevitable if A ∩ S(Y ) 6= ∅ for every infinite-dimensional
(not necessarily closed) subspace Y ⊂ X. It is sometimes more convenient
to work with the notion of a nearly inevitable set A ⊂ S(X), that has the
property that inf{d(y,A) : y ∈ Y } = 0 for every infinite-dimensional subspace
Y ⊂ X.

When X has a basis, it is easy to check that every subspace contains a further
subspace which is spanned by a perturbation of a block sequence (see [LT,
1.a.11]). It follows that A is nearly inevitable in X when the above condition
is true for Y an arbitrary block subspace. Observe that if we replace a nearly
inevitable set A by the enlargement Aε consisting of all x ∈ S(X) such that
dist(x,A) < ε, we get an inevitable set Aε.

The most obvious example of an inevitable set is the unit sphere S(Y ) of a
finite-codimensional subspace Y . On the sphere of `2, I would not be able
to show any interesting example that can be described and proved inevitable
using only pre-’90s ideas. The discussion of the preceding section shows that
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in a space with basis, close to `1 in the sense above, all the classes Ln
1 are

inevitable; we also said that in Schlumprecht’s space S, we can even find a
sequence of distinct inevitable sets.

A key observation made in [GM1] is that if a space X contains infinitely
many inevitable sets that are all well disjoint from one another, then these
can be used to construct an equivalent norm on X such that no sequence is
C-unconditional in this norm. The idea is to use a certain coding, that has
some similarity with what was done in [MR] for getting a statement about
every subsequence of a given sequence; this is extended now to general vectors
(general, as opposed to vectors from a given weakly null sequence); here, the
coding action will be related to the numbering of a sequence of inevitable sets,
while the coding action in [MR] was simply related to the numbering of the
given sequence; we shall get in this way a statement about every subspace of a
given space. Let us explain this obvious coding principle in a simplified setting:
let ∆ be a countable set, and let (Bn)n≥0 be a sequence of disjoint non empty
subsets of ∆; a coding function is an injective map σ, from the countable
set of finite sequences of elements of ∆, to the natural numbers; a coding
number N = σ(d1, . . . , dm) is thus associated in a 1 − 1 way to every finite
sequence (d1, . . . , dm) of elements of ∆, where m varies in N; the coding action
builds a tree of finite sequences, by saying that (d1, . . . , dm, d) is a successor
of (d1, . . . , dm) if and only if d belongs to BN with N = σ(d1, . . . , dm), and
saying that (d1, . . . , dm) is a node of the tree if (d1, . . . , dj) is a successor of
(d1, . . . , dj−1) for j = 2, . . . , m. If (d1, . . . , dm) and (e1, . . . , en) are two nodes
of this tree and if dj, ek belong to the same set B`, then it follows that j = k
and that d1 = e1, . . ., dj−1 = ej−1. If C is a class of subsets of ∆ such that
every C ∈ C intersects every set Bn, then clearly, for every C ∈ C we can
construct arbitrarily long nodes (d1, . . . , dn) such that dj ∈ C for j = 1, . . . , n.
In this way, we have a tool that can affect every C ∈ C. Below, ∆ will be a
rich enough countable subset of the unit ball of the dual of a separable Banach
space X and each C ∈ C will be a family of functionals which are norming for
some subspace YC of X.

Let A1, A2, . . . be a sequence of subsets of the unit sphere of a normed space X
and let A∗

1, A
∗
2, . . . be a sequence of subsets of the unit ball of X∗. We shall say

that A1, A2, . . . and A∗
1, A

∗
2, . . . are an almost biorthogonal inevitable system

with constant δ > 0 if the following conditions hold for every integer n ≥ 1:

(i) the set An is inevitable;
(ii) for every x ∈ An there exists x∗ ∈ A∗

n such that x∗(x) > 1/2;
(iii) for every m ≥ 1 with n 6= m, every x ∈ An and every x∗ ∈ A∗

m, we have
|x∗(x)| < δ.

The definition is interesting only when δ > 0 is small. It is not at all obvious
that any Banach space contains an almost biorthogonal inevitable system with
constant δ < 0.01 say. As far as I know, no example was known before the

16



Schlumprecht space S appeared. The main result of this section is the following
theorem, whose proof is taken almost verbatim from [GM1].

Theorem 3 Let r be an integer > 9 and let X be a separable normed space
containing an almost biorthogonal inevitable system with constant δ = r−2.
Then there is an equivalent norm on X such that no sequence is r/9-uncon-
ditional.

PROOF. We shall write the proof in the real case. Let ‖.‖ be the original
norm on X and let A1, A2, . . . and A∗

1, A
∗
2, . . . be the almost biorthogonal in-

evitable system with constant δ = r−2. For each n ≥ 0 let Z∗
n be a countable

subset of
⋃

0<λ<1 λA∗
n such that for every x ∈ An there exists x∗ ∈ Z∗

n with
0 < x∗(x) − 1/2 < δ. Obviously the almost orthogonality relations (iii) still
hold between the sets Z∗

m and An when m 6= n. Let ∆ =
⋃∞

n=1 Z∗
n. Next, let σ

be an injection to the natural numbers from the countable collection of finite
sequences of elements of ∆.

We shall now define a collection of functionals which we call special functionals.
A special sequence of functionals is a sequence of the form z∗1 , z

∗
2 , . . . , z

∗
r , where

z∗1 ∈ Z∗
1 and, for 1 ≤ i < r, z∗i+1 ∈ Z∗

σ(z∗1 ,...,z∗i ). A special functional is simply
the sum z∗ = z∗1 + · · · + z∗r of a special sequence of functionals. We shall let
Γ stand for the collection of special functionals. Let us define an equivalent
norm |||.||| on X by

|||x||| = max(‖x‖, r sup{|z∗(x)| : z∗ ∈ Γ}).

Let x1, x2, . . . be any sequence of linearly independent vectors in X. We shall
show that it is not r/9-unconditional in the norm |||.|||. We shall do this by con-
structing a sequence of vectors z1, . . . , zr, generated by x1, x2, . . . and disjointly
supported with respect to these vectors, with the property that

r |||
r∑

i=1

(−1)izi||| < 9 |||
r∑

i=1

zi|||.

Let X1 be the algebraic subspace generated by (xi)
∞
i=1. Since A1 is an inevitable

set, we can find z1 ∈ A1∩X1. This implies that z1 has norm 1 and is generated
by finitely many of the xi. Next we can find z∗1 ∈ Z∗

1 such that 0 < z∗1(z1) −
1/2 < δ. Now let X2 be the algebraic subspace generated by all the xi not
used to generate z1. Since Aσ(z∗1 ) is inevitable, we can find z2 ∈ Aσ(z∗1 ) ∩X2 of
norm 1. We can then find z∗2 ∈ Z∗

σ(z∗1 ) such that 0 < z∗2(z2)− 1/2 < δ.

Continuing this process, we obtain sequences z1, . . . , zr and z∗1 , . . . , z
∗
r with the

following properties. Let n1 = 1, and ni+1 = σ(z∗1 , . . . , z
∗
i ) for 1 ≤ i < r. First,

zi ∈ Ani
(thus ‖zi‖ = 1) for each i. Second, z∗i ∈ Z∗

ni
for each i (i.e. z∗1 , . . . , z

∗
r is
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a special sequence of functionals). Third, z∗i (zi) ∼ 1/2 for each i. Fourth, since
σ is an injection, the z∗i belong to different Z∗

ns, so |z∗i (zj)| < δ when i 6= j
since z∗i ∈ Z∗

ni
and zj ∈ Anj

. Let us now estimate |||∑r
i=1 zi|||. Since z∗1 , . . . , z

∗
r

is a special sequence, the triple norm is at least

r
( r∑

i=1

z∗i
)( r∑

i=1

zi

)
> r(r/2− δr2) = r(r/2− 1) > r2/3

(since r > 6). On the other hand, if (w∗
i )

r
i=1 is any special sequence, let t be

the maximal index i such that w∗
i = z∗i (or let t = 0 if w∗

1 6= z∗1). Then

∣∣∣
r∑

i=1

(−1)iw∗
i (zi)

∣∣∣ ≤
∣∣∣

t∑

i=1

(−1)iw∗
i (zi)

∣∣∣ + |w∗
t+1(zt+1)|+

r∑

i=t+2

|w∗
i (zi)|.

Since σ is an injection, w∗
i and z∗j are chosen from different sets Z∗

n whenever
i 6= j or i = j > t + 1. By property (iii) this tells us that |w∗

i (zj)| < δ. In
particular,

∑r
i=t+2 |w∗

i (zi)| < δr = 1/r. When i ≤ t we know that w∗
i = z∗i ,

hence |1/2− w∗
i (zi)| ≤ δ, so

∣∣∣∑t
i=1(−1)iw∗

i (zi)
∣∣∣ ≤ 1/2 + t/r2. It follows that

∣∣∣
r∑

i=1

(−1)iw∗
i (zi)

∣∣∣ ≤ 1/2 + 1 + 2/r < 2.

We also know that
∑

i6=j |w∗
i (zj)| ≤ δr2 = 1. Putting all these estimates to-

gether, we find that

r sup
w∗∈Γ

|w∗(
r∑

i=1

(−1)izi)| ≤ 3r.

Finally, by the triangle inequality, ‖∑r
i=1(−1)izi‖ ≤ r and |||∑r

i=1(−1)izi||| ≤
3r, from which it follows that the sequence x1, x2, . . . was not r/9-unconditional
in the equivalent norm.

5 HI spaces, spectral properties and consequences

Definition 4 Let X be an infinite-dimensional Banach space, real or complex.
We say that X is indecomposable if X cannot be written as the topological
direct sum of two infinite-dimensional closed subspaces Y1 and Y2. We say
that X is hereditarily indecomposable (in short, HI) if every closed infinite-
dimensional subspace Y of X is indecomposable, that is if no subspace Y of X
can be written as the topological direct sum of two infinite-dimensional closed
subspaces Y1 and Y2 of X.
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Obviously, if X is HI then every subspace Y ⊂ X is HI. It is easy to see that
a Banach space X is HI if and only if for all subspaces Y and Z of X, we have

inf{‖y − z‖ : y ∈ Y, z ∈ Z, ‖y‖ = ‖z‖ = 1} = 0.

We see that X is HI when the “angle” between any two subspaces Y and Z
of X is equal to 0. Since every Banach space contains a subspace with basis,
it is formal from the existence of any HI space that there exist HI spaces
with monotone basis; the example Xgm in [GM1] has a basis, and it is also
reflexive; much more difficult is another example due to Gowers [G3] of a space
Xg without any reflexive subspace, and not containing c0 or `1; it follows by
James [J1] that Xg does not contain any subspace with unconditional basis,
hence by the dichotomy theorem, Xg must contain a HI subspace Yg; of course
Yg has no reflexive subspace; saying that

there exist a HI space Yg with no reflexive subspace

seems to be a clean way to present things, but [G3] left open the point of
deciding whether the space Xg is already HI.

Definition 5 A bounded linear operator T ∈ L(X, Y ) is strictly singular
when there is no infinite-dimensional subspace X0 ⊂ X such that T restricted
to X0 is an into isomorphism; in other words, for every X0 and ε > 0 there
exists x ∈ X0 such that ‖Tx‖ < ε ‖x‖.

It is standard to deduce that when T is strictly singular, we can construct in
any subspace X0 of X a further subspace X1 ⊂ X0, spanned by a normalized
basic sequence, such that ‖T|X1‖ ≤ ε (see [LT, 2.c.4]). Observe that X is HI
if and only if for every subspace Y ⊂ X, the quotient map πY : X → X/Y is
strictly singular.

Let X be a complex Banach space and let T be a bounded linear operator
on X. Let ΩT be the set of all µ ∈ C such that there exist c > 0 and a
finite-codimensional subspace Z ⊂ X such that ‖Tx − µx‖ ≥ c ‖x‖ for every
x ∈ Z. Clearly ΩT is open in C and contains the complement of the spectrum
Sp(T ) of T . Saying that µ ∈ ΩT implies that ker(T−µId) is finite-dimensional
and that the range of T − µId is closed. This indicates that T1 = T − µId is
semi-Fredholm when µ ∈ ΩT , with generalized index ind(T1) = dim(ker T1)−
codim(T1(X)) finite or equal to −∞.

Let FT = C \ ΩT ; it is not difficult to show that this closed subset of Sp(T )
is not empty. Let us give a rather simple argument for this. It is well known
that U ∈ L(X) is Fredholm if and only if the class Û of U in the quotient
algebra L(X)/K(X) is invertible (where K(X) denotes the ideal of compact
operators); this quotient Banach algebra (the Calkin algebra) is not trivial
when X is infinite-dimensional. It follows that the spectrum of T̂ in the Calkin
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algebra is not empty; this spectrum is the essential spectrum σess(T ) of T . Let
λ be a point of σess(T ) with maximal modulus. Then T − µId is Fredholm
for every µ ∈ C such that |µ| > |λ|; by continuity of the index, all operators
T −µId for |µ| > |λ| have index 0, because this is true when µ is large enough
to make T −µId invertible. If T −λId was semi-Fredholm, then all T −µId for
µ close to λ would be also semi-Fredholm, with the same (generalized) index;
but this index must be 0 by the preceding argument, and T − λId would
then be Fredholm, which was excluded from the beginning by the fact that λ
belongs to the essential spectrum. This show that λ ∈ FT .

If λ ∈ FT , that is if λ /∈ ΩT , we may construct by induction a normalized basic
sequence (xn) such that ‖Txn‖ ≤ 2−nε, and get a subspace Yε ⊂ X such that
‖Ty − λy‖ ≤ ε ‖y‖ for every y ∈ Yε (see again [LT, 2.c.4]).

Suppose now that X is a complex HI space. It is easy to see that FT contains
exactly one element λ in this case: indeed, if λ, µ ∈ FT , we may find two
subspaces Y and Z in X such that T ∼ λId on Y and T ∼ µId on Z; since
the unit spheres of Y and Z almost meet, it follows that λ = µ. Let λ0 be
this unique value, and let U = T − λ0Id. Let Z be any subspace of X. Since
λ0 ∈ FT , there exists for every ε > 0 a subspace Y such that ‖U|Y ‖ < ε. Since
X is HI, the unit spheres of Z and Y almost meet, thus we may find z in the
unit sphere of Z such that ‖Uz‖ < ε. This shows that U is strictly singular.
We already obtained most of the next theorem.

Theorem 6 Let X be a complex HI space. Then every T ∈ L(X) can be
written as T = λId + S, where λ ∈ C and S is strictly singular. Thus every
T ∈ L(X) is either strictly singular or Fredholm with index 0. Furthermore, the
spectrum of T is either finite, or consists of a sequence (λn) converging to λ.
In this second case, each λn 6= λ is an eigenvalue of T with finite multiplicity.

PROOF. We proved that there exists a number λ ∈ C such that T−λId = S
is strictly singular. If λ 6= 0, it is classical that T = λId + S is Fredholm
with index 0, because it is a strictly singular perturbation of λId (see for
example [LT, 2.c.10]). The property of eigenvalues is also well known. By the
discussion above, if µ 6= λ belongs to the spectrum of T , then µ is not in
the essential spectrum of T , hence T − µId is Fredholm and not invertible,
therefore µ is an eigenvalue of T with finite multiplicity.

In the real case, we have:

Corollary 7 Let X be a real HI space. Every T ∈ L(X) is either strictly
singular or Fredholm with index 0.

PROOF. Let X be a real HI space and consider its complexification XC =
X⊕X. This space XC need not be a complex HI space, but it has the property
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that given three subspaces, the sphere of one of them almost meets the sum
of the two other subspaces. This implies that the essential spectrum of any
U ∈ L(XC) contains at most two points, say λ and µ (using the three subspaces
property from above).

Let T ∈ L(X), and consider its complexification U = TC on XC. The spec-
trum of the complexified operator TC is invariant under complex conjuga-
tion, therefore µ = λ. Either λ is real, and T − λId is strictly singular; then
T = λId + (T − λId) is Fredholm with index 0 if λ 6= 0, or T is strictly
singular when λ = 0. Otherwise, we have λ ∈ C \R; the part of the spectrum
of TC contained in the upper half plane is finite or consists of a convergent
sequence of eigenvalues with finite multiplicity, together with its limit λ or λ.
Then TC − νId is Fredholm with index 0 for every ν /∈ {λ, λ}; in particular,
TC is Fredholm with index 0, and the same holds for T .

Corollary 8 Let X be a HI space, real or complex. Then X is not isomorphic
to any proper subspace. In particular, X is not isomorphic to its hyperplanes.

PROOF. Let T be an isomorphism from X into itself; then T is not strictly
singular, hence it must be Fredholm with index 0 by Theorem 6 or Corollary 7
and thus TX = X.

These properties of operators on HI spaces were not immediately seen by the
authors of [GM1]; Gowers actually constructed, before [GM1] was written, a
modification Xu of Xgm and he showed that Xu is not isomorphic to its hyper-
planes [G2]; this space Xu was thus the first declared example of a space not
isomorphic to its hyperplanes. This example Xu is a very intriguing example
of space with unconditional basis.

If X is a reflexive HI space, then the facts that the spectrum is countable and
that T − µId is Fredholm with index 0 for all but one value µ = λ ∈ C hold
true for operators on X∗, although X∗ need not be HI. As a consequence,
the dual of a reflexive HI space is not isomorphic to any proper subspace,
and a reflexive HI space is not isomorphic to any proper quotient. However,
these results do not seem to answer the following question: does there exist a
HI space X isomorphic to its dual X∗? We can say that such an X must be
reflexive, because X∗∗ ' X is HI and X ⊂ X∗∗. An obvious remark is that the
usual way to get simple examples of spaces isomorphic to their dual, namely
X = Y ⊕ Y ∗, Y reflexive, has no chance to yield a HI space X!

Ferenczi [F2] has shown that, given a complex HI space X and a bounded
linear operator T from a subspace Y of X to X, one can write T = λiY,X +S,
where λ ∈ C, S is strictly singular and iY,X denotes the inclusion map from
Y to X. Clearly, Ferenczi’s result is a characterization of complex HI spaces.
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Let us sketch Ferenczi’s proof. In some sense all subspaces of a HI space X
intersect; we may define a net of subspaces of X that captures a good part
of the structure of this HI space; the order of this net is not the inclusion,
as it is not strictly true that any two subspaces have an infinite-dimensional
intersection, but almost. . . . We say that Y ≤ Z if there exists a compact
operator K : Y → X such that (iY,X + K)(Y ) ⊂ Z. Given Z1, Z2 ⊂ X there
exists Y such that Y ≤ Z1 and Y ≤ Z2. We could call “germ” of HI space
an equivalence class of such nets, in a way to be made precise. An interesting
class of examples is the family of spaces containing no infinite unconditional
sequence but having only a finite set of germs of HI spaces [F3]. The example
Xg of Gowers [G3] of a HI space with no reflexive subspace gives an example
of “non reflexive germ”.

Ferenczi’s proof consists essentially in showing that the space of “germs” of
operators on X is a Banach field, hence isomorphic to C. A germ of operator
is an equivalence class for the relation where T1 ∈ L(Z1, X) and T2 ∈ L(Z2, X)
are equivalent if we can find a subspace Y ≤ Z1, Z2 such that the operator
T1 ◦ (iY,X + K1)− T2 ◦ (iY,X + K2) is compact on Y , where K1 and K2 are the
compact operators that appear in the definition of the order.

6 Sequence spaces

The scalar field is K = R or C. Since we want to include some of the results
of Argyros-Felouzis, we shall work in an extended setting where the space of
sequences is a space of sequences of vectors taken from some separable space
V , or even more generally, from a sequence V = (Vn) of separable spaces. We
let K denote the sequence (Vn) where Vn = K for every n ≥ 0. The reader
may decide that V = K until he wants to study the section about [AF]. The
norm on Vn is denoted ‖ . ‖n. The exposition is slightly simpler if we assume
that each Vn is reflexive, but one can modify the construction in order to take
care of the case Vn separable but not reflexive.

Let us denote by c00(V) the space of vector sequences x = (vn)n≥0, where
vn ∈ Vn for every n ≥ 0, and such that vn 6= 0 for only finitely many values of
n. If x ∈ c00(V), we call support of x the (finite) set supp x of integers n such
that vn 6= 0. If x, y ∈ c00(V), we say that x < y if supp(x) < supp(y). We also
write n < x when n ∈ N and n < min supp(x). If x1 < . . . < xn, then we say
that the vectors x1, . . . , xn are successive. An infinite sequence of successive
non-zero vectors is also called a block basis and a subspace generated by a
block basis is a block subspace. An interval of integers is a set of the form
{n, n + 1, . . . , m} and the range of a vector x, written ran(x), is the smallest
interval containing supp(x). It is convenient to write x = (vn) ∈ c00(V) as
x =

∑+∞
n=0 vn ⊗ en. Given a subset E ⊂ N and a vector x as above, we write
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Ex for the vector
∑

n∈E vn⊗en. We let Pn denote the projection corresponding
to the set En = {0, . . . , n}; thus Pn is the natural projection from c00(V) onto∑n

k=0 Vk ⊗ ek.

If V∗ is the sequence of duals (V ∗
n ), we have a natural duality between c00(V)

and c00(V
∗); the second space will be considered as space of functionals ; we

extend our terminology to functionals, for example we shall talk about suc-
cessive functionals.

Let X (V) stand for the set of Banach spaces X obtained as the completion
of c00(V) for a norm ‖ . ‖ such that ‖Ex‖ ≤ ‖x‖ for every interval E, and
‖vn ⊗ en‖ = ‖vn‖n for every n ≥ 0 and vn ∈ Vn; when V = K, this means
that (en) is a normalized bimonotone basis for X.

The reader must pay attention to the following fact: when V = K, every
subspace Y of X contains a normalized sequence (yn) which is a perturbation
of a successive sequence (xn) ⊂ X. This is clearly not the case in the vector
case, as Y could be equal to V0 ⊗ e0 for example. However, if we assume that
Y is a subspace of X such that for every n ≥ 0, the projection Pn is not an
into isomorphism from Y to

∑n
k=0 Vk ⊗ ek, then the standard gliding hump

procedure can be extended to the vector setting in an obvious way. We shall say
in this case that Y is a GH-subspace. We shall obtain interesting information
only about GH-subspaces. This is a vacuous limitation in the scalar case, but it
is an important one in the vector case. When the restriction to Y of every Pn,
n ≥ 0, is strictly singular, we get that every subspace of Y is a GH-subspace.

Given a “slowly increasing” function f from [1, +∞) to [1, +∞) and a space
X ∈ X (V), we shall say that X satisfies a lower f -estimate if, given any
vector x ∈ X and any sequence of intervals E1 < . . . < En, we have that
‖x‖ ≥ f(n)−1 ∑n

i=1 ‖Eix‖. In the dual formulation, this property means that
whenever x∗1, . . . , x

∗
n are successive functionals with norm ≤ 1, then

‖(x∗1 + · · ·+ x∗n)/f(n)‖X∗ ≤ 1.

Let X ∈ X (V) and x ∈ X. For every n ≥ 1, let

‖x‖(n) = sup
n∑

i=1

‖Eix‖

where the supremum is extended to all families E1 < . . . < En of successive
intervals. This quantity is clearly increasing with n, and ‖x‖ = ‖x‖(1) by the
monotonicity property of (ei), since X ∈ X (V). Observe that the basis (ei)
satisfies ‖vi ⊗ ei‖(n) = ‖vi‖i for every n ≥ 1. Clearly, ‖ . ‖(n) is an equivalent
norm on X, with ‖x‖ ≤ ‖x‖(n) ≤ n ‖x‖; also, ‖Ex‖(n) ≤ ‖x‖(n) for every
interval E.

23



The value of this norm at x is related to the fact that x can be broken into
blocks that look like the unit vector basis of `n

1 , or more accurately, into blocks
that look like a `n

1+ basis; this norm will be used in the definition of RIS as a
substitute for the notion of `n

1+-average used in [GM1]. It is easy to check that

when (xi)
n2

i=1 are successive and have norm ≤ 1, then x = n−2 ∑n2

i=1 xi satisfies
‖x‖(n) ≤ 1 + 1/n. When (xi) is a `n2

1+-sequence with constant C, we get the
additional fact that ‖x‖ ≥ 1/C. This type of vectors x for which the original
norm is well equivalent to ‖x‖(n) for some large n will play an essential rôle
later. Not surprisingly, the proof of the next lemma, which states the existence
of such vectors x when X ∈ X (V), is essentially identical to that of Lemma 1.

Lemma 9 Let X ∈ X (V) satisfy a lower f -estimate. Given a positive integer
n and ε > 0, there exists an integer N(n, ε) such that for every sequence
x1, . . . , xN of successive norm one vectors with N ≥ N(n, ε), we can find x of
the form x = λ

∑
i∈A xi, where A is some subinterval of {1, . . . , N}, such that

‖x‖ = 1 and ‖x‖(n) ≤ 1 + ε.

Corollary 10 Let X ∈ X (V) satisfy a lower f -estimate. Then for every
n ≥ 1 and ε > 0, every GH-subspace Y of X contains a vector y such that
‖y‖ = 1, ‖y‖(n) ≤ 1 + ε and ‖Pn(y)‖ < ε.

PROOF. By the gliding hump procedure, we may select for every integer
N a normalized sequence y1, . . . , yN of vectors in Y and successive vectors
n < x1 < . . . < xN in X such that ‖yi − xi‖ < ε/nN . The result follows from
Lemma 9 and an obvious approximation argument.

7 A class of examples

The contents of this section come from [GM1] and [GM2]. The general strategy
is as follows: we want to use the coding principle from section 4 and build
special functionals that will somehow distinguish between sums like x + y + z
and x − y + z; the difference in this section is that the inevitable sets are
not given in advance, but must be constructed together with the norm, by
an inductive procedure similar to the construction of Schlumprecht’s space; in
short, our example is a Schlumprecht space with special functionals.

Another difference with section 4 is that in order to kill unconditionality, we
want to push the unconditionality constant beyond C, not only for a given big
C, but for every C. In section 4, we used special functionals of a fixed length,
depending upon C. Here, we shall need special sequences with different lengths
k, tending to infinity. Each length k will be used to prove that every basic
sequence has unconditionality constant ≥ Ck, with limk Ck = +∞. In order
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to make the behaviour of the space easier to understand, we try to ensure
that the different types of special functionals, of lengths k1 and k2 6= k1, have
as little interaction as possible; for this we shall prove various Lemmas that
give almost orthogonality of several classes of vectors and functionals. These
Lemmas are easy. Also, special functionals should not ruin the possibility of
having some form of Schlumprecht’s Lemma in our space X; this will require
some harder work.

The definition of special sequences is essentially taken from section 4, except
that we must use sets (A∗

`) which are not given in advance, but are enriched
step by step as the induction proceeds; we have to guess from the beginning
that the chosen sets (A∗

`) will satisfy the needed properties at the end of
the construction. However our choice is simple and inspired by what we saw
about Schlumprecht’s space S at the end of section 3: the set A∗

` will consist
of functionals of the form f(`)−1(x∗1 + · · · + x∗`), where f is some logarithmic
function, fixed in the whole chapter. But in order to make sure that some set
A` (consisting of normalized sums of RIS of length `) will be inevitable and
normed by A∗

` , we have to have some sort of Schlumprecht’s Lemma here (as
explained at the end of section 3, it is important to have a precise estimate for
the norm of the sum of a RIS, in order to be able to predict a class of almost
norming functionals for the vectors in A`). An obvious start is to force a lower
f -estimate, which ensures that the scheme L1 is inevitable in X, as well as
all sets A` obtained from RIS of length `. But the presence of the special
functionals will ruin the possibility that X has a behaviour as regular as that
of the Schlumprecht space, and this regular behaviour seemed important for
getting Schlumprecht’s Lemma.

This difficulty will be solved in the following way: the usual Schlumprecht
Lemma will hold for RIS that have length ` in some thin subset L of N, and
the corresponding norming functionals will be of the form f(`)−1(x∗1+ · · ·+x∗`)
as before. On the other hand, the special sequences y∗1, . . . , y

∗
k will have lengths

k in another thin subset K, chosen “very far” from L. Then, the “special
normalization” puts the special functional f(k)−1/2(y∗1 + · · ·+ y∗k) in the dual
unit ball, so that a RIS sequence of length k ∈ K may have a sum whose norm

is as big as k/
√

f(k) (to be compared to the “usual” smaller value k/f(k)).

The failure of unconditionality will appear exactly as in section 4, by con-
structing together two sequences (xj)

k
j=1, (x∗j)

k
j=1, in such a way that xj ∈ Anj

,
where nj is the coding number assigned to the beginning x∗1, . . . , x

∗
j−1 of

the special sequence x∗1, . . . , x
∗
k, and (xj) is also a RIS vector (a notion to

be defined, essentially the normalized sum of a RIS); the special functional
f(k)−1/2(x∗1 + · · ·+ x∗k) will then give to the sum

∑k
j=1 xj an abnormally large

norm, that would not be achieved by the alternate sum
∑k

j=1(−1)jxj, for which
the special functionals will fail to push the norm far beyond the usual k/f(k)
estimate. In this way we show that the unconditionality constant is larger than√

f(k), and this can be done with arbitrarily large k ∈ K.
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In order to generalize Schlumprecht’s Lemma, we analyze what properties of
a slowly increasing function g are needed. We shall show that the class of
possible functions is flexible enough to allow the construction of a function g
which agrees with f on L and with

√
f on K (or on part of K), and stays

between
√

f and f everywhere. To this end we introduce the family F of
functions g : [1,∞) → [1,∞) satisfying the following conditions:

(i) g(1) = 1 and g(t) < t for every t > 1;
(ii) g is strictly increasing and tends to infinity;
(iii) limt→∞ t−εg(t) = 0 for every ε > 0;
(iv) the function t/g(t) is concave and non-decreasing;
(v) g(st) ≤ g(s)g(t) for every s, t ≥ 1.

We shall give a convenient representation formula for a subclass F0 of F . Let
us denote by L the class of real functions on [0, +∞) that are non-decreasing
and 1-Lipschitz on [0, +∞[, and tend to +∞ at +∞. Suppose that M belongs
to L; the reader will easily check that the formula

(F ) gM(t) = exp
( ln t∫

0

du

1 + eM(u)

)

defines a function gM ∈ F provided gM tends to infinity at infinity, which
means that

∫ +∞
0 (1+eM(u))−1 du = +∞. The only unpleasant point is to check

that t/g(t) is concave, see the appendix. The idea of using this subclass F0 is
taken from Habala’s paper [Ha].

One nice point about this subclass F0 is that it is extremely easy to glue
together different functions from the class L: if we divide [0, +∞) into suc-
cessive intervals (In), it is obvious that M belongs to L if and only if M is
continuous, tends to +∞ at infinity and coincides on each interval In with a
function Mn ∈ L. Therefore, a function g is in F0 when it is C1, tends to +∞
at infinity and coincides on each interval eIn with a function gn ∈ F0.

If we let M(u) = ln(a + bu), with 0 < b ≤ a, we get a function in L, for which
gM(t) = (1+ b

1+a
ln t)1/b. We shall use the two special cases M0(u) = ln(1+u),

with f0(t) = 1 + 1
2
ln t (corresponding to a = b = 1) and M1(u) = ln(3 + 2u),

with f1(t) = (1 + 1
2
ln t)1/2 =

√
f0(t) (corresponding to b = 2, a = 3). For the

rest of the paper we set f(t) = f0(t) = 1 + 1
2
ln t; then

√
f = f1 also belongs

to the class F0. Notice that t−1/4 ln(t) decreases when t > e4. Checking the
value at t = e16, we obtain that

(F1) 4t−1/4f(t) ≤ 1 when t ≥ e16 .

We need a technical lemma.

Lemma 11 For every t0 = eu0 with u0 ≥ 5 and t1 = e4u2
0 there exists a

function g ∈ F0 such that
√

f ≤ g ≤ f on [1, +∞), g = f on [1, t0] and
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g =
√

f on [t1, +∞). Similarly, there exists a function g ∈ F0 such that√
f ≤ g ≤ f on [1, +∞), g =

√
f on [1, t0] and g = f on [t1, +∞).

For the proof, see the appendix.

We begin by gathering some lemmas that do not make use of any “special” con-
struction. Amongst them is a version of Schlumprecht’s lemma (Lemma 14);
Lemma 16 shows how to rebuild an `n

1+ from a RIS, and Lemma 12 deals with
almost orthogonality.

The first ingredient is the notion of a rapidly increasing sequence, in short RIS;
it was already mentioned in sections 2 and 3, but not in precise terms. Let
X ∈ X (V). We say that a sequence x1, . . . , xr of successive non-zero vectors
in X satisfies the RIS condition if there is a sequence n1 < . . . < nr of integers
such that e2r3

< n1, ‖xi‖(ni) ≤ 1 for each i = 1, . . . , r and

√
f(ni) > |ran(

i−1∑

j=1

xj)|, i = 2, . . . , r.

If E is an interval, then the non-zero vectors of the sequence Ex1, . . . , Exr

clearly form a new RIS of length r1 ≤ r. Also, λx1, . . . , λxr is a RIS when
0 < |λ| ≤ 1 and every subsequence of a RIS is again a RIS.

Given g ∈ F , q ≥ 1 and X ∈ X (V), a (q, g)-form on X is defined to be
a functional x∗ of norm at most one which can be written as

∑q
j=1 x∗j for a

sequence x∗1 < . . . < x∗q of successive functionals all of which have norm at
most g(q)−1. Observe that if x∗ is a (q, g)-form then ‖x∗‖∞ ≤ g(q)−1 and
|x∗(x)| ≤ g(q)−1‖x‖(q) for any x ∈ X. Observe the obvious fact that a (q, g1)-
form is a (q, g2)-form when g1 ≥ g2.

We are looking for two kinds of orthogonalities: the first says that a long q-
form x∗ has a small action on a much longer `n

1+-average x, where q << n; this
is simply given by the preceding relation |x∗(x)| ≤ g(q)−1‖x‖(q). The second
kind says that a very long form has a moderate action on the sum of a RIS
(thus, by Lemma 14 below, a small action on the normalized sum of this RIS).

Lemma 12 Suppose that (x1, . . . , xr) satisfies the RIS condition in a space
X ∈ X (V). Let g ∈ F satisfy g ≥ √

f . If x∗ is a (q, g)-form on X and q ≥ e2r2
,

then we have

|x∗(x1 + · · ·+ xr)| ≤ 3.

PROOF. Let n1 < n2 < . . . < nr be the sequence of integers associated
to the RIS property of the sequence x1, . . . , xr. Let i ∈ {0, . . . , r} be such
that ni < q ≤ ni+1 (consider that n0 = 0 and that nr+1 is larger than q
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and nr). Observe that the RIS condition implies ‖xj‖∞ ≤ ‖xj‖ ≤ 1 for each
j = 1, . . . , r. The result follows from three easy inequalities,

∣∣∣x∗(
i−1∑

j=1

xj)
∣∣∣ ≤ ‖x∗‖∞ |ran(

i−1∑

j=1

xj)| ≤ g(q)−1 f(ni)
1/2 ≤ 1,

|x∗(xi)| ≤ ‖xi‖ ≤ 1, and for j ≥ i + 1,

|x∗(xj)| ≤ g(q)−1 ‖xj‖(q) ≤ g(q)−1 ‖xj‖(nj) ≤ g(q)−1,

so that |x∗(x1 + · · ·+ xr)| ≤ 2 + rg(q)−1. When we have q ≥ e2r2
, we get that

g(q) ≥
√

f(q) = (1 + 1
2
ln q)1/2 ≥ r.

Remark 13 It is possible to prove a (1+ε)-version of Lemma 12 (see [GM2]),
as well as (1 + ε)-versions of all lemmas that follow; we make the deliberate
choice of giving simpler proofs, to the cost of introducing ridiculous constants
5, 15, 45, 75. . . in what follows.

The next Lemma is a variation on Schlumprecht’s Lemma. We need a more
general statement than the one from section 3, that allows to play with dif-
ferent functions from the family F . In our example, the next lemma will be
applied either to g = f or to g =

√
f , or actually to a variety of functions g

between
√

f and f .

Lemma 14 Variant of Schlumprecht’s lemma. Let X ∈ X (V), g ∈ F , and
let p ≥ 2 be an integer. Suppose that x1 < . . . < xr in X satisfy ‖xi‖(pr) ≤ 1
for every i = 1, . . . , r. Let x =

∑r
i=1 xi and suppose that

‖Ex‖ ≤ 1 ∨ sup{|x∗(Ex)| : x∗ is a (q, g)-form, 2 ≤ q ≤ p}

for every interval E. Then

‖x‖ ≤ rg(r)−1.

The painful proof is deferred to the appendix.

Corollary 15 Suppose that V = K. Let X ∈ X (K) and g ∈ F , g ≥ √
f ;

suppose that X satisfies a lower f -estimate and that

‖x‖ ≤ ‖x‖c0 ∨ sup{|x∗(x)| : x∗ is a (q, g)-form, 2 ≤ q}

for every x ∈ X. Then X is reflexive. When V 6= K, this is also true if each
space Vn is reflexive.
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PROOF. It follows immediately from the fact that X satisfies a lower f -
estimate that the standard basis e0, e1, . . . is boundedly complete. Now sup-
pose that it is not a shrinking basis. Then we can find ε > 0, a norm-1 func-
tional x∗ ∈ X∗ and a sequence of successive normalized blocks y1, y2, . . . such
that x∗(yn) ≥ 2ε for every n ≥ 1. It is easy to see that if x = 1

2
|A|−1 ∑

i∈A yi,
then ‖x‖(n) ≤ 1/2 + 1/n for every A ⊂ N such that |A| ≥ n2, and x∗(x) ≥ ε.
It is clear that for every r, we may construct a RIS x1, . . . , xr with vectors
xi of the preceding form. By Lemma 12, we have x∗(

∑r
i=1 xi) ≤ 3 for ev-

ery long form, therefore Lemma 14 can be applied to the sequence 1
3
(xi),

proving that ‖∑r
i=1 xi‖ ≤ 3 r/g(r). For r sufficiently large, this contradicts

x∗(
∑r

i=1 xi) > r ε. For the vector setting V, the reader may consult [AF].

The next simple Lemma is useful in conjunction with Lemma 14. It explains
how to “rebuild” a good `n

1+ basis from a RIS.

Lemma 16 Let X ∈ X (V), let m, r be integers such that e16 < m < r ≤ m4;
let x1 < . . . < xr in X be such that

‖xi‖ ≤ 1, i = 1, . . . , r, and ‖∑
i∈A

xi‖ ≤ |A|
f(|A|)

for every interval A ⊂ {1, . . . , r} such that |A| ≥ m. Then for every integer n
such that mn ≤ 2r3/4 we have

‖
r∑

i=1

xi‖(n) ≤ 5
r

f(r)
.

PROOF. Let x =
∑r

i=1 xi and let (Eh)
n
h=1 be a sequence of n successive

intervals. For every h, let E ′
h be the largest interval contained in Eh such that

E ′
hx =

∑
i∈Ah

xi for some interval Ah ⊂ {1, . . . , r}; then, Eh is the union of
E ′

h and two small intervals at both ends of Eh, and ‖Ehx‖ ≤ 2 + ‖E ′
hx‖. Let

H = {h : |Ah| ≥ m}. We get ‖Ehx‖ ≤ 2 + (m− 1) when h /∈ H, and

n∑

h=1

‖Ehx‖≤n(m + 1) +
∑

h∈H

‖Ehx‖ ≤ 2nm +
∑

h∈H

|Ah|
f(|Ah|)

≤ 4r3/4 +

∑
h |Ah|

f(m)
≤ 4r3/4 +

r

f(m)
≤ 4r3/4 + 4

r

f(r)

since f(r) ≤ f(m4) ≤ 4 f(m) (using the conditions for the family F). The
result follows, because the condition r ≥ e16 implies that 4r3/4 ≤ r/f(r), by
formula (F1).
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The construction of our examples uses a lacunary subset J of N. Let us write
J in increasing order as {j1, j2, . . .}. We assume that each jn is the fourth
power of some integer. This set J should be such that between two successive
elements jn and jn+1 of J , there is enough room to apply Lemma 11; to be on
the safe side, let us assume that

(L1) j1 ≥ e256 and ∀n ≥ 1, e256 j2
n < jn+1.

This implies by induction that

(L2) jn ≥ en3

for every n ≥ 1, because j1 > e and e(n+1)3 ≤ e8n3 ≤ e8jn < jn+1 for n ≥ 1.

Now we check that Lemma 11 can be applied between j4
n and j

1/4
n+1. If we let

u = 4jn, then u ≥ 5 and j4
n ≤ e4jn = eu; by (L1), j

1/4
n+1 ≥ e64j2

n = e4u2
. With

Lemma 11 and the conditions on J it is rather clear that

Lemma 17 Let K0 ⊂ K. There exists a function g ∈ F0 such that f ≥ g ≥√
f , g(k) =

√
f(k) whenever k ∈ K0 and g(t) = f(t) whenever j ∈ J \K0 and

t is in the interval [j1/4, j4].

Since we want to include some of the results of Argyros-Felouzis, we shall
work in the extended setting V. Also, we want to present a part of [GM2],
so we are trying to build a space with a given algebra of operators generated
by some set S of basic operators on our space. Here again, the reader may
decide to consider that S = {Id} (the trivial case), which is what is needed
for constructing a HI space.

Given two infinite sets A,B ⊂ N, define the spread from A to B to be the
map on c00 defined as follows. Let the elements of A and B be written in
increasing order respectively as {a0, a1, . . .} and {b0, b1, . . .}. Then en maps
to zero if n /∈ A, and eai

maps to ebi
for every i ≥ 0. Denote this map by

SA,B. Note that SB,A is (formally) the adjoint of SA,B. Observe that for every
interval projection E and any U ∈ S, there exist two intervals F1 and F2 such
that EU = UF1, UE = F2U .

Given any set S of spreads containing the identity map, we shall say that
it is a semi-group if it is closed under composition (note that this applies
to all compositions and not just those of the form SB,CSA,B). If we want to
define extensions of the SA,B’s in the V setting, we need to assume more
about the relations between the different spaces Vn. We say that V and S
are compatible if whenever U ∈ S and Uem = en for some m and n, then
Vm ⊂ Vn and ‖v‖n ≤ ‖v‖m for every vector v ∈ Vm. The trivial semi-group
S = {Id} is of course compatible with any family V. Given any set S of
spreads, compatible with V, all maps SA,B in S are extended to c00(V) in
the usual way, by tensoring with the identity of Vn, giving the set S(V). For
example, SA,B(vn⊗en) = vn⊗SA,B(en). The compatibility assumption means
that ‖SA,B‖ ≤ 1 for the c00(V) norm (or `1(V)), for every SA,B ∈ S.
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The main tool for our construction, already seen in section 4, is the notion of
special sequence. We split the lacunary set J into two disjoint parts K and L:
let K,L ⊂ J be the sets {j1, j3, j5, . . .} and {j2, j4, j6, . . .}. The set K is used
for the lengths of special sequences, while m ∈ L or m “close” to L is used for
lengths of “regular” RIS x1, . . . , xm that will satisfy the ordinary inequality
‖∑m

i=1 xi‖ ≤ 3 m/f(m); the sum of such RIS will be therefore normed by
(m, f)-forms; this explains our choice for the members of special sequences
below. For every n ≥ 0, let us choose a countable subset ∆n ⊂ V ∗

n dense in
V ∗

n (this is where assuming Vn reflexive makes our life easier; if not, we would
have to work with countable norming sets for Vn). Let Q ⊂ c00(V

∗) be the
(countable) set of sequences with the nth coordinate in ∆n for every n and
maximum at most 1 in V ∗

n -norm. Let σ be an injection from the collection
of finite sequences of successive elements of Q to the set L introduced above.
Given X ∈ X (V) and given an integer m ≥ 1, let A∗

m(X) be the set of (m, f)-
forms on X, i.e. the set of all functionals x∗ of norm at most 1 of the form
x∗ = f(m)−1 ∑m

i=1 x∗i , where x∗1 < . . . < x∗m and ‖x∗i ‖ ≤ 1 for each i = 1, . . . , m.
If k ∈ K, let ΓX

k be the set of sequences y∗1 < . . . < y∗k such that y∗i ∈ Q for
each i, y∗1 ∈ A∗

j2k
(X) and y∗i+1 ∈ A∗

σ(y∗1 ,...,y∗i )(X) for each 1 ≤ i ≤ k− 1. We call

these special sequences. Let B∗
k(X) be the set of all functionals y∗ of the form

y∗ =
1√
f(k)

k∑

j=1

y∗j

such that (y∗1, . . . , y
∗
k) ∈ ΓX

k is a special sequence. These, when k ∈ K, are
the special functionals (on X of size k). The idea behind this notion of special
functionals is that their normalization is different from the usual normalization
of functionals obtained by the “Schlumprecht operation” (x∗1 + · · ·+x∗n)/f(n),
so that they produce “spikes” in the unit ball of X∗; but special functionals
are extremely rare, and they are easy to trace, as it was explained in section 4.
Now, given a semi-group S of spreads, compatible with V, we consider the
smallest norm on c00(V) satisfying the following equation,

‖x‖ = ‖x‖c0 ∨ sup
{
f(n)−1

n∑

i=1

‖Eix‖ : n ≥ 2, E1 < . . . < En intervals
}

∨ sup
{
|x∗(Ex)| : k ∈ K, x∗ ∈ B∗

k(X), E ⊂ N an interval
}

∨ sup{‖Ux‖ : U ∈ S}.

We define the space X(S,V) as the completion of c00(V) under this norm. In
the case S = {Id} the fourth term drops out and the definition reduces —
when V = K— to that of the space constructed in [GM1]. The fourth term is
there to force every spread U = SA,B ∈ S to define a bounded operator on X

31



(actually, we get ‖SA,B‖ ≤ 1. This restrictive choice could perhaps be relaxed
to produce more examples). The second term ensures that X satisfies a lower
f -estimate.

It is useful to understand the construction of X in a way similar to what we
have said about the spaces T and S in section 2: we construct a norming
subset in X∗ in a sequence of steps, producing an increasing sequence (Bn) of
convex subsets of Bc0(V∗). We start with B0 = B`1(V∗) ∩ c00(V

∗). After Bn is
defined, we enlarge it as follows:

— for any integer m ≥ 2, we add all functionals x∗ = f(m)−1 ∑m
j=1 x∗j built

from elements x∗j ∈ Bn,

— for every k ∈ K, we add all functionals λEU∗x∗ where |λ| = 1, E is an
interval, U ∈ S and x∗ is any special functional x∗ = f(k)−1/2 ∑k

j=1 y∗j with
y∗j ∈ Bn for j = 1, . . . , k;

we obtain in this way an expanded set B̃n ⊃ Bn, and we let finally Bn+1 be
the convex hull of B̃n. We let B =

⋃
n Bn and we can check that the above

defined norm is equal to

‖x‖ = sup{|x∗(x)| : x∗ ∈ B}.

Observe that the images of successive functionals by a spread are still succes-
sive; observe also that the adjoint operation of a spread is again a spread, and
that for every interval F and spread U , the operator UF can also be expressed
as EU for some interval E; it follows by induction that Bn is stable under the
adjoints of the spreads in S and under projections on intervals, and that Bn

is contained in the unit ball of c0(V
∗), for every n ≥ 0.

All this implies that X belongs to the family X (V). We summarize the pre-
ceding discussion in the following statement.

Proposition 18 Let S be a semi-group of spreads, compatible with the family
V. The space X(S,V) belongs to X (V) and satisfies a lower f -estimate. Every
spread U ∈ S verifies ‖U‖ ≤ 1.

If we want to compute the norm of x ∈ X = X(S,V), either ‖x‖ = ‖x‖c0

or, given ε > 0 such that ‖x‖c0 < ‖x‖ − ε, there exists a first n ≥ 0 such
that |x∗(x)| > ‖x‖ − ε for some x∗ ∈ B̃n that was adjoined to Bn in the
construction of Bn+1, namely either an (m, f)-form or some EU∗y∗, with y∗ a
special functional of some length k ∈ K, E an interval and U ∈ S. Let us call
surface functional any functional x∗ on X which is either a (m, f)-form for
some m ≥ 2 or a (k,

√
f)-form EU∗y∗, with k ∈ K and y∗ a special functional.

We may summarize the lines above by saying that for every vector x in X,
either x has the c0(V)-norm, or ‖x‖ is the supremum of |x∗(x)|, when x∗ runs
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over the set of surface functionals. Note that if g ∈ F and g(k) = f(k)1/2, then
a special functional y∗ of size k ∈ K and norm ≤ 1 is also a (k, g)-form, and
the same is true for each EU∗y∗, for every interval E and every U ∈ S. A trick
which will be repeated several times is that, when g ∈ F satisfies

√
f ≤ g ≤ f

and g =
√

f on K, then all surface functionals are g-forms of a certain length
≥ 2, either because g ≤ f or because g =

√
f on K. This remark explains

why the generalized Schlumprecht Lemma (Lemma 14), applied to suitable
functions g ∈ F , will be our main tool for estimating norms in X(S,V).

The preceding paragraph illustrates an aspect of our class of examples that
is simpler than what happens with the example of [AD], produced by mixed
Tsirelson norms. When working with Tsirelson norms, it is often necessary to
analyze how a vector was constructed, in a tree of operations corresponding
to the inductive definition of the space. This is not the case here. We will not
need to look “below the surface”.

Let L̂ =
⋃

`∈L[`1/4, `4]. The next lemma talks about “regular” RIS. For them,
the norm of the sum behaves essentially as in Schlumprecht’s space.

Lemma 19 Let x1, . . . , xr be a RIS in X(S,V) with r ∈ L̂. Then

‖
r∑

i=1

xi‖ ≤ 3
r

f(r)
.

PROOF. Use Lemma 17 to get g ∈ F0 equal to f on L̂, to
√

f on K, and
satisfying

√
f ≤ g ≤ f . Then all surface functionals are g-forms of a certain

length. Let n1, . . . , nr be the integers associated to x1, . . . , xr by the definition
of a RIS. We have e2r3

< n1 and ‖xi‖(ni) ≤ 1. Let p be the integral part of e2r2
.

Then pr ≤ e2r3
< n1 ≤ ni, thus ‖xi‖(pr) ≤ ‖xi‖(ni) ≤ 1 for every i = 1, . . . , r.

Let x =
∑r

i=1 xi; by Lemma 12, we know that |x∗(Ex)| ≤ 3 for every interval
E, when x∗ is a (q, g)-form with q > p, and by our remarks, we know that
‖Ex‖ is less than the supremum of |x∗(Ex)|, when x∗ runs in the set of (q, g)-
forms (unless Ex has the c0 norm, in which case ‖Ex‖ ≤ 1). We see that
Lemma 14 applies to the RIS (1

3
xi)

r
i=1, hence ‖x‖ ≤ 3 r g(r)−1 = 3 r f(r)−1.

Lemma 20 Let ` ∈ L and let x1, . . . , xr be a RIS in X(S,V) with ` ≤ r ≤ `4.
Then

‖
r∑

i=1

xi‖(
√

`) ≤ 15
r

f(r)
.

PROOF. Let m denote the smallest integer larger than r1/4. Then `1/4 ≤
m ≤ ` and we know that [m, r] ⊂ L̂ by construction, hence ‖∑

i∈A xi‖ ≤
3|A|/f(|A|) when |A| ≥ m, by Lemma 19. The result follows from Lemma 16,
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applied to the sequence 1
3
(xi) with n =

√
`, because e16 < j

1/4
2 ≤ m ≤ r ≤ m4,

m ≤ 2 r1/4, hence mn = m
√

` ≤ 2 r3/4.

A RIS vector is a vector x of the form

x = r−1f(r)
r∑

i=1

xi,

where x1, . . . , xr is a RIS. We say that r is the length of the RIS vector x.
By definition of a RIS, ‖xi‖ ≤ ‖xi‖(ni) ≤ 1 for some ni > e2r3

. The most
interesting case is when the vectors (xi) have norms bounded below, by 1/2
say. In this case the lower f -estimate gives ‖x‖ ≥ 1/2. If furthermore r ∈ L̂,
then we know that ‖x‖ ≤ 3 by Lemma 19.

The next Lemma is absolutely crucial for understanding what happens in
the space X(S,V). This Lemma says roughly the following. Suppose that we
construct together a special sequence (x∗j)

k
j=1 of length k ∈ K and a sequence

(xj)
k
j=1 of RIS vectors, in such a way that the number `j ∈ L such that x∗j is a

(`j, f)-form, coincides with the length of the RIS vector xj. Then the special
functional x∗ = f(k)−1/2 ∑k

i=1 x∗i and its images U∗x∗ by the adjoints of the
spreads U ∈ S will be essentially the only functionals that can force the norm
of the vector x =

∑k
i=1 xi to exceed significantly the usual bound k/f(k).

The corresponding lemma was not correctly stated in [GM1] (the condition
ran(xi) ⊂ ran(x∗i ) was missing there).

Lemma 21 Let k ∈ K and let x∗1, . . . , x
∗
k be a special sequence of length k;

let `1 = j2k, and for 2 ≤ i ≤ k let `i = σ(x∗1, . . . , x
∗
i−1). Assume that f(

√
`i) >

| ran(
∑i−1

j=1 x∗j)|2 for i = 2, . . . , k. Let x1, . . . , xk be a sequence of successive
vectors in X(S,V) such that every xi is a RIS vector of length `i and ran(xi) ⊂
ran(x∗i ), i = 1, . . . , k. Suppose that

|(
k∑

i=1

U∗x∗i )(
k∑

i=1

Exi)| ≤ 16

for every interval E and every U ∈ S. Then

‖
k∑

i=1

xi‖ ≤ 45
k

f(k)
.

PROOF. We know by Lemma 20, applied to the decomposition of xi into
a RIS, that ‖xi‖(mi) ≤ 15, where mi =

√
`i. Also `1 = j2k ≥ e8k3

by the

34



lacunarity condition (L2), thus `
1/2
1 = m1 ≥ e2k3

. Since ran xi ⊂ ran x∗i for
each i, this implies that

√
f(mi) ≥ |ran(

i−1∑

j=1

x∗j)| ≥ |ran(
i−1∑

j=1

xj)|, i = 2, . . . , k.

This and the lower bound for m1 ensure that 1
15

(x1, . . . , xk) is a RIS of length
k, preparing thus to apply Lemma 12 to the sequence (x′i) = (xi/15). Let
x =

∑k
j=1 xj and x′ =

∑k
j=1 x′j = x/15.

By Lemma 17, we may select a function g ∈ F equal to f on L̂ ∪ {k}, to
√

f
on K \ {k} and such that

√
f ≤ g ≤ f . Then all f -forms and all ∗-spreads

of special forms of length 6= k are g-forms (by ∗-spread, we mean the adjoint
of a spread in S). In order to prove Lemma 21 we shall apply Lemma 14 to
the sequence (x′i). We observe that all vectors Ex are either normed by (q, g)-
forms or by ∗-spreads of special functionals of length k, or they have norm at
most 1. The first observation is that “long” forms have a small action on x′:
indeed by Lemma 12 we know that

(∗) |z∗(Ex′)| ≤ 3

whenever z∗ is a (q, g)-form with q > p, where p denotes the integral part
of e2k2

. On the other hand, each vector xi satisfies ‖xi‖(mi) ≤ 15 with mi ≥
e2k3 ≥ pk, which puts us in a position to apply Lemma 14 to x′. Before this,
we need to show that ‖Ex′‖ is not given by |z∗(Ex′)|, where z∗ is a ∗-spread
of a special functional of length k (the only kind of surface functionals which
are not g-forms, in the present situation).

We shall show that if z∗1 , . . . , z
∗
k is any special sequence of functionals of length

k and E is any interval, then |U∗z∗(Ex′)| ≤ 1 for every U ∈ S, where z∗ is the
(k,
√

f)-form f(k)−1/2 ∑k
i=1 z∗i . Indeed, let t be maximal such that z∗t = x∗t or

zero if no such t exists. Suppose i 6= j or one of i, j is greater than t+1. We show
that |(U∗z∗i )(Ex′j)| < k−2. Since σ is an injection, we can find λ1 6= λ2 ∈ L
such that z∗i is a (λ1, f)-form, xj is a RIS vector of length λ2 and ‖xj‖(m′

2) ≤ 15,

where m′
2 =

√
λ2. If λ1 < λ2, it follows from the lacunarity properties of the

set J ⊃ L that λ1 < m′
2. This yields that |(U∗z∗i )(Ex′j)| ≤ ‖x′j‖(λ1)/f(λ1) ≤

f(λ1)
−1. We know that λ1 ≥ j2k since λ1 appears in a special sequence of

length k. The conclusion in this case now follows from the fact that f(`) ≥ k2

when ` ≥ j2k (implied by the lacunarity condition (L2)).

If λ2 < λ1, we apply Lemma 12 to the vector x′′j = λ2f(λ2)
−1xj equal to

the sum of the vectors in the RIS defining xj. The definition of L gives us
that e256 λ2

2 < λ1, so Lemma 12 gives |(U∗z∗i )(Ex′′j )| ≤ 3. It follows that
|(U∗z∗i )(Ex′j)| ≤ f(λ2)/λ2. The conclusion follows because ` ≥ j2k implies

that f(`)/` ≤ `−3/4 ≤ e−6k3 ≤ k−2 (by condition (F1)).
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Now choose an interval F (depending upon U) such that

∣∣∣(
t∑

i=1

U∗z∗i )(Ex)
∣∣∣ =

∣∣∣(
k∑

i=1

U∗x∗i )(Fx)
∣∣∣ ≤ 16.

It follows (since ‖xt+1‖ ≤ 3 by Lemma 19) that

∣∣∣
( k∑

i=1

U∗z∗i
)
(Ex)

∣∣∣ ≤ 16 + |(U∗z∗t+1)(Ext+1)|+ 15 k2.k−2 ≤ 45.

We finally obtain that |U∗z∗(Ex′)| ≤ (45/15)f(k)−1/2 < 3f(j1)
−1/2 < 1 as

claimed. It follows from (∗) and from what we have just shown about special
sequences of length k that

‖Ex′‖ ≤ 3 ∨ sup{|x∗(Ex′)| : 2 ≤ q ≤ p, x∗ is a (q, g)-form}

whenever E is an interval. Since ‖x′j‖(pk) ≤ 1 for each j = 1, . . . , k, Lemma 14
applied to x′/3 implies that ‖x′‖ ≤ 3 k/g(k) = 3 k/f(k).

7.1 We have a HI space!

In this paragraph, we assume that S = {Id}, so that any family V is com-
patible with S. We are primarily interested in the case V = K, and we shall
prove that the resulting space X = X({Id},K) is HI. However, we shall keep
the V framework and prove at the same time that any two GH-subspaces of
X(V) = X({Id},V) almost intersect. When V = K, every subspace Y of X is
a GH-subspace, and we get that X is HI. Let Y, Z be two GH-subspaces of X.
Let us choose δ > 0 and let k ∈ K be an integer such that f(k)−1/2 < δ/360.
We want to show that the distance between the unit spheres of Y and Z is
less than δ.

By the gliding hump property of Y and Z, we may assume that both Y and Z
are spanned by block bases. Since X satisfies a lower f -estimate, Corollary 10
tells us that every block subspace of X contains, for every n ≥ 1, a vector x
such that ‖x‖(n) ≤ 1 and ‖x‖ > 1/2. We already observed that every vector
Ex either has the supremum norm or satisfies the inequality

‖Ex‖ ≤ sup
{
|x∗(Ex)| : q ≥ 2, x∗ is a (q, g)-form

}

where g is the function obtained from Lemma 17 in the case K0 = K. This
allows us to make the following construction.
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Using Corollary 10, we may find in Y (or in Z) for any given integer ` ∈ L,
a sequence y1, . . . , y` which satisfies the RIS condition, and also such that
‖yj‖ > 1/2 for j = 1, . . . , `. We are going to apply this fact k times, with
increasing values of `, and alternating our choice between Y and Z at each
step. Let first `1 = j2k ∈ L, and let x1 = `−1

1 f(`1)
∑`1

j=1 yj ∈ Y be a RIS
vector of length `1, with ‖yj‖ > 1/2 for every j. For each j between 1 and
`1 let y∗j be a functional such that ‖y∗j‖ ≤ 1 and 0 < y∗j (yj) − 1/2 < k−1;

let x′∗1 be the (`1, f)-form f(`1)
−1 ∑`1

j=1 y∗j . Then 0 < x′∗1(x1) − 1/2 < k−1.
By continuity and the density of ∆n in the unit ball of V ∗

n , we may assume
that there exists an (`1, f)-form x∗1 ∈ Q such that 0 < x∗1(x1) − 1/2 < k−1

and ran(x∗1) = ran(x1) (in the real case; in the complex case, we ask for
1/2 < <x∗1(x1) and |x∗1(x1) − 1/2| < k−1); since we have an infinite sequence
of possible choices for x∗1 ∈ Q and since σ is injective, we may choose x∗1
such that `2 = σ(x∗1) satisfies f(

√
`2) > | ran(x∗1)|2. Also, note that there is no

difference between an (`1, g)-form and an (`1, f)-form, because g = f on L.

Now let `2 = σ(x∗1) and pick a RIS vector x2 ∈ Z of length `2 such that x1 < x2,
similarly to the first step. As above, we can find an (`2, g)-form x∗2 ∈ Q such
that 0 < x∗2(x2)−1/2 < k−1, ran(x∗2) = ran(x2) and f(

√
`3) > | ran(x∗1 +x∗2)|2,

where `3 = σ(x∗1, x
∗
2).

Continuing in this manner, we obtain a pair of sequences x1, . . . , xk and
x∗1, . . . , x

∗
k with various properties we shall need. First, xi ∈ Y when i is odd

and xi ∈ Z when i is even. We also know that 0 < x∗i (xi)−1/2 < 1/k for each i.
Finally, and perhaps most importantly, the sequence x∗1, . . . , x

∗
k has been care-

fully chosen to be a special sequence of length k. It follows immediately from
the implicit definition of the norm and from the fact that ran(x∗i ) = ran(xi)
for each i that

‖
k∑

i=1

xi‖ ≥ f(k)−1/2
k∑

i=1

x∗i (xi) >
1

2
k f(k)−1/2.

The proof will be complete if we can find a suitable upper bound for the
norm of the alternate sum

∑k
i=1(−1)i−1xi. For this we apply Lemma 21. The

conditions on f(
√

`i) and on the inclusions of ranges have been taken care
of during the construction of the sequences (xi) and (x∗i ). It remains to show
that |(∑k

i=1 x∗i )(
∑k

i=1(−1)iExi)| ≤ 16 for every interval E. This follows easily
from the fact that x∗i (xi) is almost exactly 1/2 for every i; there are possibly
two incomplete terms, one at the beginning and one at the end of E, for
which we use |x∗i (xi)| ≤ ‖xi‖ ≤ 3 (this follows from Lemma 19 applied to the
RIS corresponding to xi). Lemma 21 therefore shows that ‖∑k

i=1(−1)i−1xi‖ ≤
45 kf(k)−1.

We have now constructed two vectors y ∈ Y , the sum of the odd-numbered
xis, and z ∈ Z, the sum of the even-numbered xis, such that ‖y + z‖ >
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(1/90) f(k)1/2‖y− z‖. If a is the maximum of ‖y‖ and ‖z‖, then y/a and z/a

have distance < 180/
√

f(k) < δ/2, and one of them belongs to the unit sphere
of Y or Z. It follows that the distance from the unit sphere of Y to the unit
sphere of Z is less that δ.

Suppose that V = K. The above proof shows that X is HI. We also observe
that X is reflexive. This follows from Corollary 15. In the vector case, the
conclusion is that any two GH-subspaces have distance 0. In particular, we
obtain that every subspace Y of X such that all projections Pn, n ≥ 0 are
strictly singular on Y , is a HI space (because all subspaces of Y are GH-
subspaces of X).

Theorem 22 Let X = X(V) be the space constructed in section 7 when
S = {Id}. Then any two GH-subspaces of X have distance 0. Every subspace
Y of X such that all projections Pn, n ≥ 0 are strictly singular on Y , is a HI
space. When V = K, then X is a reflexive HI space.

8 Factorization through a HI space

In this section we present some of the results of Argyros and Felouzis [AF,
Theorems 2.3 and 2.4]. We shall use a variant of the interpolation spaces
of Lions-Peetre (see [BL] for instance), following the spirit of the exposition
of [DFJP] rather than that of interpolation theory. Let W be a bounded
symmetric closed convex subset of a Banach space V . Suppose that a = (an)
is a decreasing sequence of positive numbers, such that limn an = 0. For every
n ≥ 0, we consider the bounded symmetric convex set Cn = 2nW + anBV and
we let ja,n be the gauge of Cn. For every n, the gauge ja,n defines an equivalent
norm on V , and we shall call Vn the space V equipped with the equivalent
norm ja,n. We shall be interested in the (usually unbounded, possibly infinite)
gauge ja = supn≥0 ja,n on V . It is clear that ja is finite on W (because ja is less
than the gauge jW of W , since ja,n ≤ 2−njW for every n ≥ 0). It is also clear
that ja is larger than a multiple of the norm of V (because C0 is bounded,
say). The classical construction of factorization spaces in [DFJP] uses the

“quadratic” gauge qa(x) = (
∑+∞

n=0 ja,n(x)2)1/2, but we shall instead use a non
standard way of mixing the norms of the Vns, namely the construction from
the preceding section 7.

We need a notion of thinness of W that guarantees that there is no subspace
Y of V on which the ja norm is finite and equivalent to the V -norm. This was
done by Neidinger (see [N1,N2]) in a similar setting (Neidinger was looking
for hereditarily-`p interpolation spaces, while we are looking for hereditarily
indecomposable interpolation spaces). Let us say that a bounded symmetric
closed convex subset W is a-thin in V when there is no infinite-dimensional
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subspace Y of V such that ja is finite and bounded on the unit ball BY =
Y ∩BV of Y . This means that the inclusion from V1 to V is strictly singular,
where V1 is the space of those v ∈ V such that ‖v‖V1 = ja(v) < +∞.

The set W is thin in Neidinger’s sense when for every subspace Y of V , there
exists ε > 0 such that for every C, the unit ball BY of Y is not contained
in C W + εBV . If W is thin in Neidinger’s sense, then it is a-thin for every
sequence a: there exists ε > 0 such that BY 6⊂ 2mW + εBV for every m, in
particular for any given `, when an < ε2−` there exists y ∈ BY such that
y /∈ 2n+`W + 2`anBV , thus ja,n(y) ≥ 2` and W is a-thin. On the other hand,
if a is the sequence an = e−8n

, then W = BL∞ is a-thin in V = L1 =
L1[0, 1] (see [AF, Proposition 2.2]), but the inclusion L∞ → L1 is not thin, as
mentioned by Neidinger. This shows that the statement of the factorization
theorem below is slightly more general when formulated with a-thin instead
of thin. We say that a bounded linear operator T : U → V is a-thin if the
closure T (BU) of T (BU) is a-thin in V .

Theorem 23 Suppose that T : U → V is a-thin for some a. Then T factors
through a HI space.

PROOF. We know that for some a, the set W = T (BU) is a-thin in V . For
every n ≥ 0, let Vn denote V with the norm ja,n, and consider the family
V = (Vn)n≥0. Let X = X(V) be the space constructed in section 7, and let Z
denote the diagonal of this space, in other words Z is the vector subspace of
V consisting of those v ∈ V such that v = (v, v, . . .) belongs to X. We define
a norm on Z by ‖v‖Z = ‖v‖X . We shall check that T factors through Z, and
that Z is a HI space.

For every u ∈ U such that ‖u‖ ≤ 1, the vector w = Tu ∈ V belongs to W ,
therefore ‖w‖Vn = ja,n(w) ≤ 2−n; the series

∑
n w⊗ en is normally convergent

in X and defines an element T1(u) ∈ Z. On the other side, the norm of v in X
is larger than ja (by the general assumptions about X (V)), thus larger than
‖v‖V , and this shows that there is a natural inclusion map i from Z to V . We
have therefore obtained the factorization T = i ◦ T1.

In order to prove that Z is HI, we have only to check that Z, regarded as a
subspace of X via the diagonal map, is such that Pn0 is strictly singular on Z
for every n0 ≥ 0. Given any subspace Y ⊂ Z, it is possible to find y ∈ Y such
that ja,n(y) < 2−n0 for n = 0, . . . , n0 but ‖y‖X = 1. This is clear since each of
the first gauges ja,n is equivalent to the V -norm while ja is unbounded on BY

and less than the norm of X. This shows that Pn0 is strictly singular on Z.
The result then follows from Theorem 22 (we are a little bit cheating, since
we wrote the proof under the additional hypothesis that V is reflexive).

Theorem 24 For every p ∈ (1, +∞), the space `p is a quotient of some HI
space. This is also true for c0.
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It is obvious that this cannot hold for `1, by the lifting property of `1. We
shall only sketch the case of `p, p ∈ (1, +∞); see [AF] for a much more general
result, but also much more difficult to prove. The strategy for the proof is
the following: we shall construct a space V and a symmetric a-thin closed
convex subset W ⊂ V which is norming for an `q-subspace L of V ∗. Let U
be the Banach space whose unit ball is W , and let us apply the preceding
factorization result to the inclusion map T : U → V . Then T = i ◦ T1, with
T1 : U → Y and Y a HI space with an embedding i : Y → V . We need only
show that i∗ induces an isomorphism from L to a subspace of Y ∗. This is easy
since the set T1(BU) = W1, which is smaller than BY , is already norming for
the space i∗(L).

The construction of V uses a tree; (very) roughly speaking, we introduce an
infinite branch γ of the tree for every vector z∗ of L, and a sequence wγ ∈ V
supported on that branch, which norms z∗. Next, we define W to be the
symmetric closed convex hull of the set of all elements wγ. For every n ≥ 0,
let Dn be the subset of [−1, 1] consisting of all numbers of the form i 2−n−3,
|i| ≤ 2n+3. Let T0 be the set of all ν = (d0, . . . , dn), for n ≥ 0, such that dj ∈ Dj

for j = 0, . . . , n. We say that |ν| = n is the length of ν. We say that ν ′ ≤ ν if
ν ′ is an initial segment (d0, . . . , dm), m ≤ n, of the sequence (d0, . . . , dn) = ν.
We shall restrict our attention to the subtree T ⊂ T0 consisting of those nodes
ν such that

∑|ν|
i=0 |di|p < 1. On the space c00(T ) of finitely supported scalar

sequences indexed by T , we consider the `p((`
kn
1 )) norm,

‖v‖V =
(+∞∑

n=0

(
∑

ν∈Rn

|vν |)p
)1/p

where Rn ⊂ T is the set of nodes ν such that |ν| = n and kn = |Rn|.
Let (fν)ν∈T be the natural unit vector basis for V . It is clearly 1-unconditional.
For every ν = (d0, . . . , dn) ∈ T , we set cν = dn; if b is a segment in the tree
we set x(b) =

∑
ν∈b cν fν . Let W be the symmetric closed convex set generated

by all vectors x(b); by the definition of T , we know that ‖x(b)‖V < 1 for
every segment b of T . Let L be the subspace of V ∗ generated by the sequence
gn =

∑
ν∈Rn

f∗ν , for n ≥ 0. It is clear that (gn) is isometrically equivalent to the
unit vector basis of `q, 1/q + 1/p = 1. It is easy to prove that W is 1

4
-norming

for L. Indeed, given z∗ =
∑

n≥0 vngn such that ‖z∗‖ = 1, we choose the branch
γ = (ν0, . . . , νn, . . .), |νn| = n, such that dn = cνn is as close as possible to
un = |vn|q−1 sign(vn): we choose dn ∈ Dn such that sign dn = sign vn, and if
|un| ≥ 2−n−2, we may also make sure that 1

2
|un| ≤ |dn| ≤ |un|. We get

z∗(x(γ)) =
+∞∑

n=0

cνnvn ≥ 1

2

∑{|vn|q : |vn| ≥ 2−n−2} ≥ 1

4
.

We shall check that W is thin in V . If not, we can find a subspace Y of V ,
such that choosing 0 < ε < 1/4, we have BY ⊂ C W + εBV for some C. By
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a standard gliding hump argument, we can find in Y a normalized sequence
(yn) which is a small perturbation of a sequence supported on disjoint subsets
(En) of the tree, say ‖yn −Enyn‖ < ε, where En is the set of all nodes ν such
that kn ≤ |ν| ≤ `n, with `n < kn+1 for every n ≥ 0. We need the following
lemma, whose proof is sketched in the appendix. Let us call band in T any
subset E consisting of all nodes t such that k ≤ |t| ≤ `, for some k ≤ `.

Lemma 25 Let α > 0, let (wn) be a sequence of elements of W and (En) be a
sequence of successive bands in T . There exists an infinite subset M ⊂ N and
for every m ∈ M a decomposition of Em in E ′

m, E ′′
m, such that: ‖E ′′

m wm‖ < α,
and for every m1 6= m2 in M , the nodes in E ′

m1
and E ′

m2
are incomparable.

Let us finish the proof of Theorem 24. We assumed that BY ⊂ C W + εBV ,
with 0 < ε < 1/4; for every n, there exists wn ∈ W such that ‖yn−C wn‖ < ε;
passing to a subsequence, we may assume that En is decomposed into E ′

n and
E ′′

n satisfying the properties cited in Lemma 25, with α = ε/C. We have
‖E ′′

n(yn − C wn)‖ < ε and ‖E ′′
n(C wn)‖ < C α = ε, therefore ‖E ′′

nyn‖ < 2ε
and ‖E ′

nyn‖ > 1− 3ε. We may thus find a normalized sequence of functionals
(y∗n) in V ∗, with y∗n supported on E ′

n, and norming for E ′
nyn. This sequence

(y∗n) is isometrically equivalent to the unit vector basis of `q. Consider y∗ =
N−1/q(y∗1 + · · · + y∗N); since the supports of the (y∗j ) are incomparable, every
vector x(b) from the family generating W acts on at most one y∗i ; it follows that
supw∈W |y∗(w)| ≤ N−1/q. On the other hand, let y = N−1/p(y1 + · · ·+yn) ∈ Y .
We have that y∗(y) > 1−3ε and by assumption, there exists w ∈ W such that
‖y − C w‖ < ε. This implies that |y∗(C w)| > 1 − 4ε; this is a contradiction
when N is large enough.

9 Additional results

In this section we present some of the results of [GM2]. We assume that
V = K. Given a semi-group S of spreads, we denote by X = X(S) = X(S,K)
the space constructed in section 7, with V = K. In [GM2], three examples
are given, corresponding to three semi-groups of spreads. We shall concentrate
here on the example Xs, which is a space with an isometric right shift operator
S, on which every bounded operator is a strictly singular perturbation of a
normally converging series of powers of S and its adjoint, the left shift on Xs.
Before presenting this example, we need to study some general properties of
a larger class of examples.

Given any set S of spreads containing the identity map, we shall say that it is a
∗-semi-group if it is a semi-group closed under taking adjoints. An example of
such a set is the collection of all spreads SA,B where A = {m,m+1,m+2, . . .}
and B = {n, n + 1, n + 2, . . .} for some m,n ≥ 0. This is the ∗-semi-group
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generated by the shift operator. Given any ∗-semi-group S of spreads, we shall
say that it is a proper ∗-semi-group if, for every (i, j) 6= (k, l), there are only
finitely many spreads S ∈ S for which e∗i (Sej) 6= 0 and e∗k(Sel) 6= 0. The
∗-semi-group generated by the shift operator is proper. Let x =

∑
vj ej and

x∗ =
∑

v∗i e∗i be two elements of c00. If S is proper, then except for finitely
many S ∈ S, the sum

∑
i,j v∗i vj e∗i (Sej) = x∗(Sx) has only one non zero term,

and is therefore bounded by ‖x‖∞ ‖x∗‖∞. Note that a proper set S of spreads
must be countable, and if we write it as {S1, S2, . . .} and set Sm = {S1, . . . , Sm}
for every m, then for any x ∈ X(S), x∗ ∈ X(S)∗, we have

(P ) lim
m

sup{|x∗(Ux)| : U ∈ S \ Sm} ≤ ‖x‖∞‖x∗‖∞.

Let X = X(S,K) be the space constructed in section 7, with V = K; by
Corollary 15, we know that X is reflexive. Let y ∈ X. Recall that for every
integer n ≥ 1,

‖y‖(n) = sup
n∑

i=1

‖Ei y‖

where the supremum is extended to all families E1 < . . . < En of successive
intervals. Observe that ‖ei‖(n) = 1 for every n ≥ 1.

Given a subspace Y ⊂ X, we will be interested in a seminorm |||.||| defined
on L(Y, X) as follows. Given T ∈ L(Y, X) let |||T ||| be the supremum of those
numbers κ such that for every n ≥ 1, there exists a vector y ∈ Y such that
‖Pny‖ ≤ 2−n, ‖y‖(n) ≤ 1 and ‖Ty‖ > κ. Clearly, |||T ||| ≤ ‖T‖. Let us say the
same thing in a slightly different way. The number |||T ||| is the smallest number
with the following property: for every ε > 0, there exists an integer n ≥ 1 such
that, for every y ∈ Y , the conditions ‖Pn y‖ ≤ 2−n and ‖y‖(n) ≤ 1 imply that
‖Ty‖ ≤ |||T |||+ ε. We may also write that for every y ∈ Y and n ≥ N(ε),

‖Ty‖ ≤ (|||T |||+ ε) ‖y‖(n) + 2n ‖Pny‖.

We say that a bounded sequence (yn) ⊂ Y is a sequence of almost successive
vectors in X if there exists a sequence (xn) of successive vectors such that
limn ‖xn − yn‖ = 0. If (yn) ⊂ Y is a sequence such that ‖Pnyn‖ ≤ 2−n for
every n ≥ 1, then clearly we may find almost successive subsequences (ynk

).
Let MY be the set of sequences y = (yn)+∞

n=1 of almost successive vectors in Y
such that lim supn ‖yn‖(n) ≤ 1. Now, given T ∈ L(Y, X) it is clear that

|||T ||| = sup
y∈MY

lim sup
n

‖Tyn‖.

Lemma 26 For every infinite-dimensional subspace Y of X = X(S,K) and
every T ∈ L(Y, X), we have

(i) if |||T ||| = 0, then T is strictly singular;
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(ii) if T is compact, then |||T ||| = 0;
(iii) if for every z in some infinite-dimensional subspace Z of Y , we have

‖Tz‖ ≥ ‖z‖, then |||T ||| ≥ 1.

PROOF. By Corollary 10, every subspace Y contains normalized sequences
in MY . Hence every subspace of Y contains a norm one vector y such that
‖Ty‖ ≤ |||T |||+ ε; in particular, if |||T ||| = 0, then T is strictly singular.

It is clear that lim ‖Txn‖ = 0 if T is compact and (xn) almost successive
(because X is reflexive), hence |||T ||| = 0. Lastly, suppose that ‖Tz‖ ≥ ‖z‖ for
every z in some subspace Z of Y . We know from Corollary 10 that Z contains
a normalized sequence (zn) of almost successive vectors with lim ‖zn‖(n) = 1.
By definition, |||T ||| ≥ limn ‖Tzn‖ ≥ 1.

Theorem 27 Let S be a proper ∗-semi-group of spreads. The Banach space
X = X(S,K) from section 7 satisfies a lower f -estimate and the following
three properties.

(i) For every x ∈ X and every SA,B ∈ S, ‖SA,B x‖ ≤ ‖x‖, (and therefore
‖SA,B x‖ = ‖x‖ if supp(x) ⊂ A);

(ii) If Y is an infinite-dimensional subspace of X, then every operator from
Y to X is in the |||.|||-closure of the set of restrictions to Y of operators
in the algebra A generated by S. In particular, all operators on X are
|||.|||-perturbations of operators in A.

(iii) The seminorm |||.||| on L(X) satisfies the algebra inequality |||UV ||| ≤
|||U ||| |||V |||.

Notice a straightforward consequence of this result. If we write G for the |||.|||-
completion of A (after quotienting by operators with |||.||| zero) then G is a
Banach algebra. Given T ∈ L(X), we can find by (ii) a |||.|||-Cauchy sequence
(Tn)+∞

n=1 of operators in A such that |||T − Tn||| → 0. Let φ(T ) be the limit of
(Tn)+∞

n=1 in G. This map is clearly well-defined. It follows easily from (iii) that
it is also a unital algebra homomorphism. The kernel of φ is the set of T such
that |||T ||| = 0. We have K(X) ⊂ ker φ ⊂ S(X). The restriction of φ to A is
the identity (or more accurately the embedding of A into G). If A is small,
then, since the kernel of φ consists of small operators, L(X) is also small.

Let us indicate why X does not contain an infinite unconditional sequence.
Let Y ⊂ X be a subspace with an unconditional basis (yn). Let (Mα)α denote
an uncountable family of subsets of N, such that any two of them differ by an
infinite set. For every α, let Pα denote the projection from Y on to the span of
(yn)n∈Mα . For α 6= β, there exists a subspace Z ⊂ Y such that ‖(Pα−Pβ)z‖ ≥
‖z‖ for every z ∈ Z. This implies that |||Pα − Pβ||| ≥ 1 by Lemma 26, but this
contradicts the separability of L(X) in the ||| . |||-norm, that follows from (ii)
and the countability of S.
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Lemma 28 Let S be a proper ∗-semi-group of spreads, let X = X(S), let
Y ⊂ X be an infinite-dimensional subspace and let T be a continuous linear
operator from Y to X. Let S =

⋃∞
m=1 Sm be a decomposition of S satisfying

condition (P ). Then for every ε > 0 there exists m such that, for every x ∈ Y
such that ‖x‖(m) ≤ 1 and ‖Pmx‖ ≤ 2−m,

d(Tx, m conv{λUx : U ∈ Sm, |λ| = 1}) ≤ ε.

PROOF. Suppose that the result is false. Then, for some ε > 0, we can find
a sequence (yn)+∞

n=1 with yn ∈ Y , ‖yn‖(n) ≤ 1 and ‖Pnyn‖ ≤ 2−n such that,
setting Cn = n conv{λUyn : U ∈ Sn, |λ| = 1}, we have d(Tyn, Cn) > 2 ε.
This yields that (yn) is bounded away from 0. We may pass to an almost
successive subsequence, still denoted (yn), such that

∑ ‖yn − y′n‖ < +∞ for
some successive sequence (y′n) ⊂ X satisfying ‖y′n‖(n) ≤ 1 for every integer
n ≥ 1. Then for some n0, (yn)n≥n0 and (y′n)n≥n0 are equivalent basic sequences
(see [LT, 1.a.9]), with the additional property that for every α > 0, there exists
n1 = n1(α) ≥ n0 such that every norm one vector y =

∑
n≥n1

anyn satisfies
‖y − ∑

n≥n1
any′n‖ < α. If we replace Y by the block subspace Y ′ generated

by (y′n)n≥n0 and T by T ′ defined on Y ′ by T ′y′n = Tyn for n ≥ n0, we still get
the conclusion that d(T ′y′n, C

′
n) > ε, where C ′

n is defined from (y′n) as Cn is
defined from (yn), provided n0 was chosen large enough. This argument shows
that if the result is false, then it is already false for some block subspace Y
and some operator T from Y to X.

In this case, it is not hard to show that T can be perturbed (in the operator
norm) to an operator whose matrix (with respect to the natural bases of X
and Y ) has only finitely many non-zero entries in each row and column. We
may therefore assume that T has this property. We also assume ‖T‖ ≤ 1.

Since we assumed that the result is false for Y and T , then for some ε > 0,
we can find a sequence (yn)+∞

n=1 with yn ∈ Y , ‖yn‖(n) ≤ 1 and supp(yn) > {n}
such that d(Tyn, Cn) > ε, and also such that if zn is any one of yn, Tyn or
Uyn for some U ∈ Sn and zn+1 is any one of yn+1, Tyn+1 or V yn+1 for some
V ∈ Sn+1, then zn < zn+1. By the Hahn-Banach theorem, for every n ≥ 1
there is a norm-one functional y∗n such that

sup{y∗n(x) : x ∈ Cn + εB(X)} < y∗n(Tyn).

It follows that y∗n(Tyn) > ε and sup |y∗n(Cn)| ≤ 1. Therefore |y∗n(Uyn)| ≤ n−1

for every U ∈ Sn. We may also assume that the support of y∗n is contained in
the smallest interval containing the supports of yn, Tyn and Uyn for U ∈ Sn.
(The case of complex scalars requires a standard modification.)

Given ` ∈ L define an `-pair to be a pair (x, x∗) constructed as follows.
Let yn1 , yn2 , . . . , yn`

be a subsequence of (yn)+∞
n=1 satisfying the RIS condition,
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which implies that n1 > e2`3 > `2. Let x = `−1f(`)(yn1 + · · · + yn`
) and let

x∗ = f(`)−1(y∗n1
+ · · · + y∗n`

), where the y∗ni
are as above. Lemma 19 implies

that ‖x‖ ≤ 3 and Lemma 20 that ‖x‖(
√

`) ≤ 15.

If (x, x∗) is such an `-pair, then x∗ ∈ A∗
`(X) and, by our earlier assumptions

about supports,

x∗(Tx) = `−1
∑̀

i=1

y∗ni
(Tyni

) > ε.

Similarly, |x∗(Ux)| ≤ n−1
1 < `−2 for every U ∈ S`.

Let k ∈ K be such that ε f(k)1/2 > 45. We now construct sequences x1, . . . , xk

and x∗1, . . . , x
∗
k as follows. Let `1 = j2k and let (x1, x

∗
1) be an `1-pair. Let m2

be such that |x∗1(Ux1)| ≤ ‖x1‖∞‖x∗1‖∞ if U ∈ S \ Sm2 . The functional x∗1 can
be perturbed so that it is in Q and so that ran(x∗1) ⊃ ran(x1), `2 = σ(x∗1)
is larger than m2 and f(

√
`2) > | ran(x∗1)|2 + 4, while (x1, x

∗
1) is still an `1-

pair. In general, after x1, . . . , xi−1 and x∗1, . . . , x
∗
i−1 have been constructed,

let (xi, x
∗
i ) be an `i-pair such that all of xi, Txi and x∗i are supported after

all of xi−1, Txi−1 and x∗i−1, and then perturb x∗i in such a way that, setting
`i+1 = σ(x∗1, . . . , x

∗
i ), we have |x∗i (Uxi)| ≤ ‖xi‖∞‖x∗i ‖∞ whenever U ∈ S \S`i+1

and we also have ran(x∗i ) ⊃ ran(xi), f(
√

`i+1) > | ran(
∑i

j=1 x∗j)|2 + 2i+1. This
yields that ‖x∗i+1‖∞ ≤ f(`i+1)

−1 ≤ 2−i−1.

Now let x = x1 + · · · + xk, let z∗ = x∗1 + · · · + x∗k and x∗ = f(k)−1/2 z∗. Our
construction guarantees that x∗ is a special functional, and therefore of norm
at most 1. We have

‖Tx‖ ≥ x∗(Tx) > εkf(k)−1/2.

Our aim is now to get an upper bound for ‖x‖ and to deduce an arbitrarily
large lower bound for ‖T‖. For this purpose we use Lemma 21. In order to
apply this Lemma, it is enough to show that |(U∗z∗)(Ex)| = |z∗(UEx)| ≤ 16
for any interval E and U ∈ S. We have x∗i ∈ A∗

`i
for i = 1, . . . , k. Suppose that

U ∈ Sm+1\Sm, and let t be such that `t ≤ m < `t+1. If i > t, then U ∈ S`i
and

|x∗i (Uxi)| < `−2
i . If i < t, then U /∈ S`i+1

, so |x∗i (Uxi)| ≤ ‖xi‖∞‖x∗i ‖∞ ≤ 2−i. If
i = t, then at least we know that |x∗i (Uxi)| ≤ ‖xi‖ ≤ 3.

Putting all these facts together, we get that |z∗(UEx)| ≤ 16, as desired (we
may have two incomplete terms at both ends of E). Hence, by Lemma 21,
‖x‖ ≤ 45kf(k)−1. It follows that ‖T‖ ≥ (ε/45)f(k)1/2 > 1, a contradiction.

Lemma 29 Let S, X, Y , T and ε be as in the previous lemma, let m be as
given by that lemma and let Am = m conv{λSm : |λ| = 1}. Then there exists
U ∈ Am such that |||T − U ||| ≤ 64 ε.
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PROOF. If the statement of the lemma is false, then for every operator
U ∈ Am there is a sequence xU = (xn) ∈ MY of vectors in Y such that
limn ‖(T−U)xn‖ > 64ε. We write this symbolically as ‖(T−U)xU‖ > 64ε. This
yields that lim inf ‖xn‖ > δ > 0, with δ depending only upon T and ε. At this
point, we may argue as in Lemma 28 in order to reduce the situation to the case
of a block subspace Y ′. Since Am is compact in operator norm, we may find a
finite set (xα) ⊂MY such that for every U ∈ Am, we have ‖(T−U)xα‖ > 64 ε
for some α. Passing to subsequences, we may assume that the sequences (xα)
can be arranged to be subsequences of a single sequence (yn) ⊂ Y such that
δ ≤ ‖yn‖ ≤ ‖yn‖(n) ≤ 1 for every n, and such that we can find a successive
sequence (y′n) in X satisfying ‖y′n‖(n) ≤ 1 for every n and

∑ ‖yn− y′n‖ < +∞.
Let n0 be chosen so that (yn)n≥n0 and (y′n)n≥n0 are equivalent basic sequences.
Recall that for every α > 0, there exists n1 = n1(α) ≥ n0 such that every norm
one vector y =

∑
n≥n1

anyn satisfies ‖y − ∑
n≥n1

any
′
n‖ < α. Let Y1 ⊂ Y be

the subspace generated by the sequence (yn)n≥n0 ; the conclusion of Lemma 28
is obviously still true for the restriction T1 of T to Y1. Now, let Y ′

1 be the
block subspace generated by the sequence (y′n)n≥n0 ; we may assume that all
vectors in Y ′

1 sit after m. Let us define T ′
1 on Y ′

1 by T ′
1y
′
n = Tyn for every

n ≥ n0. For every vector y′ ∈ Y ′
1 such that ‖y′‖(m) ≤ 1, we may find –if n0

was chosen large enough– a vector y ∈ Y1 such that T ′
1y
′ = Ty, ‖y− y′‖ < ε/2

and ‖y − y′‖(m) ≤ 2−m, hence ‖Pmy‖ ≤ 2−m and ‖y‖(m) ≤ 3/2. We see that
the conclusion of Lemma 28 is still true for T ′

1, provided we lose an additional
ε. Furthermore, for every U ∈ Am, we have ‖(T ′

1 − U)x‖ > 62 ε for some
x ∈ MY ′1 . This shows that we may assume that Y is a block subspace such
that

(∗) ∀y ∈ Y, d(Ty, {Uy : U ∈ Am}) ≤ 2 ε ‖y‖(m)

and that for every U ∈ Am, we have ‖(T − U)x‖ > 62 ε for some x ∈MY .

Let U s
i=1 be a covering of Am by open sets of diameter less than ε in the

operator norm. For every i = 1, . . . , s, let Ui ∈ Ui and let xi = (xi,n)n be a
successive sequence in MY such that ‖(T − Ui)xi‖ > 62 ε. By the condition
on the diameter of Ui, we have ‖(T − U)xi‖ > 60 ε for every U ∈ Ui. As in
the last lemma, we can assume that the matrix of T has only finitely many
non-zero entries in each row and column.

Our first aim is to show that the vectors xU can be chosen continuously in U .
(This statement will be made more precise later.) Let (φi)

r
i=1 be a partition of

unity on Am with φi supported inside Ui for each i. Let ` ∈ L be greater than
s and m2. For each i ≤ s, let xi,n1 , . . . , xi,n`

satisfy the RIS condition and let
m < xi,n1 . Let yi = `−1f(`)(xi,n1 + · · ·+ xi,n`

). Let this be done in such a way
that y1 < . . . < ys and also (T − U)xi,n1 < . . . < (T − U)xi,n`

for every i and
every U ∈ Am. Finally, let the xi,nj

be chosen so that ‖(T − U)xi,nj
‖ > 60 ε

for every U ∈ Ui.
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Now let us consider the vector y(U) =
∑s

i=1 φi(U)yi. By Lemma 20 we know
that ‖yi‖(

√
`) ≤ 15 for each i = 1, . . . , s, from which it follows by the triangle

inequality that ‖y(U)‖(
√

`) ≤ 15. We shall show that y(U) is a “bad” vector
for U , by showing that ‖(T − U)y(U)‖ > 30 ε.

To do this, let U ∈ Am be fixed and let I = {i : φi(U) > 0}. Recall that
‖(T − U)xi,nj

‖ > 60 ε for every i ∈ I and j = 1, . . . , `. For such an i and for
j ≤ ` let z∗i,j be a norm-one functional such that z∗i,j((T −U)xi,nj

) > 60 ε. Let
these functionals be chosen to be successive. Let z∗i = f(`)−1(z∗i,1 + · · · + z∗i,`)
and z∗ =

∑
i∈I z∗i . Then z∗i (T − U)yi > 60 ε, so

z∗
(
(T − U)y(U)

)
= z∗

(∑

i∈I

φi(U)(T − U)yi

)
> 60 ε.

However, ‖z∗‖ ≤ f(s`)/f(`) ≤ 2, proving our claim.

The function U → y(U) is clearly continuous on Am. The vector y(U) satisfies
‖y(U)‖(m) ≤ 15 and ‖(T − U)y(U)‖ > 30 ε. We now apply a fixed-point
theorem. For every U ∈ Am, let Γ(U) denote the set of V ∈ Am such that
‖(T − V )y(U)‖ ≤ 30 ε. Clearly Γ(U) is a compact convex subset of Am. By
property (∗), we know that Γ(U) is non-empty for every U . The continuity
of U → y(U) gives that Γ is upper semi-continuous, so there exists a point
U ∈ Am such that U ∈ Γ(U). But this is a contradiction.

Lemma 29 shows in particular that any operator T : Y → X can be approx-
imated arbitrarily well in the |||.|||-norm by the restriction of some operator
U ∈ A. We have therefore finished the proof of property (ii). The proof of
(iii) is much easier, and will complete the proof of Theorem 27.

Lemma 30 The seminorm |||.||| on L(X) satisfies the algebra inequality

|||UV ||| ≤ 75 |||U ||| |||V |||.

PROOF. In [GM2], this statement is proved with the constant 1 in place
of 75 (see Remark 13). Pick c > 1 and let (xn)+∞

n=1 ∈ MX be a sequence
such that ‖UV xn‖ ≥ c−1|||UV ||| for every n. After suitable perturbations and
selections of subsequences we may assume that xn, V xn, UV xn have supports
before xn+1, V xn+1, UV xn+1, and that xn+1, . . . , x2n is a RIS for every n ≥ 1.
Let u > |||U |||, v > |||V ||| and pick ` ∈ L large enough so that

(∗) ‖Ux‖ ≤ u ‖x‖(
√

`), ‖V x‖ ≤ v ‖x‖(
√

`)

whenever x ∈ X and ` < x. We consider the vectors xn+1 < . . . < xn+`4 , for
some n > `4 such that xn+1, V xn+1, UV xn+1 have supports after `. For every
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subset A ⊂ {1, . . . , `4} such that |A| ≥ `, we know by Lemma 20 applied with
r = |A| to the RIS (xn+i)i∈A that ‖∑

i∈A xn+i‖(
√

`) ≤ 15 |A|/f(|A|), hence
we get by (∗) that ‖∑

i∈A V xn+i‖ ≤ 15v |A|/f(|A|); by Lemma 16 applied
with m = `, n =

√
` and r = `4 to the successive sequence (κV xn+i)

r
i=1,

κ = (15v)−1, this yields

‖
r∑

i=1

V xn+i‖(
√

`) ≤ 75 r f(r)−1 v;

by (∗) it follows that ‖∑r
i=1 UV xn+i‖ ≤ 75 r f(r)−1 uv; but

‖
r∑

i=1

UV xn+i‖ ≥ c−1 rf(r)−1|||UV |||

by the lower f -estimate, and finally |||UV ||| ≤ 75 cuv.

9.1 The shift space

Let S be the proper ∗-semi-group mentioned earlier, generated by the shift,
which we denote by S. That is, S consists of all maps of the form SA,B where
A = [m,∞) and B = [n,∞). We will write L for the left shift, which is
(formally) the adjoint of S. Then every operator in S is of the form SmLn,
because LS = Id. Since SL − Id is of rank one, every operator in A is a
finite-rank perturbation of an operator of the form

∑N
n=0 λnS

n +
∑N

n=1 µnL
n,

so the difference is of |||.|||-norm zero. Let Xs denote the space obtained from
Theorem 27 in this case.

Lemma 31 Let U =
∑N

n=0 λnSn +
∑N

n=1 µnL
n. Then

‖U‖ = |||U ||| =
N∑

n=0

|λn|+
N∑

n=1

|µn|.

PROOF. For notational convenience, let λ−n = µn for 1 ≤ n ≤ N . Clearly
it is enough to prove that |||U ||| ≥ ∑N

n=−N |λn|. In this paper, we did not write
almost isometric versions of the basic Lemmas, so we will only prove this
inequality up to some multiplicative constant.

Let m ≥ 1 be given. For an integer r ∈ L consider the vector xr =
∑2r

j=r+1 e3jN .
Since every unit vector ei satisfies ‖ei‖(n) = 1 for every n, we have ‖xr‖ ≤
r/f(r) by Lemma 14; let yr = r−1f(r)xr; by Lemma 16, there exists r such
that ‖yr‖(m) ≤ 5 and we may choose r as big as we like, in particular r ≥ 3N .
This shows that the sequence 1

5
(yr) has subsequences in M, thus ‖Uyr‖ ≤
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(5 + ε) |||U ||| for large r. On the other hand, splitting Uxr into 3rN singleton
pieces from 3rN + 1 to (6r + 1)N gives that ‖Uxr‖ ≥ r f(3Nr)−1 ∑N

n=−N |λn|
by the lower f -estimate. This lower bound on ‖Uxr‖ gives

10 |||U ||| ≥ 5f(3Nr) f(r)−1 |||U ||| ≥
N∑

n=−N

|λn|.

Let W denote the Wiener convolution algebra `1(Z). The preceding Lemma
gives an isometric embedding i from W into L(Xs). Indeed, since all powers
of S and L have norm 1, we may associate to any a = (an) ∈ `1(Z) the
operator i(a) =

∑∞
n=0 anS

n +
∑∞

n=1 a−nL
n ∈ L(Xs). The next result gives, up

to a strictly singular perturbation, the converse of this fact. We call Toeplitz
operators on Xs the elements from the subspace T = i(W ).

Corollary 32 There is an algebra homomorphism and projection φ from the
space L(Xs) onto the subspace T consisting of Toeplitz operators with abso-
lutely summable coefficients. If T ∈ L(Xs) then |||φ(T )− T ||| = 0.

PROOF. Recall the remark following the statement of Theorem 27. In this
case, by Lemma 31, the algebra G, the |||.|||-completion of A, is the same as
the completion in L(Xs) and also the completion in the operator norm on `1.
Therefore G can be regarded as a subalgebra of L(Xs) consisting of Toeplitz
operators with absolutely summable coefficients. If we do this, then the algebra
homomorphism φ defined after Theorem 27 is also a projection. The equation
|||φ(T )− T ||| = 0 follows easily from the definition of φ.

Theorem 33 The space Xs is prime.

PROOF. Let P : Xs → Xs be a projection. By the previous corollary the
operator φ(P ) is a convolution by some absolutely summable sequence (an)n∈Z.
Moreover, φ(P )2 = φ(P ). But the Fourier transform of the sequence (an)n∈Z
is a continuous function on the circle squaring to itself. Hence it is constantly
zero or one. It follows that a0 is zero or one and all the other an are zero. That
is, φ(P ) is zero or the identity. Since P − φ(P ) is strictly singular, it follows
that P is of finite rank or corank. Thus, if PXs is infinite-dimensional, then
it has finite codimension. Since the shift on Xs is an isometry, it follows that
Xs is isometric to its range, namely an hyperplane; using powers of S, we see
that Xs and PXs are isomorphic, which proves the theorem.

A simple consequence of Corollary 32 is that, up to strictly singular pertur-
bations, any two operators on Xs commute. Indeed, if V and W are two
operators, then φ(V ) and φ(W ) commute, so φ(V W −WV ) = 0, from which
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it follows that |||V W −WV ||| = 0. For the rest of this section, we assume that
Xs has complex scalars. Let ψ : L(Xs) → C(T) be the composition of φ with
the Fourier transform. Then ψ is also a continuous algebra homomorphism.
Given an operator T on Xs, let KT be the compact set of µ ∈ C such that µ
is infinitely singular for T , which means for us that for every ε > 0 there is an
infinite-dimensional subspace Y ⊂ Xs such that ‖Ty − µy‖ ≤ ε‖y‖ for every
y ∈ Y . Since T − φ(T ) is strictly singular, Kφ(T ) = KT .

Lemma 34 The function ψ(T ) takes the value zero at some exp(iθ) if and
only if 0 is infinitely singular for T .

PROOF. If ψ(T ) takes the value zero at exp iθ, we can construct an ap-
proximate eigenvector for φ(T ) with eigenvalue zero as follows. Suppose that
φ(T ) is convolution by the sequence (an)n∈Z, and let ε > 0. We know that
ψ(T )(θ) =

∑
n∈Z an exp(inθ) = 0. Let ` ∈ L and let

x` = f(`2) `−2
2`2∑

n=`2

exp(inθ)en.

By Lemma 14 we have ‖x`‖ = 1, because ‖en‖(p) = 1 for every p ≥ 1.
Let U be convolution by the sequence (an)`

n=−`. If ` is large enough, then
‖U − φ(T )‖ ≤ ε/2, since (an)n∈Z is absolutely summable. Moreover, all but
at most 4` of the possible `2 + 2` non-zero coordinates of Ux` are equal to
f(`2) `−2 ∑`

n=−` an exp(inθ). Taking ` sufficiently large, we can therefore make
‖φ(T )−U‖ and ‖Ux`‖ as small as we like. Therefore zero is infinitely singular
for φ(T ). Since |||T − φ(T )||| = 0, the same is true for T .

Conversely, if ψ(T ) never takes the value zero, then it can be inverted in
C(T). A classical result states that the Fourier transform of this inverse will
also be in `1(Z), so in particular φ(T ) has an inverse U which is continuous
when considered as an operator on Xs and satisfies U = φ(U). Therefore
φ(UT − Id) = 0, so UT − Id is strictly singular and 0 is not infinitely singular
for T .

Corollary 35 The set KT is the image under ψ(T ) of the unit circle T.

PROOF. This follows from Lemma 34 applied to the operator T − λId.

Theorem 36 A subspace Y of Xs is isomorphic to Xs if and only if it has
finite codimension.

PROOF. Let T : Xs → Y be an isomorphism. Then 0 is not infinitely
singular for T , so, as in the proof of Lemma 34, we can find U such that
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TU , UT and Id are the same, up to a strictly singular perturbation. Since
TU − Id is strictly singular, TU is Fredholm with index zero. In particular
codim Y = codim TXs ≤ codim TUXs < ∞. As we have already mentioned,
the if part follows from the existence of the isometric shift.

10 Appendix

Let us check that when g is defined by the formula (F ) from section 7, then
t/g(t) is concave. We have that

k(t) = t/g(t) = exp
( ln(t)∫

0

eM(u)

1 + eM(u)
du

)
,

hence after some computations

k′′(t) =
k′(t)

t(1 + eM(ln t))
(M ′(ln t)− 1) ≤ 0

because M is 1-Lipschitz and k′(t) ≥ 0.

Proof of Lemma 11. We shall explain how to go down from the “big”
function f0 at t0 = eu0 to the “small” function f1 at t1 = e4u2

0 , or equivalently,
how to go from the small function M0(u) = ln(1+u) at u0 to the large function
M1(u) = ln(3 + 2u) at u1 = 4u2

0. More precisely, we need to build a function
M ∈ L, that coincides with M0 on [0, u0] and with M1 on [u1, +∞), and such
that g = gM satisfies the conclusions of the lemma, which reduce then to
g(t0) = f0(t0), g(t1) = f1(t1) and f1 ≤ g ≤ f0 on [t0, t1]. The proof of the
other case is similar.

It is clear that M ≤ N on [0, u] implies gN ≤ gM on [1, eu], and since
tg′N(t)/gN(t) = (1 + eN(ln(t)))−1 we see that the inequality M ≤ N on some
interval [u, v] ⊂ [0, +∞) implies that gM/gN is non-decreasing on the interval
[eu, ev].

We first define a function N ∈ L by letting N(u) = M0(u) for u ≤ u0 and
N(u) = M0(u0) + u− u0 = ln(1 + u0) + u− u0 for u ≥ u0. There is a unique
value v0 > u0 such that N(v0) = M1(v0) and a v1 such that N(v1) = M1(u1) =
ln(3+2u1), given by v1 = ln(3+2u1)+u0−ln(1+u0); one can check that v1 < u1

since M1(u1)−M0(u0) < u1 − u0 (exercise); it follows that u0 < v0 < v1 < u1

(the reader must draw a picture). Let N0 ∈ L be equal to N on [0, v0] and to
M1 on [v0, +∞), and N1 ∈ L be equal to N on [0, v1], equal to the constant
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value M1(u1) on [v1, u1] and equal to M1 on [u1, +∞). For every s ∈ [0, 1] let
Ns = (1 − s)N0 + sN1, and let gs = gNs ∈ F0 be the corresponding function.
Notice that gs(t0) = f0(t0) for every s. Our problem is to make sure that for
some s = s0 ∈ (0, 1), the value of gs at the other end t1 is what we expect,
namely gs(t1) = f1(t1). It will follow that gs0 = f1 on [t1, +∞), and it will only
remain to check that f1 ≤ gs0 ≤ f0. We shall first check that g1(e

u1) < f1(e
u1),

and next that g0(e
u1) > f1(e

u1): we have

ln
(g1(e

v1)

f0(eu0)

)
= ln

(g1(e
v1)

g1(eu0)

)
=

v1∫

u0

du

1 + eN(u)
=

v1∫

u0

du

1 + (1 + u0) eu−u0

≤ 1

1 + u0

+∞∫

u0

eu0−u du ≤ 1

1 + u0

<
1

6
,

ln
(g1(e

u1)

g1(ev1)

)
=

u1∫

v1

du

1 + eM1(u1)
=

u1∫

v1

du

4 + 2u1

<
1

2

so that finally g1(e
u1)/f0(e

u0) ≤ e2/3 < 2. On the other hand

f1(e
u1)/f0(e

u0) = (1 +
1

2
ln t1)

1/2/(1 +
1

2
ln t0)

= (1 + 2u2
0)

1/2/(1 +
u0

2
) > 2,

(because u0 ≥ 5) so that f1(e
u1) > g1(e

u1). Next we see that g0(e
u1) > f1(e

u1):
since N0 = M1 on [v0, u1], the quotient g0/f1 is constant on the interval
[ev0 , eu1 ], thus g0(e

u1)/f1(e
u1) = g0(e

v0)/f1(e
v0) > 1 because N0 < M1 on

the interval [0, v0).

We have that g1(e
u1) < f1(e

u1) < g0(e
u1). By continuity there exists s ∈ (0, 1)

such that gs(e
u1) = f1(e

u1). It only remains to check that f1 ≤ gs ≤ f0. Since
Ns < M1 on [u0, v0) and Ns > M1 on (v0, u1] we know that gs/f1 is increasing
on [t0, e

v0) and decreasing on (ev0 , t1]. Since the quotient is > 1 at t0 and
equal to 1 at t1, it follows that f1 ≤ gs on [t0, t1]. Using similar but simpler
arguments one can see that gs ≤ f0 on the same interval, because Ns ≥ M0

on [0, u1].

Proof of Lemma 14. Let G(t) = t/g(t) when t ≥ 1 and G(t) = t when
0 ≤ t ≤ 1. This function G is concave and increasing on [0, +∞). For every
interval E and every integer ` ≥ 0, let

σ`(E) =
r∑

i=1

‖Exi‖(p`).
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This expression is increasing with `, and

σ0(E) =
r∑

i=1

‖Exi‖(1) =
r∑

i=1

‖Exi‖ ≥ ‖Ex‖.

We shall prove by induction on κ, 1 ≤ κ ≤ r that whenever E is an interval
such that Exi 6= 0 for at most κ indices i, then

(∗) ‖Ex‖ ≤ G(σκ(E)).

Once this is done, we obtain the result for κ = r and E = ran(x),

‖x‖ ≤ G(σr(ran(x))) = G
( r∑

i=1

‖xi‖(pr)

)
≤ G(r) =

r

g(r)
.

Let κ(E) denote the number of indices i ∈ {1, . . . , r} such that Exi 6= 0 (if
κ(E) = 0, then Ex = 0 and this case is obvious). Observe first that when
‖Ex‖ ≤ 1, we have ‖Ex‖ = G(‖Ex‖) ≤ G(

∑r
i=1 ‖Exi‖) ≤ G(σ`(E)) for every

` ≥ 0. This shows in particular that (∗) is true when κ(E) = 1, since ‖Ex‖ ≤ 1
in this case. Assume (∗) true when κ(E) ≤ ` < r, and suppose there exists
an interval E such that κ(E) = ` + 1 and ‖Ex‖ > G(σ`+1(E)); since (∗)
is not true for E we know that ` ≥ 1 and ‖Ex‖ > 1. By assumption there
exists a (q, g)-form x∗ = g(q)−1(

∑q
j=1 Ajx

∗
j), 2 ≤ q ≤ p, where Aj = ran(x∗j),

A1 < . . . < Aq and ‖x∗j‖ ≤ 1, such that

G(σ`+1(E)) < |x∗(Ex)|.

Assume first that κ(AjE) ≤ ` for every j = 1, . . . , q. We have ‖AjEx‖ ≤
G(σ`(AjE)) by the induction hypothesis, and using the concavity of G and
the relation q ≤ p we obtain

|x∗(Ex)| ≤ 1

g(q)

q∑

j=1

‖AjEx‖ ≤ q

g(q)

q∑

j=1

1

q
G(σ`(AjE))

≤ q

g(q)
G

(1

q

q∑

j=1

σ`(AjE)
)

=
q

g(q)
G

(1

q

r∑

i=1

q∑

j=1

‖AjExi‖(p`)

)

≤ q

g(q)
G

(1

q

r∑

i=1

‖Exi‖(p`+1)

)
=

q

g(q)
G

(σ`+1(E)

q

)
.

If σ`+1(E) ≤ q, this last expression is equal to

σ`+1(E)/g(q) ≤ σ`+1(E)/g(σ`+1(E)) = G(σ`+1(E)),
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otherwise it is equal to

σ`+1(E)

g(q)g(σ`+1(E)/q)
≤ σ`+1(E)

g(σ`+1(E))
= G(σ`+1(E)),

so that we have reached a contradiction.

In the remaining case there exists j0 ∈ {1, . . . , q} such that Aj0Exi 6= 0 for
every i such that Exi 6= 0. Assume for example j0 < q (otherwise 1 < j0

deserves a similar treatment). Let m be the last integer i such that Exi 6= 0.
Let Bj0 = Aj0 \ ran(Exm), B′

j0+1 = Aj0 ∩ ran(Exm), B′′
j0+1 = Aj0+1, Bj0+1 =

B′
j0+1 ∪B′′

j0+1 and Bj = Aj otherwise. We see that

‖Aj0Ex‖+ ‖Aj0+1Ex‖≤‖Bj0Ex‖+ ‖B′
j0+1Exm‖+ ‖B′′

j0+1Exm‖
≤‖Bj0Ex‖+ ‖Bj0+1Exm‖(2).

Every Bj satisfies κ(BjE) ≤ `, so that the induction hypothesis applies and
since p` ≥ 2 we obtain

q∑

j=1

‖AjEx‖≤‖Bj0+1Exm‖(2) +
∑

j 6=j0+1

‖BjEx‖

≤G(σ`(Bj0+1E)) +
∑

j 6=j0+1

G(σ`(BjE)),

and the conclusion follows as before.

Proof of Lemma 25. Let t be a node in
⋃

n≥0 En. If m is the integer such
that t ∈ Em, let bt denote the segment consisting of those nodes s ∈ Em such
that s ≤ t. We let F ′

m denote the set of nodes t ∈ Em such that ‖x(bt)‖ ≥ α/2
and we let F ′′

m be the complement of F ′
m in Em. It is clear that b ∩ F ′′

m is a
segment, whenever b is a segment.

Let w =
∑

b∈A λb x(b) be an element of W , with A a finite family of segments
and

∑
b∈A |λb| ≤ 1. Let us check that ‖F ′′

m w‖ < α/2 for every m. For each
b ∈ A, let b′′ denote the segment b ∩ F ′′

m. If t is the longest node in b′′, then
‖x(b′′)‖ ≤ ‖x(bt)‖ < α/2. Therefore

‖F ′′
m w‖ = ‖∑

b∈A

λb x(b′′)‖ < α/2.

For every n let us write Enwn =
∑

b∈An
λb x(b), where An is a finite set of

segments b contained in En, and
∑

b∈An
|λb| ≤ 1. Let Γ be the compact set of

infinite branches of the tree T , with the topology of pointwise convergence at
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nodes. For every b ∈ An, let γb be an infinite branch containing the segment
b and consider the non-negative measure µn =

∑
b∈An

|λb| δγb
on Γ. Passing

to a subsequence we may assume that (µn) is weak-∗ convergent to a finite
non-negative measure µ on Γ.

Let Bm denote the set of γ ∈ Γ that intersect F ′
m. We want to show that µ(Bm)

tends to 0. If not, we may find for every k a branch γ and m1 < . . . < mk such
that γ ∈ Bmj

for j = 1, . . . , k. Let bj be the segment γ ∩ Emj
. It follows from

the definition of F ′
mj

that ‖x(bj)‖ ≥ α/2 for j = 1, . . . , k. But this is impossible
when k is large, because

∑
j ‖x(bj)‖p ≤ ‖x(γ)‖p ≤ 1, by the definition of the

space.

Suppose that m = m0 satisfies µ(Bm) < α/4. This implies that µn(Bm) <
α/4 when n is large, which means that most of the vectors x(b) used in the
construction of En wn sit on branches that do not meet F ′

m. Taking n > m
large enough, we may also have µ(Bn) < α/8. We let F ′′′

n denote the set of
nodes in En that are above some node in F ′

m. Then ‖F ′′′
n wn‖ < α/4 and the

nodes in E ′
n = F ′

n \F ′′′
n and in E ′

m = F ′
m are incomparable. Furthermore, if we

let E ′′
n = F ′′

n ∪ F ′′′
n , then ‖E ′′

n wn‖ < α.

We have just explained the beginning of a construction by induction of a
sequence (mj)

∞
j=0 satisfying the properties asked in Lemma 25. We let m0 = m

and m1 = n, where m and n are as in the preceding paragraph. The next value
of n, which will be chosen as m2, must satisfy µn(Bm0) < α/4, µn(Bm1) < α/8
and µ(Bn) < α/16. The reader will easily complete the missing steps.
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