Analyse fonctionnelle et théorie spectrale.

EXAMEN.

Les trois parties sont indépendantes. Documents et calculettes interdits.

I - 11 points

On note $H = \ell^2(\mathbf{Z})$ l'espace hilbertien des familles $(x_n)_{n \in \mathbf{Z}}$ de nombres complexes telles que $\sum_{n \in \mathbf{Z}} |x_n|^2 < +\infty$. Soit $(a_n)_{n \in \mathbf{Z}}$ une famille bornée de nombres complexes.

- 1. a) Montrer qu'il existe une application linéaire continue $T \in \mathcal{L}(H)$ telle que, pour tout $\xi = (x_n)_{n \in \mathbf{Z}} \in H$ on ait $T\xi = (y_n)_{n \in \mathbf{Z}}$ où pour $n \in \mathbf{Z}$, on a $y_n = a_n x_{n-1}$.
- b) Pour $\xi = (x_n)_{n \in \mathbb{Z}} \in H$ calculer $T^*\xi$.
- c) Montrer que T est normal si et seulement si $|a_n|$ ne dépend pas de n.
- 2. On pose $a_n = 1$ si n < 0 et $a_n = 2$ si $n \ge 0$.
- a) Montrer que T est bijective et calculer T^{-1} .
- b) Calculer la norme de T et celle de T^{-1} .
- c) Calculer le spectre ponctuel de $\,T\,$ et celui de $\,T^*\,$. En déduire le spectre résiduel et le spectre continu de $\,T\,$.

II -4 points

Soient H un espace hilbertien complexe et T un opérateur densément défini de H dans H .

- a) Montrer que les conditions suivantes sont équivalentes :
- (i) Pour tout $x \in \text{dom } T$, $\langle Tx, x \rangle \in \mathbf{R}$.
- (ii) Pour tout $x, y \in \text{dom } T$, $\langle Tx, y \rangle = \langle x, Ty \rangle$.
- (iii) T^* est une extension de T.

Si T vérifie ces conditions équivalentes, on dit qu'il est hermitien (ou symétrique).

b) On suppose que T est hermitien. Montrer que T est fermable et que \overline{T} est hermitien.

III - 5 points

Soient E et F des espaces hilbertiens et $T \in \mathcal{L}(E, F)$.

- a) Montrer que, pour toute fonction continue $f: \mathbf{R} \to \mathbf{C}$, on a $Tf(T^*T) = f(TT^*)T$ (on étudiera d'abord le cas où f est polynomiale).
- b) On suppose que $||T|| \le 1$. Montrer que l'application $U \in \mathcal{L}(E \oplus F)$ donnée par $U(x,y) = (\sqrt{\mathrm{id}_E T^*T} \, x T^*y, Tx + \sqrt{\mathrm{id}_F TT^*} \, y)$ est unitaire.
- c) Facultatif. Montrer que, pour toute fonction borélienne bornée $f: \mathbf{R} \to \mathbf{C}$, on a $Tf(T^*T) = f(TT^*)T$.