Analyse fonctionnelle et théorie spectrale.

EXAMEN PARTIEL.

Les deux parties sont indépendantes. Documents et calculettes interdits.

Ι

Soit H un espace hilbertien. On note $\mathcal{L}(H)$ l'espace des applications linéaires continues de H dans lui même. Un élément $T \in \mathcal{L}(H)$ est dit positif si $T = T^*$ et, pour tout $x \in H$, on a $\langle Tx, x \rangle \in \mathbf{R}_+$. On note $\mathrm{id}_H \in \mathcal{L}(H)$ l'application identique (telle que, pour tout $x \in H$, on ait $\mathrm{id}_H(x) = x$).

- 1. Soit $T \in \mathcal{L}(H)$ un élément positif.
- a) Montrer que, pour tout $S \in \mathcal{L}(H)$, S^*TS est positif, puis que, pour tout $n \in \mathbb{N}$, T^n est positif (par convention $T^0 = \mathrm{id}_H$).
- b) Montrer que, pour tout $x, y \in H$, on a : $|\langle Tx, y \rangle|^2 \le \langle Tx, x \rangle \langle Ty, y \rangle$.
- c) Si de plus $id_H T$ est positif, montrer que, pour tout $x \in H$, $\langle Tx, Tx \rangle \leq \langle Tx, x \rangle$.
- d) Montrer que les conditions suivantes sont équivalentes :
 - (i) $id_H T$ est positif.
 - (ii) $T T^2$ est positif.
 - (iii) $||T|| \leq 1$.
- 2. Soit $T \in \mathcal{L}(H)$ un élément positif tel que $\mathrm{id}_H T$ soit positif.
- a) Montrer que pour tout $n \in \mathbb{N}$, $T^n T^{n+1}$ est positif.
- b) Montrer que, pour tout $x \in H$, la suite $(\langle T^n x, x \rangle)_{n \in \mathbb{N}}$ est convergente.
- c) Montrer que la suite $(T^n)_{n\in\mathbb{N}}$ converge dans $\mathcal{L}(H)$ pour la topologie forte (à l'aide de 1.c, on démontrera que, pour tout $x\in H$, la suite $(T^nx)_{n\in\mathbb{N}}$ est de Cauchy).

On note P la limite forte de la suite $(T^n)_{n \in \mathbb{N}}$.

- d) Montrer que $P = P^*$ et que TP = P.
- e) Soit $x \in H$ tel que Tx = x. Montrer que Px = x. En déduire que $P^2 = P$ puis que P est le projecteur orthogonal d'image $\ker(T \mathrm{id}_H)$.

II

Soient E et F des espaces de Banach et $f:E\to F$ une application linéaire continue. Montrer que les conditions suivantes sont équivalentes :

- (i) Il existe $k \in \mathbf{R}_+^*$ tel que, pour tout $x \in E$, $||f(x)|| \ge k||x||$.
- (ii) f est injective et son image est fermée dans F.
- (iii) f induit un homéomorphisme de E sur f(E).
- (iv) La transposée (topologique) ${}^tf:F'\to E'$ de f est surjective.

On pourra montrer que $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i)$.