Analyse fonctionnelle et théorie spectrale.

EXAMEN.

Les trois parties sont indépendantes.

I (
$$\simeq$$
 2 points).

Soient E un espace de Banach, F_1 et F_2 des sous-espaces fermés tels que $E = F_1 + F_2$. Montrer qu'il existe $k \in \mathbf{R}_+$ tel que, pour tout $x \in E$, il existe $y_1 \in F_1$ et $y_2 \in F_2$ vérifiant $||y_1|| + ||y_2|| \le k||x||$ et $x = y_1 + y_2$.

II (
$$\simeq$$
 13 points).

On note $L^2([0,1])$ l'espace hilbertien des classes de fonctions mesurables de carré intégrable de l'intervalle [0,1] dans \mathbf{C} pour la mesure de Lebesgue. On note $\| \|_2$ sa norme. On note aussi C([0,1]) l'espace de Banach des fonctions continues de l'intervalle [0,1] dans \mathbf{C} muni de la norme de convergence uniforme.

- 1. Pour $s \in [0,1]$, notons χ_s la classe dans $L^2([0,1])$ de la fonction définie par $\chi_s(t) = 1$ si $s \le t \le 1$ et $\chi_s(t) = 0$ sinon.
- a) Pour $s, t \in [0, 1]$, calculer $\|\chi_s \chi_t\|_2$.
- b) Montrer qu'il existe une application linéaire continue $T_0: L^2([0,1]) \to C([0,1])$ telle que, pour $\xi \in L^2([0,1])$ et $s \in [0,1]$, on ait $(T_0(\xi))(s) = \int_{1-s}^1 \xi(t) dt$.

On note $T \in \mathcal{L}(L^2([0,1]))$ l'application qui à $\xi \in L^2([0,1])$ associe la classe dans $L^2([0,1])$ de $T_0(\xi)$.

- 2. a) Montrer que T est autoadjoint.
- b) Montrer que T est injectif et que son image est dense.

Pour $n \in \mathbf{Z}$, notons $e_n \in L^2([0,1])$ la (classe de la) fonction $t \mapsto e^{2ni\pi t}$. Rappelons que $(e_n)_{n \in \mathbf{Z}}$ est une base hilbertienne de $L^2([0,1])$.

- 3. Calculer $||T(e_n)||_2$. Montrer que T est un opérateur de Hilbert-Schmidt.
- 4. Soient $\lambda \in \mathbf{C}^*$ et $\xi \in L^2([0,1])$, $\xi \neq 0$ tel que $T(\xi) = \lambda \xi$.
- a) Montrer que $\lambda \in \mathbf{R}$.
- b) Montrer que ξ est la classe dans L^2 d'une fonction continue, notée f. Montrer que f(0) = 0.
- c) Montrer que f est de classe C^1 et que, pour tout $t \in [0,1]$, on a $\lambda f'(t) = f(1-t)$.
- d) Montrer que f est de classe C^2 et que, pour tout $t \in [0,1]$, on a $\lambda^2 f''(t) = -f(t)$. En déduire que f est proportionnelle à la fonction $t \mapsto \sin(t/\lambda)$.
- e) Montrer que pour tout $t \in [0,1]$, on a $\cos(t/\lambda) = \sin((1-t)/\lambda)$. En déduire qu'il existe $n \in \mathbf{Z}$ tel que $1/\lambda = \pi/2 + 2n\pi$.
- 5. Quel est le spectre de T?

III (
$$\simeq$$
 5 points).

Soient H un espace hilbertien $T \in \mathcal{L}(H)$ un opérateur autoadjoint.

- 1. Montrer que les conditions suivantes sont équivalentes :
- (i) Il existe $k \in \mathbf{R}_+$ tel que $||T k \mathrm{id}_H|| \le k$.
- (ii) T est positif.

Pour montrer (ii) \Rightarrow (i), on pourra poser k = ||T||.

- 2. Montrer que les conditions suivantes sont équivalentes.
- (i) Il existe $k \in \mathbf{R}_+$ tel que $||T k \mathrm{id}_H|| < k$.
- (ii) T est positif et inversible.
- 3. Notons φ l'application de $\mathcal{L}(H)$ dans $\mathcal{L}(H)$ définie par $\varphi(S) = ST + TS$.
- a) On suppose que T est positif et inversible. Montrer qu'il existe $k \in \mathbf{R}_+$ tel que $\|\varphi 2k\mathrm{id}_{\mathcal{L}(H)}\| < 2k$. En déduire que φ est bijective.
- b) On suppose que T n'est pas inversible. Montrer que φ n'est pas bijective.