durée: 3 heures

Le poly est le seul document autorisé.

Exercice I

1. Dans les deux parties de l'exercice, K est un compact non vide de \mathbb{C} ; on désigne par C(K) l'espace de Banach des fonctions complexes continues sur K, muni de la norme uniforme; on désigne par E l'adhérence dans C(K) du sous-espace vectoriel engendré par les fonctions $z \in K \to z^n$, où n prend les valeurs entières $0, 1, 2, \ldots$; on munit E de la norme uniforme. On note i_K la fonction définie sur K par $i_K(z) = z$ pour tout $z \in K$.

1.a. Montrer que pour toutes fonctions $f, g \in E$, la fonction produit fg est dans E. Vérifier que l'application $f \in E \to i_K f$ est linéaire et continue de E dans E.

Dans toute la suite de l'exercice, on suppose que $0 \notin K$, et on désigne par T l'élément de $\mathcal{L}(E)$ défini par $T(f) = i_K f$, pour toute $f \in E$.

1.b. Montrer que T est injectif à image fermée. Montrer que T est inversible dans $\mathcal{L}(E)$ si et seulement si la fonction constante égale à 1 est dans l'image T(E).

1.c. Dans cette question (seulement) on suppose que K contient le cercle de rayon r>0 centré au point 0. Montrer que $\int_0^{2\pi}g(r\,\mathrm{e}^{i\theta})\,d\theta=0$ pour toute fonction $g\in\mathrm{T}(\mathrm{E})$. En déduire dans ce cas que T n'est pas surjectif, et que la fonction $z\in\mathrm{K}\to1/z$ n'est pas dans E.

2. Dans cette deuxième partie de l'exercice on suppose que $|z-t| \ge 1$ pour tout $z \in K$ et pour tout t réel ≥ 0 .

2.a. Montrer que $T - t \operatorname{Id}_{E}$ est inversible dans $\mathcal{L}(E)$ pour t > 0 assez grand. Montrer que lorsque $T - t \operatorname{Id}_{E}$ est inversible et t réel ≥ 0 , on a $\|(T - t \operatorname{Id}_{E})^{-1}\| \leq 1$.

2.b. Si $U \in \mathcal{L}(E)$, si U est inversible dans $\mathcal{L}(E)$ et si $|s| < ||U^{-1}||^{-1}$, montrer que l'endomorphisme $U + s \operatorname{Id}_E$ est inversible dans $\mathcal{L}(E)$.

2.c. Montrer que $T - t \operatorname{Id}_{E}$ est inversible dans $\mathcal{L}(E)$ pour tout réel $t \geq 0$. Montrer qu'il existe une suite $(P_n) \subset \mathbb{C}[X]$ de polynômes telle que $P_n(z) \to 1/z$ uniformément pour $z \in K$.

Exercice II

1. On désigne par F l'espace de Banach des fonctions continues sur $[0, 2\pi]$, à valeurs complexes, muni de la norme uniforme. Pour chaque $f \in F$ on définit une fonction Tf sur $[0, 2\pi]$ par la formule

$$\forall x \in [0, 2\pi], \quad (\mathrm{T}f)(x) = i e^{ix/2} \int_0^x e^{-it/2} f(t) dt.$$

1.a. Justifier (en quelques phrases) le fait que $Tf \in F$ pour toute $f \in F$ et que l'application $f \in F \to Tf$ est linéaire. Montrer que T est continue de F dans F en donnant une majoration de sa norme (ou si possible la valeur exacte de ||T|| dans $\mathcal{L}(F)$).

- 1.b. Montrer qu'il existe une forme linéaire continue ℓ sur F telle que pour toute $f \in F$, la fonction Sf définie sur $[0, 2\pi]$ par $(Sf)(x) = (Tf)(x) + \ell(f) e^{ix/2}$ prenne la même valeur en x = 0 et en $x = 2\pi$.
- 1.c. Montrer que Sf est l'unique fonction y de classe C¹ sur $[0, 2\pi]$, qui est solution de l'équation différentielle y' iy/2 = i f et qui vérifie $y(0) = y(2\pi)$.
 - 1.d. Montrer qu'il existe une fonction mesurable bornée K sur $[0, 2\pi]^2$ telle que

$$\forall f \in \mathcal{F}, \ \forall x \in [0, 2\pi], \quad (\mathcal{S}f)(x) = \int_0^{2\pi} \mathcal{K}(x, t) f(t) dt.$$

2. On désigne par H l'espace de Hilbert complexe $L_2([0,2\pi],dt)$, et on considère l'opérateur linéaire A défini par

$$\forall f \in \mathcal{H}, \ \forall x \in [0, 2\pi], \quad (\mathcal{A}f)(x) = \int_0^{2\pi} \frac{i}{2} \operatorname{sign}(x - t) e^{i(x - t)/2} f(t) dt,$$

où pour u réel, on a posé sign(u) = 1 si u > 0, sign(u) = -1 si u < 0 et sign(0) = 0.

- 2.a. Montrer que A est un élément hermitien et compact de $\mathcal{L}(H)$.
- 2.b. Comparer Af et Sf lorsque $f \in F$. Déterminer les valeurs propres non nulles de A et les vecteurs propres correspondants. Donner le spectre de A. Calculer la norme de A.
- 2.c. Montrer que l'image de A contient toutes les fonctions de classe C^1 sur $[0, 2\pi]$, nulles en 0 et en 2π . Montrer que A est injectif.
 - 2.d. Expliquer pourquoi l'expression

$$\sum_{n \in \mathbb{Z}} \frac{1}{n - \frac{1}{2}} e^{in(x-t)}$$

définit une fonction $(x,t) \to K_2(x,t)$ de $L_2([0,2\pi]^2)$. Comparer K(x,t) et $K_2(x,t)$.