Calcul fonctionnel pour les opérateurs normaux

Lemme 1. Soient T un opérateur hermitien sur un espace de Hilbert H, f une fonction réelle continue sur \mathbb{R} , et F l'adhérence de l'image de f(T); alors F est stable par tout opérateur S qui commute avec T.

Supposons de plus que f soit nulle en dehors de [a,b]; si F n'est pas réduit à $\{0\}$, le spectre de la restriction de T à F est contenu dans [a,b]. Il en résulte que

$$\langle T(x), x \rangle \ge a ||x||^2$$

pour tout $x \in F$.

Démonstration. Soit S un opérateur qui commute avec T; l'ensemble E des $x \in H$ tels que $S(x) \in F$ est un sous-espace fermé de H. Pour montrer qu'il contient F, il suffit de montrer qu'il contient l'image de f(T), et il contiendra alors automatiquement l'adhérence de l'image. Soit donc x = f(T)(y) un vecteur de l'image de f(T); on sait que S commute avec f(T), donc S(x) = S(f(T)(y)) = f(T)(S(y)) appartient à l'image de f(T), donc $S(x) \in F$ et $x \in E$, et on a montré que im $(f(T)) \subset E$, ce qu'il fallait démontrer pour commencer.

Supposons maintenant que f est nulle en dehors de [a,b], et soit $\lambda \notin [a,b]$; la fonction $t \to t - \lambda$ ne s'annule pas sur [a,b], ce qui permet de la prolonger en une fonction g continue sur \mathbb{R} qui ne s'annule jamais (par exemple, on posera $g(t) = g(a) = a - \lambda$ si $t \le a$, et $g(t) = g(b) = b - \lambda$ si $t \ge b$). On posera h(t) = 1/g(t) pour tout $t \in \mathbb{R}$. On note que f est stable par f(t), ce qui permettra de considérer la restriction de f(t) à f. On va montrer que cette restriction de f(t) est l'inverse de la restriction de f(t) and f inverse de f inverse f inverse de f inverse f

Puisque f est nulle en dehors de [a,b], on vérifie que $(fg)(t) = f(t)(t-\lambda)$, pour tout $t \in \mathbb{R}$, autrement dit on peut écrire pour les restrictions à $K = \operatorname{Sp}(T)$ les relations : $fg = f(z_K - \lambda)$, donc $f = fgh = fh(z_K - \lambda)$. En passant aux opérateurs,

$$f(T) = f(T) h(T) (T - \lambda Id_H),$$

ce qui montre que si x = f(T)(y) est dans l'image de f(T), et compte tenu des commutations,

$$x = h(T)(T(x) - \lambda x) = (T - \lambda \operatorname{Id}_{H})(h(T)(x)).$$

Cette relation se prolonge par continuité à tout $x \in F$, et elle signifie que la restriction de h(T) à F est l'inverse de $T_{|F} - \lambda \operatorname{Id}_F$, comme annoncé.

Considérons l'opérateur $V = T_{|F} - a \operatorname{Id}_{F}$; cet opérateur est hermitien et on sait que $\operatorname{Sp}(V) \subset [0,b-a]$. Ceci implique que V est positif, donc pour tout $x \in F$ on a $0 \leq \langle V(x),x \rangle = \langle T(x),x \rangle - a \|x\|^{2}$.

Lemme 2. Soient T un opérateur normal et $\lambda \in \operatorname{Sp}(T)$; il existe une suite (x_n) de vecteurs de norme un telle que $T(x_n) - \lambda x_n \to 0$ et $T^*(x_n) - \overline{\lambda} x_n \to 0$.

Démonstration. L'opérateur $S = T - \lambda \operatorname{Id}_H$ est normal et $S^* = T^* - \overline{\lambda} \operatorname{Id}_H$, et nous savons que S n'est pas inversible. Il faut trouver (x_n) de norme un de façon que $S(x_n) \to 0$ et $S^*(x_n) \to 0$. En fait cette dernière propriété est gratuite, parce que

$$\|S(x_n)\|^2 = \langle S^*S(x_n), x_n \rangle = \langle SS^*(x_n), x_n \rangle = \|S^*(x_n)\|^2.$$

Pour la première il faut voir qu'il n'existe pas de constante c > 0 telle que $||S(x)|| \ge c ||x||$ pour tout x; si c'était le cas on aurait $||S^*S(x)|| ||x|| \ge \langle S^*S(x), x \rangle = ||S(x)||^2 \ge c^2 ||x||^2$, et comme S^*S est hermitien on en déduirait que $S^*S = SS^*$ serait inversible; un petit lemme d'algèbre nous dirait alors que S lui-même serait inversible, contradiction.

Dans les deux cas particuliers de calcul fonctionnel traités en cours, l'opérateur adjoint T^* était directement une fonction de T: trivialement dans le cas hermitien, puisqu'alors $T^* = T$, mais aussi dans le cas unitaire où $T^* = T^{-1}$. Cela ne sera plus vrai dans le cas général d'un opérateur normal, et il faudra demander explicitement que l'homomorphisme φ_T envoie la fonction \overline{z}_K sur T^* (en notant comme d'habitude $K = \operatorname{Sp}(T)$).

Il faut aussi généraliser nos polynômes : si la fonction $z_{\rm K}$ est envoyée sur T et la fonction $\overline{z}_{\rm K}$ sur T*, alors l'image de $z_{\rm K}\overline{z}_{\rm K}$ doit être TT* ; dans le cas hermitien ou unitaire, la fonction $z_{\rm K}\overline{z}_{\rm K}$ s'exprime à partir d'un polynôme en $z_{\rm K}$ ($z_{\rm K}^2$ dans le cas hermitien et 1 dans le cas unitaire) ; ceci n'est plus vrai maintenant, et la fonction $z_{\rm K}\overline{z}_{\rm K}$ est une nouvelle fonction qui doit être gardée dans notre algèbre de "polynômes" ; bien sûr le problème ne s'arrête pas là, et nous devons considérer $z_k^p \, \overline{z}_{\rm K}^q$ pour tous entiers $p,q \geq 0$. On pourrait dire que nous devons considérer l'algèbre $\mathbb{C}[{\rm X},{\rm Y}]$ des polynômes en deux variables, puis prendre l'ensemble des fonctions sur ${\rm K}={\rm Sp}({\rm T})$ obtenues en remplaçant X par $z_{\rm K}$ et Y par $\overline{z}_{\rm K}$. Disons simplement que notre algèbre de base A qui remplacera l'algèbre des polynômes sera l'algèbre de toutes les fonctions f sur K de la forme

$$\forall z \in K, \quad f(z) = \sum_{p,q=0}^{N} c_{p,q} z^p \overline{z}^q,$$

où les coefficients $c_{p,q}$ sont dans \mathbb{C} . On a envie de poser ensuite

$$f(\mathbf{T}) = \sum_{p,q=0}^{N} c_{p,q} \mathbf{T}^{p} (\mathbf{T}^{*})^{q} = \mathbf{V},$$

mais on n'est pas encore sûr que l'opérateur ainsi écrit ne dépend que de la fonction f sur K; pour écrire les choses proprement il faut prendre le polynôme formel de deux variables

$$\mathbf{P} = \sum_{p,q=0}^{\mathbf{N}} c_{p,q} \mathbf{X}^p \mathbf{Y}^q,$$

puis calculer $P(T, T^*)$, qui donne l'opérateur V ci-dessus sans ambiguïté (il faut absolument noter que le remplacement dans le polynôme de deux variables n'aurait aucune propriété raisonnable si on n'avait pas $TT^* = T^*T$; le fait que T soit normal nous permet d'écrire $T^p(T^*)^q$ dans n'importe quel ordre, et de vérifier que le polynôme formel X^mY^nP donnera l'opérateur $T^m(T^*)^nP(T,T^*)$, ce qui permet de voir ensuite que le produit P_1P_2 donne $(P_1P_2)(T,T^*) = P_1(T,T^*)P_2(T,T^*)$.

La stratégie de démonstration sera toujours la même : l'algèbre A considérée est dense dans C(K) par Stone-Weierstrass (facile), et l'application que nous avons en tête sera isométrique. Considérons donc

$$f(z) = \sum_{p,q=0}^{N} c_{p,q} z^{p} \overline{z}^{q}, \quad V = \sum_{p,q=0}^{N} c_{p,q} T^{p} (T^{*})^{q}.$$

On calculera la norme de V en disant que $\|V\|^2 = \|V^*V\|$. Posons $S = V^*V$ et $r = \|S\|$; soient a, b tels que a < r < b, et f une fonction continue, nulle en dehors de [a, b] et telle que f(r) = 1; on sait que $r \in \operatorname{Sp}(S)$ et $\operatorname{Sp}(f(S)) = f(\operatorname{Sp}(S))$ contient $f(r) \neq 0$, ce qui dit que f(S) n'est pas nul, donc l'adhérence F de son image n'est pas $\{0\}$. On sait que T et T^* commutent avec S, donc F est stable par T et T^* ; ceci permet de considérer la restriction T_1 de T, et de voir que son adjoint T_1^* est la restriction de T^* . Il en résulte que T_1 est normal. Soit λ une valeur spectrale de T_1 ; on sait d'après le lemme 2 qu'on peut trouver un vecteur $x_n \in F$ de norme un tel que $T_1(x_n) = T(x_n) \sim \lambda x_n$ (ceci nous dit en passant que $\lambda \in \operatorname{Sp}(T) = K$), et $T^*(x_n) \sim \overline{\lambda} x_n$. Il en résulte que $V(x_n) \sim (\sum_{p,q} c_{p,q} \lambda^p \overline{\lambda}^q) x_n$, donc $\|V(x_n)\| \sim |f(\lambda)|$.

Par ailleurs, on sait d'après le lemme 1 que $\|V(x)\|^2 = \langle V^*V(x), x \rangle \ge a \|x\|^2$ pour tout $x \in F$. On obtient ainsi que $a \le \|f\|_{\mathcal{C}(K)}^2$, et puisque a est quelconque $< \|V\|^2$ il en résulte que $\|V\| \le \|f\|_{\mathcal{C}(K)}$.

A partir de là nous avons déjà une justification du fait que l'opérateur V ne dépend que de la fonction f sur K, ce qui permet de poser V = f(T), et de plus nous pouvons étendre par continuité la définition donnée sur l'algèbre A. Mais en fait il y a encore isométrie de A (munie de la norme de C(K)) dans $\mathcal{L}(H)$: soit en effet $\lambda \in K$; il existe x de norme un tel que $T(x) \sim \lambda x$, donc $f(T)(x) \sim f(\lambda)x$ par le même argument que précédemment, donc $||f(T)|| \ge ||f(\lambda)||$, pour tout $\lambda \in K$, ce qui donne $||f(T)|| \ge ||f||_{C(K)}$ et termine notre programme.

Théorème. Soient H un espace hilbertien complexe et $T \in \mathcal{L}(H)$ un opérateur normal; posons $K = \operatorname{Sp}(T)$; il existe un et un seul homomorphisme d'algèbres de Banach unitaires complexes $\varphi_T : C(K) \to \mathcal{L}(H)$ tel que $\varphi_T(z_K) = T$ et $\varphi_T(\overline{z}_k) = T^*$. On notera $f(T) = \varphi_T(f)$.

De plus, φ_T est isométrique, $(f(T))^* = \overline{f}(T)$ (donc f(T) est normal) et f(T) commute avec tout opérateur S qui commute avec T. On a

$$\operatorname{Sp}(f(T)) = \operatorname{Sp}(f) = f(\operatorname{Sp}(T)).$$