Chapitre 1. Espaces normés et applications linéaires continues

1.1. Normes, semi-normes; espaces de Banach

On note \mathbb{K} le corps \mathbb{R} ou \mathbb{C} . Les espaces vectoriels considérés dans ce cours seront toujours des espaces vectoriels réels ou complexes.

Définition 1.1.1. Soit X un espace vectoriel sur \mathbb{K} ; on appelle *semi-norme* sur X une application $p: X \to \mathbb{R}_+$ vérifiant les propriétés suivantes :

- (i) pour tout $x \in X$ et tout $\lambda \in \mathbb{K}$, on a $p(\lambda x) = |\lambda| p(x)$;
- (ii) pour tous $x, y \in X$, on a $p(x + y) \le p(x) + p(y)$.

Si pour tout vecteur x non nul de X on a p(x) > 0, on dit que p est une norme; autrement dit une semi-norme p sur X est une norme lorsque $\{x \in X : p(x) = 0\} = \{0_X\}.$

La propriété $p(x+y) \leq p(x) + p(y)$ s'appelle l'inégalité triangulaire pour la seminorme p. De l'inégalité triangulaire ci-dessus, on peut déduire une deuxième forme : on a $p(x) = p((x-y) + y) \leq p(x-y) + p(y)$, donc $p(x) - p(y) \leq p(x-y)$; en échangeant les rôles de x et y et en utilisant p(x-y) = p(y-x) on trouve :

Lemme 1.1.1. Si p est une semi-norme sur X, on a $|p(x) - p(y)| \le p(x - y)$ pour tous vecteurs $x, y \in X$.

Rappelons qu'un sous-ensemble C d'un espace vectoriel X est dit convexe si pour tout couple (x, y) d'éléments de C, le segment [x, y] est tout entier contenu dans C; le segment [x, y] est formé des combinaisons convexes des deux points x et y, c'est à dire tous les points de la forme z = (1 - t)x + ty, où t varie dans [0, 1].

Corollaire 1.1.1. Pour que p soit une semi-norme sur l'espace vectoriel X, il faut et il suffit que $p(\lambda x) = |\lambda| p(x)$ pour tout scalaire $\lambda \in \mathbb{K}$ et pour tout vecteur $x \in X$ et que l'ensemble $\{x \in X : p(x) \leq 1\}$ soit convexe.

Démonstration. Posons $C_p = \{x \in X : p(x) \leq 1\}$ et démontrons la suffisance de la condition : on suppose donc que $p(\lambda x) = |\lambda| p(x)$ et que l'ensemble C_p est convexe ; déduisons-en la sous-additivité de p; soient x et y deux vecteurs de X, et supposons d'abord que a = p(x) > 0 et b = p(y) > 0; considérons les deux vecteurs de C_p définis par $x_1 = a^{-1}x$ et $y_1 = b^{-1}y$ (par hypothèse, $p(a^{-1}x) = a^{-1}p(x) = 1$ et de même pour y), puis formons la combinaison convexe

$$z = \frac{a}{a+b} x_1 + \frac{b}{a+b} y_1,$$

qui est dans C_p d'après l'hypothèse, c'est à dire que $p(z) \leq 1$. Mais on vérifie immédiatement que $z = (a+b)^{-1}(x+y)$, et l'homogénéité de p transforme alors l'inégalité $p(z) \leq 1$ en $p(x+y) \leq a+b=p(x)+p(y)$.

Si a > 0 et b = 0, voir le poly.

Exemple.

Pour $1 \le p < +\infty$, soit $\mathcal{L}_p = \mathcal{L}_p([0,1])$ l'espace des fonctions f complexes sur [0,1] telles que f soit Lebesgue-mesurable et $\int_0^1 |f(s)|^p ds < +\infty$; la quantité

$$q(f) = \left(\int_0^1 |f(s)|^p \, ds\right)^{1/p}$$

est une semi-norme; pour le vérifier, on voit d'abord que $q(\lambda f) = |\lambda| q(f)$ (facile), puis on montre que l'ensemble $\{f \in \mathcal{L}_p : q(f) \leq 1\}$ est convexe. Cela provient de la convexité sur $[0, +\infty[$ de la fonction $u \to u^p$; on a alors si f, g sont deux éléments de \mathcal{L}_p tels que $q(f) \leq 1$, $q(g) \leq 1$ et si $0 \leq t \leq 1$,

$$|(1-t)f(s) + tg(s)|^p \le ((1-t)|f(s)| + t|g(s)|)^p \le (1-t)|f(s)|^p + t|g(s)|^p$$

pour tout $s \in [0, 1]$, donc

$$\int_0^1 \left| (1-t)f(s) + tg(s) \right|^p ds \le (1-t) \int_0^1 |f(s)|^p ds + t \int_0^1 |g(s)|^p ds \le (1-t) + t = 1.$$

On appelle espace normé un espace vectoriel X muni d'une norme p. Si X est un espace normé, nous en ferons un espace métrique en définissant la distance d sur X par d(x,y) = p(x-y), et nous munirons X de la topologie associée à cette métrique, que nous appellerons topologie de la norme.

Proposition 1.1.1. Soit (X, p) un espace normé; l'application $p : X \to \mathbb{R}_+$ est continue pour la topologie de la norme.

Cela résulte facilement du lemme 1. En effet, si la suite $(x_n) \subset X$ tend vers y, on aura

$$|p(x_n) - p(y)| \le p(x_n - y) = d(x_n, y) \to 0.$$

En général, nous noterons ||x|| la norme d'un vecteur x d'un espace normé X.

La topologie et la structure d'espace vectoriel d'un espace normé sont compatibles, autrement dit, un espace normé est un espace vectoriel topologique au sens suivant :

Proposition 1.1.2. Si X est un espace normé, les applications $(x, y) \to x + y$ (de X × X dans X) et $(\lambda, x) \to \lambda x$ (de $\mathbb{K} \times X$ dans X) sont continues.

Démonstration. Soit X un espace normé; démontrons la continuité de l'application $(x,y) \to x+y$ en un point quelconque $(u,v) \in X^2$. Puisque la topologie provient d'une métrique, nous utiliserons des suites convergentes. Soient donc (x_n) une suite qui converge vers u et (y_n) une suite qui converge vers v; on aura

$$d(x_n + y_n, u + v) = \|(x_n + y_n) - (u + v)\| = \|(x_n - u) + (y_n - v)\| \le \|x_n - u\| + \|y_n - v\| \to 0.$$

Pour la continuité de l'application $(\lambda, x) \to \lambda x$ voir le poly.

Définition 1.1.3. Un espace de Banach est un espace vectoriel normé, complet pour la distance associée.

Séries de vecteurs

Une série de vecteurs $\sum u_k$ dans un espace normé X est dite convergente dans X si la suite des sommes partielles (U_n) est convergente dans X, où la somme partielle U_n est définie pour tout $n \geq 0$ par

$$U_n = \sum_{k=0}^n u_k \in X.$$

Si la série converge dans X, la somme de la série est un vecteur de X, qui est donc la limite de la suite (U_n) , et on note

$$\sum_{k=0}^{+\infty} u_k = \lim_n \mathbf{U}_n \in \mathbf{X}.$$

Il faut bien comprendre que la notion de somme de la série n'a aucun sens si on ne mentionne pas la topologie qui a été utilisée.

Un cas particulier est celui des séries $\sum u_k$ telles que $\sum ||u_k|| < +\infty$, que l'on peut appeler normalement convergentes. Sous cette condition, le reste de la série des normes

$$r_n = \sum_{k>n} \|u_k\|$$

est une suite numérique qui tend vers 0, et on peut écrire pour tous $\ell, m \geq n$, en supposant $\ell < m$ pour fixer les idées

$$U_m - U_\ell = u_{\ell+1} + \dots + u_m,$$

$$||U_m - U_\ell|| \le ||u_{\ell+1}|| + \dots + ||u_m|| \le \sum_{k>n} ||u_k|| = r_n,$$

ce qui montre que la suite (U_n) est alors de Cauchy. Si X est complet, la condition $\sum ||u_k|| < +\infty$ garantit donc la convergence dans X de la série $\sum u_k$. En fait, on a

Proposition 1.1.3. Soit X un espace normé; pour que X soit complet, il faut et il suffit que pour toute série $\sum u_k$ de vecteurs de X, la condition $\sum ||u_k|| < +\infty$ entraı̂ne que la série $\sum u_k$ est convergente dans X.

Démonstration. Pour la suffisance, voir le poly.

Notons que lorsque la série $\sum u_k$ converge dans X, on a l'inégalité

$$\left\| \sum_{k=0}^{+\infty} u_k \right\| \le \sum_{k=0}^{+\infty} \|u_k\|,$$

en convenant que la somme de la série des normes vaut $+\infty$ lorsqu'elle est divergente.

Exemples 1.1.1.

L'espace C[0,1] (réel ou complexe) des fonctions scalaires continues sur [0,1], muni de la norme uniforme,

$$||f|| = \max_{t \in [0,1]} |f(t)|,$$

est un espace de Banach. Le fait qu'il soit complet est une traduction du théorème selon lequel une limite uniforme d'une suite de fonctions continues est une fonction continue.

Pour $1 \le p < +\infty$, l'espace $L_p = L_p([0,1])$ des (classes de) fonctions f complexes sur [0,1] telles que f soit mesurable et $\int_0^1 |f(s)|^p ds < +\infty$ est normé par

$$||f||_p = \left(\int_0^1 |f(s)|^p \, ds\right)^{1/p}.$$

On a déjà vu que cette quantité est une semi-norme. Si $||f||_p = 0$ et si $f_1 \in \mathcal{L}_p$ est un représentant quelconque de f, on a $\int_0^1 |f_1(s)|^p ds = 0$. Comme la fonction $|f_1|^p$ est ≥ 0 , cela entraı̂ne que $f_1 = 0$ presque partout, donc f est la classe nulle, c'est à dire que $f = 0_{L_p}$. On a ainsi montré que $f \to ||f||_p$ est une norme. Cet espace L_p est de plus complet; rappelons le principe de la démonstration de ce théorème d'Intégration (appelé souvent théorème de Fisher-Riesz). Soit $\sum u_k$ une série d'éléments de L_p telle que $M = \sum_{k=0}^{+\infty} ||u_k||_p < +\infty$. Posons $v_k = |u_k|$, $g_n = \left(\sum_{k=0}^n v_k\right)^p$, remarquons que $||v_k||_p = ||u_k||_p$ pour obtenir $\int_0^1 g_n(s) ds = ||\sum_{k=0}^n v_k||_p^p \leq M^p$. La suite (g_n) est une suite croissante de fonctions mesurables ≥ 0 , elle converge vers une fonction mesurable g (valeur $+\infty$ admise) dont la valeur en chaque point est $g(s) = \left(\sum_{k=0}^{+\infty} |u_k(s)|\right)^p$ (valeur $+\infty$ admise à nouveau); on sait que $\int_0^1 g(s) ds = \lim_n \int_0^1 g_n(s) ds \leq M^p$. La fonction g est donc finie presque partout, donc la série $\sum u_k(s)$ converge absolument pour presque tout s. On pose alors pour presque tout s

$$U(s) = \sum_{k=0}^{+\infty} u_k(s)$$

et on remarque que $|U(s) - U_n(s)|^p \le g(s)$ pour presque tout s, et que $|U(s) - U_n(s)|^p$ tend vers 0 lorsque $n \to +\infty$ pour presque tout s. Comme g est intégrable, le théorème de convergence dominée de Lebesgue permet de conclure.

1.2. Applications linéaires continues

Théorème 1.2.1. Soient X et Y deux espaces normés et $f: X \to Y$ une application linéaire; les propriétés suivantes sont équivalentes :

- (i) l'application f est continue sur X;
- (ii) l'application f est continue au point 0_X ;
- (iii) il existe un nombre $k \geq 0$ tel que, pour tout $x \in X$ on ait

$$||f(x)||_{Y} \le k ||x||_{X}.$$

Démonstration. Il est clair que $(i) \Rightarrow (ii)$. Si f est continue en 0, il existe un nombre $\delta > 0$ tel que pour tout $u \in X$, la condition $d_X(u,0) \leq \delta$ implique $d_Y(f(u),f(0)) \leq 1$; autrement dit, $||u||_X \leq \delta$ implique $||f(u)||_Y \leq 1$. Etant donné un vecteur x non nul quelconque dans X, le vecteur $u = \delta ||x||_X^{-1}x$ vérifie $||u||_X \leq \delta$, donc $||f(u)||_Y \leq 1$, ce qui revient à dire que $||f(x)||_Y \leq \delta^{-1} ||x||_X$. On a ainsi montré que (iii) est vraie, avec $k = \delta^{-1}$. Pour la dernière implication, voir le poly.

Soient X et Y deux espaces normés. L'ensemble des applications linéaires continues de X dans Y est un sous-espace vectoriel noté $\mathcal{L}(X,Y)$ de l'ensemble des applications

linéaires de X dans Y. Dans le cas où Y = X, on note simplement $\mathcal{L}(X)$ l'espace des endomorphismes continus de X.

Soit $f: X \to Y$ une application linéaire continue; d'après le théorème 1, il existe une constante k telle que $||f(x)||_Y \le k$ pour tout vecteur x de X tel que $||x||_X \le 1$. On peut donc considérer la quantité (finie)

$$||f||_{\mathcal{L}(X,Y)} = \sup\{||f(x)||_Y : ||x||_X \le 1\},$$

qui s'appelle la norme de l'application linéaire f. Si x est un vecteur non nul de X, le vecteur $z=\|x\|_X^{-1}x$ vérifie $\|z\|_X\leq 1$, donc $\|f(z)\|_Y\leq \|f\|$, d'où par homogénéité $\|x\|^{-1}\|f(x)\|\leq \|f\|$, ou encore

$$||f(x)||_{\mathcal{Y}} \le ||f||_{\mathcal{L}(X,Y)} ||x||_{\mathcal{X}};$$

si x est le vecteur nul, la relation ci-dessus est encore vraie, elle est donc vraie pour tout vecteur $x \in X$. Résumons ce qui vient d'être dit.

Proposition 1.2.1. Soient X et Y deux espaces normés et $f: X \to Y$ une application linéaire continue; on pose

$$||f||_{\mathcal{L}(X,Y)} = \sup\{||f(x)||_Y : ||x||_X \le 1\}.$$

Pour tout $x \in X$, on a

$$||f(x)||_{\mathcal{Y}} \le ||f||_{\mathcal{L}(X,Y)} ||x||_{\mathcal{X}}.$$

La constante $||f||_{\mathcal{L}(X,Y)}$ est le plus petit nombre M tel que l'inégalité $||f(x)||_Y \leq M ||x||_X$ soit vraie pour tout $x \in X$. L'application $f \to ||f||_{\mathcal{L}(X,Y)}$ est une norme sur $\mathcal{L}(X,Y)$. Démonstration. Voir poly.

Exemple. Soient K un espace métrique compact et $f \in C(K)$ fixée; on définit un endomorphisme M_f de C(K), l'application de multiplication par f, en posant $M_f(g) = fg$ pour toute $g \in C(K)$. Il est clair que $||fg||_{\infty} \le ||f||_{\infty} ||g||_{\infty}$ pour toute fonction g, donc $||M_f|| \le ||f||_{\infty}$. Si f = 0, on a $M_f = 0$ et $||M_f|| = 0 = ||f||_{\infty}$. Démontrons cette égalité $||M_f|| = ||f||_{\infty}$ en général; si $f \ne 0$, posons $M = ||f||_{\infty} > 0$, et considérons pour $\varepsilon > 0$ l'ouvert non vide $U = \{s \in K : |f(s)| > M - \varepsilon\}$. Si g est une fonction continue ≥ 0 et non nulle, à support dans U (par exemple $g(s) = \operatorname{dist}(s, U^c)$), elle atteint son maximum en un point $s_1 \in U$. Alors

$$\|M_f\| \|g\|_{\infty} \ge \|fg\|_{\infty} \ge |f(s_1)g(s_1)| > (M - \varepsilon) \|g\|_{\infty}$$

d'où $\|\mathbf{M}_f\| > \|f\|_{\infty} - \varepsilon$ pour tout $\varepsilon > 0$.

Il est en général très difficile de calculer exactement la norme d'une application linéaire continue. A titre d'anecdote, on sait depuis environ 1920 que la transformée de Fourier définit un opérateur T_p continu de $L_p(\mathbb{R})$ dans $L_q(\mathbb{R})$ lorsque 1 et <math>1/p + 1/q = 1, mais la valeur exacte de la norme n'a été établie que 50 ans plus tard!

La proposition suivante est facile mais importante.

Proposition 1.2.2. Soient X, Y et Z des espaces normés, $f: X \to Y$ et $g: Y \to Z$ des applications linéaires continues; on a

$$||g \circ f|| \le ||f|| \, ||g||.$$

Démonstration. Soit x un vecteur de X; on peut écrire

$$\|(g \circ f)(x)\|_{\mathbf{Z}} = \|g(f(x))\|_{\mathbf{Z}} \le \|g\| \|f(x)\|_{\mathbf{Y}} \le \|g\| \|f\| \|x\|_{\mathbf{X}},$$

ce qui entraîne l'inégalité voulue.

Proposition 1.2.3. Soient X et Y deux espaces normés; si Y est un espace de Banach, l'espace $\mathcal{L}(X,Y)$ est un espace de Banach.

Démonstration. Supposons que Y soit un espace de Banach. Soit $\sum u_k$ une série normalement convergente dans $\mathcal{L}(X,Y)$; pour tout vecteur $x \in X$, on a $||u_k(x)|| \le ||u_k|| \, ||x||$, donc la série $\sum u_k(x)$ est normalement convergente dans Y. Puisque Y est complet, cette série converge dans Y et on peut poser pour tout $x \in X$

$$U(x) = \sum_{k=0}^{+\infty} u_k(x) \in Y.$$

Il est facile de vérifier que l'application U ainsi définie de X dans Y est linéaire, et de plus pour tout $x \in X$

$$\|\mathbf{U}(x)\| \le \sum_{k=0}^{+\infty} \|u_k(x)\| \le \left(\sum_{k=0}^{+\infty} \|u_k\|\right) \|x\|,$$

ce qui montre que U est continue. Il reste à voir que U est la limite dans $\mathcal{L}(X,Y)$ de la suite (U_n) des sommes partielles. On a

$$(U - U_n)(x) = \sum_{k>n} u_k(x)$$

d'où il résulte comme précédemment que $\|\mathbf{U} - \mathbf{U}_n\| \leq \sum_{k>n} \|u_k\|$, et cette quantité tend vers 0 lorsque $n \to +\infty$.

Image d'une série convergente. Soit $\sum u_k$ une série convergente de vecteurs dans l'espace normé X et soit $f: X \to Y$ une application linéaire continue. Alors la série $\sum f(u_k)$ converge dans Y et

$$f\left(\sum_{k=0}^{+\infty} u_k\right) = \sum_{k=0}^{+\infty} f(u_k).$$

Cours nº 2, Mercredi 29 Septembre 1999.

Une information oubliée dans le premier amphi : si X est un espace de Banach et si Y est un sous-espace vectoriel fermé de X, alors Y est un espace de Banach.

Exercice classique proposé : si Y est un sous-espace vectoriel d'un espace normé X, son adhérence est un sous-espace vectoriel.

1.3. Produits et quotients

Soient X un espace vectoriel et Y un sous-espace de X; rappelons que X/Y est le quotient de X pour la relation d'équivalence R_Y telle que $x R_Y y \iff y - x \in Y$. Le quotient X/Y est muni de l'unique structure d'espace vectoriel pour laquelle l'application quotient $X \to X/Y$ est linéaire. La classe de 0_X est égale à Y, et c'est le vecteur nul de l'espace quotient X/Y; les autres classes sont les translatés de Y (ce sont les sous-espaces affines Y + x, parallèles à Y).

Proposition 1.3.2. Soient X un espace normé et Y un sous-espace vectoriel fermé de X; notons $\pi: X \to X/Y$ l'application quotient. L'application $q: X/Y \to \mathbb{R}_+$ définie par $q(\xi) = \inf\{\|x\| : x \in X, \pi(x) = \xi\}$ est une norme sur X/Y.

Démonstration. Supposons que $q(\xi)=0$ et montrons que ξ est la classe nulle dans X/Y, c'est à dire la classe d'équivalence égale au sous-espace Y ; c'est ici que l'hypothèse Y fermé est cruciale : dire que $q(\xi)=0$ signifie qu'il existe des vecteurs x_n tels que $q(x_n)=\xi$ et tels que $\|x_n\|\to 0$. Si $y\in \xi$, la suite $(y-x_n)$ est dans la classe de 0, c'est à dire dans Y, et converge vers y; il en résulte que $y\in Y$, donc $\xi\subset Y$ ce qui implique en fait $\xi=Y=0_{X/Y}$.

Pour le fait que q est une semi-norme, voir le poly.

Notons que la distance $d(\xi, \eta)$ de deux classes de X/Y est simplement la distance naturelle des sous-ensembles ξ et η de X, c'est à dire l'inf de d(x, y), lorsque x varie dans ξ et y dans η . Notons aussi que la projection π vérifie $\|\pi\| \le 1$; on a même en général $\|\pi\| = 1$, sauf si X/Y = $\{0\}$, c'est à dire si Y = X (on suppose toujours Y fermé). Notons encore que l'image par π de la boule unité ouverte $B_X(0,1)$ de X est exactement la boule unité ouverte du quotient X/Y (l'énoncé correspondant pour la boule unité fermée n'est pas vrai en général).

Proposition 1.3.3. Soient X, Z deux espaces normés, Y un sous-espace fermé de X et $g \in \mathcal{L}(X,Z)$ nulle sur Y; il existe une unique $h \in \mathcal{L}(X/Y,Z)$ telle que $g = h \circ \pi$ (où $\pi: X \to X/Y$ est l'application quotient); on a ||g|| = ||h||.

Démonstration. Soit $\xi \in X/Y$; on va vérifier que tous les vecteurs x de la classe ξ ont la même image z dans Z, ce qui permettra de poser $h(\xi) = z = g(x)$: si $x, x' \in X$ sont dans la classe ξ , alors $x - x' \in Y \subset \ker \pi$, donc g(x - x') = 0, soit g(x) = g(x'). Donc g(x) ne dépend pas du choix du représentant x de la classe ξ ; notons le $h(\xi)$. Il est clair que h est linéaire, et par construction on a $g = h \circ \pi$. Comme π est surjective, il est clair que h est unique.

Notons q la norme quotient de X/Y. Pour $\xi \in X/Y$ et $x \in \pi^{-1}(\{\xi\})$ on a $||h(\xi)|| = ||g(x)|| \le ||g|| ||x||$. Cela étant vrai pour tout $x \in \pi^{-1}(\{\xi\})$, on a $||h(\xi)|| \le ||g|| ||q(\xi)|$. Donc h est continue et $||h|| \le ||g||$. Enfin, $||g|| = ||h \circ \pi|| \le ||h|| ||\pi|| \le ||h||$, puisque $||\pi|| \le 1$.

Proposition 1.3.4. Soient X un espace de Banach et Y un sous-espace fermé; alors X/Y est un espace de Banach.

Démonstration. On va utiliser le critère de la proposition 1.3. Soit $\sum \xi_k$ une série normalement convergente dans le quotient. Pour tout entier $k \geq 0$ on peut trouver un représentant $u_k \in \xi_k$ tel que $||u_k|| \leq 2||\xi_k||$; il en résulte que la série $\sum u_k$ est elle aussi normalement convergente, donc convergente dans X puisque X est complet. Finalement, la série $\sum \xi_k$, image par l'application linéaire continue π de la série convergente $\sum u_k$, est convergente dans X/Y, ce qui termine la démonstration.

1.4. Complété d'un espace normé

Théorème 1.4.1. Soit X un espace normé; il existe un couple (\widehat{X}, u) où \widehat{X} est un espace de Banach et $u : X \to \widehat{X}$ est une application linéaire isométrique d'image dense (l'espace \widehat{X} sera le complété de X).

Démonstration. Désignons par Y l'ensemble des suites de Cauchy $x=(x_n)$ de vecteurs de X; la somme de deux suites de Cauchy est une suite de Cauchy, et si on multiplie une suite de Cauchy par un scalaire on obtient une suite de Cauchy. Donc l'ensemble Y des suites de Cauchy est un espace vectoriel pour les opérations naturelles. Si $x=(x_n) \in Y$ on pose

$$||x||_{\mathcal{Y}} = \sup_{n} ||x_n||$$

(les suites de Cauchy sont des suites bornées) ; il est facile de vérifier que l'on a ainsi défini une norme sur Y. Posons

$$Z = \{y = (y_n) \in Y : \lim ||y_n|| = 0\};$$

on vérifie que Z, muni de la norme $||x||_{Y}$, est un sous-espace vectoriel fermé de Y; notons $\widehat{X} = Y/Z$ le quotient de Y par Z et $\pi : Y \to \widehat{X}$ l'application quotient. Notons q la norme quotient sur \widehat{X} .

Pour $x \in X$, notons $U(x) \in Y$ la suite constante égale à x; posons $u = \pi \circ U$. Si $y = (y_n)$ est un représentant quelconque de u(x), on a par définition $y - U(x) \in Z$, c'est à dire $\lim_n \|y_n - x\| = 0$; il en résulte que $\|y\|_{\infty} = \sup_n \|y_n\| \ge \lim_n \|y_n\| = \|x\|$, donc $q(u(x)) \ge \|x\|$, mais le choix du représentant y = U(x) donne $\|y\|_{\infty} = \|x\|$, donc $q(u(x)) = \|x\|$ pour tout $x \in X$. Montrons que u(X) est dense dans \widehat{X} . Soient $\xi \in \widehat{X}$ et $y = (y_n)$ un représentant de ξ , et soit $\varepsilon > 0$; il existe un entier $n \ge 0$ tel que, pour tous $k, \ell \ge n$ on ait $\|y_k - y_\ell\| \le \varepsilon$. Fixons un entier $k \ge n$, et considérons l'élément y' de Y défini par $y'_j = y_j$ si j < k et $y'_j = y_k$ si $j \ge k$. Ce que nous avons dit se traduit par $\|y - y'\|_{\infty} \le \varepsilon$, donc $q(\pi(y) - \pi(y')) \le \varepsilon$, mais y' est un représentant de $u(y_k)$; on a donc : $q(\pi(y) - u(y_k)) \le \varepsilon$. Pour finir la démonstration du point (i) du théorème 1, il nous reste à démontrer que \widehat{X} est un espace de Banach : voir poly.

1.5. Complexifié d'un espace normé réel

Section non traitée.

1.6. Le dual d'un espace normé

Rappelons que \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} . Soit X un espace normé sur \mathbb{K} ; on appelle dual (topologique) de X et on note X^* l'espace de Banach $X^* = \mathcal{L}(X, \mathbb{K})$. Cet espace est complet par la proposition 2.3.

Soit X un espace normé complexe ; c'est, en particulier, un espace normé réel. Il y a deux notions distintes de dual pour X : le dual en tant qu'espace réel $X_{\mathbb{R}}^* = \mathcal{L}_{\mathbb{R}}(X, \mathbb{R})$ et le dual en tant qu'espace complexe $X_{\mathbb{C}}^* = \mathcal{L}_{\mathbb{C}}(X, \mathbb{C})$. En fait, on peut identifier ces deux espaces. Notons Re : $\mathbb{C} \to \mathbb{R}$ l'application \mathbb{R} -linéaire qui à un nombre complexe a+ib associe sa partie réelle a (pour $a,b \in \mathbb{R}$).

Proposition 1.6.2. L'application $g \to \operatorname{Re} \circ g$ est une bijection isométrique de $X_{\mathbb{C}}^*$ sur l'espace $X_{\mathbb{R}}^*$.

Démonstration. Soit $g \in X_{\mathbb{C}}^*$; comme $\| \operatorname{Re} \| = 1$, on a $\| \operatorname{Re} \circ g \| \leq \| g \|$. Par ailleurs, pour tout x dans la boule unité de X, il existe $\lambda \in \mathbb{C}$ tel que $|\lambda| = 1$ et $\lambda g(x) = |g(x)|$. Donc $|g(x)| = \lambda g(x) = g(\lambda x) = (\operatorname{Re} \circ g)(\lambda x) \leq \| \operatorname{Re} \circ g \|$. Donc $\| g \| = \| \operatorname{Re} \circ g \|$.

Par ailleurs, soit $\ell \in X_{\mathbb{R}}^*$, notons $g: x \to \ell(x) - i\ell(ix)$; on vérifie sans peine que g est \mathbb{C} -linéaire. Donc $g \to \operatorname{Re} \circ g$ est surjective. Comme elle est isométrique, elle est bijective.

Dualité des espaces ℓ_p

Généralisons un peu le cadre choisi pour les espaces L_p dans l'amphi précédent (limité au cas de [0,1]) : nous supposerons donné un espace $(\Omega, \mathcal{A}, \mu)$, où \mathcal{A} est une tribu de parties de Ω et μ une mesure positive sur (Ω, \mathcal{A}) . Pour éviter certains désagréments nous supposerons que la mesure est σ -finie, ce qui veut dire qu'il existe une partition (Ω_n) de Ω en une suite de parties $\Omega_n \in \mathcal{A}$ telles que $\mu(\Omega_n) < +\infty$.

L'exemple typique de mesure σ -finie est la mesure de Lebesgue sur \mathbb{R}^d . Mentionnons aussi le cas où $\Omega = \mathbb{N}$ et où μ est la mesure de comptage qui associe à tout sous-ensemble A de \mathbb{N} son nombre d'éléments $\mu(A)$, entier fini ou bien $+\infty$.

Pour $1 \le p < +\infty$, l'espace $L_p = L_p(\Omega, \mathcal{A}, \mu)$ des (classes de) fonctions f complexes sur [0,1] telles que f soit mesurable et $\int_{\Omega} |f|^p d\mu < +\infty$ est normé par

$$||f||_p = \left(\int_{\Omega} |f(s)|^p d\mu(s)\right)^{1/p}.$$

Pour $p \in [1, +\infty]$, on appelle exposant conjugué de p le nombre $q \in [1, +\infty]$ tel que 1/p + 1/q = 1. Cette relation est symétrique; on dit que (p, q) est un couple d'exposants conjugués. On notera que si 1 , cela implique que <math>q(p-1) = p et de façon symétrique, p(q-1) = q; on pourra aussi noter que (p-1)(q-1) = 1.

Théorème 1.6.1 : inégalité de Hölder. Soient $p, q \in [1, +\infty]$ tels que 1/p + 1/q = 1; si $f \in L_p(\Omega, \mu)$ et $g \in L_q(\Omega, \mu)$, la fonction produit fg est intégrable et

$$\left| \int_{\Omega} fg \, d\mu \right| \le \|f\|_p \, \|g\|_q.$$

Démonstration. Pour alléger un peu, on écrira simplement $\int f$ au lieu de $\int_{\Omega} f(s) d\mu(s)$ chaque fois que possible.

Si $p = \infty$ ou p = 1, c'est facile (voir poly). Supposons maintenant $1 . Pour tous nombres réels <math>t, u \ge 0$, on a la relation

$$tu \le \frac{1}{p} t^p + \frac{1}{q} u^q$$

(pour le voir, on pourra maximiser la fonction $t \to tu - t^p/p$). Il en résulte que pour tout $s \in \Omega$

$$|f(s)g(s)| \le \frac{1}{p} |f(s)|^p + \frac{1}{q} |g(s)|^q,$$

ce qui montre que fg est intégrable, et que

$$\left| \int fg \right| \leq \frac{1}{p} \, \int |f|^p + \frac{1}{q} \, \int |g|^q.$$

L'inégalité cherchée est positivement homogène par rapport à f et à g, donc il suffit de la démontrer lorsque $\|f\|_p = \|g\|_q = 1$. Mais dans ce cas, $\int |f|^p = 1$ et $\int |g|^q = 1$, donc l'inégalité précédente donne $|\int fg| \le 1/p + 1/q = 1$, ce qui est le résultat voulu.

Corollaire 1.6.1. Soient $p, q \in [1, +\infty]$ tels que 1/p + 1/q = 1; si $f \in L_p(\Omega, \mu)$,

$$||f||_p = \sup\{\left|\int_{\Omega} fg \, d\mu\right| : ||g||_q \le 1\}.$$

Démonstration. L'inégalité de Hölder nous dit déjà que

$$||f||_p \ge \sup\{\left|\int_{\Omega} fg \, d\mu\right| : ||g||_q \le 1\},$$

le problème est de montrer l'autre direction. On va voir qu'en fait le maximum est atteint pour une certaine fonction $g \in \mathcal{L}_q$, $\|g\|_q \leq 1$, lorsque 1 . Si <math>f = 0, le résultat est évident, on supposera donc $f \neq 0$, et par homogénéité on peut se ramener à $\|f\|_p = 1$.

Soit \widetilde{f} une "vraie" fonction mesurable de la classe f, et définissons une fonction mesurable g sur l'ensemble Ω en posant $g(s) = |\widetilde{f}(s)|^p/\widetilde{f}(s)$ sur l'ensemble mesurable $A = \{s \in \Omega : \widetilde{f}(s) \neq 0\}$, et posons g(s) = 0 lorsque $s \notin A$. Alors $|g(s)| = |f(s)|^{p-1}$ pour tout $s \in A$; puisque p > 1, on a $|g|^q = |f|^p$, donc $\int |g|^q = 1$, soit encore $||g||_q = 1$. D'autre part

$$\int_{\Omega} fg \, d\mu = \int_{A} |f(s)|^{p} \, d\mu(s) = \int_{\Omega} |f|^{p} \, d\mu = 1 = ||f||_{p}.$$

Pour p=1, il faut une micro-modification de l'argument. Dans le cas $p=+\infty$, le maximum n'est pas nécessairement atteint. Voir poly pour ces deux cas.

MT404, Cours nº 3, Lundi 4 Octobre 1999.

On a vu dans l'amphi précédent le résultat suivant : soient p,q deux nombres de $[1,+\infty]$ tels que 1/p+1/q=1; on a pour toutes fonctions $f\in \mathcal{L}_p,\,g\in\mathcal{L}_q$

$$\left| \int_{\Omega} f g \, d\mu \right| \le \|f\|_p \, \|g\|_q.$$

Ceci signifie que si g est fixée dans \mathcal{L}_q , on peut définir une forme linéaire continue ℓ_g sur \mathcal{L}_p par la formule

$$\forall f \in \mathcal{L}_p, \ \ell_g(f) = \int_{\Omega} fg \, d\mu,$$

et que

$$\|\ell_g\|_{\mathbf{L}_p^*} \le \|g\|_q.$$

De plus, on a vu que

$$||g||_q = \sup\{\left|\int_{\Omega} fg \, d\mu\right| : ||f||_p \le 1\},$$

ce qui signifie que

$$\|\ell_g\|_{\mathbf{L}_p^*} = \|g\|_q.$$

Par ailleurs, on vérifie que l'application $g \in L_q \to \ell_g \in (L_p)^*$ est linéaire. On a donc une isométrie linéaire $j_q : L_q \to (L_p)^*$. Nous admettrons pour l'instant le théorème suivant :

Lorsque $1 \le p < +\infty$, l'application j_q est une isométrie surjective de L_q sur le dual de L_p .

Considérons plus en détail le cas particulier où $\Omega = \mathbb{N}$, $\mathcal{A} = \mathcal{P}(\mathbb{N})$ et où μ est la mesure de comptage μ_c sur \mathbb{N} . Dans ce cas l'espace $L_p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_c)$ est l'espace ℓ_p des suites scalaires $x = (x_n)$ telles que $\sum |x_n|^p < +\infty$, qui est normé par $||x||_p = \left(\sum_{n=0}^{+\infty} |x_n|^p\right)^{1/p}$. Mentionnons deux autres espaces de cette famille : l'espace ℓ_∞ est l'espace des suites scalaires $x = (x_n)$ bornées, normé par $||x||_\infty = \sup_n |x_n|$; l'espace ℓ_∞ est complet pour cette norme ; l'espace c_0 est le sous-espace vectoriel de ℓ_∞ formé des suites $x = (x_n)$ telles que $\lim_n x_n = 0$. Ce sous-espace c_0 est fermé dans ℓ_∞ , donc c_0 muni de la norme induite par celle de ℓ_∞ est un espace de Banach.

Soit $v = (v_n) \in \ell_q$, où q est l'exposant conjugué de $p \in [1, +\infty]$. D'après ce qui précède, on peut définir une forme linéaire continue f_v sur ℓ_p en posant

$$\forall u \in \ell_p, \quad f_v(u) = \sum_{n=0}^{+\infty} u_n v_n.$$

On définit ainsi une isométrie linéaire J_q de ℓ_q dans le dual de ℓ_p (cas particulier du cas L_p). On va maintenant voir que cette isométrie est surjective lorsque 1 (le résultat est vrai aussi pour <math>p=1, mais n'a pas été traité à l'amphi). Notons $e_n \in \mathbb{K}^{\mathbb{N}}$ la suite dont le $n^{\text{ème}}$ terme vaut 1 et tous les autres sont nuls (pour $n \in \mathbb{N}$). On dit que $u \in \ell_p$ est à support fini si l'ensemble $A \subset \mathbb{N}$ des indices n tels que $u_n \neq 0$ est fini; si $u = (u_n)$ est tel que $u_n = 0$ pour tout $n > \mathbb{N}$, on peut écrire $u = \sum_{k=0}^{\mathbb{N}} u_k e_k$. L'ensemble \mathbb{N} des suites à support fini est un sous-espace vectoriel de ℓ_p .

Soit f une forme linéaire continue sur ℓ_p , et posons $v_k = f(e_k)$ pour tout $k \ge 0$; pour tout $u \in F$, tel que $u_n = 0$ si n > N on aura $f(u) = \sum_{k=0}^{N} u_k f(e_k) = \sum_{k=0}^{+\infty} u_k v_k$.

Définissons une suite numérique $(u_k)_{k\geq 0}$ en posant, pour tout $k\geq 0$, $u_k=|v_k|^q/v_k$ si $v_k\neq 0$ et $u_k=0$ sinon; considérons pour tout entier N la suite $u^{(N)}$ à support fini dont les composantes sont égales à u_k lorsque $k\leq N$ et à 0 sinon. On pourra écrire

$$\sum_{k=0}^{N} |v_k|^q = \sum_{k=0}^{N} u_k v_k = f(u^{(N)}) \le ||f|| \, ||u^{(N)}||_p,$$

 et

$$||u^{(N)}||_p^p = \sum_{k=0}^N |v_k|^{(q-1)p} = \sum_{k=0}^N |v_k|^q,$$

donc

$$\sum_{k=0}^{N} |v_k|^q \le ||f|| \left(\sum_{k=0}^{N} |v_k|^q\right)^{1/p},$$

ce qui montre que $\left(\sum_{k=0}^{N} |v_k|^q\right)^{1-1/p} \leq ||f||$ pour tout N, donc

$$\left(\sum_{k=0}^{+\infty} |v_k|^q\right)^{1/q} \le ||f||.$$

La suite $v = (v_n)$ est donc dans ℓ_q . On a vu que $f(u) = f_v(u)$ lorsque $u \in F$; dans le cas 1 , le sous-espace <math>F est dense dans ℓ_p , donc l'égalité de f et f_v se prolonge à ℓ_p par continuité uniforme. On a donc montré qu'il existe $v \in \ell_q$ tel que $f = f_v$, ce qui montre que J_q est surjective de ℓ_q sur $(\ell_p)^*$ dans le cas 1 .

Le cas p=1 est presque identique, il faut seulement modifier la présentation (non mentionné à l'amphi); lorsque $p=+\infty$, l'espace F n'est pas dense dans ℓ_{∞} , et J_1 n'est pas surjective de ℓ_1 sur le dual de ℓ_{∞} ; cependant dans ce cas on voit que F est dense dans c_0 , ce qui permet d'adapter l'argument précédent pour voir que J_1 est surjective de ℓ_1 sur le dual de c_0 (non traité en détail).

Théorème 1.6.2. Si $1 \leq p < +\infty$ le dual de ℓ_p s'identifie à ℓ_q : l'application J_q qui associe à chaque $v \in \ell_q$ la forme linéaire $f_v \in (\ell_p)^*$ définit une bijection isométrique de ℓ_q sur le dual de ℓ_p ; de plus, J_1 définit une bijection isométrique de ℓ_1 sur le dual de c_0 .

2. Les théorèmes fondamentaux

2.1. Le théorème de Baire et ses conséquences

Commençons par énoncer le théorème de Baire.

Théorème 2.1.1 : théorème de Baire. Soit X un espace métrique complet ; l'intersection d'une famille dénombrable de parties ouvertes et denses de X est dense dans X.

Démonstration. Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'ouverts denses de X; soit V une partie ouverte non vide de X; on doit montrer que $\bigcap_{n\in\mathbb{N}} U_n$ rencontre V. Comme U_0 est dense, U_0 rencontre V et on peut choisir un point $x_0 \in V \cap U_0$. Comme $V \cap U_0$ est ouvert, il existe un nombre $r_0 > 0$, que l'on peut choisir ≤ 1 , tel que la boule ouverte $B(x_0, 2r_0)$ de centre x_0 et de rayon $2r_0$ soit contenue dans $V \cap U_0$.

Par récurrence sur $n \geq 0$ on construit une suite (x_n) d'éléments de X et une suite (r_n) de nombres réels strictement positifs tels que $r_n \leq 2^{-n}$ et tels que, pour tout

 $n \geq 1$, la boule ouverte $B(x_n, 2r_n)$ de centre x_n et de rayon $2r_n$ soit contenue dans $U_n \cap B(x_{n-1}, r_{n-1})$: en effet, supposons x_n et r_n construits; comme U_{n+1} est dense, il existe $x_{n+1} \in U_{n+1} \cap B(x_n, r_n)$. Comme $U_{n+1} \cap B(x_n, r_n)$ est ouvert, il existe un nombre r_{n+1} tel que $0 < r_{n+1} \leq 2^{-n-1}$ et tel que la boule ouverte $B(x_{n+1}, 2r_{n+1})$ soit contenue dans $U_{n+1} \cap B(x_n, r_n)$ (on notera bien le petit jeu entre r_n et $2r_{n+1}$).

Notons maintenant B_n la boule fermée de centre x_n et de rayon r_n . On a

$$B_{n+1} = \overline{B(x_{n+1}, r_{n+1})} \subset B(x_{n+1}, 2r_{n+1}) \subset B(x_n, r_n) \subset B_n.$$

Comme l'espace X est complet, que les ensembles B_n sont fermés, décroissants, non vides et que leur diamètre tend vers 0, on a $\bigcap_{n\in\mathbb{N}} B_n \neq \emptyset$; or, par construction, $\bigcap_{n\in\mathbb{N}} B_n \subset V \cap \bigcap_{n\in\mathbb{N}} U_n$, ce qui montre que cette dernière intersection est non vide.

Corollaire 2.1.1. Soient X un espace métrique complet non vide et $(F_n)_{n\in\mathbb{N}}$ une suite de parties fermées de X telle que $\bigcup_{n\in\mathbb{N}} F_n = X$; alors l'un des fermés F_n a un intérieur non vide (et en réalité, on peut même dire que $\bigcup_{n\in\mathbb{N}} \mathring{F}_n$ est dense dans X).

Démonstration. Si F_n est un fermé d'intérieur vide dans X, son complémentaire U_n est un ouvert dense dans X. Mais si chaque F_n était d'intérieur vide et $\bigcup_n F_n = X$, on aurait une suite (U_n) d'ouverts denses telle que $\bigcap_n U_n = \emptyset$, ce qui est impossible d'après le théorème 1.

Exercice proposé. Soient X un espace normé et C un sous-ensemble convexe de X;

- montrer que l'adhérence \overline{C} est convexe;
- si $a \in \mathbb{C}$ et $b \in \mathbb{C}$, alors le segment semi-ouvert]a,b] est contenu dans l'intérieur \mathbb{C} ; en déduire que \mathbb{C} est convexe;
 - si Č est non vide, montrer que C est contenu dans l'adhérence de Č.

Théorème 2.1.2 : théorème des isomorphismes. Soient E et F deux espaces de Banach ; toute application linéaire continue bijective de E sur F est un isomorphisme.

Démonstration. Soit f une bijection linéaire continue de E sur F; notons B_E la boule unité (fermée) de E. La première étape consiste à montrer que l'adhérence de $f(B_E)$ contient une boule ouverte centrée en 0,

(*)
$$\exists r > 0, \quad B(0_{F}, r) \subset \overline{f(B_{E})}.$$

On a $\bigcup_{n\geq 1} nB_E = E$ donc $\bigcup_{n\geq 1} nf(B_E) = f(E) = F$, donc $\underline{\bigcup_{n\geq 1} nf(B_E)} = F$. Par le corollaire 1, il existe un entier $n\geq 1$ tel que l'ensemble fermé $\overline{nf(B_E)}$ soit d'intérieur non vide. Comme la multiplication par $n\geq 1$ est un homéomorphisme, on en déduit que l'intérieur de $\overline{f(B_E)}$ n'est pas vide. Il reste seulement à voir que 0_F est dans cet intérieur : cela provient de la convexité et de la symétrie de l'ensemble $C = \overline{f(B_E)}$: si y_0 est intérieur à C, le point $-y_0$ est lui aussi intérieur, et puisque l'intérieur de C est convexe (exercice précédent), il en résulte que 0_F est dans l'intérieur de C; il existe donc r>0 tel que tel que $B(0_F,r)\subset \overline{f(B_E)}$.

La deuxième étape consiste à montrer que la propriété (*) entraı̂ne en fait lorsque E est complet que

$$(**) B(0_{\mathcal{F}}, r) \subset f(B_{\mathcal{E}}).$$

Le principe est intéressant et se rencontre à de multiples occasions ; c'est une variante du procédé des approximations successives. Si A_1 et A_2 sont deux sous-ensembles non vides de F, la notation $A_1 + A_2$ désigne l'ensemble de toutes les sommes $a_1 + a_2$, lorsque a_1 varie dans A_1 et a_2 dans A_2 . On dit que $A_1 + A_2$ est la somme de Minkowski des ensembles A_1 et A_2 .

Lemme 2.1.1. On suppose que E est complet, $f: E \to F$ linéaire continue, et que A est un sous-ensemble borné de F tel que $A \subset f(B_E) + \varepsilon A$, avec $0 < \varepsilon < 1$. Alors

$$A \subset \frac{1}{1-\varepsilon} f(B_E).$$

Soit $a_0 \in A$; d'après l'hypothèse, il existe un vecteur $u_0 \in B_E$ et un vecteur $a_1 \in A$ tels que $a_0 = f(u_0) + \varepsilon a_1$. En recommençant avec a_1 , on trouve $u_1 \in B_E$ et $a_2 \in A$ tels que $a_1 = f(u_1) + \varepsilon a_2$, ce qui donne

$$a_0 = f(u_0 + \varepsilon u_1) + \varepsilon^2 a_2.$$

En continuant ainsi on construit des vecteurs $u_0, u_1, \ldots, u_n, \ldots$ dans la boule unité de E et a_1, \ldots, a_n, \ldots dans A tels que pour tout entier $k \geq 0$ on ait

(1)
$$a_0 = f(u_0 + \varepsilon u_1 + \dots + \varepsilon^k u_k) + \varepsilon^{k+1} a_{k+1}.$$

La série $\sum \varepsilon^k u_k$ est normalement convergente, donc convergente dans E puisque E est complet; sa somme $x_0 = \sum_{k=0}^{+\infty} \varepsilon^k u_k \in E$ est telle que $f(x_0) = \lim_k f(u_0 + \varepsilon u_1 + \cdots + \varepsilon^k u_k)$ et d'après la relation (1), on a $f(x_0) = a_0$ puisque A est borné. Par ailleurs

$$||x_0|| \le \sum_{k=0}^{+\infty} \varepsilon^k ||u_k|| \le \frac{1}{1-\varepsilon}.$$

Finissons de montrer que (*) entraı̂ne (**) lorsque E est complet. On applique le lemme avec $A = B(0_F, r)$; puisque $B(0_F, r)$ est contenu dans l'adhérence de $f(B_E)$, on a $B(0_F, r) \subset f(B_E) + \varepsilon B(0_F, r)$ pour tout $\varepsilon > 0$: en effet, si $x \in B(0_F, r)$ on peut trouver $y \in f(B_E)$ tel que $||x - y|| < \varepsilon r$ puisque x est adhérent à f(B), donc $x - y \in \varepsilon A$ et $x = y + (x - y) \in f(B_E) + \varepsilon A$. D'après le lemme précédent, on a $B(0_F, r) \subset (1 - \varepsilon)^{-1} f(B_E)$. Comme $\varepsilon > 0$ est quelconque on peut s'en débarasser (voir poly). On a ainsi montré que $B(0_F, r) \subset f(B_E)$.

Il est clair maintenant que l'application réciproque f^{-1} est continue : en effet, l'inclusion précédente se traduit par $f^{-1}(B(0_F,r)) \subset B_E$, ce qui implique $f^{-1}(B_F) \subset r^{-1}B_E$ par homogénéité et passage à l'adhérence ; ceci montre que $||f^{-1}|| \leq 1/r$.

Le graphe d'une application continue d'un espace topologique dans un espace topologique séparé est toujours fermé. La réciproque n'est en général pas vraie. Cependant, on a :

Théorème 2.1.4 : théorème du graphe fermé. Soient E et F deux espaces de Banach ; toute application linéaire de E dans F dont le graphe est fermé (dans $E \times F$) est continue. Démonstration. Soit f une application linéaire de E dans F dont le graphe $G \subset E \times F$ est fermé ; alors G est un espace de Banach. Tout point z du graphe G est de la forme

z=(x,f(x)) pour un certain $x\in E$ unique; notons $p:G\to E$ l'application définie par $p(z)=p(x,f(x))=x\in E$. Il est clair que p est linéaire, continue et bijective (l'inverse –algébrique– étant l'application $x\to (x,f(x))$ de E dans G). D'après le théorème des isomorphismes, cet inverse $x\to (x,f(x))$ est continu de E dans G; il en résulte que $x\to f(x)$ est continue de E dans F.

Cours nº 4, Mercredi 6 Octobre 1999.

Rappel : soient E et F deux espaces de Banach, et soit f une application linéaire de E dans F (qu'on ne suppose pas continue) ;

- si f est continue et bijective, alors f^{-1} est continue de F dans E.
- si le graphe de f est fermé, alors f est continue.

Remarquons que le théorème du graphe fermé implique facilement le théorème des isomorphismes : si f est bijective, le graphe de f^{-1} est tout simplement le symétrique dans $F \times E$ du graphe de f. Si f est continue, le graphe de f est fermé dans $E \times F$, donc celui de f^{-1} est fermé aussi, donc f^{-1} est continue d'après le théorème du graphe fermé.

Exemple. Supposons donnée une suite (f_n) de fonctions intégrables réelles sur [0,1] telle que pour toute fonction réelle continue φ sur [0,1] on ait

$$\sum_{n} \left(\int_{0}^{1} \varphi(s) f_{n}(s) \, ds \right)^{2} < +\infty.$$

Alors il existe une constante C telle que, pour toute fonction φ

$$\left(\sum_{n} \left(\int_{0}^{1} \varphi(s) f_{n}(s) ds\right)^{2}\right)^{1/2} \leq C \|\varphi\|_{\infty}.$$

L'hypothèse donne une application linéaire T de E = C([0,1]) dans F = ℓ_2 qui associe à chaque fonction $\varphi \in E$ la suite numérique $T(\varphi) = (\int_0^1 \varphi f_n)_{n \geq 0}$. L'existence de C revient à montrer que T est continue de E dans F. Les espaces E et F sont des espaces de Banach, il suffit donc de montrer que le graphe de T est fermé. Soit $(\varphi_k, T(\varphi_k))$ une suite de points du graphe de T qui converge vers un point (φ, y) dans $E \times F$. Le problème est de montrer que $y = T(\varphi)$. En retranchant φ on se ramène à la situation où $(\psi_k, T(\psi_k))$ converge vers (0, z), et il faut vérifier que z = 0. Considérons une composante fixée z_n de la suite numérique $z \in \ell_2$. Puisque $T(\psi_k)$ converge vers z_n dans z_n

On va donner une première version du théorème de Banach-Steinhaus qui n'est pas dans le poly.

Proposition. Soit E un espace vectoriel muni d'une distance d, telle que (E,d) soit complet, et telle que les opérations $(x,y) \to x + y$ et $(\lambda,x) \to \lambda x$ soient continues de $E \times E$ dans E et $\mathbb{K} \times E$ dans E respectivement; soient d'autre part F un espace normé et A une famille d'applications linéaires continues de E dans F. Si pour tout $x \in E$ la famille $\{T(x): T \in A\}$ est bornée dans F, il existe un voisinage E de E due

$$\forall T \in A, \forall x \in W, \|T(x)\| \le 1.$$

Démonstration. Remarquons d'abord que pour tout $x_0 \in E$ la translation $y \to x_0 + y$ est un homéomorphisme de E; de même, pour tout $\lambda \neq 0$ l'homothétie $y \to \lambda y$ est un homéomorphisme. Il résulte du premier point que tout voisinage W de x_0 est de la forme $x_0 + U$, où U est un voisinage de 0_E , et du second point que -U est aussi un voisinage de 0_E (prendre $\lambda = -1$), donc $V = U \cap (-U)$ est un voisinage symétrique de 0_E .

Pour tout entier $n \geq 1$, posons $C_n = \{x \in E : \forall T \in A, \|T(x)\| \leq n\}$. Comme C_n est l'intersection des fermés $C_{T,n} = \{x \in E : \|T(x)\| \leq n\}$ (lorsque T varie dans A), c'est un fermé de E. La réunion des C_n est E : ceci n'est que la traduction de l'hypothèse $\sup_{T \in A} \|T(x)\| < +\infty$ pour tout $x \in E$.

Puisque (E, d) est métrique complet, il existe un entier $n_0 \geq 1$ tel que C_{n_0} soit d'intérieur non vide. On peut donc trouver un point $x_0 \in C_{n_0}$ et un voisinage U de 0_E tels que $x_0 + U \subset C_{n_0}$. Alors $V = U \cap (-U) \subset U$ est un voisinage de 0 symétrique et $x_0 + V \subset C_{n_0}$. Soient $v \in V$ et $T \in A$ quelconques; puisque $x_0 \pm v \in C_{n_0}$, on a $\|T(x_0) \pm T(v)\|_F \leq n_0$, ce qui donne $\|T(v)\|_F \leq n_0$ par l'inégalité triangulaire. Pour terminer, on prend le voisinage $W = n_0^{-1}U$.

Théorème 2.1.5: théorème de Banach-Steinhaus. Soient E un espace de Banach, F un espace normé et A une partie de $\mathcal{L}(E,F)$, telle que, pour tout $x \in E$, le sous-ensemble $\{\|f(x)\| : f \in A\}$ soit borné (dans \mathbb{R}). Alors $\{\|f\| : f \in A\}$ est borné.

Démonstration. On peut appliquer la proposition précédente. Il existe un voisinage V de 0 tel que $||f(x)|| \le 1$ pour tout $x \in V$ et tout $f \in A$. Il existe r > 0 tel que $B(0, r) \subset V$. Par homogénéité, pour tout $x \in B(0, 1)$ et tout $f \in A$, on a $||f(x)|| \le 1/r$; on a donc montré que pour tout $f \in A$, on a $||f|| \le 1/r$.

Exercice proposé. Traiter l'exemple ci-dessus avec Banach-Steinhaus au lieu du graphe fermé.

Corollaire 2.1.2. Soient E un espace de Banach (ou bien un (E, d) complet comme dans la proposition), F un espace normé et (f_n) une suite d'applications linéaires continues de E dans F; on suppose que, pour tout $x \in E$, la suite $(f_n(x))$ converge; notons f(x) sa limite. Alors f est (linéaire et) continue.

Démonstration. Soit $x \in E$; comme la suite $(f_n(x))$ est convergente, elle est bornée; par le théorème 5, la suite $(\|f_n\|)$ est alors bornée. Il existe alors un nombre $k \geq 0$ tel que, pour tout $x \in E$ et tout entier $n \geq 0$ on ait $\|f_n(x)\| \leq k \|x\|$. Passant à la limite on trouve $\|f(x)\| \leq k \|x\|$. Par ailleurs, il est clair que f est linéaire.

Corollaire bis. Soient E un espace de Banach (ou bien un (E, d) complet comme dans la proposition), F un espace normé et (u_k) une suite d'applications linéaires continues de E dans F; on suppose que, pour tout $x \in E$, la série $\sum_k u_k(x)$ converge dans F; notons f(x) sa somme. Alors f est (linéaire et) continue (j'ai oublié de préciser que f n'est pas nécessairement la somme de la série dans $\mathcal{L}(E,F)$).

Commentaire. Ceux qui feront des distributions reverront sortir ce principe à propos des séries de distributions : les distributions tempérées sont des formes linéaires continues

sur un espace de fonctions S qui est un (E, d) du bon type. Pour vérifier qu'une série de distributions tempérées définit une nouvelle distribution tempérée, il suffit de vérifier que $\sum_k T_k(\varphi)$ converge pour toute fonction $\varphi \in S$.

2.2. Théorème de Hahn-Banach

Le premier résultat que nous allons énoncer est purement algébrique, et ne fait pas référence à une topologie sur l'espace vectoriel (réel) X. On dit que $q: X \to \mathbb{R}$ est sous-linéaire si elle est positivement homogène et sous-additive, c'est à dire qu'elle vérifie

- (i) pour tout $x \in X$ et tout $\lambda \geq 0$, on a $q(\lambda x) = \lambda q(x)$
- (ii) pour tous $x, y \in X$, on a $q(x + y) \le q(x) + q(y)$.

Il est clair que les semi-normes sont des fonctions sous-linéaires.

Théorème 2.2.1 : théorème de prolongement de Hahn-Banach. Soient X un espace vectoriel réel, Y un sous-espace vectoriel de X et q une fonction sous-linéaire sur X ; pour toute forme linéaire ℓ sur Y, telle que $\ell(y) \leq q(y)$ pour tout $y \in Y$, il existe une forme linéaire m sur X qui prolonge ℓ , c'est à dire telle que $m(y) = \ell(y)$ pour tout $y \in Y$ et telle que $m(x) \leq q(x)$ pour tout $x \in X$.

Démonstration. Le point crucial est de montrer qu'on peut prolonger à une dimension de plus : si m est linéaire, définie sur un sous-espace Z de façon que $m \leq q$ et si $x \notin \mathbb{Z}$, on peut étendre m en \widetilde{m} définie sur $\mathbb{Z} + \mathbb{R}x$ en gardant $\widetilde{m} \leq q$; le reste n'est que formalité "zornique".

Lemme 2.2.1. Soient Z un sous-espace vectoriel de X et g une forme linéaire définie sur Z, telle que $g(z) \leq q(z)$ pour tout $z \in Z$; soit $x \in X$ tel que $x \notin Z$; il existe une forme linéaire \tilde{g} sur $Z + \mathbb{R}x$ telle que \tilde{g} prolonge g et $\tilde{g} \leq q$ sur $Z + \mathbb{R}x$.

Démonstration du lemme. Bien entendu, prolonger g à $Z + \mathbb{R}x$ demande seulement de définir $M = \widetilde{g}(x)$. Pour que le prolongement soit convenable, il faut que $g(z) + t \widetilde{g}(x) = \widetilde{g}(z + tx) \le q(z + tx)$ pour tout nombre réel t et tout $z \in Z$. C'est automatique si t = 0, et nous allons découper la propriété voulue en deux, selon le signe de $t \neq 0$:

$$g(z) + \lambda M \le q(z + \lambda x), \quad g(z') - \mu M \le q(z' - \mu x)$$

pour tous $z, z' \in \mathbb{Z}$, $\lambda, \mu > 0$. Le nombre M doit donc vérifier les deux inégalités

$$M \le I = \inf\{\lambda^{-1}(q(z + \lambda x) - g(z)) : z \in Z, \lambda > 0\}$$

 et

$$\sup\{\mu^{-1}(g(z') - g(z' - \mu x)) : z' \in \mathbb{Z}, \mu > 0\} = S \le M.$$

En utilisant l'homogénéité de q (et celle de g, qui est linéaire) on peut faire entrer les facteurs positifs λ^{-1} et μ^{-1} à l'intérieur des expressions, et on obtient ainsi

$$I = \inf\{q(z_1 + x) - g(z_1) : z_1 \in Z\}$$

 et

$$\sup\{g(z_2) - q(z_2 - x) : z_2 \in Z\} = S$$

 $(z_1 \text{ remplace } \lambda^{-1}z \text{ et } z_2 \text{ remplace } \mu^{-1}z')$. Pour que le choix de M soit possible, il faut et il suffit que $S \leq I$, et il suffira de prendre pour M n'importe quel nombre compris entre

le sup et l'inf (bien sûr, si S=I on n'a pas le choix : il faut prendre pour M la valeur commune). Il reste donc à vérifier que

$$g(z_2) - q(z_2 - x) \le q(z_1 + x) - g(z_1)$$

pour tous $z_1, z_2 \in \mathbb{Z}$. On réécrit la propriété voulue sous la forme

$$g(z_1) + g(z_2) \le q(z_1 + x) + q(z_2 - x)$$

et il est alors clair que la propriété voulue est vraie :

$$g(z_1) + g(z_2) = g(z_1 + z_2) \le q(z_1 + z_2) = q((z_1 + x) + (z_2 - x)) \le q(z_1 + x) + q(z_2 - x).$$

Le résultat du lemme est donc établi.

Pour terminer la démonstration du théorème il faut appliquer le lemme de Zorn : soit (I, \leq) un ensemble ordonné non vide ; si toute partie totalement ordonnée $J \subset I$ admet un majorant dans I, il existe dans I des éléments maximaux. Voir le poly pour cet argument.

Rappelons que \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} , et X^* le dual topologique de X.

Théorème 2.2.3 : théorème de Hahn-Banach. Soient X un espace normé (réel ou complexe) et Y un sous-espace vectoriel de X ; pour tout $\ell \in Y^*$, il existe $m \in X^*$ dont la restriction à Y soit ℓ et telle que $||m|| = ||\ell||$.

Démonstration. Considérons d'abord le cas réel. Ici la fonction sous-linéaire q sera un multiple convenable de la norme N de X. Par définition de la norme de la forme linéaire ℓ , on a $\ell \leq \|\ell\|$ N = q sur le sous-espace Y. On peut donc trouver un prolongement m tel que $m \leq q$ sur X, ce qui donne le résultat : on a en effet $m(x) \leq \|\ell\| \|x\|$ pour tout $x \in X$, d'où aussi $|m(x)| \leq \|\ell\| \|x\|$ en appliquant à x et -x; tout ceci montre que m est continue et $\|m\| \leq \|\ell\|$, mais $\|\ell\| \leq \|m\|$ puisque m prolonge ℓ .

Si X est un espace vectoriel complexe, on commence par le considérer comme un espace vectoriel réel, et on considère sur Y la forme linéaire réelle $\ell_1 = \operatorname{Re} \ell$. On trouve alors une forme linéaire réelle m_1 sur X telle que m_1 prolonge la forme linéaire réelle ℓ_1 et $||m_1|| = ||\ell_1||$. Par la proposition 1.6.2, on sait que m_1 est la partie réelle d'une forme linéaire complexe m sur X, et de plus $||m|| = ||m_1|| \le ||\ell_1|| = ||\ell||$; d'autre part m prolonge ℓ (ici Y est un sous-espace vectoriel complexe; si $y \in Y$ on a aussi $iy \in Y$ ce qui permet d'écrire $m(y) = m_1(y) - im_1(iy)$, et alors $m(y) = \ell_1(y) - i\ell_1(iy) = \ell(y)$).

Corollaire 2.2.1. Soient X un espace normé et $x \in X$; il existe $x^* \in X^*$ telle que $x^*(x) = ||x||$ et $||x^*|| \le 1$.

Démonstration. Si $x=0_X$ on prendra tout simplement $x^*=0$; sinon, considérons le sous-espace vectoriel $Y=\mathbb{K}x$ de E. On définit une forme linéaire $y^*\in Y^*$ telle que $y^*(x)=\|x\|$ en posant $y^*(\lambda x)=\lambda\|x\|$, pour tout $\lambda\in\mathbb{K}$. Pour tout $y=\lambda x\in Y$, on a $|y^*(y)|=|y^*(\lambda x)|=|\lambda|\,\|x\|\leq\|y\|$, donc $\|y^*\|\leq 1$, et $0<\|x\|=y^*(x)\leq\|y^*\|\,\|x\|$, donc $\|y^*\|=1$. Par le théorème 3, il existe $x^*\in E^*$ qui prolonge y^* et tel que $\|x^*\|=\|y^*\|$. Comme x^* prolonge y^* , on a $x^*(x)=y^*(x)=\|x\|$, d'où le résultat.

Bien entendu, on a en fait $||x^*|| = 1$ lorsque $x \neq 0$, mais le corollaire tel qu'il est énoncé a l'avantage de couvrir tous les cas.

Remarque sur Banach-Steinhaus : on a vu que si E un espace de Banach, F un espace normé et (f_n) une suite d'applications linéaires continues de E dans F telle que, pour tout $x \in E$, la suite $(f_n(x))$ converge vers $f(x) \in F$, alors $x \to f(x)$ est (linéaire et) continue. Il va sans dire qu'en général $||f_n - f||_{\mathcal{L}(E,F)}$ NE TEND PAS vers 0.

Prenons par exemple $E = \ell_2$, $F = \mathbb{K}$ et considérons pour tout $n \geq 0$ la forme linéaire $f_n = e_n^*$ qui associe à la suite $x = (x_m)_m \in \ell_2$ la nième coordonnée x_n . Alors pour tout $x \in \ell_2$, on voit que $e_n^*(x) = x_n$ tend vers 0 quand $n \to +\infty$, donc f = 0, mais $||f_n - f|| = ||e_n^*|| = 1$ pour tout $n \geq 0$.

Remarque sur la topologie de $\mathbb{R}^{\mathbb{N}}$: la topologie naturelle sur cet espace est la topologie produit ; c'est une topologie d'espace vectoriel topologique ; on peut définir des métriques assez naturelles sur $\mathbb{R}^{\mathbb{N}}$ qui définissent la topologie produit et qui rendent l'espace complet ; on peut donc appliquer la variante de Banach-Steinhaus qui a été mentionnée en cours.

Mais cette topologie ne peut pas être définie par une norme. Une distance naturelle est, pour $x = (x_n)$ et $y = (y_n)$ dans $\mathbb{R}^{\mathbb{N}}$:

$$d(x,y) = \sum_{n=0}^{+\infty} 2^{-n} \min(|x_n - y_n|, 1).$$

Cette distance définit la topologie produit. Tout voisinage V de 0 pour la topologie produit contient une boule $B_d(0,\varepsilon)$ pour un certain $\varepsilon > 0$; mais on vérifie que pour n assez grand, la droite $\mathbb{R}e_n$ est tout entière contenue dans $B_d(0,\varepsilon)$, donc dans V; on voit que tout voisinage de 0 dans $\mathbb{R}^{\mathbb{N}}$ contient des droites, ce qui serait impossible si la topologie pouvait être définie par une norme.

Un phénomène analogue se produit pour l'espace $C(\mathbb{R})$ des fonctions continues sur la droite $\mathbb{R}.$

Exemple de Hahn-Banach avec ℓ_{∞} : on a vu que pour $1 \leq p < +\infty$, toute forme linéaire continue x^* sur ℓ_p provient d'un vecteur $y \in \ell_q$ (q exposant conjugué). On va voir que ça n'est pas vrai lorsque $p = +\infty$.

Désignons par c le sous-espace vectoriel de ℓ_{∞} formé des suites scalaires $x=(x_n)$ convergentes; sur ce sous-espace est définie la forme linéaire naturelle

$$\ell(x) = \lim_{n \to +\infty} x_n.$$

Il est clair que $|\ell(x)| \leq \sup_n |x_n| = ||x||_{\infty}$, donc ℓ est continue. Par le théorème de Hahn-Banach il existe un prolongement $x^* \in (\ell_{\infty})^*$. On va voir que cette forme linéaire ne peut pas provenir d'un élément de ℓ_1 . Soit donc $u \in \ell_1$, qui définit une forme linéaire f_u sur ℓ_{∞} par la formule $f_u(x) = \sum_{n=0}^{+\infty} u_n x_n$; considérons un vecteur $x^{(N)} \in c$ dont les composantes sont $x_j^{(N)} = 0$ si $0 \leq j \leq N$ et $x_j^{(N)} = 1$ si j > N; alors $x^*(x^{(N)}) = \ell(x^{(N)}) = 1$ mais

$$f_u(x^{(N)}) = \sum_{k > N} u_k$$

tend vers 0 lorsque $N \to +\infty$, ce qui montre que f_u ne peut pas être égale à x^* .

Si l'auditeur/lecteur réfléchit un peu, il aura du mal à trouver un procédé "calculatoire" pour définir cette forme linéaire x^* qui doit affecter un résultat à toute suite bornée $x \in \ell_{\infty}$, de façon que le résultat soit linéaire et égal à la limite de la suite x quand elle est convergente. Le lemme de Zorn est intimement lié au théorème de Hahn-Banach pour un espace tel que l'espace ℓ_{∞} .

Théorème de représentation de Riesz. Dual de C(K)

Pour décrire le dual de C(K) il faut introduire des objets qui n'ont peut-être pas été vus en Intégration, où on se limite souvent aux mesures positives. Une mesure réelle sur un espace mesurable (Ω, \mathcal{A}) est une application $\mu : \mathcal{A} \to \mathbb{R}$ (pas de valeur infinie ici!) qui est σ -additive, c'est à dire que $\mu(\emptyset) = 0$ et $\mu(\bigcup_{n=0}^{+\infty} A_n) = \sum_{n=0}^{+\infty} \mu(A_n)$ pour toute suite (A_n) d'éléments deux à deux disjoints de \mathcal{A} . Une mesure complexe μ est une application σ -additive $\mathcal{A} \to \mathbb{C}$. Dans ce cas $A \in \mathcal{A} \to \operatorname{Re} \mu(A)$ est une mesure réelle, donc une mesure complexe μ est tout simplement de la forme $\mu = \mu_1 + i\mu_2$, où μ_1 et μ_2 sont deux mesures réelles. Un résultat moins évident, le théorème de décomposition de Hahn , dit qu'une mesure réelle est la différence de deux mesures positives bornées.

Si K est un espace métrique compact, les ouverts de K engendrent une tribu qui s'appelle la tribu borélienne \mathcal{B} de K. Les formes linéaires sur C(K) s'identifient aux mesures réelles sur (K, \mathcal{B}) dans le cas réel, aux mesures complexes dans le cas complexe. La dualité s'exprime par l'intégration d'une fonction continue par rapport à la mesure réelle (ou complexe) μ ,

$$\ell(f) = \int_{\mathbb{K}} f(s) \, d\mu(s).$$

Ce théorème est assez long à démontrer (voir par exemple Rudin, Real and Complex Analysis).

Théorème de séparation

Soit C un convexe d'un espace normé X, tel que 0 soit intérieur à C : il existe r>0 tel que $B(0,r)\subset C.$ On pose alors

$$j_{\mathcal{C}}(x) = \inf\{\lambda : \lambda > 0 \text{ et } \lambda^{-1}x \in \mathcal{C}\}.$$

Si λ est très grand, on aura $\|\lambda^{-1}x\| < r$, donc $\lambda^{-1}x \in C$, ce qui montre que l'ensemble des λ possibles n'est pas vide ; il en résulte que $j_{\rm C}(x)$ est un nombre fini, et clairement on a $j_{\rm C}(x) \geq 0$. La fonction $j_{\rm C}$ est sous-linéaire ; seule la sous-additivité n'est pas évidente : si $x_1 = \lambda^{-1}x \in C$ et $y_1 = \mu^{-1}y \in C$, on écrira une combinaison convexe de x_1 et y_1 ,

$$(\lambda + \mu)^{-1}(x+y) = \frac{\lambda}{\lambda + \mu} x_1 + \frac{\mu}{\lambda + \mu} y_1 \in \mathcal{C},$$

donc $j_{\rm C}(x+y) \leq \lambda + \mu$. On prend ensuite l'inf sur λ et μ pour obtenir $j_{\rm C}(x+y) \leq j_{\rm C}(x) + j_{\rm C}(y)$.

Exercice. Dans le cas où C est un convexe ouvert de X contenant 0_X , on a l'égalité $C = \{x \in X : j_C(x) < 1\}.$

Théorème : théorème de séparation de Hahn-Banach (préliminaire). Soient X un espace normé réel, A un convexe ouvert non vide et $b_0 \notin A$. Il existe alors une forme linéaire continue x^* sur X telle que

$$\forall a \in A, \quad x^*(a) < x^*(b_0).$$

Une façon de voir le résultat est de dire que la forme linéaire x^* sépare l'espace X en deux demi-espaces affines $H_- = \{x : x^*(x) < x^*(b_0)\}$ et $H_+ = \{x : x^*(x) \ge x^*(b_0)\}$. L'énoncé nous dit que $A \subset H_-$ et $b_0 \in H_+$.

Démonstration. Par translation on peut se ramener au cas où le convexe ouvert A contient 0_X . La jauge j_A est alors une fonction sous-linéaire sur X, et $j_A(b_0) \geq 1$ puisque $b_0 \notin A$. On définit ℓ sur $Y = \mathbb{R}b_0$ en posant $\ell(\lambda b_0) = \lambda$ pour tout $\lambda \in \mathbb{R}$. On vérifie que $\ell \leq p = j_A$ sur Y. Si m est un prolongement de ℓ , on aura $m(a) \leq j_A(a) < 1$ pour tout $a \in A$, alors que $m(b_0) = \ell(b_0) = 1$. Par ailleurs, $x^* = m$ est une forme linéaire continue puisqu'elle est majorée par 1 sur le voisinage $A \in \mathbb{Q}_X$, donc minorée par $A \in \mathbb{Q}_X$ et bornée par 1 sur le voisinage $A \cap (-A)$.

Corollaire 2.2.3. Si C est un sous-ensemble convexe fermé non vide d'un espace normé réel X, alors C est l'intersection de demi-espaces affines fermés.

Démonstration. Soit C un convexe fermé non vide d'un espace normé réel X. On va montrer que pour tout $x \notin C$, il existe un demi-espace affine fermé D_x tel que $C \subset D_x$ et $x \notin D_x$. Il suffira ensuite d'observer que $C = \bigcap_{x \notin C} D_x$.

Pour tout $x \notin \mathbb{C}$, on peut trouver une boule ouverte $\mathbb{B} = \mathbb{B}(x,r)$ disjointe de \mathbb{C} ; on a donc dist $(c,\mathbb{C}) \geq r > 0$; l'ensemble

$$A = \{ x \in X : dist(x, C) < r/2 \}$$

est convexe (exercice), ouvert (la fonction distance est continue) et non vide (il contient C non vide); d'après le théorème de séparation il existe une forme linéaire x^* telle que

$$\forall a \in A, \quad x^*(a) < x^*(x).$$

On a $x^* \neq 0$. Soit u un vecteur tel que ||u|| < r/2 et $t = x^*(u) > 0$, et soit $c \in \mathbb{C}$ quelconque. On a $c + u \in A$, donc $x^*(c) < x^*(x) - t = d$. On voit donc que si on pose

$$D_x = \{ y \in X : x^*(y) \le d \}$$

on aura $C \subset D_x$ mais $x \notin D_x$.

Cours nº 6, Mercredi 13 Octobre 1999.

Exercice proposé : si T est une application linéaire continue de $\mathbb{R}^{\mathbb{N}}$ dans un espace normé F, montrer qu'il existe un entier N tel que $T(e_n) = 0$ pour tout $n \geq N$. Montrer que le dual topologique de $\mathbb{R}^{\mathbb{N}}$ s'identifie à l'espace des suites réelles à support fini $\mathbb{R}^{(\mathbb{N})}$.

Théorème 2.2.2 : théorème de séparation de Hahn-Banach. Soient X un espace normé réel, A un convexe ouvert non vide et B un convexe non vide tels que A et B soient disjoints. Il existe alors une forme linéaire continue x^* sur X telle que $x^*(a) < \inf x^*(B)$ pour tout $a \in A$.

Démonstration. On a vu le cas où B est réduit à un seul point. Démontrons le cas général ; si A est un convexe ouvert non vide disjoint du convexe non vide B, on introduit le convexe ouvert

$$C = A - B = \{a - b : a \in A, b \in B\}.$$

Puisque A et B sont disjoints, ce convexe ne contient pas 0_X . On peut donc trouver une forme linéaire continue x^* telle que $x^*(c) < x^*(0_X) = 0$ pour tout $c \in C$. Cela signifie que $x^*(a-b) < 0$ pour tous $a \in A$, $b \in B$, soit encore $x^*(a) < x^*(b)$ pour tous $a \in A$, $b \in B$. Il en résulte que $x^*(a) \le \inf x^*(B)$; puisque x^* n'est pas nulle, on peut choisir $u \in X$ tel que $x^*(u) > 0$, puis $\varepsilon > 0$ tel que $a + \varepsilon u \in A$ puisque A est ouvert; on termine en écrivant $x^*(a) < x^*(a + \varepsilon u) \le \inf x^*(B)$

Exercice-exemple traité. Montrer en utilisant Hahn-Banach que toute forme linéaire continue x^* sur C(K) (cas réel) est la différence de deux formes linéaires positives.

Si $x^* = 0$ c'est trivial; on suppose donc $x^* \neq 0$, ou bien pour fixer les idées $||x^*|| = 1$. On considère le convexe ouvert non vide A qui est la boule unité ouverte de C(K); on pose par ailleurs

$$B = \{ \varphi \in C(K) : \exists \psi \in C(K), |\psi| \le \varphi \text{ et } x^*(\psi) \ge 1 \}.$$

Si ψ est une fonction telle que $x^*(\psi) \geq 1$, alors $|\psi| \in \mathbf{B}$ donc \mathbf{B} est non vide ; il est facile de vérifier que \mathbf{B} est convexe. Enfin, $\mathbf{A} \cap \mathbf{B} = \emptyset$: en effet si $f \in \mathbf{A}$ on a $||f||_{\infty} < 1$, donc pour toute ψ telle que $|\psi| \leq f$ on aura $||\psi||_{\infty} \leq ||f||_{\infty}$ et $x^*(\psi) \leq ||x^*|| \, ||f||_{\infty} = ||f||_{\infty} < 1$, donc f ne peut pas être dans \mathbf{B} .

D'après le théorème de séparation, il existe une forme linéaire continue y_1^* telle que $y_1^*(a) < y_1^*(b)$ pour tous $a \in A$ et $b \in B$; en particulier, en prenant $a = 0 \in A$ on voit que $y_1^*(b) \ge 0$ pour tout $b \in B$. Il est clair par la définition de B que si $\varphi_0 \in B$ et $\varphi_0 \le \varphi_1$, alors $\varphi_1 \in B$; si u est une fonction continue ≥ 0 et t > 0, on aura $\varphi_0 \le \varphi_0 + tu$ donc $\varphi_0 + tu \in B$, donc $y_1^*(\varphi_0 + tu) \ge 0$ pour tout t > 0; en faisant tendre t vers $+\infty$ on en déduit que $y_1^*(u) \ge 0$, et ceci pour toute $u \ge 0$, ce qui montre que y_1^* est une forme linéaire positive sur C(K).

On peut supposer en multipliant y_1^* par un coefficient > 0 que $||y_1^*|| = 1$. On veut montrer maintenant que $y_1^* - x^*$ est positive, c'est à dire que $x^*(v) \le y_1^*(v)$ pour toute fonction continue $v \ge 0$; si $x^*(v) \le 0$, c'est évident puisque y_1^* est positive. Si $x^*(v) > 0$, considérons v' = tv multiple de v tel que $x^*(v') = 1$ (avec t > 0). Alors $v' \in B$ (prendre $\psi = v'$, on a $|v'| = v' \le v'$). Pour toute fonction $u \in A$, on a alors $y_1^*(u) < y_1^*(v')$ d'après la séparation, donc $1 = ||y_1^*|| \le y_1^*(v')$ en prenant le sup sur $u \in A = B(0, 1)$. On a donc $x^*(v') = 1 \le y_1^*(v')$, d'où $x^*(v) \le y_1^*(v)$.

Pour finir, on écrit $x^* = y_1^* - (y_1^* - x^*)$, différence de deux formes linéaires positives.

Corollaire. Soient X un espace normé et Y un sous-espace fermé; soient $x \notin Y$ et $r = \operatorname{dist}(x, Y) > 0$; il existe une forme linéaire continue $x^* \in X^*$ telle que : x^* est nulle sur Y, $||x^*|| = 1$ et $x^*(x) = r$.

Démonstration. Considérons le quotient X/Y et la projection π de X sur X/Y; par définition de la norme du quotient, on a $\|\pi(x)\| = r$. En appliquant le théorème de Hahn-Banach à X/Y, on trouve une forme linéaire continue z^* sur X/Y telle que $\|z^*\| \le 1$ et $z^*(\pi(x)) = \|\pi(x)\| = r$; alors $x^* = z^* \circ \pi$ donne la solution.

Bidual d'un espace normé

Soit X un espace normé; le dual du dual X* de X s'appelle le bidual de X et se note X**. Pour $x \in X$ notons $I_X(x) : X^* \to \mathbb{K}$ la forme linéaire sur X* qui à $x^* \in X^*$ associe $x^*(x)$. Pour tout $x^* \in X^*$, on a $|I_X(x)(x^*)| = |x^*(x)| \le ||x^*|| \, ||x||$, donc $I_X(x) \in X^{**}$ et $||I_X(x)|| \le ||x||$. On dit que $I_X \in \mathcal{L}(X, X^{**})$ est l'application canonique de X dans son bidual.

Corollaire 2.2.4. L'application canonique $I_X : X \to X^{**}$ est isométrique.

Démonstration. Soit $x \in X$; par le corollaire 1, il existe $x^* \in X^*$ tel que $||x^*|| \le 1$ et $x^*(x) = ||x||$. Alors

$$||x|| = |x^*(x)| = |I_X(x)(x^*)| \le ||x^*|| ||I_X(x)|| \le ||I_X(x)||,$$

vu que $||x^*|| \le 1$; donc $||I_X(x)|| = ||x||$.

Remarque. Puisque X^{**} est toujours complet et que l'espace normé X s'injecte isométriquement dans X^{**} , on obtient une description d'un complété de X en considérant $\widehat{X} = \overline{I_X(X)}$: l'adhérence de l'image de X dans l'espace complet X^{**} est complète.

Si X est un espace normé l'application I_X est injective par le corollaire 4. Remarquons que si I_X est bijective alors I_X est une isométrie de X sur un espace de Banach (par la proposition 1.2.3). Il s'ensuit que si I_X est bijective, alors nécessairement X est un espace de Banach. Ceci explique que nous restreindrons la définition qui suit aux espaces de Banach.

Définition 2.2.1. Un espace de Banach E est dit *réflexif* si l'application canonique $I_E: E \to E^{**}$ est bijective.

Autrement dit, un espace de Banach E est réflexif lorsque toute forme linéaire x^{**} continue sur le dual E* provient d'un vecteur x de E de la façon expliquée précédemment,

$$\forall x^* \in E^*, \ x^{**}(x^*) = x^*(x).$$

Exemples 2.2.1. Les espaces ℓ_p , $L_p(\Omega, \mu)$, sont réflexifs lorsque $1 ; on pourrait dire un peu vite : le dual de <math>L_p$ est L_q , et celui de L_q est L_p , donc ça marche ; c'est un peu trop rapide, parce que le dual de L_p n'est pas L_q , mais s'identifie à L_q au moyen d'une certaine bijection. Il fait donc prendre la peine, au moins une fois, de vérifier que tout colle bien. Expliquons le cas de $X = L_p$; soit j_q l'application isométrique de L_q sur le dual X^* de L_p . Si x^{**} est une forme linéaire continue sur $X^* = (L_p)^*$, la composée $x^{**} \circ j_q$ est une forme linéaire continue sur L_q ; il existe donc une fonction $f \in L_p = X$ telle que

$$\forall g \in \mathcal{L}_q, \ \ x^{**}(j_q(g)) = \int_{\Omega} fg \, d\mu.$$

Soit $x^* \in X^*$; il existe $g \in L_q$ tel que $x^* = j_q(g)$, et alors $x^*(f) = \int_{\Omega} f g \, d\mu$. La ligne précédente signifie donc bien que l'on a trouvé un vecteur $f \in X = L_p$ tel que

$$\forall x^* \in X^* = (L_p)^*, \quad x^{**}(x^*) = x^*(f).$$

En revanche, les espaces c_0 , ℓ_1 et ℓ_∞ sont des espaces de Banach non réflexifs. D'après les résultats généraux qui suivent, il suffit de voir que ℓ_1 n'est pas réflexif. On a vu qu'il existe des formes linéaires continues sur ℓ_∞ qui ne proviennent d'aucun vecteur $x \in \ell_1$; si on vérifie que le mot "provient" a le même sens, on déduit que ℓ_1 n'est pas réflexif.

Proposition 2.2.2. Si X est réflexif, alors X* est réflexif.

Démonstration. Voir poly.

Proposition 2.2.3. Si X est réflexif, tout sous-espace fermé Y de X est réflexif.

Démonstration. Soit π l'application de restriction définie de X* sur Y* (surjective par le théorème de Hahn-Banach). Soit y^{**} une forme linéaire continue sur Y*. Alors $x^{**} = y^{**} \circ \pi$ est une forme linéaire continue sur X*, donc il existe $x \in X$ tel que $x^{**}(x^*) = x^*(x)$ pour tout x^* in X*. Il suffit de voir que $x \in Y$ pour pouvoir conclure assez facilement; si on avait $x \notin Y$, on pourrait trouver d'après le corollaire 3 une forme linéaire $x^* \in X^*$ telle que $x^*(x) \neq 0$ mais $x^*(y) = 0$ pour tout $y \in Y$. On aurait alors $\pi(x^*) = 0$, donc $x^{**}(x^*) = y^{**}(\pi(x^*)) = 0$, ce qui contredit $x^{**}(x^*) = x^*(x) \neq 0$.

Corollaire 2.2.5. Si X* est réflexif, alors X est réflexif.

En effet X^{**} est alors réflexif et X "est" un sous-espace fermé de X^{**} .

Transposée topologique

Définition. Soient X et Y deux espaces normés et $f \in \mathcal{L}(X, Y)$; on appelle transposée topologique de f (ou juste transposée) l'application ${}^tf: y^* \to y^* \circ f$ de Y* dans X*.

MT404, Cours no 7, Lundi 18 Octobre 1999.

Espaces normés isomorphes

On dit que deux espaces normés X et Y sont isomorphes (en tant qu'espaces normés) s'il existe une application linéaire continue $T: X \to Y$ bijective telle que T^{-1} soit continue de Y dans X (si X et Y sont complets, cette dernière condition est automatique par le théorème des isomorphismes).

Si X et Y sont isomorphes, on dispose d'un dictionnaire qui permet de transporter toutes les notions topologico-algébriques de X à Y et inversement : au vecteur $x \in X$ on associe $y = T(x) \in Y$, et alors $x = T^{-1}(y)$; à une forme linéaire $x^* \in X^*$ on associe $y^* = x^* \circ T^{-1} = {}^t(T^{-1})(x^*) \in Y^*$, et inversement $x^* = y^* \circ T = {}^tT(y^*)$. Il n'est alors pas surprenant que :

Si X est réflexif et si Y est isomorphe à X, alors Y est réflexif.

Soit en effet y^{**} une forme linéaire continue sur Y^* ; alors $x^{**} = y^* \circ {}^t(T^{-1})$ est dans X^{**} , donc puisque X est réflexif il existe $x \in X$ tel que $x^{**}(x^*) = x^*(x)$ pour tout $x^* \in X^*$. On pose y = T(x) et on vérifie que y représente y^{**} : soit y^* quelconque dans Y^* et écrivons $y^* = {}^t(T^{-1})(x^*)$; on a

$$y^{**}(y^*) = y^{**} \circ {}^t(T^{-1})(x^*) = x^{**}(x^*) = x^*(x) = {}^tT(y^*)(x) = y^*(T(x)) = y^*(y),$$

ce qu'il fallait démontrer.

Exemple : l'espace c_0 n'est pas réflexif.

A toute forme linéaire $x^* \in c_0^*$ on associe la suite numérique $(x^*(e_n))$ (où e_n est le nième vecteur de la "base" habituelle); on vérifie que $\sum_{n=0}^{+\infty}|x^*(e_n)| \leq \|x^*\|$ (on pose $x^*(e_n) = r_n e^{i\theta_n}$, où $r_n = |x^*(e_n)|$, et pour chaque $N \geq 0$ on considère le vecteur $x^{(N)} = \sum_{k=0}^{N} e^{-i\theta_k} e_k \in c_0$; ce vecteur est de norme 1 dans c_0 et on a la relation $x^*(x^{(N)}) = \sum_{k=0}^{N} |x^*(e_k)| \leq \|x^*\|$). On peut considérer la forme linéaire continue x^{**} sur c_0^* définie par

$$\forall x^* \in c_0^*, \quad x^{**}(x^*) = \sum_{n=0}^{+\infty} x^*(e_n).$$

S'il existait un vecteur $x=(x_n) \in c_0$ qui représente x^{**} , on devrait avoir $x_n=1$ pour tout entier $n \geq 0$, ce qui est impossible pour $x \in c_0$; en effet, on devrait avoir $1=x^{**}(e_m^*)=e_m^*(x)=x_m$ (en désignant par $e_m^* \in c_0^*$ la forme linéaire qui associe à chaque $y \in c_0$ sa mième composante y_m).

Pourquoi s'intéresser aux espaces réflexifs?

Les espaces réflexifs ont une sorte de compacité : si (C_n) est une suite décroissante de convexes fermés bornés non vides, l'intersection $\bigcap_n C_n$ est non vide. On en déduit que si f est une fonction convexe continue sur un convexe fermé borné non vide C d'un espace réflexif E, alors f atteint son minimum sur C. Cela permet de montrer que certains problèmes de minimisation ont une solution.

Exercice proposé.

a. Soient X et Y deux espaces normés; montrer que l'application j qui associe à $(x^*, y^*) \in X^* \times Y^*$ la forme linéaire sur $X \times Y$ définie par

$$j(x^*, y^*)(x, y) = x^*(x) + y^*(y)$$

est une bijection linéaire continue de $X^* \times Y^*$ sur $(X \times Y)^*$ (on rappelle qu'on peut choisir des normes sur le produit qui définissent la topologie produit).

b. Soit E un espace de Banach réflexif réel et soit (C_n) une suite décroissante de convexes fermés bornés non vides de E; on considère pour tout $n \ge 0$

$$A_n = \{(x^*, t) \in E^* \times \mathbb{R} : \sup x^*(C_n) + t < 0\} \subset E^* \times \mathbb{R}.$$

Montrer que (A_n) est une suite croissante de convexes ouverts non vides. Séparer l'ensemble $A = \bigcup_n A_n$ et l'ensemble $B = \{(0_{E^*}, s) : s \ge 0\} \subset E^* \times \mathbb{R}$ au moyen d'une forme linéaire f continue sur $E^* \times \mathbb{R}$ telle que

$$f(x^*, t) < \inf f(B)$$

pour tout $(x^*,t) \in A$. D'après a, f provient d'un couple $(x^{**},\mu) \in E^{**} \times \mathbb{R}$. Montrer que $\mu > 0$. Puisque E est réflexif il existe $x \in E$ tel que $x^{**} = I_E(x)$. Montrer que $\mu^{-1}x \in \bigcap_n C_n$.

Transposée

Définition. Soient X et Y deux espaces normés et $f \in \mathcal{L}(X, Y)$; on appelle transposée topologique de f (ou juste transposée) l'application ${}^tf: y^* \to y^* \circ f$ de Y* dans X*.

Regroupons dans la proposition suivante les propriétés de la transposition :

Proposition. Soient X, Y et Z des espaces normés;

- (i) pour tout $f \in \mathcal{L}(X,Y)$, l'application f est linéaire et continue et ||f|| = ||f||;
- (ii) l'application $f \to {}^t f$ est linéaire de $\mathcal{L}(X,Y)$ dans $\mathcal{L}(Y^*,X^*)$;
- (iii) pour tout $f \in \mathcal{L}(X,Y)$ et tout $g \in \mathcal{L}(Y,Z)$, on a $^t(g \circ f) = {}^t f \circ {}^t g$ (bien noter l'interversion de f et g).

Vérifions que $||^t f|| \le ||f||$. Soit $y^* \in Y^*$ tel que $||y^*|| \le 1$. Pour tout vecteur $x \in X$ tel que $||x|| \le 1$ on a

$$|f(y^*)(x)| = |y^*(f(x))| \le ||y^*|| \, ||f(x)|| \le ||y^*|| \, ||f|| \, ||x|| \le ||f||,$$

d'où il résulte que $||^t f(y^*)|| \le ||f||$ en prenant le sup sur x dans la boule unité de X, puis $||^t f|| \le ||f||$ en prenant le sup sur y^* dans la boule unité de Y*. Montrons l'inégalité inverse. Pour tout $\varepsilon > 0$, on peut trouver un vecteur $x \in X$ tel que $||x|| \le 1$ et tel que $||f(x)|| > ||f|| - \varepsilon$, puis une forme linéaire $y^* \in F^*$ telle que $||y^*|| \le 1$ et $y^*(f(x)) = ||f(x)||$ (on applique Hahn-Banach, corollaire 1). Alors

$$||^t f|| \ge ||^t f(y^*)|| \ge ||^t f(y^*)(x)| = y^*(f(x)) = ||f(x)|| > ||f|| - \varepsilon.$$

La démonstration des autres points est laissée en exercice.

Exemple : on considère l'application linéaire V de $L_2(0,1)$ dans lui-même définie par

$$(V(f))(t) = \int_0^t f(s) \, ds$$

pour toute fonction $f \in L_2$ et tout $t \in [0,1]$ (espace L_2 réel; on remarque que $L_2(0,1) \subset L_1(0,1)$; il en résulte que l'intégrale est bien définie et qu'elle est continue par rapport à t; la fonction V(f) est en fait continue sur [0,1]). Pour toute fonction $g \in L_2$ on considère

la forme linéaire ℓ_g sur L_2 définie par $\ell_g(f)=\int_0^1 fg$; on sait que toute forme linéaire continue sur L_2 est de cette forme. On a alors pour toute $f\in L_2$

$${}^{t}V(\ell_{g})(f) = \ell_{g}(V(f)) = \int_{0}^{1} g(t)V(f)(t) dt =$$

$$\int g(t)f(s)1_{\{0 \le s \le t \le 1\}} dt ds = \int_{0}^{1} f(s)G(s) dt = \ell_{G}(f)$$

où $G(s) = \int_s^1 g(t) dt$. On en déduit que ${}^tV(\ell_g) = \ell_G$; on préfère au bout d'un moment laisser tomber la correspondance $g \to \ell_g$ et dire froidement que g "est" une forme linéaire sur L_2 ; dans ce langage on écrira simplement que $({}^tV)(g)(s) = \int_s^1 g(t) dt$.

3. Topologies faibles

On va définir des topologies faibles sur X et sur X^* ; commençons par la topologie sur X^* , qui s'appelle topologie *-faible ou topologie $\sigma(X^*,X)$ sur X^* . L'espace dual X^* est un sous-ensemble de l'ensemble \mathbb{K}^X de toutes les fonctions de X dans \mathbb{K} ; on peut munir cet espace de la topologie de la convergence simple (ou bien topologie produit); la topologie *-faible sur X^* est la topologie induite par la convergence simple.

Décrivons les voisinages. Pour que W \subset X* soit un voisinage *-faible du point $x_0^* \in X^*$, il faut et il suffit qu'il existe un nombre fini de vecteurs $x_1, \ldots, x_n \in X$ et un nombre $\varepsilon > 0$ tels que

$$x_0^* \in W(x_0^*; x_1, \dots, x_n, \varepsilon) = \{x^* \in X : \forall j = 1, \dots, n, |x^*(x_j) - x_0^*(x_j)| < \varepsilon\} \subset W.$$

On dit ensuite que ω est un ouvert *-faible s'il est voisinage de chacun de ses points ; on vérifie qu'il s'agit bien d'une topologie sur X*.

Remarquons que si X est de dimension infinie, un voisinage *-faible de x_0^* contient toujours des droites affines, donc un voisinage *-faible n'est jamais borné dans ce cas ; en effet, étant donnés x_1, \ldots, x_n , le sous-espace F qu'ils engendrent est fermé et distinct de X, donc il existe une forme linéaire y^* non nulle et nulle sur F, c'est à dire telle que $y^*(x_j) = 0$ pour $j = 1, \ldots, n$; on voit alors que tous les points $x_0^* + ty^*$, $t \in \mathbb{R}$ de la droite affine $x_0^* + \mathbb{R}y^*$ sont dans $W(x_0^*; x_1, \ldots, x_n, \varepsilon)$.

La topologie *-faible rend continues toutes les applications $I_X(x) = x^* \to x^*(x)$, où x varie dans X. C'est la topologie la moins fine sur X* rendant continues toutes ces applications; la topologie de la norme de X* rendant déjà continues toutes ces applications, la topologie *-faible est plus faible que la topologie de la norme sur X*.

Si X est de dimension finie, cette topologie sur X* est la topologie usuelle.

Cours nº 8, Mercredi 20 Octobre 1999.

Exemples.

- 1. La boule unité fermée B_{X^*} est *-faiblement fermée. En effet, elle est égale à une intersection d'ensembles *-faiblement fermés,

$$B_{X^*} = \bigcap_{x \in B_X} \{x^* : |x^*(x)| \le 1\}.$$

-2. Dans cet exemple, $\mathbb{K} = \mathbb{R}$; soit (K, d) un espace métrique compact; une probabilité sur K est une mesure positive de masse 1 sur la tribu borélienne de K. Les mesures

sont munies de la norme de dual de C(K). Si μ est une probabilité, alors $\|\mu\|=1$. En effet, pour toute fonction continue φ telle que $\|\varphi\|_{\infty} \leq 1$, on aura

$$\left| \int \varphi \, d\mu \right| \le \int \left| \varphi \right| d\mu \le \int 1 \, d\mu = 1,$$

donc $\|\mu\| \le 1$. D'un autre côté, $\mu(1) = 1$ montre que $\|\mu\| = 1$ puisque $\|1\|_{\infty} = 1$.

L'ensemble $\mathcal{P}(K)$ des probabilités sur K est *-faiblement fermé dans M(K), considéré comme dual de C(K) (on appelle topologie vague ce cas particulier de topologie *-faible). En effet, on va voir que μ est une probabilité si et seulement si $\|\mu\| \le 1$ et $\mu(1) = 1$, et ces deux conditions définissent des ensembles *-faiblement fermés ; si μ vérifie ces deux conditions, nous devons voir que μ est positive ; si $0 \le \varphi \le 1$, alors $\|1 - \varphi\|_{\infty} \le 1$ donc

$$1 - \int \varphi \, d\mu = \int (1 - \varphi) \, d\mu \le \|\mu\| \le 1,$$

donc $\int \varphi d\mu \geq 0$.

Exercice proposé:

 $-\sin f_1, \ldots, f_n$ et g sont des formes linéaires sur un espace vectoriel Z telles que

$$\forall z \in \mathbb{Z}, \ \left(\{ f_1(z) = f_2(z) = \dots = f_n(z) = 0 \} \Rightarrow g(z) = 0 \right)$$

alors g est combinaison linéaire de f_1, \ldots, f_n ;

– soit X un espace normé; si g est une forme linéaire sur X* qui est *-faiblement continue, alors elle est de la forme $x^* \to x^*(x)$ pour un certain $x \in X$ (indication : utiliser la définition de la continuité, en prenant un disque D de rayon 1 à l'arrivée dans \mathbb{K} et un *-voisinage élémentaire V de 0_{X^*} au départ, tels que $g(V) \subset D$; utiliser la question précédente).

Théorème 3.2.2. Muni de la topologie $\sigma(X^*, X)$ la boule unité de X^* est compacte.

Ce théorème est un corollaire du théorème de Tykhonov que nous admettrons (voir poly).

Théorème 3.2.3 : théorème de Tykhonov. Tout produit d'espaces compacts (muni de la topologie produit) est compact.

Démonstration du théorème 2. Seulement esquissée, voir poly pour plus de détails. Prenons $\mathbb{K}=\mathbb{R}$ pour fixer les diées. On a déjà remarqué que X^* est un sous-ensemble de l'ensemble \mathbb{R}^X de toutes les applications de X dans \mathbb{R} , et que la topologie $\sigma(X^*,X)$ est, par définition, la topologie induite sur X^* par la topologie produit sur \mathbb{R}^X . Mais si $\|x^*\| \leq 1$, la fonction x^* définit une famille $(x^*(x))_{x \in X} \in \mathbb{R}^X$ telle que $|x^*(x)| \leq \|x\|$ pour tout $x \in X$, donc un élément du sous-ensemble $\prod_{x \in X} [-\|x\|, \|x\|]$ qui est compact par Tykhonov; il reste à vérifier que B_{X^*} est fermée dans ce compact. On a déjà expliqué que la condition $\|x^*\| \leq 1$ est une condition fermée, et il reste à voir que la condition "être linéaire" est fermée pour la topologie produit : c'est facile...

3.3. Suites faiblement convergentes

Il est intéressant de revoir certaines de ces propriétés de compacité "à la main", et avec des suites. Une suite $(x_n^*) \subset X^*$ est *-faiblement convergente vers un vecteur x^* si et seulement si $\lim_n x_n^*(x) = x^*(x)$ pour tout $x \in X$ (dans un sens c'est clair puisque pour tout $x \in X$, la fonction $y^* \to y^*(x)$ est *-faiblement continue; dans l'autre sens il suffit de considérer un *-voisinage élémentaire $W = W(x^*; x_1, \dots, x_k, \varepsilon)$ de la limite x^* et de montrer que $x_n^* \in W$ pour n assez grand).

Exemple. Si (μ_n) est une suite de mesures sur le compact métrique K, on dit que $\mu_n \to \mu$ vaguement si $\mu_n(\varphi)$ tend vers $\mu(\varphi)$ pour toute fonction continue φ . Si les (μ_n) sont des probabilités, la limite sera une probabilité puisque $\mathcal{P}(K)$ est *-faiblement fermé.

Remarques.

- 1. Si X est complet, toute **suite** *-faiblement convergente dans X* est bornée (attention, erreur dans le poly à cet endroit : on n'y a pas supposé X complet). Ce résultat provient du corollaire 2.1.2.
- -2. Si (x_k^*) est une suite bornée dans X^* , et si D est un sous-ensemble dense dans X, il suffit de savoir que

$$\forall d \in \mathcal{D}, \quad x^*(d) = \lim_k x_k^*(d)$$

pour en déduire que la suite (x_k^*) converge *-faiblement vers x^* .

Soit en effet M une borne > 0 pour les $||x_k^*||$; on vérifie d'abord que $||x^*|| \le M$: si $d \in D$, on a $|x^*(d)| \le M ||d||$ puisque $x_k^*(d)$ converge vers $x^*(d)$, puis on conclut facilement $||x^*|| \le M$ par densité de D dans la boule unité de X.

Soit $x \in X$ quelconque. On choisit $d \in D$ tel que $||x-d|| < \varepsilon/(3M)$. On aura $|x_k^*(x) - x_k^*(d)| \le M ||x-d|| < \varepsilon/3$, $|x^*(x) - x^*(d)| \le M ||x-d|| < \varepsilon/3$, et pour $k \ge K$ on aura $|x_k^*(d) - x^*(d)| < \varepsilon/3$, ce qui donne par l'inégalité triangulaire : pour tout $k \ge K$, on a $|x_k^*(x) - x^*(x)| < \varepsilon$; on a donc montré la convergence de $(x_k^*(x))$ vers $x^*(x)$ pour tout $x \in X$.

- 2 bis. Si (x_k^\ast) est une suite bornée dans X*, et si D est un sous-ensemble dense dans X, il suffit de savoir que

$$\forall d \in \mathcal{D}, \quad \lim_{k} x_k^*(d) \text{ existe}$$

pour en déduire que x_k^* converge *-faiblement vers un certain élément $x^* \in X^*$.

On modifie légèrement l'argument précédent pour montrer que pour tout $x \in X$, la suite $(x_k^*(x))$ est une suite de Cauchy de scalaires, qui converge donc vers une limite $\ell(x)$. Il est clair que la limite est linéaire. On montre ensuite que $\|\ell\| \leq M$, donc $x^* = \ell$ est bien dans X^* et la suite (x_k^*) converge *-faiblement vers x^* .

Exemple. Prenons $X = L_p(0, 2\pi)$, avec $1 \le p < +\infty$. La suite $x_k^* = g_k$ définie par $g_k(s) = \sin(ks)$ tend *-faiblement vers 0 dans L_q .

On prend $D = C([0, 2\pi])$, qui est dense dans $X = L_p$. On vérifie que $||g_k|| \le (2\pi)^{1/q}$ pour tout k, donc la suite (g_k) est bornée dans le dual L_q . Il suffit donc de vérifier que

$$\lim_{k} \int_{0}^{2\pi} f(x) \sin(ks) \, ds = 0$$

pour toute $f \in D$. On utilise le fait qu'une translation π/k change peu la fonction uniformément continue f, mais change le signe du sinus.

Séparabilité

On dit qu'un espace métrique (Z, d) est séparable s'il existe une partie dénombrable $D \subset Z$ qui soit dense dans Z. Les espaces \mathbb{R} et \mathbb{C} sont séparables (par exemple, \mathbb{Q} est un sous-ensemble dénombrable dense dans \mathbb{R}).

- -1. Tout espace normé de dimension finie est séparable : si F est un espace vectoriel de dimension finie sur \mathbb{K} et si (x_1,\ldots,x_n) est une base de F, l'ensemble dénombrable $D=\{\sum_{i=1}^n \lambda_i x_i: \lambda_i \in \mathbb{Q}\}$ est dense dans F.
- -2. Pour que X soit séparable, il faut et il suffit qu'il existe une suite croissante (F_n) de sous-espaces de dimension finie de X telle que $\bigcup_n F_n$ soit dense dans X :

en effet, si $D = \{d_0, d_1, \ldots, d_n, \ldots\}$ est dense et si $F_n = \text{Vect}(d_0, \ldots, d_n)$, il est évident que $\bigcup_n F_n$ est dense dans X puisque cet ensemble contient D. Inversement si $\bigcup F_n$ est dense, on choisit D_n dénombrable dense dans F_n , et $D = \bigcup_n D_n$ sera dénombrable et dense dans X.

Proposition 3.3.1. Si E est un espace normé séparable, toute suite bornée de E* admet des sous-suites *-faiblement convergentes.

Démonstration. Pour exprimer la démonstration, il est utile d'introduire une petite convention de notation. Si $M = \{n_0 < \ldots < n_j < \ldots\}$ est un sous-ensemble infini de \mathbb{N} , convenons de noter la sous-suite (x_{n_j}) par $(x_n)_{n \in \mathbb{M}}$. Soit donc (y_k) une suite dense dans \mathbb{E} , et (x_n^*) une suite bornée dans \mathbb{E}^* , telle que par exemple $||x_n^*|| \leq 1$ pour tout entier $n \geq 0$. D'après la remarque 2 bis ci-dessus, il suffit de trouver une sous-suite $(x_n^*)_{n \in \mathbb{M}}$ telle que $(x_n^*(y_k))_{n \in \mathbb{M}}$ converge pour tout $k \geq 0$.

La suite de scalaires $(x_n^*(y_0))$ est bornée, donc elle admet une sous-suite convergente $(x_n^*(y_0))_{n\in M_0}$. La suite $(x_n^*(y_1))_{n\in M_0}$ est encore bornée, donc on peut trouver un nouvel ensemble infini $M_1 \subset M_0$ tel que la sous-suite $(x_n^*(y_1))_{n\in M_1}$ soit convergente. En continuant ainsi, on construit une suite décroissante $M_0 \supset M_1 \supset \ldots \supset M_j \supset \ldots$ telle que $(x_n^*(y_j))_{n\in M_j}$ soit convergente pour tout $j \geq 0$.

C'est ici qu'intervient le procédé de la suite diagonale. Construisons un ensemble infini M formé du premier élément n_0 de M_0 , puis du premier élément n_1 de M_1 qui soit $> n_0$, etc... On constate que pour tout entier $k \geq 0$, la sous-suite $(x_n^*(y_k))_{n \in M}$ est convergente : en effet, l'ensemble M est contenu dans M_k à un ensemble fini près, pour tout $k \geq 0$.

Exemple 3.3.1. On verra un peu plus tard que si (K, d) est un compact métrique, l'espace C(K) est séparable. Si (μ_n) est une suite de probabilités sur le compact (K, d), il existe une sous-suite (μ_{n_j}) et une probabilité μ sur K telles que $\int f d\mu = \lim_j \int f d\mu_{n_j}$ pour toute fonction continue f sur K.

Exercice proposé. On suppose $\mathbb{K} = \mathbb{R}$. Soit μ une mesure (de signe quelconque) sur le compact métrique K, et soit (φ_n) une suite de fonctions de C(K) telle que $\|\varphi_n\|_{\infty} \leq 1$ et $\|\mu\| = \lim_n \mu(\varphi_n)$; montrer que si ν est limite vague d'une sous-suite de la suite de mesures $(\varphi_n\mu)_n$, alors ν est une mesure positive et $\nu - \mu$ également (on retrouve ainsi la possibilité d'écrire $\mu = \mu_1 - \mu_2$, avec $\mu_1, \mu_2 \geq 0$).