Problème numéro 1

I - Bases de Schauder

Soit \mathcal{E} un espace de Banach sur le corps $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et $\|\cdot\|$ sa norme.

Une famille dénombrable $(x_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{E} est appelée base de Schauder si les deux conditions suivantes sont vérifiées :

- i) la famille $(x_n)_{n\in\mathbb{N}}$ est totale dans \mathcal{E} (i.e. le plus petit sous-espace fermé contenant tous les x_n est \mathcal{E} lui-même);
- ii) pour tout $x \in \mathcal{E}$, il existe une <u>unique</u> suite de coefficients $\alpha_n(x)$ telle que la série $\sum_{n\geq 0} \alpha_n(x) \, x_n \text{ converge vers } x \text{ pour la norme de } \mathcal{E} .$
- 1) Montrer que les applications $\alpha_n: \mathcal{E} \longrightarrow \mathbb{K}$ sont linéaires. $x \longmapsto \alpha_n(x)$
- 2) Soit Y l'espace vectoriel sur \mathbb{K} des suites (c_n) , $c_n \in \mathbb{K}$, telles que $\sum_{n=0}^{+\infty} c_n x_n$ converge dans \mathcal{E} .

 Montrer que $|||(c_n)||| = \sup_{n \geq 0} ||\sum_{j=0}^n c_j x_j||$ est une norme sur Y.
- 3) Montrer que Y est complet pour la norme $|||\cdot|||$.

 Indication: si (y_p) est une suite de Cauchy dans Y, chaque y_p définissant une suite $(c_{p,i})_{i\in\mathbb{N}}$ on montrera que pour tous p, q, i, on a $|c_{p,i}-c_{q,i}|\leq 2\,|||y_p-y_q|||$, et on concluera en utilisant le fait que \mathbb{K} est complet.
- 4) Montrer que l'application T : Y $\longrightarrow \mathcal{E}$ est linéaire, bijective et $(c_n)_{n\in\mathbb{N}} \longmapsto \sum_{n=0}^{+\infty} c_n x_n$

continue; montrer, en utilisant un théorème du cours, que T^{-1} est aussi continue.

- 5) En déduire que les α_n sont continues, et qu'il existe un nombre M > 0 tel que l'on ait $1 \le ||x_n|| \, ||\alpha_n|| \le M$ pour tout entier $n \ge 0$ (où $||\alpha_n||$ désigne la norme de α_n dans \mathcal{E}' , dual de \mathcal{E}).
- 6) Montrer que $\forall n, m \in \mathbb{N}$, $\alpha_n(x_m) = \begin{cases} 0 & \text{si } n \neq m \\ 1 & \text{si } n = m \end{cases}$ Pour cette raison, la suite $(\alpha_n)_{n \in \mathbb{N}}$ est appelée suite biorthogonale associée à la famille $(x_n)_{n \in \mathbb{N}}$.

II- Une base de splines de C([0,1])

On note par C([0,1]) l'espace de Banach des fonctions continues sur [0,1] à valeurs complexes, muni de la norme $||f|| = \sup_{x \in [0,1]} |f(x)|$.

On considère une suite $(x_n)_{n\in\mathbb{N}}$ de points de [0,1], deux à deux distincts, et dense dans [0,1], telle que $x_0=0$ et $x_1=1$.

Pour tout $n \geq 2$, l'ensemble $\{x_0, x_1, \ldots, x_{n-1}\}$ réalise un découpage de [0,1] en n-1 intervalles ouverts, adjacents et deux à deux disjoints (il suffit de considérer les points $y_0, y_1, \ldots, y_{n-1}$ obtenus en renumérotant les $x_0, x_1, \ldots, x_{n-1}$ de telle sorte que $0 = x_0 = y_0 < \ldots < y_{n-1} = x_1 = 1$: les intervalles considérés sont alors les $]y_{j-1}, y_j[$ pour $1 \leq j \leq n-1)$.

- 1) Pour tout $n \geq 1$, on appelle fonction spline avec nœuds en x_0, x_1, \ldots, x_n toute fonction continue sur [0,1] dont la restriction à chaque intervalle ouvert déterminé par x_0, x_1, \ldots, x_n est affine (on rappelle qu'une fonction affine est de la forme $x \mapsto \alpha x + \beta$).
 - Montrer que pour tout $n \ge 1$, et pour $f \in C([0,1])$, il existe une unique fonction spline avec nœuds en $\{x_0, \ldots, x_n\}$, notée $L_n f$, telle que $L_n f(x_j) = f(x_j)$ pour $j = 0, 1, \ldots, n$.
- 2) Montrer que la suite $(L_n f)$ converge vers f uniformément sur [0,1]. Indication: $(x_n)_{n\in\mathbb{N}}$ est dense dans [0,1].
- 3) On pose $f_0(x) = 1$, $f_1(x) = x$. Si $n \ge 2$, montrer qu'il existe une unique fonction spline f_n avec nœuds en $\{x_0, \ldots, x_n\}$, nulle en $x_0, x_1, \ldots, x_{n-1}$ et égale à 1 en x_n .
- 4) Montrer que si $n \geq 1$, toute fonction spline avec nœuds en $\{x_0, \ldots, x_n\}$ et nulle en $x_0, x_1, \ldots, x_{n-1}$ est de la forme λf_n , avec $\lambda \in \mathbb{C}$. En déduire que pour toute $f \in C([0,1])$, il existe un coefficient $c_n(f)$ tel que $L_n f L_{n-1} f = c_n(f) f_n$.
- 5) En déduire que la série $\sum_{n=0}^{+\infty} c_n(f) f_n$ converge vers f dans C([0,1]).
- 6) Vérifier que si p, q sont deux entiers avec $0 \le p < q$, on a $f_q(x_p) = 0$. En déduire l'unicité des coefficients $(c_n(f))$. La suite $(f_n)_{n \ge 0}$ est donc une base de Schauder de C([0,1]).
- 7) Montrer que pour tout $n \geq 1$, les fonctionnelles c_n sont des combinaisons linéaires de masses de Dirac portées par $\{x_0, \ldots, x_n\}$.