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Summary

This is an introductory course on valuation theory, prepared with the intention to try

to present the tradition initiated by Hensel and the geometric tradition initiated by

Dedekind and Weber in the same package.
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Chapter 1

A little history

1.1 Dedekind-Weber and Hensel-Kürschák

Valuation theory has at least two origins. One usually ascribes its
origin to reflexions on the work of Hensel by Kürschák in 1912. This
gave birth to the “henselian” tradition in valuation theory, which
revolutionized number theory essentially by proving the existence of
roots of polynomials in suitable completions of number fields thanks
to “Hensel’s lemma”, and also produced an important body of work
in model theory, by way of an effort to understand and classify
from a logical viewpoint the stucture of henselian valued fields. The
beginning of this theory (up to Krull’s 1928 paper) is beautifully
explained and organized in the paper [] of P. Roquette.

One can also say, but only in hindsight, that an origin of val-
uations is in the notion of a ”place” introduced by Dedekind and
Weber in 1882 in the study of algebraic curves. Their purpose was
to define algebraically the Riemann surface of a field of algebraic
functions of one variable, e.g the field of rational functions on an
affine plane algebraic curve, which may of course have singularities.
The Riemann surface being by definition compact and non singu-
lar, we find here the source of two basic themes of valuation theory:
compactify and desingularize.

So we seek to associate to the field K a set of points X such that
K is a field of functions on X (possibly not everywhere defined).
Over the complex numbers, the idea is that since, given a point x,
one may associate to ”many” functions in K a value f(x) ∈ C, and
since the rational functions defined at a point x form a subring Kx
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of K having K as field of fractions, we are going to define our set
X as a set of homomorphisms KP → C, where KP satisfies certain
axioms. More precisely one defines generally a place of a field K
with values in another field L as a ring homomorphism:

P : KP → L

where KP is a subring of K such that :
1) If a ∈ K \KP , then a−1 ∈ KP and P(a−1) = 0.
2) There exists a ∈ KP such that P(a) 6= 0.
Remark that condition 1) is equivalent to saying that the homomor-
phism P cannot be extended to a subring larger than KP . Another
way to define a place (see [B]) is to define for any field L a new set
L̃ = L∪∞, and extend to L̃ the sum and product in the usual way,
with −∞ = ∞, 0−1 = ∞, etc... A place of K with values in ∆ is
then nothing but a homomorphism

P̃ : K̃ → ∆̃,

and KP is just the set of elements with finite image. If K and ∆ are
extensions of a ”base field” k, we say that P is a k-place if P̃(c) = c
for all c ∈ k, and in particular k ⊂ KP .
Now we may note that the set mP of elements of a ∈ KP such that
P(a) = 0 is an ideal with the property that if b ∈ KP \mP , then by
axiom 1) we have b−1 ∈ KP . This shows that KP is a local ring with
maximal ideal mP . You can also see this by the maximality of KP ;
if mP was not maximal, since it is in any case a prime ideal, the
homomorphism P could be extended to the localization (KP)mP

.
Moreover, still by axiom 1), given two elements (a, b) ∈ KP , if a−1b
is not in KP , then b−1a ∈ KP , so that the ideal (a, b) of KP is always
principal, generated by either a or b. From this follows that every
ideal I = (a1, . . . , ar)KP generated by finitely many elements is in
fact principal and generated by one of these elements.
Let us agree to call any integral domain with this property a val-
uation ring; to each place of a field K we have thus associated a
valuation ring having K as field of fractions.
Conversely, let V be a valuation ring with field of fractions K; we
are going to associate to V a place of K. For this let us remark that
V is necessarily a local ring: it suffices to show that non-invertible
elements form an ideal, and since if ab is invertible, a and b both
are, the only thing to prove is that the set of non-invertible elements
is stable by addition . But if V is a valuation ring, a + b is either
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a(1 + b′) or (a′ + 1)b, and if it is invertible, at least one of a and
b must be. So V is a local ring with maximal ideal mV , and the
natural map hV : V → V/mV is a place of K as one immediately
checks.
Conversely, given a place of K with values in a field L, there exist a
valuation ring V of K and a morphism j : κ(V ) = V/mV → L such
that P = j ◦hV . These conditions uniquely determine V and j. The
valuation ring V is the ring KP of elements of K with finite image,
and its maximal ideal is the set of elements of a ∈ KP such that
P(a) = 0. The homomorphism j is obtained from P by passing to
the quotient by mV .
This result reduces the study of places of K to that of valuation
rings V with field of fractions equal to K and morphisms of fields
κ(V ) → L.
Given a valuation ring V , we may associate to it a commutative
group with a total order, as follows:
Define an preorder on V by saying that a ≤ b means that the ideal
(a, b) may be generated by the element a. Since V is a valuation ring,
this is a total preorder. The corresponding equivalence relation is
that a ∼= b means that (a, b) = aV = bV . This equivalence relation
is clearly compatible with the product of V . The element 0 of V is
clearly greater than any nonzero element, so if we denote by Φ+∪∞
the quotient V/ ∼=, we have a natural map

ν : V → (V/ ∼=) = Φ+ ∪∞

which is a morphism from the multiplicative semigroup of V to an
ordered semigroup, which we note additively, and Φ+ is an additive
totally ordered semigroup, satisfying the usual relations with respect
to ∞. so we setting ν(0) = ∞, we have:
i) ν(ab) = ν(a) + ν(b)
and because a+ b = a(1 + b′) or (a′ + 1)b as we saw above, we have:
ii) ν(a+ b) ≥ inf(ν(a), ν(b)), with equality if the two valuations are
different since then 1 + b′ (resp. a′ + 1) is not in the maximal ideal,
hence is invertible.
This map ν may be extended to K by setting ν(a

b
) = ν(a) − ν(b)

if we consider the (totally) ordered abelian group Φ determined by
Φ+; it is the smallest group containing Φ+, its symetrization. It is
sometimes written Φ = Φ+ −Φ+ to mark the fact that its elements
are differences of elements of Φ+. Sometimes {0} is not considered
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to be in Φ+, but here it is. The ordering on Φ+ gives a total ordering
on Φ and hence a decomposition

Φ = Φ− ∪ Φ+ with Φ− = −Φ+, Φ− ∩ Φ+ = {0}

and we have a map
ν : K∗ → Φ

satisfying i) and ii) above, which satisfies also ν(1) = 0 and can be
extended to K by adding to Φ an element ∞ greater than all the
elements of Φ and setting ν(0) = ∞, so it is is a valuation according
to the usual definition.
Conversely, given a valuation ν : K∗ → Φ with values in an ordered
group Φ, we may define a subring

V = {0} ∪ {a ∈ K∗/ν(a) ≥ 0} ⊂ K,

and I leave it as an exercise to check that V is a valuation ring of
K with maximal ideal mV = {0} ∪ {a ∈ K∗/ν(a) > 0}.
If we assume that K contains a field k, we say that ν is a k-valuation
if ν(c) = 0 for all c ∈ k∗. It means that k ⊂ V and we have
mV ∩ k = {0} in K, so that the inclusion k ⊂ K gives rise to an
inclusion k ⊂ κ(V ) = V/mV , and κ(V ) is an extension of k.
So the second avatar of the notion of a place is that of a valuation.
Now in each avatar there is a natural relation between objects: for
places it is specialization, for valuation rings, it is inclusion, and
for valuations it is composition. Before we can see that they are
essentially the same, we have to define precisely these relations.
If we think of KP as the ring of rational functions which do not
have a pole at a certain point P, and P ′ is a specialization of P, by
definition of what specialization means, we must have

KP ′ ⊂ KP and mP ′ ⊂ mP

and conversely.
So we say that a place P ′ is a specialization of another place P if
these inclusions holds. Of course this is also an inclusion of valuation
rings as local rings. Now let us translate this into the language of
valuations.
Let V ′ ⊂ V be two valuation rings of the field K. If a ∼= b in V ′, we
also have a ∼= b in V , since a ∼= b in V ′ means that b = au where u
is invertible in V ′, and therefore also in V . From this follows that
the inclusion V ′ ⊂ V induces an ordered map of groups λ : Φ′ → Φ,
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which is surjective since an element of V is of the form ab−1 with
a, b ∈ V ′, and ν(ab−1) = λ(ν ′(a) − ν ′(b)). The kernel of λ consists
of the images in Φ′ of the elements of V ′ which are not invertible in
V ′ but become invertible in V .
Conversely, suppose that we are given a valuation ring V ′ of K and
a surjective homomorphism of ordered groups λ : Φ′ → Φ, where Φ′

is (V \ {0})/ ∼=. Consider the map ν ′ : K∗ → Φ′ and set ν = λ ◦ ν ′.
It is immediate to check that ν is also a valuation of K, and that
the valuation ring V of ν contains V ′.
In this case we says that the valuation ν ′ is a specialization of ν, in
accordance with what happens for places.
Now the situation becomes more interesting: since every element of
V ′ invertible in V ′ is invertible in V , we have the inclusion mV ∩V

′ ⊂
mV ′, and so an injection

V ′/mV ∩ V ′ ⊂ V/mV = κ(V )

The first ring is an integral domain, and every ideal of finite type
is principal since it is a quotient of a ring with that property. Note
that if

specialization of places ↔ inclusion of valuation rings ↔ composition of valuations.

From the fact that a valuation ring is associated to a place it is an
exercize to check that a valuation ring is a maximal subring of its
field of fractions for the relation of birational domination: the local
ring (B, n) birationally dominates the local ring (A,m) if we have
A ⊂ B, they have the same field of fractions and n ∩ A = m.

From the definition of a valuation ring one deduces that:

Proposition 1.1.1. a) The set of ideals of a valuation ring is totally
ordered by inclusion.
b) This set of ideals is well ordered.

To prove a), let I and J be two ideals of the valuation ring V ,
and assume that I 6⊂ J . Let x ∈ I \ J . For any y ∈ J , we have that
V x 6⊆ V y, which means V y ⊆ V x since V is a valuation ring. This
shows that J is contained in I, and the result. Assertion b) follows
from the fact that an intersection of ideals is an ideal.

Definition 1.1.2. The rank, also called the height of a valuation is
the ordinal type of the sequence of prime ideals of its valuation ring
V . When it is finite, it is the Krull dimension of the local ring V .



8 Bernard Teissier

Let V be a valuation ring with field of fractions K. If a valuation
ring V ′ contains V , it is a localization of V at one of its prime ideals.

The Henselian tradition:



Chapter 2

The Riemann-Zariski

manifold of a field

2.1 The definition

Zariski generalized to arbitrary dimensions the Dedekind-Weber con-
struction of the Riemann surface of a field of algebraic functions of
one variable. The result, however is very far from being an algebraic
variety when the dimension is > 1.

2.2 Valuations and series

An ordered set is artinian in the sense of [?] if it contains no infinite
strictly decreasing sequences and it is narrow if it does not contain
infinite sets of incomparable elements. According to loc.cit., we can

define the k-algebra of formal power series k[[XQd
≥0]] where X =

(X1, . . . , Xd), as follows:
It is the set of maps c : Qd

≥0 → k which are such that c−1(k∗) is ar-
tinian and narrow, equipped with the addition coming from the ad-
dition of k and the convolution product c∗ c′(λ) = Σµ+σ=λc(µ)c′(σ).

The elements of k[[XQd
≥0]] can be thought of as formal sums ΣcλX

λ

with cλ = c(λ) or, writing in a less condensed form as the algebra

of formal sums Σcλ1,...,λdXλ1

1 . . .Xλd

d where λ = (λ1, . . . , λd) with ar-
tinian and narrow sets of exponents in Qd

≤0. The properties just
quoted imply that this product is well defined.

One can also define the algebra of formal power series with sets

9
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of exponents which are well ordered in Qd
<0 with respect to the total

order 4. We will denote it by k[[XQd
<0 ]].

A remark which will be useful in the sequel is that for any compat-

ible total ordering 4 on Qd we have, setting X
1
m = (X

1
m

1 , . . . , X
1
m

d ),
the strict inclusions:

k[[X]] ⊂ k̃[[X]] :=
⋃

N≥1

k[[X
1
N ]] ⊂ k[[XQd

≥0]] ⊂ k[[XQd
<0]].

Since 4 is a total order and we we consider series with well ordered
exponent sets, the smallest exponent of a series in k[[XQd

<0]] is well
defined. Since k is an integral domain this defines a valuation on

the field of fractions of k[[XQd
<0 ]], with values in (Qd,4).

This construction, which goes back to Krull, makes sense for
any totally ordered abelian group. This means that for any totally
ordered abelian group Φ and any field k we can define the k-algebra
k[[tΦ+ ]], which is endowed with a natural k-valuation with values in
Φ.

The next result tells us that the field of fractions of k[[tΦ+ ]] is the
set of power series with a well ordered set of exponents in Φ.

The result goes back to Hahn ([]) , and we give here a proof due
to B.H. Neumann ([]). He actually proves the generalization to non
commutative groups. There are also a generalizations to partially
ordered groups (see [],[]).

Theorem 2.2.1. The ring k[[tΦ]] of series with coefficients in k and
exponents forming a well-ordered set in Φ is a field.

Proposition 2.2.2. Let E ⊂ Φ+ be a well ordered subset of the
positive part of a totally ordered group Φ. Then the semigroup 〈E〉
generated by E is well ordered.

Proof. Assume the contrary; there exists an infinite strictly decreas-
ing sequence f1 > f2 > · · · of elements of 〈E〉. Let us write them:

f1 = e11 + e12 + . . .+ e1,λ(1)

f2 = e21 + e22 + . . .+ e2,λ(2)
... =

...
fµ = eµ1 + eµ2 + . . .+ eµ,λ(2)
... =

...



A course on valuations 11

For each µ denote by Eµ the largest of the elements appearing in
that line. If we denote by Ψ(φ) the smallest convex subgroup of Φ
such that φ ∈ Ψ(φ), we have Ψ(Eµ) = Ψ(fµ). The sequence of the
Ψ(uµ) is decreasing and since the sequence of convex subgroups is
well ordered, there is a least element. Different sequences can give
us different least elements, but among those, there is a smallest.

So we may assume that our sequence (uµ) is such that the smallest
convex subgroup to which its elements ultimately belong is as small
as possible.

Forgetting finitely elements of the sequence we may assume that
all uµ are in a certain convex subgroup Ψ, and not in a smaller
one. Let us denote by Ψ+ the largest convex subgroup of Φ strictly
contained in Ψ. The set Ψ\Ψ+ contains elements of E, for example
the Eµ; we can denote by ψ(E) the smallest element of E which is
in Ψ \ Ψ+ and we have in the quotient Ψ/Ψ+, denoting the images
in the usual way:

u1 ≥ E1 ≥ ψ(E) > 0.

But Ψ/Ψ+ is archimedian so that for some integer q we have qψ(E) ≥
u1 Note that q ≥ 2 since u1 ≥ ψ(E). We have then uµ < u1 ≤ qψ(E)
and if we have chosen q as small as possible we may assume uµ >

(q − 1)ψ(E). Let us assume that we have chosen the sequence (uµ)
so that q is as small as possible.

Now uµ has to be of the form uµ = u′µ + Eµ. Only finitely

many of the u′µ can be non zero since otherwise the Eµ, which are
elements of S, would form an infinite decreasing sequence. Then
among the u′µ there must be an infinite decreasing sequence. But

since by definition Eµ ≥ ψ(E) we must have u′µ < (q− 1)ψ(E), and
so we have found an infinite decreasing sequence for which either Ψ
is smaller or q is smaller, contrary to our choices. This provides the
desired contradiction. �

Corollary 2.2.3. An element of 〈E〉 lies in only finitely many of
the sets E,E + E,E + E + E, . . ..

Proof. Let M be the set of elements of 〈E〉 which can be represented
by arbitrarily long sums of elements of E. We want to prove that
the set M is empty. Assume that it is not. Then, since 〈E〉 is well
ordered, it has a smallest element, say f . By construction, f can be
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written

f = e1,1 + · · · + e1,λ(1) = e2,1 + · · · + e1,λ(2)

= · · · = ei,1 + · · · + ei,λ(i) = · · ·

with λ(1) < λ(2) < · · · and all ei,j non zero.
Set gi = f − ei,1. Since E is well ordered, the sequence (ei,1)i≥1

contains a nondecreasing subsequence, and so the sequence (gi)i≥1

contains a non increasing subsequence of elements of 〈E〉. Since 〈E〉
is well ordered, this subsequence is eventually constant, say equal to
g ∈ 〈E〉. By construction we have g ∈ S and g < f . This provides
the desired contradiction. �

2.3 The transcendental hypersurface and its ap-

proximations

Generalizing the classical definition of the quasi-ordinary hypersur-
face singularities (see the paragraph before definition ?? below and
[?], [?] ) we define a transcendental quasi-ordinary hypersurface sin-
gularity in the following manner:

Definition 2.3.1. An element ζ(X) =
∑
cλX

λ ∈ k[[XQd
≥0 ]] is called

a generalized quasi-ordinary series if there exists a totally ordered
sequence 0 = λ0 < λ1 < . . . < λi < λi+1 < . . . of elements of (Qd,≤)
with respect to which ζ(X) satisfies the following conditions:

• cλi
6= 0 for all i ∈ N.

• Setting Q0 = Zd and Qi = Zd + Σi
k=1Zλk ⊂ Qd, we have that

if cλ 6= 0, then λ ∈
⋃∞

j=0Qj .

• For each λ such that cλ 6= 0 we have the equality

min{i/λ ∈ Qi} = max{j/λj ≤ λ}.

We will denote this number by κ(λ).

• For all j ≥ 0 we have κ(λj) = j.

Note that if these conditions are satisfied, κ(λ) = i implies that

λi ≤ λ so that one can write: ζ(X) =
∑∞

i=0 pi, pi ∈ k[[XQd
≥0]] where

pi = Σκ(λ)=icλX
λ.

Given a generalized quasi-ordinary series ζ(X), one checks by in-
duction that a minimal system of λi satisfying the conditions above
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is unique and the λi are then called distinguished exponents of the
series. This terminology is justified in Definition ??, in which we
define for any i ∈ N, irreducible quasi-ordinary hypersurfaces (see
[?] or [?] ) which are parametrized by X = X, Y = ζ (i)(X) where
ζ (i)(X) is a fractional power series with distinguished exponents
λ1, . . . , λi.

Definition 2.3.2. Given a generalized quasi-ordinary series as above,
we define inductively the integers nj = [Qj : Qj−1] and m(0) =
1, m(i) = n1 · · ·ni. Note that by construction we have nj > 1 for all
j, so that the m(i) are integers which tend to infinity with i.

One then checks by induction that in the decomposition ζ(X) =

Σ∞
i=0pi, we have pi ∈ k[[X

1

m(i) ]]. This is due to the fact that a series

in X or X
1
N whose set of exponents is artinian and narrow is a

formal power series in the usual sense (see [?], Example 3).
The definitions just given are a generalization of [?], subsection

4.4, where a ”natural valuation” is attached to a ”transcendental
plane curve”, studied through a series of examples from different
perspectives: the sequence of point blow ups, the semigroup, the
graded valuation ring, . . . . Moreover, the relations between these
approaches are studied. In this text we follow the same approach.

Proposition 2.3.3. If the sequence of distinguished exponents of a
generalized quasi-ordinary series ζ(X) is infinite, the element ζ(X)

is transcendental over the subring k[X] ⊂ k[[XQd
≥0 ]]. In other words,

the morphism of k−algebras

Θζ : k[X, Y ] → k[[XQd
≥0 ]]

X 7→ X
Y 7→ ζ(X)

is injective.

Proof. Assume the contrary and let ζ(X) be the root of an irre-
ducible polynomial f ∈ k[X, Y ]. Consider the algebraically closed

field k((XQd
<0)), (see [?], Chap. 6, Section 3, n◦ 4, Exemple 6). We

have ζ(X) ∈ k((XQd
<0)). In the sequence λr of the distinguished

exponents the denominators tend to infinity. Therefore, there is
an index i such that the denominators of λr,i tend to infinity with
r. We can assume that this index is d. Consider the algebraically
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closed field k′ = k((X
′Q

d−1
<0 )), where X

′

= (X1, . . . , Xd−1). We can
regard f(X, Y ) as a polynomial in the ring k′[Xd, Y ] and ζ(X) as

an element of the ring k′[[X
Q<0

d ]]. By the Newton-Puiseux theorem
(here we use the fact that k is of characteristic zero) all the roots

of f(X, Y ) are in the ring k̃′[[Xd]]. It implies that ζ(X) ∈ k̃′[[Xd]]
which is absurd. �

A variant of this proof gives us the following statement: Given

any f ∈ k[X, Y ], there does not exist a root η(X) ∈ k[[XQd
<0 ]] of f,

such that the denominators of the terms of η tend to infinity (By
denominator of a term cβX

β of η we mean: the least natural number
n such that n.β ∈ Nd).

We introduce a sequence of quasi-ordinary hypersurfaces f (i),
which approximates the original element ζ(X).

Recall, see ([?]), that a polynomial P (X, Y ) ∈ k[[X]]Y ]] is said
to define a (formal germ of) quasi-ordinary hypersurface if its dis-
criminant with respect to Y is of the form Xδu(X) where δ ∈ N
and u(X) is a unit in k[[X]]. When k is algebraically closed of char-
acteristic zero this is known (Abhyankar-Jung Theorem) to imply
that the roots of the polynomial can be expressed as power series in
X

1
m for some m, and these series are quasi-ordinary in the sense of

Definition ??, with a finite set of distinguished exponents.

Definition 2.3.4. Let ζ(X) be a generalized quasi-ordinary series
with distinguished exponents λ1, . . . λi, . . .. For each integer i we
define, using the notations introduced in definition ??, the i-th ap-
proximation

ζ (i)(X) =

i∑

j=1

pj.

It is a quasi-ordinary series in the sense we have just recalled. As

we saw, it is an element of k[[X
1

m(i) ]]. Note that ζ(X) − ζ (i)(X) is
of the form Xλi+1 × unit and also that for 0 ≤ j < i, the difference
ζ (i)(X) − ζ (j)(X) is of the form Xλj+1 × unit .

Since ζ (i)(X) ∈ k[[X
1

m(i) ]] is algebraic over k((X)) we can now
introduce the irreducible polynomials having ζ (i)(X) as a root:
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Definition 2.3.5. Set f (0)(X, Y ) = Y, and for any i ∈ N define an
irreducible quasi-ordinary polynomial f (i)(X, Y ) ∈ k[[X]][Y ] as the
unitary minimal polynomial of ζ (i)(X) over k((X)). It is shown in
[?] that it a polynomial of degree m(i) in Y dividing the polynomial

Πω∈(µ
m(i) )

d(Y − ζ (i)(ωX).

Here µm(i) is the group of roots of unity and ωX = (ω1X1, . . . , ωdXd).

Definition 2.3.6. Using the notations of Definition ??, it can be
proved that m(i) = degY (f (i)) (see [?] or [?]). Moreover, we define
the following vectors (originally defined and studied in [?]):

γ1 = λ1, γj = nj−1γj−1 + λj − λj−1, j > 1.

Remark 2.3.7. The subgroups of Qd generated by (γ1 . . . , γj) and
(λ1, . . . , λj) are equal.

By R(f), for a quasi-ordinary f, we mean the set of the roots of

f in k̃[[X]]. Following [?], we define the notion of the intersection
index of two ”comparable” quasi-ordinary hypersurfaces.

In the case where the process terminates after finitely many steps,
we make use of the following lemma, which shows that any finite
truncation of a quasi-ordinary series, corresponding to a finite ini-
tial set of generators (γ1, . . . , γi) of the associated semigroup, can
be viewed as a truncation of a transcendental quasi-ordinary series
whose associated semigroup is generated by (γ1, . . . , γi).

Lemma 2.3.8. 1 Let γ1, . . . , γi be an increasing sequence of ele-
ments of Qd

≥0 satisfying the conditions of Lemma ?? and generating

a subgroup Gi ⊂ Qd. Let λ1, . . . , λi be the increasing sequence of
elements of Qd

≥0 corresponding as in definition ?? to the γj . Given
a finite sum

ζF (X) = Σλ∈F cλX
λ

having λ1, . . . , λi as distinguished exponents in the sense of Defini-
tion ??, there exists a series of the form

ζ(X) = ζF (X) +
∑

cλ̃X
λ̃

which is transcendental over k(X) and such that ζF (X) is a finite
truncation of ζ(X) and the group of the valuation associated to ζ(X)
by a choice of a compatible order on Qd is Gi.

1This lemma and its proof were given by Bernard Teissier
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Proof. Without loss of generality we may assume that Gi is not
contained in any coordinate hyperplane of Qd. Let us take an infinite
increasing sequence of exponents (λ̃j)j≥1 tending to ∞ in (Qd,≤),

with λ̃1 larger than all the exponents of ζF , and with λ̃1 and λ̃j−λ̃j−1

in the semigroup generated by the (γk)k≤i for all j > 1. In addition
we ask the following ”large gaps” condition:
1) λ̃j+1 > (j + 1)λ̃j for all j

and remark that because we assume that the (λ̃j) increase and tend
to ∞ in (Qd,≤) we have:

2) for any positive integer s we have λ̃ℓ > s1 for sufficiently large ℓ,
where 1 = (1, . . . , 1) ∈ Qd

<0.
Now the claim is that for arbitrary nonzero coefficients cλ̃j

the series

ζ(X) = ζF (X) + Σ∞
j=i+1cλ̃j

X λ̃j ∈ k[[XQd
≥0 ]]

satisfies the conditions of the Lemma.
By construction, ζF (X) is a finite truncation of ζ(X). To check the
transcendance, let Q(X, Y ) be a polynomial of degree ≤ s in Y and
of total degree ≤ s in the Xk; by our assumptions we can choose

an ℓ such that ℓ > s and λ̃ℓ > s1. Set u = ζF (X) + Σℓ
j=1cλ̃j

X λ̃j

and v = Σ∞
j=ℓ+1cλ̃j

X λ̃j ; we have ζ(X) = u + v in k[[XQd
<0]] and the

equality:

Q(X, u+ v) = Q(X, u) + vA1(X) + v2A2(X) + · · ·

with Ak(X) ∈ k[[XQd
≥0]] and therefore by our choice of λ̃j, denoting

by ν the X-adic order, we have:

ν(vA1(X) + v2A2(X) + · · · ) ≥ ν(v) = λ̃ℓ+1 > (ℓ+ 1)λ̃ℓ.

On the other hand, since we consider finite sums, we can speak of the
degree in X of a polynomial such as Q(X, u) = Q0(X) +Q1(X)u+
Q2(X)u2+ · · ·+Qm(X)um, with m ≤ s and Qm(X) 6= 0; this degree
is an element of Qd

≥0.

Since if Σd
1ai ≤ s we have the inequality (a1, . . . , ad) ≤ s1 < λ̃ℓ, for

i < m, the degree of Qi(X)ui is ≤ s1 + iλ̃ℓ < (i+ 1)λ̃ℓ ≤ mλ̃ℓ. On

the other hand, the degree of the last term Qm(X)um is ≥ mλ̃ℓ.
This shows that Q(X, u) is not zero and since its X-adic order

cannot exceed the highest power of X which appears, applying to
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Qm(X)um the same argument as for i < m, we see that it is <

(m+ 1)λ̃ℓ.
So Q(X, u + v) = Q(X, ζ(X)) is the sum of a polynomial with

fractional exponents of X-adic order < (m + 1)λ̃ℓ ≤ (s + 1)λ̃ℓ and

a series of X-adic order > (ℓ + 1)λ̃ℓ > (s + 1)λ̃ℓ. It follows that

Q(X, ζ(X)) is of X-adic order < (s + 1)λ̃ℓ whenever ℓ satisfies the
conditions stated above with respect to the degree of the polynomial
Q(X, Y ). This proves that the series ζ(X) is not algebraic over
k(X). Moreover by construction ζ(X) is a quasi-ordinary series
with distinguished exponents λ1, . . . , λi so that one checks using
proposition ?? that the value group is Gi.

�

2.4 Key polynomials and the valuative tree of

Favre-Jonsson

2.5 Key polynomials and the work of Vaquié

2.6 Key polynomials and toric geometry

We need to approximate graded algebras of the form grνRν by poly-
nomial rings. The key ingredient is the Jacobi-Parron algorithm.

Let (τ1. . . . , τm) be m rationally independent positive real num-
bers. The algorithm consists in writing

τ1 = τ (1)
m , τ2 = τ

(1)
1 + a

(0)
2 τ (1)

m , . . . , τm = τ
(1)
m−1 + a(0)

m τ (1)
m ,

where
a

(0)
j = [τj/τ1], j = 2, . . . , m,

and repeating this operation after replacing (τ1, . . . , τm) by (τ
(1)
1 , . . . , τ

(1)
m ),

and so on.
One checks that the (τ

(j)
1 , . . . , τ

(j)
m ) are also rationally indepen-

dant and positive. Moreover, since

τ
(1)
i

τ
(1)
m

=
τi+1

τ1
− [τi+1/τ1],

we see that τ
(1)
i < τ

(1)
m . After h steps, one has written
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τi = A
(h)
i τ

(h)
1 + · · ·+ A

(h+m−1)
i τ (h)

m

or, if we denote by w the (weight) vector (τ1, . . . , τm) ∈ Rm and by

A(h) the vector (A
(h)
1 , . . . , A

(h)
m ),

w = τ
(h)
1 A(h) + τ

(h)
2 A(h+1) + · · · + τ (h)

m A(h+m−1)

where the τ
(h)
j are positive, the coefficients A

(j)
i are non negative

integers, and the matrix of the vectors

A(h), A(h+1), . . . , A(h+m−1)

has determinant (−1)h(m−1). Moreover, as h grows the directions in
Pm−1(R) of the vectors A(h) tend to the direction of w.

The details of the proof can be found in [H-P], Vol. III.
So we have a sequence of vectors A(h) with positive integral co-

ordinates whose directions in Pm−1(R) spiral to the direction of w
and such that any consecutive m of them as above form a basis
of the integral lattice such that w is contained in the convex cone
σ(h) = 〈A(h), A(h+1), . . . , A(h+m−1)〉 which they generate. The con-
vex dual σ̌(h) of σ(h) (see [Cox], §2, [E], V, 2, p. 149) is contained in
the half space

∑m
i=1 aiτi ≥ 0, the integral points of which form the

semigroup Φ+. The algebra of the semigroup σ̌(h) ∩Zm is a polyno-

mial algebra k[x
(h)
1 , . . . , x

(h)
m ] (loc.cit., VI,2) contained in k[tΦ+ ], and

since by assumption there are no integral points on the hyperplane∑m

i=1 aiτi = 0 except the origin, the semigroup Φ+ is the union of
the σ̌(h) ∩ Zm as h → ∞. This proves that k[tΦ+ ] is the union, or
direct limit, of these polynomial subalgebras.

Note that by construction we have for each h ≥ 1 the equality

A(h) − A(h+m) + a
(h)
2 A(h+1) + · · · + a(h)

m A(h+m−1) = 0,

which shows, since the a
(h)
j = [τ

(h)
j /τ

(h)
1 ] are non-negative, that we

have
A(h+m) ∈ σ(h) = 〈A(h), . . . , A(h+m−1)〉

and therefore σ(h+1) ⊂ σ(h), that is σ̌(h) ⊂ σ̌(h+1) and

k[x
(h)
1 , . . . , x(h)

m ] ⊂ k[x
(h+1)
1 , . . . , x(h+1)

m ],

so that our direct system is in fact a nested sequence of polynomial
subalgebras. The morphisms between these polynomial algebras cor-
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respond by duality to the expressions of the A(h+m) as linear combi-
nations with non negative integral coefficients of (A(h), . . . , A(h+m−1))
and are therefore monomial as announced.

If we now consider a group with one more generator τm+1 > 0
which is rationally dependent on τ1, . . . , τm, Zariski shows in ([Z1], B.
I, p. 862) that the new weight vector w = (τ1, . . . , τm, τm+1) ∈ Rm+1

is contained in a rational simplicial cone σ ⊂ Rm+1 generated by
m integral vectors v1, . . . , vm of the first quadrant forming part of
a basis of the integral lattice. Indeed w is contained in a unique
rational hyperplane. The dual cone σ̌ ⊂ Řm+1 is the product of an
m dimensional strictly convex cone generated by vectors e1, . . . , em

by a 1-dimensional vector space (see [E], V, 2), generated by a prim-
itive integral vector em+1, which is the dual of the rational hyper-
plane containing w. The vectors e1, . . . , em+1 are a basis of the
integral lattice, and correspond to the variables x1, . . . , xm+1 gen-
erating a polynomial ring. Note that the map f : Zm+1 → R

defined by (a1, . . . , am+1) 7→
∑m+1

i=1 aiτi is no longer injective; the
primitive vector em+1 corresponding to the variable xm+1 is in the

kernel. Let us set Φ̃+ = f−1(Φ+ ∪ {0}). By refining as above
by the Perron algorithm for w inside the linear span < σ > of σ,
starting with the coordinates of w in σ, we find a sequence of reg-

ular simplicial cones σ(h) ⊂ σ whose duals σ̌(h) ⊂ Φ̃+ correspond

([E], VI, Th. 2.12) to algebras of the form k[x
(h)
1 , . . . , x

(h)
m , x±1

m+1] ⊂

k[t
fΦ+ ]. The free semigroups σ̌(h) ∩ Zm+1 fill up Φ̃+ as h → ∞

since the only rational points of the hyperplane
∑m+1

i=1 aiτi = 0 are
on the dual of the hyperplane containing w, which is contained
in all the σ̌(h). So the direct limit of the images of the maps

k[tf ] : k[x
(h)
1 , . . . , x

(h)
m , x±1

m+1] → k[tΦ+ ] is k[tΦ+ ]. But these images

are isomorphic to k[x
(h)
1 , . . . , x

(h)
m , x±1

m+1]/(xm+1 − 1) so that they are

again polynomial rings k[x
(h)
1 , . . . , x

(h)
m ]. If we have more generators

rationally dependent on τ1, . . . , τm, we can repeat the argument af-
ter taking as new generators the coordinates of the weight vector
with respect to the m primitive vectors of σ. In both examples, the
fact that k is a field plays no role, so we have proved:

Lemma 2.6.1. Let Φ be a totally ordered finitely generated group
of height one (i.e., archimedian), or Zd with the lexicographic order.
For any commutative ring A the semigroup algebra A[tΦ+ ] of Φ+

with coefficients in A is the direct limit of a direct system of graded
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subalgebras which are polynomial algebras A[x1, . . . , xm] over A with
m = r(Φ).

In addition, the maps between these algebras are toric maps, i.e.,
each variable of one is sent to a monomial in the variables of the
other, and there is a cofinal subsystem which is a chain of nested
subalgebras.

Remarks 2.6.2. 1) In both cases, the smooth subalgebras are pro-
duced by an algorithm.
2) The result, especially in view of its algorithmic nature, is much
more useful than its consequence that SpecA[tΦ+ ] is a pro-object in
the category of smooth affine toric schemes over SpecA with toric
maps.
3) The proof also shows that the semigroup algebra of the semigroup

Φ̃+ = {(a1, . . . , am, am+1, . . . , am+r) ∈ Zm+r |
m+r∑

i=1

aiτi ≥ 0},

where τ1, . . . , τm are rationally independent and the others are ra-
tionally dependent upon them, is a toric direct limit of toric subal-
gebras of the form

A[x1, . . . , xm, x
±1
m+1, . . . , x

±1
m+r].

4) The result for subgroups of R holds without the finiteness as-
sumption provided the rational rank is finite, since any abelian group
is a direct limit of its subgroups of finite type. If we allow m to vary,
even that last assumption is unnecessary.

Let now Φ be a totally ordered group of finite height h > 1. We
have a surjective monotone non-decreasing map λ : Φ → Φ1 where
Φ1 is of height h − 1, and the kernel Ψ of λ is of height 1. By
induction on the height we may assume that Φ1+ is the union of
sub-semigroups isomorphic to Nm, and we know from the lemma
above that the same is true for Ψ+.

Let us denote the free semigroups that fill Φ1+ by Fi, and let F̃i ⊂
Φ+ be the subsemigroup generated by elements e1, . . . , eri

which lift
to Φ+ \ Ψ the generators of Fi. Similarly let us denote by Gj ⊂ Ψ+

free semigroups which fill Ψ+, generated say by f1, . . . , fsj
. Note

that for φ ∈ Φ+\Ψ, ψ ∈ Ψ, φ+ψ ∈ Φ+, and consider for risj-tuples
n = (ns,t, 1 ≤ s ≤ ri, 1 ≤ t ≤ sj) of non negative integers, the free
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semigroups F̃i(n) ⊂ Φ+ ∪ {0} generated by e1 −
∑

t n1tft, . . . , eri
−∑

t nritft. Let us check that the direct sums of free semigroups

F̃i(n) ⊕ Gj fill up Φ+; the proof generalizes that given in the case
of the lexicographic Zd. Given φ ∈ Φ+, there exists an index i and
a φ1 ∈ F̃i such that φ − φ1 ∈ Ψ. If we have φ − φ1 ∈ Ψ+, there
exists an index j such that φ− φ1 ∈ Gj so that indeed φ ∈ F̃i ⊕Gj .
This happens in particular if φ ∈ Ψ. If φ− φ1 ∈ Ψ−, there exists an
index j such that we can write:

φ =

ri∑

s=1

kses−

sj∑

t=1

ℓtft with non negative integers ks, ℓt and ft ∈ Gj .

Since φ /∈ Ψ, at least one of the ks is not zero, say k1. Choosing
positive integers ℓ̃t such that k1ℓ̃t > ℓt, we may rewrite φ as follows

φ = k1(e1 −

sj∑

t=1

ℓ̃tft) +

ri∑

s=2

kses +

sj∑

t=1

(k1ℓ̃t − ℓt)ft.

This shows that φ is indeed in F̃i(n) ⊕Gj with n = ℓ̃.
Now if we assume, as we may by induction, that the Fi and Gj

are nested sequences, and choose n(i) given by (ns,t = i, 1 ≤ s ≤

ri, 1 ≤ t ≤ sj), we see that the corresponding groups F̃i(n(i)) ⊕Gi

form a nested sequence which is cofinal in the direct system. So we
have:

Proposition 2.6.3. For any totally ordered group Φ of finite height,
and any commutative ring A, the semigroup algebra A[tΦ+ ] is a direct
limit of a direct system of graded polynomial subalgebras over A with
monomial maps, and there are cofinal nested subsystems of such
polynomial subalgebras. If Φ is of finite rational rank r(Φ), all the
polynomial subalgebras may be chosen isomorphic to A[x1, . . . , xr(Φ)].

Proof. There remains only to prove the last sentence. This is done
by induction on the height; we have shown above that the result is
true for valuations of height one. Assume that the result is true for
Ψ and Φ1, and so the rank of the free monoid F̃i(n)⊕Gj is the sum
of the rational ranks of Ψ and Φ1. But since the rational rank is
additive in an exact sequence because Q is a flat Z-module, this is
the rational rank of Φ. �
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Corollary 2.6.4. If the rational rank of Φ is finite, the semigroup
algebra A[tΦ+ ] endowed with its natural grading is a quotient of a
polynomial ring over A in countably many indeterminates A[(Vj)j∈J ]
graded by Φ+ by a homogeneous binomial ideal of the form

(Vj − V m(j))j∈J ′,

where J ′ is a subset of J and |m(j)| ≥ 2 for j ∈ J ′.

Proof. We may choose as a system of homogeneous generators of
the A-algebra A[tΦ+ ], the union of the generators of the polynomial
subalgebras of which A[tΦ+ ] is the direct limit. The only relations
between these generators are those corresponding to the toric inclu-
sions A[x1, . . . , xr] → A[y1, . . . , yr], and they are of the announced
type after we discard the trivial relations xi = yj by removing some
generators. �

Remarks 2.6.5. 1) There is in general no minimal system of gener-
ators for A[tΦ+ ] and we can of course discard an arbitrary number
of those generators which appear as Vj in a relation Vj − V m(j) = 0.
For example consider Φ = Z2

lex.
2) We can apply this to the subalgebra k[vΦ+ ] of Aν(R), and view the
vφ as coordinates for Speck[vΦ+ ] subjected to the binomial relations
described in this Corollary.

Proposition 2.6.6. Given the ring Rν of a valuation of finite ra-
tional rank r(ν):
a) the graded kν-algebra grνRν is a quotient of a polynomial ring
kν [(Vj)j∈J ] in countably many indeterminates over the residue field
kν, graded by Φ+, by a
homogeneous binomial ideal of the form

(Vj − λjV
m(j))j∈J ′ , λj ∈ k∗ν

where J ′ is a subset of J and |m(j)| ≥ 2 for j ∈ J ′.
b) The graded kν-algebra grνRν is the union of a nested sequence

of graded polynomial subalgebras kν [x
(h)
1 , . . . , x

(h)
r(ν)], where the inclu-

sions are given by maps sending each variable x
(h)
i to a constant

times a monomial in the x
(h+1)
j , 1 ≤ j ≤ r(ν).

Proof. See Proposition ?? and the previous Corollary. We have seen
in Proposition ?? that grνRν is isomorphic to a quotient of a poly-
nomial algebra k[(Vi)i∈I ] by a binomial ideal whose generators are
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of the form V m−λmnV
n. Setting all the constants λmn equal to one

gives the semigroup algebra k[tΦ+ ], hence assertion a). Assertion b)
follows from this and the correspondence between the direct system
of polynomial subalgebras and the binomial equations exhibited in
the proof of the Corollary to Proposition ??. �

Corollary 2.6.7. Given any finite set of homogeneous elements
x1, x2, · · · , xs in grνRν and a cofinal nested system of polynomial
subalgebras as above, there is an algebra in our nested system such

that not only do we have xi ∈ A[x
(h)
1 , . . . , x

(h)
r(Φ)] for 1 ≤ i ≤ s, but

the element of least degree divides all the others in this subalgebra.
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