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1 Quasiordinary Hypersurfaces

We will first consider reduced quasiordinary hypersurfaces of a special type,

g := ym − zm1
1 zm2

2 · · · zmn
n

in Cn+1 with coordinates (y, z1, . . . , zn). We can assume that m1 ≥ · · · ≥ mn,
and m ≥ 2.

Proposition 1.1. Let (X, 0) ⊂ (Cn+1, 0)) be the germ of hyperfurface singu-
larity defined by g = 0. If X has no exceptional tangents, then it is Whitney
equisingular with its tangent cone.

To start working in these setting, we must first cite a theorem by [Ban],
which says in particular that for a hypersurface of this type if mi ≥ m for all i,
then it has no exceptional tangents

Note that in this case, the tangent cone CX,0 is the coordinate hyperplane
defined by ym = 0.

Remark 1.2. The specialization space of X to its tangent cone CX,0 is also a
quasiordinary hypersurface of the same type and has no exceptional tangents.

This just comes from the fact that the specialization space f : X → C is
defined in Cn+1 × C by the equation:

G(y, z1, . . . , zn, t) := t−mg(ty, tz1, . . . , tzn) = ym − zm1
1 zm2

2 · · · zmn
n t(

P
mi)−m

Note, then, that the tangent cone CX,0 is again ym = 0 and is also equal to
CX,0 × C.

Lemma 1.3. Let X0 denote the open set of smooth points of X, and let Y
denote the analytic subspace 0×C ⊂ X. Then, the pair of strata (X0, Y ) satisfies
Whitney’s condition a) at the origin.
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Proof. Let C(X) ⊂ Cn+2 × P̌n+1 denote the conormal space of X, and let us
consider the following diagram:

C(X)

κ

��

C(Y )

h

��
X Y?

_oo

Then, Whitney’s condition a) at the origin is equivalent to the set theoretic
inclusion

|κ−1(0)| ⊂ |h−1(0)|

Let ((y, z1, . . . , zn, t), [a : b1 : b2 : . . . : bn : c]) be the coordinates of Cn+2× P̌n+1.
Now, since Y is the t axis, the conormal space C(Y ) is defined by the equations
y = z1 = · · · = zn = c = 0, and for h−1(0) we just add the equation t = 0. But,
since by remark 1.2 X has no exceptional tangents, we know that |κ−1(0)| is
only the dual of the projectivized tangent cone, which in this case is the single
point set {(0), [1 : 0 : . . . : 0]}, which is contained in h−1(0).

To complete the demonstration of Proposition 1.1, we still have to prove that
the aforementioned pair of strata satisfy Whitney’s condition b) at the origin.
For this, we are going to use the following result

Proposition 1.4. [L-T, 1.3.8, pg 550] The following conditions are equivalent:

1. The pair of strata (X0, Y ) satisfy Whitney’s condition b) at the origin.

2. In every point p of κ−1(0), the ideal I defining the intersection C(X)
⋂

C(Y )
is integral over the ideal J defining the analytic space κ−1(Y ).

With this in mind, we can now proceed to prove the following lemma:

Lemma 1.5. Let X0 denote the open set of smooth points of X, and let Y
denote the analytic subspace 0×C ⊂ X. Then, the pair of strata (X0, Y ) satisfies
Whitney’s condition b) at the origin.

Proof.
In the proof of lemma 1.3 we have seen that if we set

((y, z1, . . . , zn, t), [a : b1 : b2 : . . . : bn : c])

as the coordinates of Cn+2× P̌n+1, then |κ−1(0)| is the single point H = (0), [1 :
0 : . . . : 0]. According to proposition 1.4 what we have to check is a local
condition, so a natural alternative is to take the local coordinates, corresponding
to the only chart of Cn+2 × P̌n+1 where we can see H, that is

(y, z1, . . . , zn, t, b1/a, . . . , bn/a, c/a)

With this local coordinates, and using the notation of proposition 1.4, we
get that:
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• H is now the origin.

• The ideal J = 〈y, z1, . . . , zn〉OC(X),H .

• The ideal I = 〈y, z1, . . . , zn, c/a〉.

So, all we have to prove is that the function c/a is integral over J , in OC(X),H ,
which according to [Te1, Chap 1, 1.3] is equivalent to proving the existence of
a neighborhood U of H in C(X) and a positive real constant C such that:∣∣∣ c

a

∣∣∣ ≤ C · sup(|y|, |zi|)

Let U be the neighborhood defined by the intersection of C(X) with the open
unitary ball in this coordinates. The points (p, H) ∈ U can be split in 2,
depending on if p ∈ X is a singular point of X or not. Then from the equation
F , we get that:

∇G =
(
mym−1,−m1z

m1−1
1 zm2

2 · · · zmn
n tα, . . . ,−mnzm1

1 · · · zmn−1
n tα, αzm1

1 · · · zmn
n tα−1

)
where α = (

∑
mi) −m. So, the analytic set |SingX| in Cn+2 is defined by the

equations
{y = 0, z1 · · · znt = 0} (1)

and by definition of the conormal space, if p ∈ X is a smooth point, then y 6= 0,
zi 6= 0, t 6= 0, and its fiber in the conormal space is the point (p, [∇F (p)]). Now,
for a smooth point p ∈ X

⋂
U , we have that:∣∣∣ c

a

∣∣∣ =
∣∣∣∣αzm1

1 · · · zmn
n tα−1

mym−1

∣∣∣∣ �

∣∣∣∣ tt
∣∣∣∣

=
∣∣∣∣αzm1

1 · · · zmn
n tα

mym−1t

∣∣∣∣
=

∣∣∣∣ αym

mym−1t

∣∣∣∣ =
∣∣∣αy

mt

∣∣∣
But for points in X, we have that

|y| = |z1|m1/m · · · |zn|mn/m|t|α/m

where mi/m ≥ 1 and α/m ≥ 2. So we can now get the inequality we were
looking for:

∣∣∣ c

a

∣∣∣ =
∣∣∣αy

mt

∣∣∣
=

∣∣∣ α

m

∣∣∣ |z1|m1/m · · · |zn|mn/m|t|α/m−1

≤
∣∣∣ α

m

∣∣∣ � sup {|zi|} since |zi| < 1, |t| < 1
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We are still not finished, for we must still consider the case of the singular
points of X∩U . However it is somewhat simpler, first by semicontinuity of fiber
dimension, for all singular points p ∈ X sufficiently close to the origin, we have
that the fiber κ−1(p) in the conormal space is zero dimensional, and so they
don’t have exceptional cones either, meaning κ−1(p) is the projective dual of
the tangent cone CX,p.

Next by (1), a singular point p has coordinates p = (0, λ1, . . . , λn, γ), with
λ1 · · ·λnγ = 0. Now, to find out an equation of the tangent cone CX,p, we
translate p to the origin, which transforms G into:

ym − (z1 + λ1)m1(z2 + λ2)m2 · · · (zn + λn)mn(t + γ)α

If n ≥ 3, α > m and so we can read from G that the only plausible equations
for the tangent cone are of the form:

ym = 0
or

ym − λm1
1 · · · λ̂i

mi · · ·λmn
n γαzm

i = 0

which, anyway only gives us points of the form (p, [1 : 0 : . . . : β : 0 : . . . : 0]) in
C(X), that is points where in our chosen local coordinates c/a = 0. For the case
n = 2 we can also get a tangent cone with equation: ym − λm1

1 λm2
2 tm = 0 In

this case, since |λi| < 1 what we will get is points of the form (p, [1 : 0 : 0 : β])
with |β| ≤ sup {|λ1|, |λ2|}, so when we pass to local coordinates we find again∣∣∣ c

a

∣∣∣ ≤ sup {|z1|, |z2|}

which finishes the proof.

Remark 1.6. The combination of lemmas 1.3 and 1.5 is the proof of the state-
ment 1.1.

References
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