Problemas de Tesis y avances.

Arturo Giles Flores

October 3, 2008

1 Singular Locus of Codimension 1 and Whitney Equisingularity.

Let $(X, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ be a reduced and equidimensional d-dimensional germ of singularity with singular locus Σ of codimension 1 .

Proposition 1.1. If the germ $(\Sigma, 0)$ is smooth, and the pair $(X, \Sigma)_{0}$ satisfy Whitney's condition a) at the origin, then the tangent cone $C_{X, 0}$ consists of a finite number of $d-$ planes.

Proof. Set $\left(y_{1}, \ldots, y_{d-1}, z_{d}, \ldots, z_{n}\right)$ as coordinates of \mathbb{C}^{n}. We can assume that $\mathbb{C}^{n}=\Sigma \times \mathbb{C}^{n-d+1}$, so the conormal space of Σ in $\mathbb{C}^{n} \times \ddot{\mathbb{P}}^{n-1}$ can be written as $\Sigma \times \check{\mathbb{P}}^{n-d}$, where $\check{\mathbb{P}}^{n-d}$ is the projective space of all hyperplanes of \mathbb{C}^{n} containing Σ. Now, if we take a look at the diagram:

Then, Whitney's condition a) at the origin is equivalent to the set theoretic inclusion

$$
\left|\kappa^{-1}(0)\right| \subset\left|h^{-1}(0)\right|=\{0\} \times \check{\mathbb{P}}^{n-d}
$$

But, since for a nonsingular point $x \in X, \kappa^{-1}(x)$ is of dimension $n-d-1$, then by semicontinuity of fiber dimension we obtain $n-d \geq \operatorname{dim} \kappa^{-1}(0) \geq n-d-1$.

Remark 1.2. Recall that if $X \subset \mathbb{P}^{n}$ and the codimension of X is $r+1$, then the dual variety \check{X} is ruled by projective linear subspaces of dimension r.

In our case the projectivized tangent cone $\mathbb{P} C_{X, 0} \subset \mathbb{P}^{n-1}$ is of codimension $n-d$, so its dual is ruled by projective linear subspaces of dimension $n-d-1$. Recall that $\check{C}_{X, 0}$ is contained in $\kappa^{-1}(0)$. With this mind we can analyze the two cases:

1) If $\operatorname{dim} \kappa^{-1}(0)=n-d-1$, then $\kappa^{-1}(0)$ is the union of a finite number of projective linear subspaces of dimension $n-d-1$, each of which correspond to the dual of an irreducible component of the tangent cone, that is to a d-plane of \mathbb{C}^{n}.
2) If $\operatorname{dim} \kappa^{-1}(0)=n-d$, then $\kappa^{-1}(0)=\{0\} \times \check{\mathbb{P}}^{n-d}$. This tells us that $(X, 0)$ has Σ as an exceptional tangent. On the other hand if Z is an irreducible component of the tangent cone then necessarily $\check{Z} \subset \check{\mathbb{P}}^{n-d}$ and $\check{Z} \neq \check{\mathbb{P}}^{n-d}$ because $Z \supset \Sigma$ So, we get that $\operatorname{dim} \check{Z}=n-d-1$, and again by the remark we get that it must be a projective linear subspaces of dimension $n-d-1$ which corresponds to a d-plane of \mathbb{C}^{n}.

Let us suppose for a moment, that the pair $(X, \Sigma)_{0}$ also satisfies Whitney's condition b). Then, we get that the partition $X=X^{o} \sqcup \Sigma$ is a Whitney stratification of X, and by a theorem of Hironaka [Hi2, Theorem 6.1], we get that X is normally pseudoflat along Σ at 0 . Let us recall, the concept of normal pseudoflatness with the following definition-proposition.

Definition 1.3. [He-Or, 1.4.9, pg 574] Let X be a reduced complex space, $Y \hookrightarrow X$ a closed complex subspace, and $y \in Y$ such that the germ (X, y) is equidimensional. Let $\nu: C_{X, Y} \rightarrow Y$ be the normal cone of X along Y, then X is normally pseudoflat along Y at y if and only if one of the following equivalent conditions hold:

1. ν is universally open near y.
2. The dimension of the fibre $\nu^{-1}(z)$ does not depend on z neay y.
3. The dimension of the fibre, $\operatorname{dim} \nu^{-1}(z)=\operatorname{dim}(X, y)-\operatorname{dim}(Y, y)$.

Once we have stated this, we are now in position to prove the following result.

Proposition 1.4. In the same context, if the pair $(X, \Sigma)_{0}$ satisfy Whitney's conditions a) and b) at the origin, then the germ $(X, 0)$ has no exceptional tangents.

Proof. Let $\nu: C_{X, \Sigma} \rightarrow \Sigma$ be the non-projectivized normal cone of X along Σ. As we stated just after the proof of proposition 1.1 the Whitney conditions of $(X, \Sigma)_{0}$ imply that X is normally pseudoflat along Y at 0 , which by definition 1.3 tells us that the fiber $\nu^{-1}(0)$ is of dimension 1. However, remember that the fibers are conical, so the fiber $\nu^{-1}(0)$ has no choice but to be a finite number of lines.

On the other hand, if T is a limit of tangent spaces to X at 0 , then by Whitney's condition a) we have that $\Sigma \subset T$. Retaking the notation of proposition 1.1, let $\left\{a_{n}\right\}=\left\{(\underline{y}, \underline{z})_{n}\right\}$ be a sequence of smooth points of X, tending to the origin such that the sequence of tangent spaces $T_{a_{n}} X^{0}$ tends to T. Define the
sequence the sequence $\left\{b_{n}\right\}=\left\{(y, 0)_{n}\right\} \subset \Sigma$ tending to 0 . Now, by Whitney's condition b), we have that:

$$
\lim \overline{a_{n} b_{n}}=\lim [0: z]_{n}=l \subset T
$$

where $\overline{a_{n} b_{n}}$ denotes the direction of the line going through a_{n} and b_{n}, and [:] are homogeneous coordinates of \mathbb{P}^{n-1}. Note, that each line $[0: z]_{n}$ is perpendicular to Σ, which implies that its limit l is also perpendicular, and since T is of dimension d and Σ of dimension $d-1$ this tells us that $T=\Sigma \oplus l$.

Finally, by construction, any such l belongs to the fiber $\nu^{-1}(0)$, which is a finite set, so there is only a finite set of limits of tangent spaces to X at 0 , and they must necessarilly coincide with the irreducible components of the tangent cone $C_{X, 0}$ which we already know by proposition 1.1 consists of a finite number of d planes. In particular, all this implies that there are no exceptional tangents.

References

[Ban] Chunsheng Ban, Auréole of a quasiordinary singularity, Proceedings of the American Mathematical Society, 120, 1994, 393-404
[Lê] Lê D.T. , Limites d'espaces tangents sur les surfaces, Nova Acta Leopoldina NF 52 Nr.240, 1981, 119-137.
[L-H] Lê D.T., J.P.G Henry, Limites d'espaces tangents, Sém. Norguet, Springer Lecture Notes in Math. 482.
[Ha] R. Hartshorne, Complete intersections and Connectednes, American Journal of Mathematics, Vol. 84, No. 3 (Jul., 1962), pp. 497-508
[He-Or] M. Herrmann, S. Ikeda, U. Orbanz, Equimultiplicity and Blowing up, Springer-Verlag, 1988.
[Hi1] H. Hironaka, Stratifications and Flatness, in Real and Complex Singularities (Nordic Summer School, Oslo, 1976), Sijthoff and Noordhoff, 1977, 199-265.
[Hi2] H. Hironaka, Normal Cones in Analytic Whitney Stratifications, in Publications Mathématiques de l'I.H.E.S., tome 36, 1969, 127-138.
[L-T] Lê D.T. and B. Teissier, Limites d'espaces tangents en géométrie analytique, Comm. Math. Helv., 63, 1988, 540-578.
[Sn] J. Snoussi, Limites d'espaces tangents à une surface normale, Comm. Math. Helv;, 76, 2001, 61-88.
[Te1] B. Teissier, Variéés polaires 2: Multiplicités polaires, sections planes, et conditions de Whitney, Springer Lecture Notes 961, 1981, 314-491.
[Te2] B. Teissier, Cycles évanescents, secitons planes, et conditions de Whitney, Singularités à Cargèse, Astérisque 7-8, 1973, 282-362.
[Whi] H. Whitney, Tangents to an analytic variety, Annals of Math 81, 1964,496-549.

