On B. Segre and the Theory of Polar Varieties

BERNARD TEISSIER, Département des Mathématiques et de I’ Informatique, Ecole normale
supérieure, 45 rue d’Ulm, 75230, Paris

It is an honour for me to lecture at the University of Bologna, especially since two great
algebraic geometers, Beppo Levi and Beniamino Segre, whose work on singularities has had
lasting influence, were Professors here.

Both Beppo Levi (see [14]) and Beniamino Segre made use of polar varieties of projec-
tive varieties in their studies of resolution of singularities of surfaces. Segre also introduced
the Segre classes, which are similar in spirit to the polar classes, replacing tangent spaces by
secant lines, and provide numerical invariants of embeddings. He used them to give an alter-
nate construction of the characteristic classes of non singular projective varieties that had been
defined by Todd using polar classes.

1. Local polar varieties

Let me begin by recalling the more modern definition of Jocal polar varieties, according to
[23], [11], [25],[6]. Consider a diagram of complex analytic spaces and maps, all assumed to
be “sufficiently small" representatives of germs

X <« S§xCV

le /
assume that there is a dense open analytic subset X° C X such that the restriction of f to X°
is flat with nonsingular fibers purely of dimension d. Let us now fix an integer k£, 0 < k < d
and take a linear projection p: C¥N — C**! The closure P,(f;p) in X of the critical
locus of the restriction Idg x p|X° is by definition the polar variety of f associated to the

given installation in § x C" and the projection p. One usually considers the polar varieties
associated to “ sufficiently general” projections.
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One finds it helpful to build the relative conormal space Cf(X) of X in § xC¥,

which is the closure in S x C¥ x PN-1 of the set of couples (z, H) where z € X° and H
is a direction of hyperplane in CV tangent at z to the fiber f~1( f(z)). One then has the
following diagram:

CHX) = Sx CN x pVN-!

l"if |
X s SxCWV
I f

s/

If one denotes by A ;: CH(X) — PV-1 the natural projection, and by L4* c PN-1 the set
of hyperplanes containing ker p, then one has for a sufficiently general projection p the set
theoretic equality

£ N7 (L5) = P(fip)

However it is certain that one should also study the total family, parametrized by the projections,
of the polar varieties of a given type.

In the special case where S is apointand X isthe conein CV on a reduced projective
variety in P¥~! | one recovers the classical theory of polar loci.

Originally in [11] and [23], the definition made use of the relative Nash modification of
X (see [26], [25], p.417) instead of the relative conormal space; one can then in a completely
analogous way also define more generally polar varieties corresponding to a general Schubert
cycle associated to a set of incidence dimensions a = (a,,...,a,) and a given flag of linear
subspaces. Since they depend upon the flag, what we get is actually a system of subvarieties of
X parametrized by a flag manifold. In order to have a well-defined object it was deemed in the
classical projective and «absolute» case to be necessary to introduce an equivalence relation
on the set of algebraic varieties such that at least for «almost all» flags the corresponding polar
varieties are all equivalent. Motivated by the search for numerical invariants, Segre, Severi
and Todd considered rational equivalence classes, which, however, forget all but the simplest
geometric characters ( such as dimension and degree) of an algebraic variety.

The theory of equisingularity allows one to try and preserve much more and still have well-
defined objects, since for instance, for «almost all» flags, the corresponding polar varieties are
all equisingular. In particular, at least the topology of a general polar variety is well-defined.

The purpose of this lecture is to try to draw attention by examples to the importance of
the geometric viewpoint in the theory of polar varieties, and to ask a few questions connected
with this viewpoint. Here, geometric is meant as opposed to the cohomological, or cyclist, or
numerical, viewpoint.

The geometry of the local polar varieties associated to a germ of a complex space or
of a complex morphism contains a wealth of information about this germ, and since polar
varieties are of lower dimension they can be used for inductions. They can also be used to define
numerical invariants considerably more subtle than those arising from the cyclist viewpoint.
Since we take a local viewpoint, it is necessary to check that the objects which we define are
independant of the choices of local embeddings and coordinates. All the geometric situations
considered will be local unless otherwise specified.

THEOREM - Given a complex analytic morphism f:(X,z) — (S,s) satisfying the condi-
tions above, the Whitney-equisingularity type of a general polar variety P.(f; D, ,,,) de-
pends only upon the analytic type of the map-germ f at z .
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The proof is essentially contained in ([25], Chap.4), and let me first give it in the case of
a complex analytic map-germ f:(C?,0) — (C,0) .

In this case, after a choice of coordinates z,y , given a linear projection ¢: C2 — C , the
corresponding polar curve is the zero set of the 2-form df AdZ ; il £ = x+ by, then an equation
for our polaris %-E—b%g = 0 . By the general results on equisingularity we may assume, if ¢, =
z is a sufficiently general projection, that the family of polar curves is an equisingular family of
plane curves as b varies near 0 . Sofor £ = ¢, we get the equisingularity type of the general
polar curve in the coordinates z,y . Now to prove that this equisingularity type is independant
of what we chose to call linear coordinates, it is sufficient to consider a one-parameter family of
projections of the form £, +vg(v; z,y) with g(v; z,9) € (z,9)2C{v,z,y},sothat we geta
family of curves with equation df A(dx +vdg) = 0 . Instead of considering the corresponding
determinant, we consider the associated linear system

of ,  of , _
azX+ ayY—O
0g dg.,
(1+’U5;)X+’Ub—17Y—0

which defines locally near the point (0,0,(0: 1)) € C x C? x P! an analytic subspace
Z C C xC2xP! suchthatitsimagein C x C? is the family of our polar curves. Note that
the first equation in independant of v, and defines therefore the product by C of a family of
curves Z; in C? x P! . This family of curves is actually isomorphic with the family of polar
curves as b = —f,—( varies, so it is equisingular, and therefore so is its product with C ; the

product C x P! is the singular locus of Z, , along which Z, is Whitney equisingular. Now
we remark that the second equation, upon taking v = 0 , describes a non singular hypersurface
Z,(0) which is transversalin C? x P' to the surface C x P . Now it is a basic property of
Whitney equisingularity that all sections by nonsingular spaces of a given dimension transversal
to a stratum form themselves an equisingular family, and as v varies, we have here precisely a
family of sections of Z,(0) by non singular hypersurfaces Z,(v) , transversal for v = 0 and
therefore also for v sufficiently small. Finally we see that Z is a family of curves equisingular
along C x0 . Itremains to see that for each value of v, the curve Z(v) isisomorphic with the
zero set of df A (dz + vdg) , but this is obvious. The same proof works if we multiply the first
equation by f, and shows that in fact the equisingularity class of the unionof f and the polar
curve depends only on the analytic class of the germ f . Exactly the same proof works for the
general polar variety of dimension d of a complex analytic mapping f: (C%! 0) — (C,0).

The general case is somewhat more delicate, but the idea is the same. It suffices to study
the following situation: a one-parameter analytic family of maps p*(v): CN — C4-*¥*! sych
that p(0) is a general linear projection and the corresponding map P*(v) = Id¢, ¢ xp*: C X
S x CN — C x C4**1  Consider the graph embedding of P*

CxSxCV — C x 8 x xCd-*k1  CN

| P* /
C x S x Cok+!
and the product diagram
C x CiX) < CxSxCVNxPNI
l, Idc Xﬂf l
C x X — CxSxCVN
| Ide x f
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We choose as in [25], Chap.4, a Whitney stratification C, of Cf(X ) compatible with the
inverse image of the singular locus of X and with the inverse images by . of the strata of

a Whitney stratification of P,( f,p) . Now we consider the intersection P=C x C/(X)N

Cp.(C xS xCV) in C xS xCV x P V=1 and its natural projection P — C .

Since we assume that the original projection p(0) = p is a general linear projection, it is
easy to verify that for each sufficiently small v, the image of P(v) is the polar variety of f
with respect to the analytic projection p(v) , and the image of P in C x S x CV is the total
space P of the family of polar varieties of f as v varies. Now it is no longer true, as in the
curve case,that the fibers P(v) are isomorphic to the polar varieties, but one knows enough
about the map P in C x S x CN — P to show the following:

If we choose carefully as above an equisingular stratification of C/(X) , and denote by
S, thelargest stratum contained in n;‘ (0) , the product C x §,, is a stratum of an equisingular
stratification of C x Cf(X) . The intersection with Cp.(C x S x C"V) is transversal for
v=0,s50 C xS N(CN x L4 *) isa stratum of an equisingular stratification of P .

Using the characterization of Whitney stratifications by properties of the Auréole (see
[12], corollaire 2.2.4.1) instead of the characterization of equimultiplicity as in ([25], p.428)
one then deduces from this that C x O is a stratum of a Whitney stratification of P, which
proves the theorem.

This proof is given only partially because it could be simplified if one had the answer to
the following

Question 1. Let C(X) C CN x PN¥-! be the conormal space of X C CV . Let (X,),c4
be the canonical Whitney stratification of X . Can one describe a purely Lagrangean method
to construct the Lagrangean variety U, ,C(X,) . Thatis, without going down to stratify X ,
but using for example higher microlocalizations.

This question is in a way a geometric version of the following question, which Thom calls
his Dream of Youth:

Question 2. (Thom) Given an ideal I C C{z,,...,2,} defining a reduced equidimensional
germ X C CV | let
X=F,D>DFD> -DF D8

be the canonical Whitney filtration of X (near 0 ), characterized (see [25], Chap.6) by the
fact that the connected components of the differences F, \ F,,, are the strata of the minimal
Whitney stratification,andlet I = I, C I, C --- C I, C C{z,,..., 2,} bethe corresponding
sequence of ideals.

The problem is: find a way using Jacobian extensions of ideals (i.e, by adding suitable
Jacobian minors of generators), to generate the sequence ([ ]-) from the ideal .

I do not know how to answer this exact question (which I have taken the liberty to com-
plexify and slightly adapt from the original) but using the results of [25] I can give (see [27])
a similar result but I have to use not only Jacobian extensions, but also the residuation (J :
K) ={g € C{z,...,2,}/9K C J} of ideals, choices of special system of generators, and
«generic» choices of coordinates.

Here is a question which is in a way intermediate between these two:

Question 3. Given a projective variety V C PV, consider the canonical Whitney stratification
(W,) ofits dual variety V C PV . How can one build from equations of V the totality of
the duals W, ¢ PV ?
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As an exercise, given a projective plane curve, try to build from its equation those of all
the special lines associated with it : inflection tangents, double tangents, etc.., only by using
Jacobian extensions, etc.., without dualizing.

2. The contact of the relative polar varieties

In fact this study was begun over a hundred years ago, in the case of plane curves, by H.J.
Stephen Smith in [20], in connection with the study of Pliicker formulas. Then the italian ge-
ometers, for whom the contact was best expressed in terms of common infinitely near points,
tried to find the infinitely near points common to a curve and its general polar. Since the in-
finitely near points of the polar depend upon the analytic type of the singularity and not only on
its tree of infinitely near points (that is, its equisingularity class), this viewpoint led essentially
to frustration, at least until the very recent results of Casas ([1]) concerning the polar curve of
a plane curve singularity which is «generic» among those belonging to a given equisingularity
class.

However, there are some specific results at least in the case of hypersurfaces with isolated
singularities, to which we will come back.

For the purpose of resolution of singularities, however, this fundamental impossibility to
determine the equisingularity type of polar varieties (absolute or relative) from just the equi-
singularity type of the given germ of variety or map may not hamper the use of polar varieties
as providers of inductive steps. Here is the prime example, after Segre [19] :

2.1. Contact of polar varieties and resolution of singularities

Given a projective hypersurface X € PV with equation F(X,,...,Xy,;) = 0,let £ =

(&,...,€y+1) beapointof P N then the polar hypersurface of X with respect to the point
¢ is the hypersurface with equation Z{v” iaaTF = 0 ; it is the projective hypersurface corre-

sponding to therelative polar variety P, (F;p) associated to the map F: C¥*! — C and the
projection p: CN¥*! — CV corresponding to £ .

In [19], Segre proposed to correct in the case of surfaces an attempt of Derwidue in [2]
(see Zariski’s Math. Review [31]) to resolve singularities of projective varieties, and convince
the reader that one could after corrections extract a proof at least in the case of surfaces in
characteristic zero (which at that time was already known by the work of Zariski). The main
steps of the argument are as follows:
1) a computation of the strict transform of the polar curve under blowing up of a non singular
center along which the given hypersurface is equimultiple, at a point where the multiplicity has
not decreased and the constatation that at such a point the strict transform of a general polar is
a polar of multiplicity m — 1 of the strict transform.
2) In the case of surfaces, one can by blowing up points reduce to the case where the equi-
multiplicity locus is nonsingular, and by 1), one sees that it is sufficient to show that one can
make the multiplicity of a general polar decrease by a finite number of blowing ups along non
singular equimultiplicity loci. One thus reduces to the case where the given hypersurface has
singularities of multiplicity two only.
3) A direct computational treatment of this last case.

Let f(y;,...,¥;,21,---,2,) =0 be alocal equation for a hypersurface in CV , where
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N =n+t. Let assume that f(y;,...,¥,,0,...,0) = 0 and consider locally around O the
blowing up 7: Z — CV of the subspace of CV defined by the ideal (z,,...,2,). Ina

typical chart of Z we have coordinates y;,...,¥;,2},...,2, andthe map = described by
y;om=y; for1 <j<t
z; 0 =2}
z, 0T =22} fori#1.

The strict transform of f by 7 is decribed in the same chart by
! / ! ! ! 1— / ! ! [ !
f(y])"‘vytyz]y"‘yzn)=z] mf(y]7"‘7yg)21122211"'12nz])'

Let us now compute the composition with 7 of the partial derivatives

of 'm1 'm OF o mOf
aZIOﬂ =mz, f - az; _g;ztl a/
of 1 0f

az"ovr—] a,(2<z<n)
of . _mof
5y, ° " T By

fo’rl':Z] f’

So that if we take an element of the ideal (f,ngl—,...,g{—,gé,...,%),say g = af +

31 b'-gzil + 5 ch%i' , we find the identity

!

zll'(m“”go'n=((ao'rr)z;+mb10ﬂ)f'—(b]o7r)z;a—,
z
n / af/
+E(b‘-07r—(b]o7r)z;z +Z(C ow)zla, :
So if g is of order m — 1 at 0, its strict transform is in the ideal (f ' 3] ,...,g{,—',

af af’

There are several observations to make:
1) The behaviour of g is actually governed by that of Y 7 b; a4 El c, a , and one may as
well call polar variety the hypersurface defined by ¢ = 0 at least in the case where a and the

b’sand c’s are constants.
2) If g is of the form

_vy 9 of i
g—;biaz,JrZC’By with b;, ¢, € C

then
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so we have a very similar expression for the strict transform.

3) If f is equimultiple along Y and the multiplicity of f’ at the point z' with coordinates
zy=...=2z, =y] =...=y; =0 isagain m — 1, then the exceptional divisor zy = 0 is
transversalto f'=0 in Z at 1.

4) If f is equimultiple along Y, then so is an element

which is of multiplicity m — 1 at the point O .

These observations result from straightforward computations, and they are part of the
stock-in-trade of all resolvers of singularities. In particular they have been vastly generalized
by Hironaka.

Another important fact discovered by Segre (in the projective situation,; it has been redis-
covered in the local situation several times since) is that in the blowing-up m: X' — X of X
along a non singular center Y such that X is equimultiple along Y , the multiplicity of X'
at any of its points z’ is at most equal to the multiplicity of X at n(z') .

Segre uses this to show that (in modern language), the problem to prove that a permissible
succession of blowing ups along isolated m -uple points and nonsingular m -uple curves is
necessarily finite can be reduced to the case of a hypersurface of multiplicity 2. The solution
of this problem implies resolution, and the proof in the case where m =2 is fairly easy. Segre
uses a case-by-case approach.

The idea of the reduction is that in view of the preceding results, as long as the multiplicity
does not drop, the multiplicity of a general polar, which is m — 1, does not drop either. Of
course in higher dimensions, the choice of centers of blowing-ups becomes a major problem.
In any case, Segre’s work suggests that the use of the polar hypersurface may offer some al-
ternative to the «maximal contact» of Hironaka. In some sense, the general polar hypersurface
of f has «maximal contact» at 0 with f = 0 among those of multiplicity m — 1. In the
case of locally irreducible curves one can make this really precise using a result of Merle and
the beautiful theory of maximal contact of singular curves of Monique Lejeune-Jalabert (see
[13] and [16]). Notice also that if you iterate the polar curve operation for an irreducible plane
curve until you get a non singular curve, this curve does have maximal contact at 0 . Itis a
good exercise at this point to prove resolution of singularities of plane curves using Segre’s
method.

2.2. Contact of a polar curve of a germ of holomorphic map f: (C™! 0) — (C,0) with
the hypersurface f~'(0)

This is the only case where we know something precise. This contact is the subject of [24],[26],
[28] and is decribed by the Jacobian Newton polygon, which is constructed as follows:

Let f € C{z,...,2,} describe our map. The relative polar curve of the map with
respect to a linear projection £: C™! — C™ is the zero set of the 2-form df A d¢ and if £ is
sufficiently general, it is a germ of a reduced curve P,(f,¢) .

I now decompose this germ into its irreducible components I';,1 < 7 < 7. By the
definition of polar varieties, none of these components can be included in the hypersurface
f = 0 (f it were the case, the component would have to be included in the critical locus of
f), and each has a multiplicity at 0 , which we denote by m, , and an intersection number at
0 with f = 0, necessarily > m, , and which we denote by e, + m_ . From these numbers
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we construct the contact polygon at 0 of the hypersurface f = 0 and the curve P (f,¢) as
follows : we construct a Newton polygon by adding the elementary Newton polygons

m denoted by {eq M }
q m

9

We get a Newton polygon, for example

e, +my €, +my €3 + my

Because of the theorem of transversality of relative polar varieties of (24}, th.1 (see also
[30], [25] Chap.4 and [5] for generalizations) which states that when the base § is a point or
a nonsingular curve the tangent cones at 0 of the polar varieties are transversal to the kernels
of the corresponding projections, this abstract Newton polygon is actually the Newton polygon
of the image in C? with coordinates (t,,t,) of the polar curve which is the closure of the
critical locus outside O of the map (f,¢): C™! — C?2 . This Jacobian Newton polygon was

introduced in [24] in the case where f has an isolated singularity; it refines in that case the
ratio “(—";”(%)ﬂ , where p{™1 isthe Milnor number of the hypersurface and p‘¥ is the Milnor
number of its intersection with a general i-dimensional plane through the origin.

But it has turned out that the slopes of its sides, often called the polar invariants of f,
play a basic role in several a priori unrelated questions about the singularities of f :

1) the poles of the meromorphic map from C? to the space of distributions in C ™!

obtained by analytic continuation from the map defined for Res >> 0,Ret >> 0 by

(5,1) > (6 H/ i)
CN

where £ is a sufficiently general linear form and ¢ a differentiable function with compact
support. Work of Sabbah and Loeser has shown that the poles of this meromorphic map lie on
lines in C? with slopes given by those of the Jacobian Newton polygon. They actually show
much more, see [15], [18].

2) The best possible exponents 8, and 6, in the Lojasiewicz inequalities (near 0 )

llgradf(2)|| > Cllz||* and [|gradf(2) || > C'|f(2)|* .
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3) The different rates at which in a 1-parameter Morsification f, = f + vl , where £ isa
general linear form, the Morse critical points ¢,(v) of f, tendto 0 as v tendsto O, i.c the
best possible exponents in the inequalities

lle ()]l < Cilv]™ .

The point here is that we have the

THEOREM ([24]). In a Whitney-equisingular family of hypersurfaces f(v;z,,...,2,,)
with isolated singularity at O (for each v ), the Jacobian Newton polygon is constant.

For irreducible germs of plane curves Merle has given in [16] the expression for the Ja-
cobian Newton polygon in terms of the Puiseux exponents and it turns out that in this case the
Jacobian Newton polygon determines the Puiseux exponents and therefore the topology of the
curve. In fact much more is true: for each of the Puiseux exponents of an irreducible plane
curve X , the general polar curve has a bunch of irreducible components whose Puiseux ex-
pansion coincides (up to a suitable ramification of the parameter) with the Puiseux expansion
of X up to (but excluding) that exponent. So the polar really has very high contact with the
curve.

In the reducible case, some components of the polar curve may not have high contact with
the curve, but except in very special cases some components do have high contact. There is a
general result in this direction:

Fact 1. Let us assume that f: C™! — C has anisolated singularity at 0 , and that the general
polar curve is not tangent to f = 0 at O (that is, no tangent line to the curve is in the tangent
cone of f =0 at 0). Since, by the results of [29] and [24], the multiplicity of the polar curve
is u™ and its intersection multiplicity with f = 0 is p{™D + 4™  while the multiplicity at
0 of f=0 is pV+1,transversality is equivalent to the equality p(™" = p(V ("  Bythe
results of ([29], Chap.2), this implies that the blowing-up of the origin resolves the singularity
of f =0, orif one prefers, that f = 0 is equisingular with its tangent cone at 0 .

Fact 2. If we now take a hypersurface, say f(v;z,y,2) =0 in C*, which has a nonsingular
one dimensional singular locus along the v axis, we can think of it as a one parameter family
of hypersurfaces with isolated singularity at the origin. If the general polar curve of f is
empty, if the sections v = v, of the general polar surface have constant contact polygon with
f(vy; z,y,2) as v, varies, then according to [24], the p* sequence is constant along the v
axis and according to a theorem of Lauferin [8], our hypersurface has a simultaneous resolution
of singularities along the v axis.

In view of Segre’s proof, these two facts suggest the

Problem 5. Study the behaviour of the polar varieties of codimension > 1 under equimultiple
blowing-up with non singular center.

There is also a similar problem for the absolute polar varieties; here the references for
motivation are [9] and [20].

In fact, (see [28], [16] [18]) one can put both the absolute and the relative case in the
same frame, and generalize the Jacobian Newton polygon as follows: Consider an analytic
map F: X — C?;choose coordinates t,,t, on C? andset f; =t,oF,f, =t, 0 F. Then
the strict critical locus S(F) of F is by definition the closure in X of the set of nonsingular
points of X where the fibersof f; and f, are not both non singular and meeting transversally.
The Newton polygon in the coordinates t,,t, is a generalization of the Jacobian Newton
polygon and we call it the Jacobian Newton polygon of f,, f, on X .
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Question 6. Is it true that in an equisingular deformation of X and F this Jacobian Newton
polygon is constant ?

(The definition of equisingularity here is left to the reader).

The recent results of Gaffney in [3] and [4] make it plausible that, at least when X is a
complete intersection wih isolated singularity, a proof can be given along the lines of [24].
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