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1. Introduction

Milnor certainly gave to analytic singularity theory much more than he
received; in exchange for a concrete description of exotic spheres,
John Milnor gave to geometers working with singularities the following
PICTURE for the understanding of the geometric behavior of an analytic
function f: (C**!,0) — (C,0) in the neighborhood of a critical point.

The special fiber X 0]
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This led to the development of the local topological study by differential-
geometric methods of all singularities in analytic geometry, as opposed
to a global algebro-geometric or cohomological study which had hitherto
dominated, and to Thom'’s beautiful differential-geometric study of the
generic singularities of mappings.

In fact, Milnor used this picture only for the case where f~'(0) has an
isolated singularity at 0. In the general case he preferred to work with the
restriction of the map f to the sphere §2"*!. There is a notable difference,
since in the non-isolated singularity case the link f~!1(0) N $2"*+! is singular,
and different from the boundary of the Milnor fiber f~1(z) N B. It was Lé
who extended the picture’s use to the general case. Let me now decorate it
with results from [Mil], [Le2-6]

In a neighborhood of 0 in the complex hypersurface f~1(0), as the point

x € U tends to 0 the secant line 0x tends to be contained in the tangent
cone at 0, so there is an ¢y > 0 such that for 0 < ¢ < ¢; the spheres S,
are transversal to f~!(0) in C"*! in the sense of stratified spaces, so that
all the intersections S¢ N f~1(0) are isotopic as stratified spaces. By Sard’s
Theorem and the openness of transversality, there exists 7y > 0 such that
for 0 < [t| < ng the fiber f~1(¢) is nonsingular and transversal to S¢. In fact,
there is an open region in a neighborhood of 0 in the first quadrant of the
€, n plane, limited by the positive € axis and a semi-analytic curve, such that,

An

€, |t

—» €

as long as (e, |¢]) lies in that region, these transversality results hold. Now we
fix €, n in that region and set Xo = f_] (0)NBe and X, = f~}(t)NB,, where
B, is the open ball with center at 0 and radius € and | = n. Then we have:

(1) The closure X, is homeomorphic as a subspace of B, tothe cone with
vertex 0 over the ink K = f~1(0)NS. In particular, it is contractible.
If K is a topological sphere, X is a topological manifold near 0. If
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0 is a smooth point of f_1 (0), i.e., a non-critical point of f, then K is
an unknotted (2n — 1)-sphere in Se.
The space f~!(D,) NB is contractible, since it retracts onto f~'(0) N
B..
Each fiber X, is parallelizable and one proves by Morse theory (see
[1.65]) thatit has the homotopy type of a CW-complex of dimension #.
The (Milnor) link K = Xy N 8¢ is (n — 2)-connected.
The map

f~iDd*»NB, — D*

induced by f is a fibration fiberwise diffeomorphic to the M:inor
Jfibration:
f()

f@l

Consequently, by lifting the counterclockwise circulation around 0 of
a point ¢t € D* by T > %" "¢, we obtain a Monodromy diffeomorphism

h: X, — X,

S\K—->S8' :p

and we may choose
h|9 X, = Identity.

This diffeomorphism acts on the homology of X; as an endomor-
phism 4, of the group H,(X;, Z), which is still called the monodromy
and is independent of the lifting of the circulation.

Note that by (5), which is proved by a transversality argument, all the

fibers X, = 1) N B¢ are diffeomorphic as manifolds with boundaries as
long as (¢, |¢|) stay in the region symbolized in the figure above; X, is called
a Milnor fiber of f, €qis called a permissible radius and S¢ a Milnor sphere.

If, in addition, 0 is an isolated critical point, then:

(6%)

(7%)

(8%)

The space X, has the homotopy type of a bouquet of n-spheres;
actually X, is obtained from a ball D% by simultaneously attaching a
number of handles of index n. (See [Mil], p. 58, and [1.-P] for the
casen =2.)

Since there is no singularity of the map f on the sphere S, the
induced mapping L_Jte])'7 0X, — D, is a differentiable fibration, so
the Milnor link X is a differentiable manifold diffeomorphic to the
boundary of the Milnor fiber.

The closures of the fibers of the fibration of (5) above are diffeomor-
phic to those of the fibers of the Milnor fibration.

95



BERNARD TEISSIER

Let me sketch the proof of (6) in the isolated singularity case. All the
following considerations are local; let us agree that we consider only points
in B, x D, but continue to denote the map by f. The idea is to analytically
deform the given map f to a map which has only complex Morse critical
points (locally expressible as a sum of squares of holomorphic coordinates).
Consider the 1-parameter family of maps given by

A= f(x) + axo;

we wish to study the critical points and critical values of the associated map
F: C"t! 5 C? described by x > (fu(x),a) where f;(x) = f(x) + axy. The
critical points of F constitute the curve in C"*! x C with equations

0 d 0
4£+a=0p——=Q” ‘f=

s 0.
dxp 0X1 0x,

From here on we have to assume that the hyperplane xo = 0 is “sufficiently
general” (this can be made precise). Then we have:

The image in C? of this critical curve by the map F is a plane curve, say D
(for discriminant); and the key points are the following:

A
A
D, D
9 » a
D,
mUItlpllCItY u(n+1) \

(i) There is no critical point of F with A = 0, except 0, and the map F
induces a topological fibration B, \ F~Y(D)— D, xD; \ D above the
complement of the discriminant D in a small polycylinder [A| < n,
la| < .
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(ii) If we fix a value of a # 0 (sufficiently close to 0) and a sufficiently
small value n’ < n, the map f, has no critical value in D,/ so that
£, 'D,; — D, is a topological fibration and f; ' D, has the homotopy
type of a general fiber of f; (or of f—it is the same, since the
complement of D is connected).

(iii) The space £, '(D,) is contractible, as we saw in (2) above.

(iv) The curve D, algebraically defined as the image of the critical locus,
as in [T4], has no multiple component. This is equivalent to the
fact that the map f; has only complex Morse singularities in B, so
that the real analytic function |f,| is a Morse function on B.. By
an application due to I.é ([1.é2], [Lé6]) of a general principle of
Thom already used by Andreotti-Frankel for the distance function to
an algebraic set (see [A-F]), its index is n + 1 at each of its critical
point.

Thus, the Milnor fiber X,, which is the fiber of the fibration induced by F
above the point a = 0, . = t, becomes contractible after adding a finite
number of (n 4 1)-cells; it has to be homotopic to a bouquet of n-spheres.

Finally we remark that the number of these cells, which is the number
of critical points of the function f; on B, is equal to the number of in-
tersection points with D of a line in the (&, a)-plane, parallel to the A axis
a = 0; this number is the intersection multiplicity at 0 of the A axis with the
plane curve D. By the projection formula, it is equal to the intersection
multiplicity of the critical curve C C C"+? with the hyperplane a = 0. By
the general theory of intersection multiplicity, this last number is equal,
since the curve C is a complete intersection, to the dimension as a complex
vector space of the quotient of the ring of convergent power series by the
ideal generated by the partial derivatives of f,

ﬂ(n+l)(f’ 0) = dime C{xg, . .. ,xn}/(af/axo, ey 0F[0x,),

which is called the Milnor number of the (isolated) critical point of f at 0 or
of the (isolated) singularity at 0 of the fiber Xy = f_l(O), and then written
n+0(Xo,0).

In fact, the Milnor number is the multiplicity at the origin of the curve
D ¢ C?, since one can show that in this case the analytically irreducible
components of the curve D are all tangent to the curve A = 0, and therefore
the intersection number at 0 of the A axis with D is equal to the multiplicity
of D at0.

Milnor’s Theorem shows that for a hypersurface with isolated singularity,
only the middle dimensional homology group H,(X,, C) is nonzero, and
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isomorphic to C#. Furthermore, the homotopical construction of the Mil-
nor fiber sketched above shows that the integral homology has no torsion,
so that H,(X,, Z) is a lattice in H,(X,, C), called the Milnor lattice of the
singularity. It is then natural to study the behavior of this Milnor lattice,
especially with respect to the bilinear form on H,(X,, C) given by the inter-
section of cycles, much as one does in differential geometry, in the hope
of finding subtle invariants of the singularity, subtle enough for example
to give an obstruction to a given singularity appearing as a deformation of
another. Some references for this topic are [Br4], [Br5], [E].

At this point, one should also mention the mixed Hodge structure on
H,(X,, C), first constructed by Steenbrink in [Stl], and which has pro-
vided much information on the analytical behavior of a function with a
critical point. Here a fundamental result is the “semicontinuity of the spec-
trum” of Arnol’d, Steenbrink, Varchenko (see [A-V-G], [St 2]). Another
fundamental point is the analytic expression for the intersection form of
cycles on the Milnor fiber through a sequence of “higher residues” found
by K. Saito and studied by Varchenko, Kashiwara and M. Saito. In all these
constructions, the interpretation of the complex homology H,(X,, C) of the
Milnor fibers X,, viewed as a locally constant sheaf of vector spaces on the
punctured disk Dj, as the space of solutions of a differential equation in ¢
(the Gauss-Manin system), and the integral homology H,(X,, Z) as a lattice
(the Brieskorn lattice) in that locally constant sheaf, due to Brieskorn (see
[Br3]), plays a fundamental role; it describes the analytic structure of the
variation of the homology classes of X, with ¢ and the results above must be
understood in this context. This can now, after work of Malgrange, Deligne,
be deemed to be a part the theory of @-modules (see [Ph2]).

Generalizations. The following generalization of the fibration theorem
is due to Leé:

THEOREM 1 (L¢, [Lé3]). Let beaneighborhood of 0in CV, and X C @
be a closed complex analytic subset of % containing 0. Let f: U — C be a
holomorphic function such that f(0) = 0. Then there exists a semi-analytic
subset P as above in the (e, n) plane such that for (¢, n) € P, the map f
induces a topological fibration

XNB.Nf'(D}) — D

In particular, one can define vanishing cycles for f on X as the elements
of the homology of this fiber, and build from this a sheaf of vanishing cycles.
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2. Singularities and spheres

In 1961 Mumford published the striking theorem that a normal point on
a complex surface S near which § is a topological manifold (which is the
case if the link is a topological sphere) is a nonsingular point (see [Mu]);
Hirzebruch decided to study the higher dimensional case.

Around 1964 Pham, computing the variation of integrals representing
the amplitude of diffusion of interacting particles as a function of their
energy-impulsion, was led to study the monodromy of polynomials of the
form

Xy 4+ x
and he gave an explicit representation of the Milnor fiber, in this case
diffeomorphic to xg" +--4xg" =1, as a join. Iwill not go into this here, but
only recall (see [Phl1]) that the Milnor numberin thiscaseis u = ]—[g (a; —1)
and the characteristic polynomial of the monodromy endomorphism 4, is

A= ] Ct—wy-...-wp)
W€ Mg, —{1}

If we denote by K(ao, - .. , a,) the corresponding Milnor link, we find that
for K(2,...,2,3) we have:

A)=t*—t+1  fornodd

A =t>+1+1 for n even
So forn odd, A(l) =1and K(2,...,2,3) is a topological sphere of dimen-
sion2n—1=1,5,9,13,.... In dimensions 1 and 5 it has to be a standard
sphere, but in dimension 9 one gets an exotic sphere, so that

(xg + x7 +x3 + x2 +x; + x2 =0) NS

1s an exotic 9-sphere. Indeed (see [Mil]), whenever the differentiable
manifold K is a topological sphere, since it is the boundary of the Milnor
fiber which is a (n — 1)-connected parallelizable manifold, it belongs to the
subgroup bPy, C ®2,_; of the group ®,,_; of C* manifolds which are
topological (2n — 1)-spheres, consisting of those elements which bound a
parallelizable 2n-manifold.

It follows from the A-cobordism theorem that the diffeomorphism type
of K is completely determined

e by the signature of the intersection pairing
H,(X;,Z) @ H,(X,,Z) > Z if n is even
e by the Kervaire invariant ¢(X,) € Z/2Z if n is odd.
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By a result of Levine [Le] the characteristic polynomial A(7) of the mon-
odromy endomorphism completely determines the Kervaire invariant, so
that for n odd it determines the differentiable structure of the link K of
an isolated singularity when K is a topological sphere. Since the charac-
teristic polynomial of the monodromy endomorphism corresponding to a
Pham-Brieskorn polynomial x;° +- - - +x5" has been computed as a function
of ap, ... ,ay (see above), this determination of the diffeomorphism type of
K 1s crucial for the proof of the results which follow.

It was known ([K-M]) that cardinality of bP2; < 2 if k is odd, and that
bP4m 1s always cyclic, of order

4B
— 1) x numerator of —~
m

Om

2 —¢, 22m —4(22m-1

where B, is the m" Bernoulli number, €,, = +1, and €, = 1 if m is odd.
For n even, say n = 2m, Brieskorn proved the following:

THEOREM 2 (Brieskorn, [H1], [H2], [Brl], [Br2]).

(@) Thelink K(2,...,2, p,q) C $*"*! with 2m — 1 exponents equal to 2,
and p, g coprime odd numbers, is a topological sphere of dimension
4m — 1 belonging to the subgroup bPsy, C Q1.

(b) In particular

K@,...,2,3,6k—1)=(=1)"kgm,

where g, is an element of bP4, ofindex 8 andfork =1,2,... , 0 /8
one obtains the on, /8 different spheres of bP4p,.

(¢) There is a similar result for odd n, so that every odd-dimensional
differentiable manifold which bounds a parallelizable manifold and is
a topological sphere is diffeomorphic to a Milnor Link K(ay, ... , a,).

Soforn=4,k=1,2,...,28, thelinks K(2, 2,2, 3, 6k — 1) give us the 28
classes of 7-spheres in bPyg.

Forn=6, k=1,2,...,992, the links K(2,2,2,2,2, 3,6k — 1) give us the
992 classes of 11-spheres of bP;. For any odd n such that bP3, # 0, the link

K2,...,2,3)
e’

n times

is the exotic element.
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The study of the topological, differentiable, or metric structure of the
link K has also provided invariants of the singularity, as in the work of
W. Neumann and J. Seade: W. Neumann showed in [N] that for normal
complex surfaces (for example hypersurfaces in C* with an isolated singu-
larity), the oriented homeomorphism type of the link K determines the
topology of a resolution of singularities. In many cases, 71(K) suffices. This
is a beautiful chapter of the study of three-dimensional topology, closely
connected to the work of Waldhausen. Note, however, that this is much
weaker than determining the local topology in C? of the surface near the
singular point (we will sce more about this below; see also [D1], [E-N-S],
[Se], and [W]).

The problem of determining which (n — 2)-connected differentiable
manifolds of dimension 2n — 1 bounding parallelizable manifolds occur
as links of isolated hypersurface singularities, is not solved except for plane
curves (n = 1); see [D1]. Some lens spaces, for example, appear as links
(= intersection with a small sphere centered at a singular point) of com-
plex singularities, but not of hypersurfaces. Moreover, the links may well
be diffeomorphic without the singularities being equivalent, and another
question is how much information the link K by itself, and the embedding
K C $*"*!, respectively, contains about the singularity (X, 0).

The case of plane curves (n = 2) already displays this phenomenon;
all irreducible plane curve germs have a link diffeomorphic to S!, but it
is the embedding of this knot in 8 as a knot which determines the local
topology of the germ. For general plane curve germs, the relationship
between the link of the singularity, its local topology, the Milnor fiber and its
monodromy, the Puiseux characteristic exponents of the parameterizations
of the branches (= analytically irreducible components) of the curve, its
resolution of singularities and algebraic features of the local ring, are rather
well, but not completely, understood. One outstanding question was posed
by Milnor:

QUESTION 3 (Milnor, [Mil]). Is it true that the gordian number of the
link of a germ of a plane curve is equal to the “§ invariant” of the singularity?

The & invariant of a plane curve defined near 0 by f(x,y) = 0 has
many equivalent algebraic definitions, but I choose the following: it is the
maximum number of singularities which may appear in the same fiber of
an arbitrarily small deformation f(x, y) +€g(x, y, €) of the map f, tending
to 0 with €. See [B-W] for more information.
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This question has apparently been answered affirmatively recently. It has
very interesting higher dimensional analogues.

3. The Monodromy

Milnor investigated the monodromy not only because its characteristic
polynomial gives the discriminant of the intersection pairing on the Milnor
fiber and therefore a way of determining whether the link X is a topological
sphere, but also because the monodromy is a fundamental object in geome-
try. In the sixties, several authors had begun the study of the monodromy of
a family of degenerating algebraic varieties, notably Landman, and Clemens
and Grothendieck who used resolution of singularities of the singular fiber
in a 1-parameter degenerating family G: X — D to study the monodromy
of the general fiber X, under circulation of t around 0 € D. The fact that
Milnor put the local approach in a clear framework opened, in this direction
also, a whole array of new problems on the monodromy, which had hitherto
been studied almost exclusively in a global setting (in the fibers).

For example, if we denote by F; the set of points of X; fixed by the iterated
diffeomorphism h/, the zeta function of the monodromy

o j
£(s) =exp(§ :x(fv}-)“"—.)
j=1 /

is well defined for a sufficiently small ball B, and r <« €.

Brieskorn in [Br3] interpreted the monodromy as the monodromy of a
local system on C, the (locally constant) sheaf of solutions of a differential
equation, the Gauss-Manin connection associated with the Milnor fibration.
He also showed that the eigenvalues of the local monodromy are roots of
unity. This is equivalent to the fact that the monodromy is quasi-unipotent:
for some integer £ the monodromy endomorphism A, of H, (X, C) satisfies

(h* —10)"*' = 0.

Le also proved, in [Lé7], the generalization of this monodromy theorem
to the monodromy deduced from his fibration theorem quoted above; the
integer n is then the dimension of the fiber 7 cx.

He also proved that the monodromy associated to an analytically irre-
ducible analytic function of two variables f(x, y) is unipotent. In the oppo-
site direction, Malgrange in [M] gave an example showing that the exponent
n + 1 actually occurs as minimal exponent of nilpotency.
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Moreover, one can find a representative (up to isotopy, that is) of the
monodromy which has no fixed point, as was shown by Lé in [L.e4].

A’Campo showed how to compute the zeta function of the monodromy
from the numerical data associated to a resolution of singularities of the
hypersurface f = 0. Later Thom and Sebastiani, probably motivated by
Pham’s construction of the Milnor fiber of his polynomials, proved that if
we consider two isolated singularities of hypersurfaces, written in different
variables, say f(xo,...,xy) and g(wo, ..., Wy), then the Milnor fiber of
f(xo,...,xn) + g(wo, ..., wn) is topologically a join of the Milnor fibers
of f and g, the homology of this Milnor fiber is the tensor product of
the homologies of the Milnor fibers of f and of g, and the Monodromy is
the tensor product of their Monodromies. This turned into a very useful
tool for the computation of monodromies and intersection matrices. The
Thom-Sebastiani result was extended to non-isolated singularities by Oka-
Sakamoto, and further extended by Deligne.

4. The Milnor number as a topological invariant

Now let us go back to the homology of X, in the isolated singularity case.

Saying that the singularity is isolated is equivalent, by Hilbert’s Nullstel-
lensatz, to saying that some power of the maximal ideal m = (xo, ..., xp)
of the local ring 6,1 = C{xp, ..., x,) is contained in the jacobian ideal
i(f) = (@f/oxo,...,0f/0x,)0,41 which defines the critical locus of the
map f. Therefore the Milnor number, which we defined as the dimension
(as a complex vector space) of the Jacobian algebra

Ont1/i(f) = Clxo, ..., xa)/(Bf /0x0, ..., 8f [0xn)

of f at0is finite, and clearly grows with the complexity of the singularity.

It is natural to ask how sensitive this number u is to the local topology of
the map f, or of the fibers Xy or X;. To make things more precise, let us
define an equivalence relation between germs of hypersurfaces:

DEFINITION 4. Two germs of hypersurfaces (X1, x;) and (X2, x3) in C"*!
have the same topological type if they have representatives (X,x;) C
(U1,0) C (C*"1,0) and (X2, x2) C (Uz,0) C (C"*1,0) , where X; is closed
in U;, such that there exists an homeomorphism ¢: (U,0) — (V,0) such
that ¢(X1) = X».
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Similarly, two germs of maps f1, f>: (C"*1,0) — (C”,0) have the same
topological type if they have representatives f;: (U;, 0) — (V;, 0) which are
conjugate by homeomorphisms of the (U;, 0), (V;, 0).

It is not difficult to check that if fi and f, have the same topological
type at 0, then for small enough representatives (i.e., in Milnor balls) so
do their fibers X; ¢ and X3¢ (which are both contractible anyway), as well
as their “general fibers” X, and X;,. In particular, if two germs of maps
fi, f2: (C"1,0) — (C,0) with isolated singularities have the same topo-
logical type, they have the same Milnor number. Lé has also shown (see
[Le3]) that in this case, the local monodromies on the homology groups
H"(X;,, Z) are conjugate endomorphisms. Easy examples show that wo
isolated singularities of hypersurfaces may well have the same Milnor num-
ber and be topologically inequivalent. We shall see below, however, that
in an analytic family of isolated singularities, the constancy of the Milnor
number has strong consequences.

5. The Milnor number as a topological and algebraic invariant

An important point is that the Milnor number is a topological invariant
defined algebraically.

In contrast, consider the multiplicity of a hypersurface at a point, which
we may assume to be the origin; in this case, the multiplicity of the origin
as a singular point of a hypersurface f = 0 is the order m of the power
series f at 0, i.e,, the degree of the homogeneous polynomial of lowest
degree appearing in the Taylor expansion at the origin: f(xp, ..., x,) =
fm(xo, ... . Xn) + fr1(x0, ... , xp) + -+ -. The multiplicity at the origin of
the hypersurface may also be defined as follows: for a sufficiently small €,
a direction of line £ € P, viewed as a linear map £: (C"*!,0) — (C"*, 0), of
sufficiently general direction, and a sufficiently general point t € C" with
0 < |t| < €, the line £71(¢) of direction £ intersects Xy N B¢ in m points.
Since this number of points is equal to the topological Euler characteristic
of the intersection, we have:

m=xXoNe @) NB,).
The multiplicity is also defined in a purely algebraic way: Let Ox,o =

C{xo, ..., xn}/(f) denote the local algebra of the fiber Xy at the origin,
and m its maximal ideal; then for large v the dimensions of the complex

104



A BOUQUET OF BOUQUETS FOR A BIRTHDAY

vector spaces O, o/m" coincides with the values of a rational polynomial of
degree n, the leading term of which is m - (v" /n!). This construction extends
naturally to define the (Krull) dimension Dim O of a noetherian local ring ©
(e.g., an analytic algebra), as the degree of the polynomial and its multiplic-
ity as the coefficient of 1" /n! in the polynomial giving length, O/m" for large
v. It also extends naturally to associate an integer eg(a) to any ideal g of a
noetherian local ring O such that the length 0/q is finite; this is the multi-
plicity in the sense of commutative algebra of the ideal g in 0. If the ring O
is Cohen-Macaulay, which is the case for a ring of convergent power series,
and if the primary ideal o can be generated by exactly DimO elements,
which is true for the jacobian ideal, then we have eg(a) = lengths(C/a),
where the length is the length as a 0-module, which in our case, since O is
a C-algebra, is just the dimension as a vector space of O/q. Finally, setting
Ons1 = Cixo, ..., xp}, we have the equality

ee,,, (i(f) = u" (X, 0).

This is useful since, although the Milnor number is defined algebraically as
the dimension as a complex vector space of the “jacobian algebra” associated
with the map f at the origin, from the algebraic viewpoint, even to check that
it depends only on the germ at 0 of the zeroset f = 0 is not obvious; one has
to show that if we replace f € C{xop, ... ,x;) byuf, whereu € C{xo, ... , x,)
is an invertible element, i.e., #(0) # 0, the dimension as a complex vector
space of the jacobian algebra does not change. A natural way to do this
begins with the remarks that this dimension is also the multiplicity, in the
sense of commutative algebra, of the jacobian ideal {(f) in the local ring
C{xg, ..., Xn}, and that f is “almost” in the ideal j(f) in the sense that for
p large enough, we have fi(f)P C i(f)P*! (this is one way of expressing
the fact that Euler’s relation for homogeneous polynomials (which is the
case p = 0) is true asymptotically for arbitrary power series f € m). This
is similar to the fact used near the beginning of section 1 that the limits of
secant lines from 0 are in the tangent cone. The result then follows from the
stability properties of the multiplicity, which imply that, since u is invertible,
the multiplicity of the ideal (ug{— + fg—f:) is equal to that of the ideal {(f).

Note that some authors use the unfortunate terminology “multiplicity”
of f at 0 for the Milnor number; if one wants to speak of multiplicity, then
“Jacobian multiplicity” would be acceptable for the Milnor number.

In any case, Zariski asked the following question:

QUESTION 5 (Zariski, [Z1]). Is the multiplicity of a germ of hypersurface
at a point an invariant of the local topological type-
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Exceptin the case n = 1, or very special cases (e.g., if one of the hypersur-
faces has multiplicity 2), the answer is not known. A positive answer would
make the multiplicity a topological invariant defined algebraically, just like
the Milnor number.

Instead of considering two hypersurfaces and trying to understand what
it means for them to have the same Milnor number or the same multiplicity,
one may consider an easier question: Let F(v; xp, ..., xp) € C{t; xp, ... , X}
be a convergent power series satisfying F(v; 0, ... ,0) = 0 and thus defining
a germ at 0 of an analytic family of germs (X,, 0) C (C"t', 0). Assume that
for a small representative, the Milnor number u(X,, 0) is independent of v;
does it imply that the topological type is also independent of v? This was
proved by Lé and Ramanujam under a dimension restriction:

THEOREM 6 (Lé-Ramanujam, [L-R]). In an analytic family of isolated
singularities of analytic hypersurfaces of dimension n # 2, the constancy of
the Milnor numbers of the fibers implies the constancy of their topological

type.

The assumption n # 2 is needed because the proof uses the A-cobordism
theorem. To remove this assumption is an open problem. The main diffi-

culty of the proof is the fact that in an analytic family F(v; xq, ... ,x,) = 0,
although a Milnor sphere S, for the special fiberF (0; xo, ... , x,) = O re-
mains transversal to F(v; xg, ..., x,) = 0 for sufficiently small |v| by the

openness of transversality, it may no longer be a Milnor sphere there; there
may be non-transversal spheres of smaller radius. So, for small v, the fiber
F(v; xo, ... ,xp) =t NS, for small ¢ is diffeomorphic to the Milnor fiber of
F(0; xp, ... , x,) but is not necessarily a Milnor fiber of F(v; xp, ..., x,). A
key step of the proof is to use the assumption “u constant” to see that for
small v and ¢ the part of the fiber F(v; xg, ... , x,) =t contained between a
Milnor sphere S¢, and the sphere S, is an A-cobordism. Then one applics
the A-cobordism theorem.

Thus, the following question is weaker than Zariski’s question on the
topological invariance of the multiplicity:

QUESTION 7. Is the multiplicity constant in an analytic family of germs
of hypersurfaces with isolated singularities and constant Milnor number?

Except for families of curves (see [Lel]), this question is also unsolved.

Now it happens that there is a way of putting both the Milnor humber
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and the multiplicity in a sequence of numbers attached to the analytic
isomorphism type of a germ of hypersurface.

The basic remark is geometric: by the general finiteness theorems of
Thom and Whitney, given any analytic family of germs of complex (or real)
analytic spaces, there exists a strict analytic subset S of the parameter space
T such that for ¢ ¢ S, the germs X (¢) are all topologically equivalent.

Given a germ (X, 0) C (CV, 0), we can consider the family of the inter-
sections (X N H, 0) of X with k-codimensional vector subspaces of H C CcV,
parameterized by the appropriate Grassmanian G(n, k). There is a strict
algebraic subspace T C G such that for H ¢ T, all the reduced (i.e., set
theoretic) intersections ([X N H], 0) have the same topological type. In
particular, if (X, 0) is a reduced hypersurface germ, or a reduced complete
intersection, for H ¢ T the intersection (X N H, 0) is reduced, and all these
germs have the same topological type, so the topological type of a general
linear section of a germ is well defined.

Therefore, the Milnor number n"™(X,0) ofa general hyperplane section
of a hypersurface X ¢ C"*! is well defined; it is finite if and only of the
singular locus of the hypersurface is of dimension < 1.

So if we have a germ of a hypersurface (X,0) C (C"*!, 0) with isolated
singularity, we can associate to it the sequence of the Milnor numbers of its
general plane sections of all dimensions:

pP (X, 0 = ("X, 0, (X, 0), ..., nP (X, 0), (X, 0))

The number u) (X, 0) is the Milnor number of the restriction of f toa gen-
eral plane of dimension i through the origin. Note that pW(X,00=m—1
where m is the order of the series f at 0, or the multiplicity at 0 of the hyper-
surface f = 0, and it is convenient to set u{? (X, 0) = 1. We shall see below
that this whole sequence 1s an analytic invariant of the germ (X, 0). Itis not,
however, an invariant of the topological type, but if we slightly strengthen
the notion of topological type to mean the equality of the topological types
of general plane sections of all dimensions, then w™ (X, 0) is an invariant of
this. This being seen, the main point is that the constancy of 4™ (X,,0) is a
necessary and sufficient condition for the total space of a family ¥ = | X,
of germs of hypersurfaces with isolated singularities to satisfy the Whitney

conditions along its singular locus. Let F(zg,z1,...,2Zn5 V1, ..., %) = 0
define an analytic family & C C"*' x C* of germs at 0 of hypersurfaces
(F € Cl{zop,z1, ..., Zp3 U1, ..., Uk}, with F(O, ... ,0, v,..., ) = 0) which

means that ¥ = {0} x C¥ is contained in £. We have:

107



BERNARD TEISSIER

THEOREM & (Teissier, Briancon-Speder, [T2], [B-S], [T8]). In an analytic
family of germs of hypersurfaces with isolated singularities, the constancy of
the sequence n*(X,, 0) is equivalent to the fact that the pair of strata ¥\ Y, Y
satisfy the Whitney conditions in a neighborhood of the origin.

Let me recall that a pair of locally closed nonsingular disjoint analytic
subspaces Z, Y of some complex space X, such that Y is contained in the
closure of Z, is said to satisfy the Whitney conditions at a point y € Y if
for some local embedding (X, y) C (CV, 0) we have the following property:
For all sequences (z;, y;) of points of Z x Y, tending to y, if we consider
the secant lines Z;y; in CV and the tangent spaces Tz ;,, any limits (¢, T) €
PY~! x G(N, dim Z) of their directions satisfy £ C T,

An important concept for the sequel is that of Whitney stratification of a
complex analytic space X it is a locally finite partition

X=UXO,
o

of X into nonsingular analytic subspaces X, such that the closure X, of
each of them is a closed complex subspace of X, as well as X, \ X, and
whenever X, ﬂXTg # @, then X, is included in XT; and at each point of X,
the pair of strata (Xg, X, ) satisfies Whitney’s conditions. By a fundamental
theorem of Thom-Mather ([Mat]) the Whitney conditions imply that each
Xg, and in particular X itself, which is a locally finite union of Xg’s, is locally
topologically trivial along each X,,.

Coming back to hypersurfaces with isolated singularities, it is a natural
question to ask, for an analytic family (X,),ep of hypersurfaces with isolated
singularity at 0, what the difference is between constancy of the topological
type, which according to the [.é-Ramanujam theorem is equivalent, at least
for n # 2, to “u"+tD(X,) constant”, and the Whitney conditions, which
according to the theorem just quoted are equivalent to “u*(X,) constant”.
I had optimistically conjectured in 1972 that constancy of the topology
implies Whitney conditions which gives, numerically, the slogan “u constant
implies u* constant”; a counterexample was found in 1975 by Briancon and
Speder ([B-S1]).

These results show that the sequence of Milnor numbersis a rather precise
topological invariant.

To show that it is also a good algebraic invariant, one may quote the results
on the “simultaneous resolution” of families of curves and surfaces f: X —
D. A (very weak) simultaneous resolution is a resolution 7 : X’ — X of the
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singularities of X (i.e., the map m is proper, bi-meromorphic, isomorphic
over the nonsingular part of X, and X’ hasnosingularities), such that for any
t € D, themap X, — X, induced on the fibers is a resolution of singularities
of X, (in general, even if X' is nonsingular, X may be singular, and also
not bi-meromorphic to X,). It follows from [Lél], [T5] and the theory of
equisingularity of Zariski that an analytic family of germs of plane curves with
constant Milnor number has a simultaneous resolution (itis even “strong” in
the sense of [T5]). Beautiful results in varying degrees of generalities due to
Laufer ([Lal]), Vaquié ([V]) and Kollar and Shepherd-Barron ([K-S]) have
extended this to families of surfaces with isolated singularities: “u constant
implies simultaneous resolution”. Laufer has even proved (in [[.a2]) aresult
which implies that “u™* constant” implies strong simultaneous resolution
for a family of surfaces in C? with isolated singularity. The case of higher
dimensions is completely open.

In any case, it was the necessity of giving an algebraic definition to the
sequence 1™ (X, 0) which led me to introduce in [T2] the sequence of mixed
multiplicities of two (or several) primary ideals in a noetherian local ring,
which in a way “interpolates” between the multiplicities of these ideals. The
p@(X, 0) appear as mixed multiplicities of the jacobian ideal 1( f) associated
to an equation f = 0 of (X, 0) and the maximal ideal m of 0, 1;. The theory
of mixed multiplicities has now become a chapter of commutative algebra
(see [R]).

Coming back to a more topological definition, of u“‘) (X, 0) for example,
one finds the following interpretation:

Consider the polar curve P,(f,£) c C"t! of a map f(zo, 21, ... ,2n):
C"*! — C with isolated singularity, with respect to a linear form £; it may
be defined in this special case (see [T7]) as the critical locus of the map
(f, £): C*"t! — C2?, hence is defined, in coordinates such that £ = z, by the

equations
of _ _8f

= =0.
821 dZn

Then we have the following

THEOREM 9 (Teissier, [T2], [T7]). Forasufficiently general linear form ¢,

(a) the multiplicity at the origin of the corresponding polar curve is equal
to the Milnor number of a general hyperplane section,

mo Py (f, €) = u™(X,0).
(b) The hyperplane £ = 0 is transversal at 0 in C"**! to the curve P,(f, £).
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The statements of this theorem can be generalized to the wider context
of the theory of relative polar varieties of maps f: X — C, without the
assumption that f has an isolated critical point in a nonsingular space.
Even statement (b), a special case of the theorem of transversality of polar
varieties ([T7], [T8]), has, despite its apparent inevitability, many important
consequences ([Lo], [T8]).

As a corollary in our special case, we have that the image in the plane C2
of the polar curve by the map ¢: C"*! — C? given by (A = f,v = £), i.e,,
the polar image A(f; £) of the map f relative to the linear form £ (called the
Cerf diagram by Thom and by L&), is of multiplicity £ (X, 0) at the origin,
and transversal to the line £ = 0, which means that the tangent cone at the
origin of the plane curve A(f; £), which is (as a set) a union of lines, does
not contain v = 0, or equivalently, intersects v = 0 only at 0. In fact, in this
case, the curve A(f; £) is even tangent to the line A = 0.

A

A(=f)
D’? A(f’ l)
0 —» v (=
D,
multiplicity ™ \

Now we can argue exactly as in the proof of the fact that the Milnor fiber
is a bouquet of p.(”“)(X, 0) spheres of dimension # 4 1 to show;

THEOREM 10 (L.é, [Le6]). The intersection
(f(ZOS"' ’Zﬂ) :0)0(8(20,,,, ’Zﬂ) :t)mBG

has, for0 <€ <€, 0 < |t| < n « € and £ sufficiently general, the homotopy
type of a bouquet of 1™ (X, 0) spheres of dimension .

Other results indicating that the sequence of Milnor numbers contains
much information are the following:
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Recall that the tangent cone at 0 of the hypersurface f(xg,...,x,) =0
is by definition the cone fn(xq, ..., Xxn) = 0 where fy is thc homogencous
polynomial made from the terms of lowest degree m (the multiplicity) ap-
pearing in the Taylor expansion of f. Then we have:

PROPOSITION 11 (Teissier, [T2] + [T6]).

(i) The Milnor numbers of the general hyperplane sections of a hyper-
surface satisfy the inequalities
(n+1) (n) (1
? > H > > ‘U'_O___
am = =) 120

(ii) A hypersurface with isolated singularity X has the same topological
type as its tangent cone (which is then reduced, with an isolated sin-
gularity at the vertex) ifand only if all these inequalities are equalities,
i.e., the sequence u®™ (X, 0) is such that (X, 0) = (uV(X, 0))'; its
singularity is then resolved by blowing up the origin.

PROPOSITION 12 (Teissier, [T2]). Given a hypersurface with isolated sin-
gularity (X, 0) C (C"*!,0), a hyperplane H C C"*! through the origin is a
limit direction of tangent hyperplanes to X at nonsingular points near 0 if
and only if the Milnor number of the intersection X N H is larger than the
Milnor number of the intersection of X with a general hyperplane, which is
n"(X,0).

5.1 The invariant "tV (X,0) + (X, 0). It has turned out that the
sum of the Milnor number associated to an isolated singularity and of the
Milnor number associated to a generic hyperplane section of this hypersur-
face appear in a number of apparently unrelated problems.

Consider a linear map £: C"*! — C and its restriction to a hypersurface
with isolated singularity (X,0) C (C"*!,0). Let H = ker£. If the intersec-
tion (X N H,0) has an isolated singularity, such a map has a discriminant,
which is a complex subspace of (C,0), therefore in our case is just the
origin counted a certain number of times Ay. This number is precisely
pw "X 0) + (X N H,0). Therefore, if the hyperplane H is not a limit
of tangent hyperplanes to X at nonsingular points we have

Ae = (X, 0) + u™(X,0).
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This is equivalent (see [T2]) to the fact that the multiplicity in the local ring
Oyx o of the ideal {'(f) = i(f)0Ox ¢ is given by

ecy (i () = u" (X, 0) + (X, 0).

It also implies that if we consider a projective hypersurface V C P"*! with
isolated singularities, the diminution of class imposed by a singular point
x € Vis gDV, x) + u™(V, x); in other words, if V is of degree d,
the class d of V, which is the degree of the projectively dual hypersurface
V c Pt is given by the formula

d=dd-1"- Y ("W, x)+u",x).

xesing V

See [T5], [Lau]. This has recently been extended to a large class of projec-
tive varieties with isolated singularities by Kleiman (see [K]).

By a result of Langevin ([L]), if f = 0 is an equation for (X,0) C
(C"t1,0), the limit of the integral of the curvature of the Milnor fibers
f~1(#) inside balls of radius €, as both ¢ and € tend to zero, with |¢| sufficiently
smaller than ¢, is given by

Vol(§*"+!
lim IKI — _O(_Z_)(u(nJrl)(X, 0) + u(n)(X’ 0))
e VBN

Moreover, many of these results have been generalized; the algebraic
definition of the Milnor number and the connection of the constancy of
the invariant £ (X,, 0) with the Whitney conditions have been generalized
recently by Gaffney (see [G]) to isolated singularities of complete inter-
sections, using the concept of multiplicity of a submodule of a finite free
module due to Buchsbaum-Rim. The theory of mixed multiplicities has also
been extended to these modules by work of Gaffney, Rees (unpublished)
and Kleiman-Thorup (to appear). The definition of the Milnor number
has also been extended by Parusinski to non-isolated singularities (see [P],
[P-P]). The expression of u*+1(X, 0) + ™ (X N H, 0) as the multiplicity of
a discriminant has been generalized by Lé (see [L€2]) to isolated singulari-
tics of complete intersections and more recently extended to the language
of Lagrangian cycles by Sabbah ([S]). The formulas connecting integrals
of curvature and polar multiplicities were generalized by Loeser in [[.0].
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6. Further generalizations

We have seen the Milnor number given as the rank of a homology group,
or an Euler characteristic (up tosign and 1), as the local degree of the gra-
dient map grad f: C"*! — C"*! oras the intersection number at the origin
of all the hypersurfaces defined by the vanishing of the partial derivatives
of f. We also saw it appear as the multiplicity at the origin of a discriminant
curve and as the multiplicity of the ideal generated by the partial derivatives
of f in the ring of power series.

Now there is yet another avatar of the Milnor number: We may view the
differential df of our function f as a section of the cotangent bundle of
C"*+! defined near the origin,

T*Cn-l-l — Cn—+-1

Let us denote by Ay the image of this section; it is a lagrangian subvariety
of T*C"*!, It is clear from the definition of intersection numbers that:

REMARK 13. The Milnor number u"+V(f, 0) is the intersection number
at the point (0,0) of Ay and the zero section T,,,C"*! of T*C"*!, in the
space T*C"+1,

Deligne saw that this remark opened a far-reaching pathway (see [Lé 7]).

To say that 0 is not an isolated singularity is to say that Ay and the zero
section of T*C"*! havc excess intersection. In this case one knows how to
associate an intersection cycle ) my[C,] where the C, are subvarieties of the
intersection Ay N Té‘,,HC”*', which can be described rather explicitly by a
method due to Vogel ([Vo]). The image of this cycle in C"*! is called by
D. Massey (see [Mal], [Ma2]) the Lé cycle of the singularity at the origin; it
is contained in the critical locus of the map f, and its numerical characters
generalize the Milnor number: they can be used to describe the Milnor
fiber by a handle decomposition specified by these characters, and Massey
has shown that numerical conditions on the intersection multiplicities of
the components of the Lé cycle with linear subspaces of C"*! generalize the
i constant condition of a family f, of isolated critical points and imply the
constancy of the local Monodromy of the germs (f,,0). These cycles are
closely connected with the polar varieties.

The concept of a function f: C"*! — C with an isolated singularity was
generalized to the case of an arbitrary complex space by L€ as follows (see
[Le8]):
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Let X = J, X, be a Whitneystratified complex analytic space and
f: X — C a complex analytic function; it has at a point x € X an iso-
lated singularity if x has a neighborhood U in X such that the restriction
f1Xy to each stratum has no singularity on X, N U \ {x}. Note that this
depends on the stratification: we may add a nonsingular stratum T con-
tained in X, such that f|T does not have an isolated singularity at a point
x € T. However, since there exists a unique minimal Whitney stratification,
(see [T8]) we can give a meaning to the concept of a function with isolated
singularity on any (reduced) complex analytic space.

If we imbed locally (X, x) in (CV,0), this notion is equivalent to a co-
normal condition: Let V be a neighborhood of 0 in CV in which X is
closed, and let us consider an analytic function f: V — C extending the
restriction f|V N X. By Whitney’s condition, the union of the (nonsingular)
conormal spaces |J, Ty ~,/V is closed in the cotangent space T*V, and
the isolated singularity condition is equivalent to the fact that the image
A C T*V of the ditferential df and Ue T, vV intersect only at the point

(x,df (x)) € T*V.

A fundamental example of an isolated critical point of a function on a
stratified space is that of a Morse singularity: the point x is a Morse singularity
if the intersection of Ay and {J, T§ ,,V is a transversal intersection of

o

nonsingular spaces at the point (x, df(x))); this implies in particular that
the point (x, df(x)) lies in only one of the Lagrangian subvarieties T}?anv v,
corresponding to the stratum X,, which contains x and does not lie in the
closures of any of the other T;anv V. If df(x) # 0, i.e.,if df has rank | at x,
then itskernel is tangent to X, and is not a limit at x of tangent hyperplanes
to the other strata. Ifdf(x) = 0, the point we consider is (x, 0) and is in the
closure of all the conic Lagrangian varieties Ty V. Soin this case x is a
Morse point only if X has only one stratum, i.e., is nonsingular at x, and f
has at x a Morse singularity in the ordinary sense. Goresky and MacPherson
have developed (see [G-M]) a Morse theory for stratified spaces, which uses
the fact that on a stratified space, Morse functions in this sense are dense.
An important object in the study of the topology of stratified spaces and in
their Morse theory is the following, introduced in [I-T] and [G-M], and
called in [G-M] the complex link of a stratum.

Let X = |, Xy be a Whitney-stratified complex analytic space, and x
a point of X. Let us fix a local embedding (X, x) C (CV,0) of X near
x, and an affine space T C CV through 0, of dimension equal to the
codimension of the stratum X,, containing x and transversal to that stratum.
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Let B.(x) denote the ball with center x and radius € in CV. It can be shown
(c.f. [L-T], [G-M]) that for a sufficiently general linear form £: (CV,0) —
(C¥m X4 +1 (), the homotopy type L(X, X4,) of the intersection B¢ (x) N H, N
X, where H, = £71(£(x) + 1) is, for sufficiently small € and 0 < |t| < e,
independent of all the choices made, and an analytic invariant of the germ
(X, x), which moreover is constant as x varies on a Whitney stratum. It is
called the complex link of the stratum X, in X.

Complex link

I

Grothendieck in SGA 2 defined the rectified homotopical depth rhd(X, x)
(resp., rectified homological depth rHA(X, x)) of a complex space X at a point
x € X as follows:

DEFINITION 14. One has rhd(X, x) > n (resp., tHd(X, x) > n) if for any
locally closed irreducible complex analytic subspace ¥ of X containing x,
there exists an open neighborhood U of x in X such thatany pointy € YNU
has a fundamental system of neighborhoods Uy such that the topological
pairs (Uy, Uy\Y) are (n—dim, Y —1)-connected (resp., the integral homology
Hiy(Uy, Uy \ ' Y) vanishes for 0 < £ < n —dim, Y — 1). The rectified depth
is the largest n for which such an inequality holds. The rectified depth of X
is the infimum of the depths at the points of X.

By a theorem of Hamm-Lé ([H-L]), to compute the relative homotopical
or homological depth of X, one needs to test the vanishing of relative
homotopy or homology groups at a point of each (connected) stratum of a
Whitney stratification of X.
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It is easy to see that one has the inequalities
dim, (X) > rHd(X, x) > rhd(X, x).

Lé proved the following:

THEOREM 15 (L&, [Lé8]). Let X = |, X, be a Whitney-stratified com-
plex analytic space and x a point of X. The following conditions are equiv-
alent:

(i) The equality rhd(X, x) = dimy(X) (resp., rHd(X, x) = dim,(X) )
holds.

(i) The space X is equidimensional in a neighborhood of x and for any
stratum X, containing x in its closure, a complex Link £(X, X,) has
the homotopy type (resp., the homology) of a bouquet of spheres of
real dimension dim,(X) —dim X, — 1.

Moreover, the equality rhd(X, x) = dim,(X) is equivalent to the following
assertion: The space X is equidimensional in a neighborhood of x and,
given a function f: (X, x) — (C, 0) which has an isolated singularity with
respect to the Whitney stratification, its Milnor fiber (see Theorem 1) has
the homotopy type of a bouquet of spheres of dimension dim, X — 1.

These statements provide a rather complete generalization to the case
of non-isolated singularities of the statements of the first paragraphs, and a
rich supply of Bouquets in analytic geometry.

The spaces which satisfy the last conditions are called Spaces with Milnor’s
property in [L€8] which I shall shorten to Milnor spaces, and they are topolog-
ical analogues of the Cohen-Macaulay spaces (they satisfy vanishing condi-
tions for the constant sheaf instead of the sheaf or holomorphic functions).
In fact, one can prove that spaces which are local complete intersections are
Milnor spaces. For a d-dimensional projective Milnor space V C PV, the
Lefschetz theorem holds with the same bounds as in the nonsingular case:
for a hyperplane H one has (see [H-L]):

m(V,VNH x)=0 forany k < d.

We have the following characterization of Milnor spaces:

PROPOSITION 16 (1., [Lé8]). A reduced complex analytic space X is a
Milnor space if and only if for some Whitney stratification the complex
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link £(X, X4) has the homotopy type of a Bouquet for all strata X, of
dimension 0, and the homology type of a Bouquet for all other strata. This
property then holds for all Whitney stratifications.

I think that it would be worthwhile to develop the geometric theory of
Milnor maps f: X — Y between complex spaces, which are those for which
the local rectified homotopical depth of X at x € X is the sum of the
rectified homotopical depth of Y at f(x) and of the rectified homotopical
depth of f~!(f(x)) at x; they would be the analogues of the flat maps of
algebraic geometers.

Let me note also that the problem of describing the minimal stratification
of areduced complex space which satisfies the local topological triviality of
the closure of each stratum condition along strata in its boundary is still
open.

Conclusion

I have tried to presentsome of the developments to which Milnor’s work in
singularities has significantly contributed. I focused on the introduction of a
geometric framework for the local study of singularities, the introduction of
the Milnor number which became a fundamental invariant in part because
of its triple topological, geometrical (as multiplicity of a discriminant), and
algebraic nature, and the Bouquet theorem which is the first apparition of a
fundamental local property of certain singular spaces, analogousin the sense
of Grothendieck’s SGA 2 to the Cohen-Macaulay property of the structure
sheaf. The original condition of isolated singularity can now be forgotten,
by and large, thanks to the use of Whitney and Thom stratifications.

This presentation is very far from being complete; any reasonably com-
plete presentation would be of book length. One should add much more
material, for example on the theory of equisingularity of Zariski ([Z2]), on
quasi-homogeneous and other special singularities (especially the numer-
ous works on the description of the local monodromy and the Brieskorn
lattice), on the modularity of isolated singular points, the gcometry of the
discriminant of versal deformations and unfoldings, the u-constant stra-
tum of [T1] and their descriptions for special singularities and for those
which are “sufficiently general” among those having a given Newton poly-
hedron, especially by Arnol’d and his school. One should also add to the
last paragraph of this text the description of Whitney conditions in general
by n™-constant type conditions and the connection of the Milnor number
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with characteristic classes of singular spaces. In a more computational vein
one should mention the role of the Milnor number as a measure of codi-
mension of a singularity in Thom and Mather’s theory of unfoldings, and
in the theory of sufficiency of jets.

One could also describe many fundamental developments originating in
the local viewpoint pioneered by Milnor, such as sheaves of vanishing cycles,
mixed Hodge structures on their cohomology, the %-module description
of vanishing cycles by duality, the generalizations of the local Gauss-Manin
connection of Brieskorn, the study of local systems and the relationship
between the rectified homological depth and the perversity (in the sense
of intersection homology) of the constant sheaf. Milnor’s book started a
stream, which is still running along merrily after mixing with many others.
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