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Abstract

This text presents several aspects of the theory of equisingularity of com-
plex analytic spaces from the standpoint of Whitney conditions. The goal
is to describe from the geometrical, topological, and algebraic viewpoints
a canonical locally finite partition of a reduced complex analytic space X
into nonsingular strata with the property that the local geometry of X is
constant on each stratum. Local polar varieties appear in the title because
they play a central role in the unification of viewpoints. The geometrical
viewpoint leads to the study of spaces of limit directions at a given point
of X ⊂ Cn of hyperplanes of Cn tangent to X at nonsingular points,
which in turn leads to the realization that the Whitney conditions, which
are used to define the stratification, are in fact of a lagrangian nature.
The local polar varieties are used to analyze the structure of the set of
limit directions of tangent hyperplanes. This structure helps in particular
to understand how a singularity differs from its tangent cone, assumed to
be reduced. The multiplicities of local polar varieties are related to lo-
cal topological invariants, local vanishing Euler-Poincaré characteristics,
by a formula which turns out to contain as a special case a Plücker-type
formula for the degree of the dual of a projective variety.

Résumé

Ce texte présente plusieurs aspects de la théorie de l’équisingularité des
espaces analytiques complexes telle qu’elle est définie par les conditions de
Whitney. Le but est de décrire des points de vue géométrique, topologique
et algébrique une partition canonique localement finie d’un espace analy-
tique complexe réduit X en strates non singulières telles que la géométrie
locale de X soit constante le long de chaque strate. Les variétés polaires lo-
cales apparaissent dans le titre parce qu’elles jouent un rôle central dans
l’unification des points de vue. Le point de vue géométrique conduit à
l’étude des directions limites en un point donné de X ⊂ Cn des hyper-
plans de Cn tangents à X en des points non singuliers. Ceci amène à

1



Local polar varieties 2

réaliser que les conditions de Whitney, qui servent à définir la stratifi-
cation, sont en fait de nature lagrangienne. Les variétés polaires locales
sont utilisées pour analyser la structure de l’ensemble des positions limites
d’hyperplans tangents. Cette structure aide à comprendre comment une
singularité diffère de son cône tangent, supposé réduit. Les multiplicités
des variétés polaires locales sont reliées à des invariants topologiques lo-
caux, des caractéristiques d’Euler-Poincaré évanescentes, par une formule
qui se révèle avoir comme cas particulier une formule du type Plücker
pour le calcul du degré de la variété duale d’une variété projective.
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1 Introduction

The origin of these notes is a course imparted by the second author in the “2ndo

Congreso Latinoamericano de Matemáticos” celebrated in Cancun, Mexico on
July 20 -26, 2004. The first redaction was subsequently elaborated by the au-
thors.
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The theme of the course was the local study of analytic subsets of Cn, which
is the local study of reduced complex analytic spaces. That is, we will consider
subsets defined in a neighbourhood of a point 0 ∈ Cn by equations:

f1(z1, . . . , zn) = · · · = fk(z1, . . . , zn) = 0

fi ∈ C{z1, . . . , zn}, fi(0) = 0, i = 1, . . . , k.

Meaning that the subset X ⊂ Cn is thus defined in a neighbourhood U of 0,
where all the series fi converge. Throughout this text, the word “local” means
that we work with “sufficiently small” representatives of a germ (X,x).

The purpose of the course was to show how to stratify X. In other words, par-
tition X into finitely many nonsingular complex analytic manifolds {Xα}α∈A,
which will be called strata, such that:

i) The closure Xα is a closed complex analytic subspace of X, for all α ∈ A.

ii) Xα\Xα is a union of strata Xβ , for all α ∈ A.

iii) Given any x ∈ Xα, the “geometry” of all the closures Xβ containing Xα

is locally constant along Xα in a neighbourhood of x.

If by “geometry” we mean the embedded local topological type at x ∈ Xα

of Xβ ⊂ Cn and its sections by affine subspaces of Cn of general directions
passing near x or through x, which we call the total local topological type, there
is a minimal such partition, in the sense that any other partition with the same
properties must be a sub-partition of it. Characterized by differential-geometric
conditions, called Whitney conditions, bearing on limits of tangent spaces and
of secants, it plays an important role in generalizing to singular spaces geometric
concepts such as Chern classes and integrals of curvature. The existence of such
partitions, or stratifications, without proof of the existence of a minimal one,
and indeed the very concept of stratification1, are originally due to Whitney
in [Whi1], [Whi2]. In these papers Whitney also initated the study in complex
analytic geometry of limits of tangent spaces at non singular points. In algebraic
geometry the first general aproach to such limits is due to Semple in [Se].

In addition to topological and differential-geometric characterizations, the
partition can also be described algebraically by means of Polar Varieties, and
this is one of the main points of these lectures.

Apart from the characterization of Whitney conditions by equimultiplicity of
polar varieties, one of the main results appearing in these lectures is therefore
the equivalence of Whitney conditions for a stratification X =

⋃
αXα of a

complex analytic space X ⊂ Cn with the local topological triviality of the
closures Xβ of strata along each Xα which they contain, as well as the local
topological triviality along Xα of the intersections of the Xβ with (germs of)
general nonsingular subspaces of Cn containing Xα.

Other facts concerning Whitney conditions also appear in these notes, for
example that the Whitney conditions are in fact of a lagrangian nature, related

1Which was subsequently developed, in particular by Thom in [Th] and Mather in [Ma].
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to a condition of relative projective duality between the irreducible components
of the normal cones of the Xβ along the Xα and of some of their subcones, on
the one hand, and the irreducible components of the space of limits of tangents
hyperplanes to Xβ at nonsingular points approaching Xα, on the other. This
duality, applied to the case where Xα is a point, gives a measure of the geometric
difference between a germ of singular space at a point and its tangent cone at
that point, assumed to be reduced. Among the important facts concerning polar
varieties of a germ (X,x) is that their multiplicity at a point depends only on
the total local topological type of the germ.

Applying this to the cone over a projective variety V gives a formula for
the degree of the dual variety, assumed to be a hypersurface, which depends
only on the local topological characters of the incidence between the strata of
the minimal Whitney stratification of V and the Euler characteristics of these
strata and their general linear sections. In particular we recover with topological
arguments the formula for the class of a projective hypersurface with isolated
singularities.

The original idea of the course was to be as geometric as possible. Since
many proofs in this story are quite algebraic, using in particular the notion of
integral dependence on ideals and modules (see [Te3], [Ga1]), they are often
replaced by references. Note also that in this text, intersections with linear
subspaces of the nonsingular ambient space are taken as reduced intersections.

We shall begin by trying to put into historical context the appearance of
polar varieties, as a means to give the reader a little insight and intuition into
what we will be doing. A part of what follows is taken from [Te5]; see also [Pi2].

It is possible that the first example of a polar variety is in the treatise on
conics of Apollonius. The cone drawn from a point 0 in affine three-space outside
of a fixed sphere around that sphere meets the sphere along a circle C. If we
consider a plane not containing the point, and the projection π from 0 of the
affine three-space onto that plane, the circle C is the set of critical points of
the restriction of π to the sphere. Fixing a plane H, by moving the point 0, we
can obtain any circle drawn on the sphere, the great circles beeing obtained by
sending the point to infinity in the direction perpendicular to the plane of the
circle.
Somewhat later, around 1680, John Wallis asked how many tangents can be
drawn to a nonsingular curve of degree d in the plane from a point in that plane
and conjectured that this number should always be ≤ d2. In modern terms,
he was proposing to compare the visual complexity of a curve (or surface) as
measured by the number of ”critical” lines of sight with its algebraic complexity
as measured by the degree. Given an algebraic surface S of degree d in affine
three-space and a point 0 outside it, the lines emanating from 0 and tangent to
S touch S along an algebraic curve P . Taking a general hyperplane H through
0, we see that the number of tangents drawn from 0 to the curve S ∩H is the
number of points in P∩H and therefore is bounded by the degree of the algebraic
curve P drawn on S. This algebraic curve is an example of a polar curve; it
is the generalization of Apollonius’ circles. Wallis’ question was answered by
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Poncelet, who saw (without writing a single equation; see [Pon, p. 361 and ff.])
that the natural setting for the problem which had been stated in the affine
real domain by Wallis was the complex projective plane and that the number
of tangents drawn from a point with projective coordinates (ξ : η : ζ) to the
curve C with homogeneous equation F (x, y, z) = 0 is equal to the number of
intersection points of C with a curve of degree d−1. The equation of this curve
was written explicitely later by Plücker (see [Pl]):

(1) ξ
∂F

∂x
+ η

∂F

∂y
+ ζ

∂F

∂z
= 0.

This equation is obtained by polarizing the polynomial F (x, y, z) with respect
to (ξ : η : ζ), a terminology which comes from the study of conics; it is the
method for obtaining a bilinear form from a quadratic form (in characteristic
6= 2).
It is the polar curve of C with respect to the point (ξ : η : ζ), or rather, in the
terminology of [Te3], the projective curve associated to the relative polar surface
of the map (C3, 0)→ (C2, 0) given by (F, ξx+ ηy + ζz). The term emphasizes
that it is attached to a morphism, unlike the polar varieties à la Todd, which in
this case would be the points on the curve C where the tangent line contains the
point (ξ : η : ζ). In any case, it is of degree d− 1, where d is the degree of the
polynomial F and by Bézout’s theorem, except in the case where the curve C
is not reduced, i.e., has multiple components, the number of intersection points
counted with multiplicities is exactly d(d − 1). So we conclude with Poncelet
that the number (counted with multiplicities) of points of the nonsingular curve
C where the tangent goes through the point with coordinates (ξ : η : ζ) is equal
to d(d − 1). The equations written by Plücker shows that, as the point varies
in the projective plane, the equations (1) describe a linear system of curves of
degree d− 1 in the plane, which cuts out a linear system of points on the curve
C, of degree d(d − 1). It is the most natural linear system after that which
comes from the lines (hyperplanes)

λx+ µy + νz = 0, (λ : µ : ν) ∈ P2

and comes from the linear system of points in the dual space P̌2 while the linear
system (1) can be seen as coming from the linear system of lines in P̌2. The
projective duality between P2 and the space P̌2 of lines in P2 exchanges the
two linear systems. The dual curve Č ∈ P̌2 is the closure of the set of points in
P̌2 corresponding to lines in P2 which are tangent to C at a nonsingular point.
Its degree is called the class of the curve C. It is the number of intersection
points of Č with a general line of P̌2, and that, by construction, is the number
of tangents to C passing through a given general point of P2.

In the theory of algebraic curves, there is an important formula called the
Riemann-Hurwitz formula. Given an algebraic map f : C → C ′ between com-
pact nonsingular complex algebraic curves, which is of degree degf = d (meaning
that for a general point c′ ∈ C ′, f−1(c′) consists of d points, and is ramified at
the points xi ∈ C, 1 ≤ i ≤ r, which means that near xi, in suitable local coor-
dinates on C and C ′, the map f is of the form t 7→ tei+1 with ei ∈ N, ei ≥ 1 .
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The integer ei is the ramification index of f at xi. Then we have the Riemann-
Hurwitz formula relating the genus of C and the genus of C ′ via f and the
ramification indices:

2g(C)− 2 = d(2g(C ′)− 2) +
∑
i

ei.

If we apply this formula to the case C ′ = P1, knowing that any compact al-
gebraic curve is a finite ramified covering of P1, we find that we can calculate
the genus of C from any linear system of points made of the fibers of a map
C → P1 if we know its degree and its singularities: we get

2g(C) = 2− 2d+
∑

ei.

The ramification points xi can be computed as the so-called jacobian divisor of
the linear system, which consists of the singular points, properly counted, of the
singular members of the linear system. In particular if C is a plane curve and
the linear system is the system of its plane sections by lines through a general
point x = (ξ : η : ζ) of P2, the map f is the projection from C to P1 from
x; its degree is the degree m of C and its ramification points are exactly the
points where the line from x is tangent to C. Since x is general, these are simple
tangency points, so the ei are equal to 1, and their number is equal to the class
m̌ of C; the formula gives

2g(C)− 2 = −2m+ m̌ ,

thus giving for the genus an expression linear in the degree and the class.
This is the first example of the relation between the “characteristic classes”

(in this case only the genus) and the polar classes; in this case the curve itself,
of degree m and the degree of the polar locus, or apparent contour from x, in
this case the class m̌. After deep work by Zeuthen, C. Segre, Severi, it was
Todd who in three fundamental papers ([To1], [To2], [To3]) found the correct
generalization of the formulas known for curves and surfaces.
More precisely, given a nonsingular d-dimensional variety V in the complex
projective space Pn−1, for a linear subspace D ⊂ Pn−1 of dimension n−d+k−3,
i.e., of codimension d− k + 2, with 0 ≤ k ≤ d, let us set

Pk(V ;D) = {v ∈ V/dim(TV,v ∩D) ≥ k − 1}.

This is the Polar variety of V associated to D; if D is general, it is either empty
or purely of codimension k in V . If n = 3, d = 1 and k = 1, we find the points
of the projective plane curve V where the tangent lines go through the point
D ∈ P2. A tangent hyperplane to V at a point v is a hyperplane containing the
tangent space TV,v. The polar variety Pk(V,D) with respect to a general D of
codimension d − k + 2 consists of the points of V where a tangent hyperplane
contains D, a condition which is equivalent to the dimension inequality. We see
that this construction is a direct generalization of the apparent contour. The
eye 0 is replaced by the linear subspace D!
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Todd shows that (rational equivalence classes of) 2 the following formal linear
combinations of varieties of codimension k, for 0 ≤ k ≤ d:

Vk =

j=k∑
j=0

(−1)j
(
d− k + j + 1

j

)
Pk−j(V ;Dd−k+j+2) ∩Hj ,

where Hj is a linear subspace of codimension j and Dd−k+j+2 is of codimension
d−k+j+2, are independent of all the choices made and of the embedding of V in
a projective space, provided that the D′s and the H’s have been chosen general
enough. Our Vk are in fact Todd’s Vd−k. The intersection numbers arising from
intersecting these classes and hyperplanes in the right way to obtain numbers
contain a wealth of numerical invariants, such as Euler characteristic and genus.
Even the arithmetic genus, which is the generalization of the differential forms
definition of the genus of a curve, can be computed. Around 1950 it was realized
that the classes of Todd, which had also been considered independently by Eger,
are nothing but the Chern classes of the tangent bundle of V .

On the other hand, the basic topological invariant of the variety V , its Euler-
Poincaré characteristic (also called Euler characteristic for short) satisfies the
equality:

χ(V ) = degVd =

d∑
j=0

(−1)j(j + 1)(Pd−j(V ).Hj), (E)

where Pd−j(V ) is the polar variety of codimension d−j with respect to a general
D of codimension j+2, which is omitted from the notation, and (a.b) denotes the
intersection number in Pn−1. In this case, since we intersect with a linear space
of complementary dimension, (Pd−j(V ).Hj) is just the degree of the projective
variety Pd−j(V ).

So Todd’s results give a rather complete generalization of the genus formula
for curves, both in its analytic and its topological aspects. This circle of ideas
was considerably extended, in a cohomological framework, to generalized notions
of genus and characteristic classes for nonsingular varieties; see [H] and [Po,
Chapters 48,49]. Todd’s construction was modernized and extended to the case
of a singular projective variety by R. Piene (see [Pi]).

What we use here is a local form, introduced in [L-T1], of the polar varieties
of Todd, adapted to the singular case and defined for any equidimensional and
reduced germ of a complex analytic space. The case of a singular projective
variety which we have just seen can be deemed to be the special case where our
singularity is a cone.

We do not take classes in (Borel-Moore) homology or elsewhere because
the loss of geometric information is too great, but instead look at “sufficiently
general” polar varieties of a given dimension as geometric objects. The hope
is that the equisingularity class (up to a Whitney equisingular deformation) of
the general polar varieties of a germ is an analytic invariant.3 What is known

2Which he invents for the occasion.
3Indeed, the statement at the end of remark 3.2 in [Te3] should be entitled ”problem” and

not ”theorem”.
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is that the multiplicity is, and this is what we use below.

Since the stratification we build is determined by local conditions and is
canonical, the stratifications defined in the open subsets of a covering of a com-
plex analytic space X will automatically glue up. Therefore it suffices to study
the stratifications locally assuming X ⊂ Cn, as we do here. We emphasize
that the result of the construction for X, unlike its tools, is independent of the
embedding X ⊂ Cn.

2 Limits of tangent spaces, the conormal space
and the tangent cone.

To set the working grounds, let us fix a reduced and pure-dimensional germ of
analytic subspace (X, 0) ⊂ (Cn, 0). That is, we are assuming that X is given to
us by an ideal I of C{z1, . . . , zn} generated say by (f1, . . . , fk), containing all
analytic functions vanishing on X, and also that all the irreducible components
of X, correponding to the minimal prime ideals of C{z1, . . . , zn} which contain
I, have the same dimension d.

By definition, a singular point of a complex analytic space is a point where
the tangent space cannot be defined as usual. However, as a substitute, we can
look at all limit positions of tangent spaces at nonsingular points tending to a
given singular point.

Definition 2.1. Given a closed d-dimensional analytic subset X in an open
set of Cn, a d-plane T of the Grassmannian G(d, n) of d-dimensional vector
subspaces of Cn is a limit at x ∈ X of tangent spaces to the analytic space X
if there exists a sequence {xi} of nonsingular points of X and a sequence of
d-planes {Ti} of G(d, n) such that for all i, the d-plane Ti is the direction of
the tangent space to X at xi, the sequence {xi} converges to x and the sequence
{Ti} converges to T .

How can we determine these limit positions? Recall that if X is an analytic
space then SingX, the set of singular points of X, is also an analytic space and
the nonsingular part X0 = X\Sing X is dense in X and has the structure of a
complex manifold.

Let X be a representative of (X, 0), consider the application (the Gauss map)

γX0 : X0 −→ G(d, n)

x 7−→ TxX
0,

where TxX
0 denotes the direction in G(d, n) of the tangent space to the manifold

X0 at the point x. Let NX be the closure of the graph of γX0 in X ×G(d, n).
It can be proved that NX is an analytic subspace of dimension d ([?, ?, Whi]
theorem 16.4).
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Definition 2.2. The morphism νX : NX −→ X induced by the first projection
of X ×G(d, n), is called the Semple-Nash Modification of X.

NX ⊂ X ×G(d, n)

νX

uu

γX

**
X G(d, n)

It is an isomorphism over the nonsingular part of X and is proper since the
Grassmannian is compact and the projection X × G(d, n) → X is proper. It
is therefore a proper birational map. It seems to have been first introduced by
Semple (see the end of [Se]) who also asked whether iterating this construction
would eventually resolve the singularities of X, and later rediscovered by Whit-
ney (see ([Whi1]) and also by Nash, who asked the same question as Semple. It
is still without answer except for curves.

The notation NX is justified by the fact that the Semple-Nash transforma-
tion is independent, up to a unique X-isomorphism, of the embedding of X
into a nonsingular space. See [Te2, §2], where the abstract construction of the
Semple-Nash modification is explained in terms of the Grothendieck Grassma-
nnian associated to the module of differentials of X. The fiber ν−1

X (0) is a closed
algebraic subvariety of G(d, n); set-theoretically, it is the set of limit positions
of tangent spaces at points of X0 tending to 0.
For an exposition of basic results on limits of tangent spaces in the case of germs
of complex analytic surfaces, good references are [ACL] and [Sn]; the latter
makes connections with the resolution of singularities. For a more computational
approach, see [O1].
In [Hn], H. Hennings has announced a proof of the fact that if x is an isolated
singular point of X, the dimension of ν−1

X (x) is dimX − 1, generalizing a result
of A. Simis, K. Smith and B. Ulrich in [SSU].

The Semple-Nash modification, however, is somewhat difficult to handle
because of the fact that the rich geometry of the Grassmannian entails somewhat
cumbersone computations. There is a less intrinsic but more amenable way of
encoding the limits of tangent spaces. The idea is to replace a tangent space
to X0 by the collection of all the hyperplanes of Cn which contain it. Tangent
hyperplanes live in a projective space, namely the dual projective space P̌n−1,
which is easier to deal with than the Grassmannian.

2.1 Some symplectic Geometry

In order to describe this set of tangent hyperplanes, we are going to use the
language of symplectic geometry and lagrangian submanifolds. So let us start
with a few definitions.

Let M be any n-dimensional manifold, and let ω be a de Rham 2-form on
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M, that is, for each p ∈M , the map

ωp : TpM × TpM → R

is skew-symmetric bilinear on the tangent space to M at p, and ωp varies
smoothly with p. We say that ω is symplectic if it is closed and ωp is non-
degenerate for all p ∈ M . A symplectic manifold is a pair (M,ω), where M
is a manifold and ω is a symplectic form.

Now, for any manifold M , its cotangent bundle T ∗M has a canonical sym-
plectic structure as follows. Let

π : T ∗M −→M

p = (x, ξ) 7−→ x,

where ξ ∈ T ∗xM , be the natural projection. The Liouville 1-form α on T ∗M
may be defined pointwise by:

αp(v) = ξ ((dπp)v) , for v ∈ Tp(T ∗M).

Note that dπp : Tp(T
∗M) → TxM , so that α is well defined. Then, the cano-

nical symplectic 2-form ω on T ∗M is defined as

ω = −dα.

And it is not hard to see, that if (U, x1, . . . , xn) is a coordinate chart for M with
associated cotangent coordinates (T ∗U, x1, . . . , xn, ξ1, . . . , ξn), then locally:

ω =

n∑
i=1

dxi ∧ dξi.

Definition 2.3. Let (M,ω) be a 2n-dimensional symplectic manifold. A sub-
manifold Y of M is a lagrangian submanifold if, at each p ∈ Y , TpY is a
lagrangian subspace of TpM , i.e., ωp|TpY ≡ 0 and dimTpY = 1

2dimTpM . Equiv-
alently, if i : Y ↪→ M is the inclusion map, then Y is lagrangian if and only
if i∗ω = 0 and dimY = 1

2dimM . If Y has singularities, we say that it is a
lagrangian subspace of M if it is purely of dimension 1

2dimM and the non-
singular part of the corresponding reduced subspace is a lagrangian submaniforld.

Example 2.1. The zero section of T ∗M

X := {(x, ξ) ∈ T ∗M |ξ = 0 in T ∗xM}

is an n-dimensional lagrangian submanifold of T ∗M .

2.2 Conormal space.

Let now X ⊂ M be a possibly singular complex subspace of pure dimension
d, and let as before X0 = X\Sing X, be the nonsingular part of X, so it is a
submanifold of M .
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Definition 2.4. Set

N∗xX
0 = {ξ ∈ T ∗xM |ξ(v) = 0, ∀v ∈ TxX0};

this means that the hyperplane {ξ = 0} contains the tangent space to X0 at x.
The conormal bundle of X0 is

T ∗X0M = {(x, ξ) ∈ T ∗M |x ∈ X0, ξ ∈ N∗xX0}.

Proposition 2.1. Let i : T ∗X0M ↪→ T ∗M be the inclusion, and let α be the
Liouville 1-form in T ∗M as before. Then i∗α = 0. In particular the conormal
bundle T ∗X0M is a conic lagrangian submanifold of T ∗M , and has dimension n.

Proof.
See [CdS], Proposition 3.6.

In the same context, we can define the conormal space of X in M, de-
noted as T ∗XM , as the closure of T ∗X0M in T ∗M , with the conormal map
κX : T ∗XM → X, induced by the natural projection π : T ∗M →M . The conor-
mal space may be singular, but it is of dimension n, and by proposition 2.1, α
vanishes on every tangent vector at a nonsingular point, so it is by construction
a lagrangian subspace of T ∗M .

In words, the fiber of the conormal map κX : T ∗XM → X above a point
x ∈ X consists, if x ∈ X0, of all the equations of hyperplanes tangent to X at x,
in the sense that they contain the tangent space TxX

0. If x is a singular point,
the fiber consists of all equations of limits of hyperplane directions tangent at
nonsingular points of X tending to x. In addition, if x ∈ X0, the fiber κ−1

X (x)
is isomorphic to Cn−d, the space of linear forms on Cn vanishing on TxX

0.

The fibers of κX are invariant under multiplication by an element of C∗, and
we can divide by the equivalence relation this defines. The idea is to remember
only the defining forms up to homothety of tangent hyperplanes, and not a spe-
cific linear form defining it. That is, the conormal stable by vertical homotheties
(a property also called conical), so we can “projectivize” it. Moreover, we can
characterize those subvarieties of the cotangent space which are the conormal
spaces of their images in M .

Proposition 2.2. (see [P]) Let M be a nonsingular analytic variety of dimen-
sion n and let L be a closed conical irreducible analytic subvariety of T ∗M . The
following conditions are equivalent:
1) The variety L is the conormal space of its image in M .
2) The Liouville 1-form α vanishes on all tangent vectors to L at every nonsin-
gular point of L.
3) The symplectic 2-form ω = −dα vanishes on every pair of tangent vectors to
L at every nonsingular point of L.
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Since conormal varieties are conical, we may as well projectivize with respect
to vertical homotheties of T ∗M and work in PT ∗M , where it still makes sense
to be lagrangian since α is homogeneous by definition4.

Now, going back to our original problem we have X ⊂M = Cn, so T ∗M =
Cn × Čn and PT ∗M = Cn × P̌n−1. So we have the (projective) conormal
space κX : C(X) → X with C(X) ⊂ X × P̌n−1, where C(X) denotes the
projectivization of the conormal space T ∗XM . Note that we have not changed
the name of the map κX after projectivizing since there is no ambiguity, and
that the dimension of C(X) is n− 1, which shows immediately that it depends
on the embedding of X in an affine space. We have the following result:

Proposition 2.3. The (projective) conormal space C(X) is a closed, reduced,
complex analytic subspace of X × P̌n−1 of dimension n− 1. For any x ∈ X the
dimension of the fiber κ−1

X (x) is at most n− 2.

Proof.
These are classical facts. See [CdS] or [Te3], proposition 4.1, p. 379.

Now we are going to describe the relation between the conormal space of
(X, 0) ⊂ (Cn, 0) and its Semple-Nash modification. It is convenient here to use
the notations of projective duality of linear spaces. Given a vector subspace
T ⊂ Cn we denote by PT its projectivization, i.e., the image of T \ {0} by
the projection Cn \ {0} → Pn−1 and by Ť ⊂ P̌n−1 the projective dual of
PT ⊂ Pn−1, which is a Pn−d−1 ⊂ P̌n−1, the set of all hyperplanes H of Pn−1

containing PT . We denote by Ξ̌ ⊂ G(d, n)× P̌n−1 the cotautological Pn−d−1-
bundle over G(d, n), that is Ξ̌ = {(T,H) | T ∈ G(d, n), H ∈ Ť ⊂ P̌n−1}, and
consider the intersection

E := (X × Ξ̌) ∩ (NX × P̌n−1) �
� //

p2

**
p1

��

X ×G(d, n)× P̌n−1

��
NX X × P̌n−1

and the morphism p2 induced on E by the projection onto X × P̌n−1. We then
have the following:

Proposition 2.4. Let p2 : E → X × P̌n−1 be as before. The set-theoretical
image p2(E) of the morphism p2 coincides with the conormal space of X in Cn

C(X) ⊂ X × P̌n−1.

.

Proof. By definition, the conormal space ofX in Cn is an analytic space C(X) ⊂
X × P̌n−1, together with a proper analytic map κX : C(X) → X, where the
fiber over a smooth point x ∈ X0 is the set of tangent hyperplanes, that is the

4In symplectic geometry it is called Legendrian with respect to the natural contact struc-
ture on PT ∗M .
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hyperplanes H containing the direction of the tangent space TxX. That is, if
we define E0 = {(x, TxX,H) ∈ E |x ∈ X0, H ∈ ŤxX}, then by construction
E0 = p−1

1 (ν−1(X0)), and p2(E0) = C(X0). Since the morphism p2 is proper,
in particular it is closed, which finishes the proof.

Corollary 2.1. A hyperplane H ∈ P̌n−1 is a limit of tangent hyperplanes to X
at 0, i.e., H ∈ κ−1

X (0), if and only if there exists a d-plane (0, T ) ∈ ν−1
X (0) such

that T ⊂ H.

Proof. Let (0, T ) ∈ ν−1
X (0) be a limit of tangent spaces to X at 0. By construc-

tion of E and proposition 2.4, every hyperplane H containing T is in the fiber
κ−1
X (0), and so is a limit at 0 of tangent hyperplanes to X0.

On the other hand, by construction, for any hyperplane H ∈ κ−1
X (0) there is a

sequence of points {(xi, Hi)}i∈N in κ−1
X (X0) converging to p = (0, H). Since the

map p2 is surjective, by definition of E, we have a sequence (xi, Ti, Hi) ∈ E0

with Ti = TxiX
0 ⊂ Hi. By compactness of Grassmannians and projective

spaces, this sequence has to converge, up to taking a subsequence, to (x, T,H)
with T a limit at x of tangent spaces to X. Since inclusion is a closed condition,
we have T ⊂ H.

Corollary 2.2. The morphism p1 : E → NX is a locally analytically trivial
fiber bundle with fiber Pn−d−1.

Proof. By definition of E, the fiber of the projection p1 over a point (x, T ) ∈ NX
is the set of all hyperplanes in Pn−1 containing PT . In fact, the tangent bundle
TX0 , lifted to NX by the isomorphism NX0 ' X0, extends to a fiber bundle
over NX, called the Nash tangent bundle of X. It is the pull-back by γX of the
tautological bundle of G(d, n), and E is the total space of the Pn−d−1-bundle
of the projective duals of the projectivized fibers of the Nash bundle.

By definition of E, the map p2 is an isomorphism over C(X0). In general
the fiber of p2 over a point (x,H) ∈ C(X) is the set of limit directions at x
of tangent spaces to X that are contained in H. If X is a hypersurface, the
conormal map coincides with the Semple-Nash modification. In general, while
it follows from proposition 2.4 that the geometric structure of the inclusion
κ−1
X (x) ⊂ P̌n−1 determines the set of limit positions of tangent spaces, i.e.,

the fiber ν−1
X (x) of the Semple-Nash modification, the correspondence is not so

simple: by proposition 2.4 and its corollary, the points of ν−1
X (x) correspond to

some of the projective subspaces Pn−d−1 of P̌n−1 contained in κ−1
X (x).

2.3 Conormal spaces and projective duality

Let us assume for a moment that V ⊂ Pn−1 is a projective algebraic variety. In
the spirit of last section, let us takeM = Pn−1 with coordinates (x0 : . . . : xn−1),
and consider the dual projective space P̌n−1 with coordinates (ξ0 : . . . : ξn−1);

its points are the hyperplanes of Pn−1 with equations
∑n−1
i=0 ξixi = 0.
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Definition 2.5. Define the incidence variety I ⊂ Pn−1× P̌n−1 as the set of
points satisfying:

n−1∑
i=0

xiξi = 0,

where (x0 : . . . : xn−1; ξ0 : . . . : ξn−1) ∈ Pn−1 × P̌n−1

Lemma 2.1. (Kleiman; see [Kl2]) The projectivized cotangent bundle of Pn−1

is naturally isomorphic to I.

Proof.
Let us first take a look at the cotangent bundle of Pn−1:

π : T ∗Pn−1 −→ Pn−1.

Remember that the fiber π−1(x) over a point x in Pn−1 is by definition isomor-
phic to Čn−1, that is, the vector space of linear forms over Cn−1. Recall that
projectivizing the cotangent bundle means projectivizing the fibers, and so we
get a map:

Π : PT ∗Pn−1 −→ Pn−1

where the fiber is isomorphic to P̌n−2. So we can see a point of PT ∗Pn−1 as a
pair (x, χ) ∈ Pn−1 × P̌n−2. On the other hand, if we fix a point (x) ∈ Pn−1,
then the equation defining the incidence variety I, tells us that for a fixed (x),
the set of points ((x), (ξ)) ∈ I is the set of hyperplanes of Pn−1 that go through
the point (x), which we know is isomorphic to P̌n−2.

Now to explicitly define the map, take a chart Cn−1 ×
{
Čn−1 \ {0}

}
of the

manifold T ∗Pn−1 \{zero section}, where the Cn−1 corresponds to a usual chart
of Pn−1 and Čn−1 to its associated cotangent chart. Define the map:

φi : Cn−1 ×
{
Čn−1 \ {0}

}
−→ Pn−2 × P̌n−2

(z1, . . . , zn−1; ξ1, . . . , ξn−1) 7−→

ϕi(z), (ξ1 : · · · : ξi−1 : −
n−1∗i∑
j=1

zjξj : ξi+1 : · · · : ξn−1)


where ϕi(z) = (z1 : · · · : zi−1 : 1 : zi+1 : · · · : zn−1) and the star means that the
index i is excluded from the sum.

An easy calculation shows that φi is injective, has its image in the incidence
variety I and is well defined on the projectivization Cn−1 × P̌n−2. It is also
clear, that varying i from 1 to n− 1 we can reach any point in I. Thus, all we
need to check now is that the φj ’s paste together to define a map. For this, the
important thing is to remember that if ϕi and ϕj are charts of a manifold, and
h := ϕ−1

j ϕi = (h1, . . . , hn−1) then the change of coordinates in the associated
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cotangent charts ϕ̃i and ϕ̃j is given by:

T ∗M
ϕ̃j
−1

((
Cn−1 × Čn−1

ϕ̃i

55

h
// Cn−1 × Čn−1

(x1, . . . , xn−1; ξ1, . . . , ξn−1) 7−→ (h(x); (Dh−1|x)T (ξ))

Now, by lemma 2.1 the incidence variety I inherits the Liouville 1-form α(:=∑
ξidxi locally) from its isomorphism with PT ∗Pn−1. But, exchanging Pn−1

and P̌n−1, I is also isomorphic to PT ∗P̌n−1 so it also inherits the 1-form α̌(:=∑
xidξi locally).

Lemma 2.2. (Kleiman; see [Kl2]) Let I be the incidence variety as above. Then
α+ α̌ = 0 on I.

Proof.
Note that if the polynomial

∑n−1
i=0 xiξi defined a function on Pn−1 × P̌n−1, we

would obtain the result by differentiating it. The idea of the proof is basically
the same, it involves identifying the polynomial

∑n−1
i=0 xiξi with a section of

the line bundle p∗OPn−1(1)⊗ p̌∗OP̌n−1(1) over I, where p and p̌ are the natural
projections of I to Pn−1 and P̌n−1 respectively and OPn−1(1) denotes the canon-
ical line bundle, introducing the appropriate flat connection on this bundle, and
differentiating.

In particular, this lemma tells us that if at some point z ∈ I, we have that
α = 0, then α̌ = 0 too. Thus, if we have a closed conical irreducible analytic
subvariety of T ∗Pn−1 as in proposition 2.2, then it is the conormal space of its
image in Pn−1 if and only if it is the conormal space of its image in P̌n−1. So
we have PT ∗V Pn−1 ⊂ I ⊂ Pn−1× P̌n−1 and the restriction of the two canonical
projections:

PT ∗V Pn−1 ⊂ I
p

ww

p̌

''
V ⊂ Pn−1 P̌n−1 ⊃ V̌

Definition 2.6. The dual variety V̌ of V ⊂ Pn−1 is the image of PT ∗V Pn−1 ⊂
I in P̌n−1. So by construction V̌ is the closure in P̌n−1 of the set of hyperplanes
tangent to V 0.

Now, by symmetry, we immediately get that ˇ̌V = V . But what is more, we
see that establishing a projective duality is equivalent to finding a lagrangian
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subvariety in I; its images in Pn−1 and P̌n are necessarily dual.

Let us assume now that (X, 0) ⊂ (Cn, 0) is a cone over a projective algebraic
variety V ⊂ Pn−1.

Lemma 2.3. Let x ∈ X0 be a nonsingular point of X. Then the tangent space
TxX

0, contains the line L joining x to the origin. Moreover, the tangent map at
x to the projection π : X \{0} → V induces an isomorphism TxX

0/L ' TV,π(x).

Proof.
This is due to Euler’s identity for a homogeneous polynomial of degree m:

m.f =

n∑
i=1

xi
∂f

∂xi

and the fact that if {f1, . . . , fr} is a set of homogeneous polynomials defining
X, then TxX

0 is the kernel of the matrix:
df1

·
·
dfr


representing the differentials dfi in the basis dx1, . . . , dxn.

It is also important to note that at all nonsingular points x of X in the same
generating line the tangent space to X0 is constant since the partial derivatives
are homogeneous again. By lemma 2.3, the quotient by the generating line is
the tangent space to V at the point corresponding to the generating line.

So, PT ∗XCn has an image in P̌n−1 which is the projective dual of V.

PT ∗V Pn−1

xx &&

PT ∗XCn ⊂ P̌n−1 ×Cn

uu ((
V ⊂ Pn−1 P̌n−1 ⊃ V̌ X ⊂ Cn

The fiber over 0 of PT ∗XCn → X as subvariety of P̌n−1, is equal to V̌ : it is
the set of limit positions at 0 of hyperplanes tangent to X0.
For more information on projective duality, in addition to Kleiman’s papers one
can consult [Tev].

A relative version of the conormal space and of projective duality will play
an important role in these notes. Useful references are [HMS], [Kl2], [Te3]. The
relative conormal space is used in particular to define the relative polar varieties.

Let f : X → S be a morphism of reduced analytic spaces, with purely d-
dimensional fibers and such that there exists a closed nowhere dense analytic
space such that the restriction to its complement X0 in X :

f |X0 : X0 −→ S



Local polar varieties 17

has all its fibers smooth. They are manifolds of dimension d = dimX − dimS.
Let us assume furthermore that the map f is induced, via a closed embedding
X ⊂ Z by a smooth map F : Z → S, This means that locally on Z the map
F is analytically isomorphic to the first projection S × CN → S. Locally on
X, this is always the case because we can embed the graph of f , which lies in
X × S, into CN×. Let us denote by πF : T ∗(Z/S) → Z the relative cotangent
bundle of Z/S, which is a fiber bundle whose fiber over a point z ∈ Z is the dual
T ∗x (Z/S) of the tangent vector space at z to the fiber F−1(F (z)). For x ∈ X0,
denote by Mx the submanifold f−1(f(x))∩ (X0) of X0. Using this submanifold
we will build the conormal space of X relative to f , denoted by T ∗X/S(Z/S),
by setting

N∗xMx = {ξ ∈ T ∗x (Z/S)|ξ(v) = 0, ∀v ∈ TxMx}

and
T ∗X0/S(Z/S) = {(x, ξ) ∈ T ∗(Z/S)|x ∈ X0, ξ ∈ N∗xMx},

and finally taking the closure of T ∗X0/S(Z/S) in T ∗(Z/S), which is a complex

analytic space T ∗X/S(Z/S) by general theorems (see [Re], [Ka]). Since X0 is

dense in X, this closure maps onto X by the natural projection πF : T ∗(Z/S)→
Z.

Now we can projectivize with respect to the homotheties on ξ, as in the
case where S is a point we have seen above. We obtain the (projectivized) rela-
tive conormal space Cf (X) ⊂ PT ∗(Z/S) (also denoted by C(X/S)), naturally
endowed with a map

κf : Cf (X)→ X.

We can assume that locally the map f is the restriction of the first projection to
X ⊂ S ×U , where U is open in Cn. Then we have T ∗(S ×U/S) = S ×U × Čn

and PT ∗(S×U/S) = S×U×P̌n−1. This gives an inclusion Cf (X) ⊂ X×P̌n−1

such that κf is the restriction of the first projection, and a point of Cf (X) is a
pair (x,H), where x is a point of X and H is a limit direction at x of hyperplanes
of Cn tangent to the fibers of the map f at points of X0. Of course, by taking
for S a point we recover the classical case studied above.

Definition 2.7. Given a smooth morphism F : Z → S as above, the projection
to S of Z = S × U , with U open in Cn, we shall say that a reduced complex
subspace W ⊂ T ∗(Z/S) is F -lagrangian (or S-lagrangian if there is no am-
biguity on F ) if the fibers of the composed map q := (πF ◦ F )|W : W → S are
purely of dimension n = dimZ − dimS and the differential ωF of the relative
Liouville differential form αF on Cn × Čn vanishes on all pairs of tangent vec-
tors at smooth points of the fibers of the map q.

With this definition it is not difficult to verify that T ∗X/S(Z/S) is F -lagrangian,

and by abuse of language we will say the same of Cf (X). But we have more:

Proposition 2.5. (Lê-Teissier, see [L-T2], proposition 1.2.6) Let F : Z → S
be a smooth complex analytic map with fibers of dimension n. Assume that S
is reduced. Let W ⊂ T ∗(Z/S) be a reduced closed complex subspace and set as
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above q = πF ◦ F |W : W → S. Assume that the dimension of the fibers of q
over points of dense open analytic subsets Ui of the irreducible components Si
of S is n.

1. If the Liouville form on T ∗F−1(s) = (πF ◦ F )−1(s) vanishes on the tangent

vectors at smooth points of the fibers q−1(s) for s ∈ Ui and all the fibers
of q are of dimension n, the Liouville form vanishes on tangent vectors at
smooth points of all fibers of q.

2. The following conditions are equivalent:

• The subspace W ⊂ T ∗(Z/S) is F -lagrangian;

• The fibers of q, once reduced, are all purely of dimension n and there
exists a dense open subset U of S such that for s ∈ U the fiber q−1(s)
is reduced and is a lagrangian subvariety of (πF ◦ F )−1(s);

If moreover W is homogeneous with respect to homotheties on T ∗(Z/S),
these conditions are equivalent to:

• All fibers of q, once reduced, are purely of dimension n and each
irreducible component Wj of W is equal to T ∗Xj/S(Z/S), where Xj =

πF (Wj).

Assuming that W is irreducible, the gist of this proposition is that if W is,
generically over S, the relative conormal of its image in Z, and if the dimension
of the fibers of q is constant, then W is everywhere the relative conormal of its
image. This is essentially due to the fact that the vanishing of a differential
form is a closed condition on a cotangent space. In section 4.4 we shall apply
this, after projectivization with respect to homotheties on T ∗(Z/S), to give the
lagrangian characterization of Whitney conditions.

2.4 Tangent cone

At the very beginning we mentioned how the limit of tangent spaces can be
thought of as a substitute for the tangent space at singular points. However
there is another common substitute for the missing tangent space, the tangent
cone.

Let us start by the geometric definition. Let X ⊂ Cn be a representative of
(X, 0). The canonical projection Cn \ {0} → Pn−1 induces the secant map

sX : X \ {0} → Pn−1,

x 7→ [0x].

Denote by E0X the closure in X×Pn−1 of the graph of sX . E0X is an analytic
subspace of dimension d, and the natural projection e0X : E0X → X induced
by the first projection is called the blowing up of 0 in X. The fiber e−1

0 (0) is
a projective subvariety of Pn−1 of dimension d-1, not necessarily reduced. (See
[Whi1])
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Definition 2.8. The cone with vertex 0 in Cn corresponding to the subset
|e−1

0 (0)| of the projective space Pn−1 is the set-theoretic tangent cone.

The construction shows that, set-theoretically, e−1
0 (0) is the set of limit di-

rections of secant lines 0x for points x ∈ X \ {0} tending to 0. This means
more precisely that for each sequence (xi)i∈N of points of X \ {0}, tending to
0 as i → ∞ we can, since Pn−1 is compact, extract a subsequence such that
the directions [0xi] of the secants 0xi converge. The set of such limits is the
underlying set of e−1

0 (0). (See [Whi2, Theorem 5.8])

Now, on to the algebraic definition. LetO = OX,0 = C{z1, . . . , zn}/ 〈f1, . . . , fk〉
be the local algebra of X at 0 and let m = mX,0 be its maximal ideal. There is
a natural filtration of OX,0 by the powers of m:

OX,0 ⊃ m ⊃ · · · ⊃ mi ⊃ mi+1 ⊃ · · · ,

which is separated in the sense that
⋂∞
i=om

i = (0) because the ring OX,0 is
nœtherian.

Definition 2.9. We define the associated graded ring of O with respect
to m, written grmO to be the graded ring

grmO : =
⊕
i≥0

mi/mi+1,

where m0 = O.

Note that grmO is generated as C−algebra by m/m2, which is a finite di-
mensional vector space. Thus, grmO is a finitely generated C−algebra, to which
we can associate a complex analytic space Specan grmO. Moreover, since grmO
is graded and finitely generated in degree one, the associated affine variety
Specan grmO is a cone. (For more on Specan, see [He-Or, Appendix I, 3.4 and
Appendix III 1.2] or additionally [Ka, p. 172])

Definition 2.10. We define the tangent cone CX,0 as the complex analytic
space Specan (grmO).

We have yet to establish the relation between the geometric and algebraic
definitions of the tangent cone. In order to do that we will need to introduce
the specialization of X to its tangent cone, which is a very interesting and
important construction in its own right.

Take the representative (X, 0) of the germ associated to the analytic algebra
O from above. Now, the convergent power series f1, . . . , fk, define analytic func-
tions in a small enough polycylinder around 0, P (α) := {z ∈ Cn : |zi| < αi}.
Suppose additionally that the initial forms of the fi’s generate the homogeneous
ideal of initial forms of elements of I =< f1, . . . , fk >.
Let fi = fmi(z1, . . . , zn) + fmi+1

(z1, . . . , zn) + fmi+2
(z1, . . . , zn) + . . ., and set

Fi := v−mif(vz1, . . . , vzn) =
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fmi(z1, . . . , zn)+vfmi+1(z1, . . . , zn)+v2fmi+2(z1, . . . , zn)+. . . ∈ C[[v, z1, . . . , zn]].

Note that the series Fi, actually converge in the domain of Cn × C defined
by the inequalities |vzi| < αi thus defining analytic functions on this open set.
Take the analytic space X ⊂ Cn ×C defined by the Fi’s and the analytic map
defined by the projection to the t-axis.

X ⊂ Cn ×C

p

��
C

So now, we have a family of analytic spaces parametrized by an open subset
of the complex line C. Note, that for v 6= 0, the analytic space p−1(v) is iso-
morphic to X and in fact for v = 1 we recover exactly the representative of the
germ (X, 0) with which we started. But for v = 0, the analytic space p−1(0) is
the closed analytic subspace of Cn defined by the homogeneous ideal generated
by the initial forms of elements of I.

We need a short algebraic parenthesis in order to explain the relation between
this ideal of initial forms and our definition of tangent cone (definition 2.10).

2.4.1 Graded Rings and Ideals of Initial Forms

Let R be a noetherian ring, and I ⊂ J ⊂ R ideals such that

R ⊃ J ⊃ · · · ⊃ J i ⊃ J i+1 ⊃ · · · .

is a separated filtration in the sense that
⋂∞
i=o J

i = (0).

Take the quotient ring A = R/I, define the ideal J̃i := (J i + I)/I ⊂ A and
consider the induced filtration

A ⊃ J̃ ⊃ · · · ⊃ J̃i ⊃ J̃i+1 ⊃ · · · .

Note that in fact J̃i = J̃ i.
Consider now the associated graded rings

grJR =

∞⊕
i=0

J i/J i+1,

grJ̃A =

∞⊕
i=0

J̃i/J̃i+1.

Definition 2.11. Let f ∈ I, since
⋂∞
i=o J

i = (0), there exists a largest natural
number k such that f ∈ Jk. Define the initial form of f with respect to J as

inJf := f (mod Jk+1) ∈ grJR.

Using this define, the ideal of initial forms of I as the ideal of grJR
generated by the initial forms of all the element of I.

InJI :=< inJf >f∈I⊂ grJR.
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Lemma 2.4. Using the notations defined above, the following sequence is exact:

0 // InJI
� � // grJR

φ // grJ̃A
// 0

that is, grJ̃A
∼= grJR/InJI.

Proof.
First of all, note that

J̃i/J̃i+1
∼=

Ji+I
I

Ji+1+I
I

∼=
J i + I

J i+1 + I
∼=

J i

I ∩ J i + J i+1
,

where the first isomorphism is just the definition, the second one is one of the
classical isomorphism theorems and the last one comes from the surjective map

J i → Ji+I
Ji+1+I defined by x 7→ x+ J i+1 + I. This last map tells us that there are

natural surjective morphisms:

ϕi :
J i

J i+1
−→ J̃i

J̃i+1

∼=
J i

I ∩ J i + J i+1
,

x+ J i+1 7−→ x+ I ∩ J i + J i+1,

which we use to define the surjective graded morphism of graded rings
φ : grJR → grJ̃A. Now, all that is left to prove is that the kernel of φ is
exactly InJI.

Let f ∈ I be such that inJf = f + Jk+1 ∈ Jk/Jk+1, then

φ(inJf) = ϕk(f + Jk+1) = f + I ∩ Jk + Jk+1 = 0.

because f ∈ I ∩ Jk. Since by varying f ∈ I we get a set of generators of the
ideal InJI, we have InJI ⊂ Ker φ.

To prove the other inclusion, let g =
⊕
gk ∈ Ker φ, where we use the

notation gk := gk + Jk+1 ∈ Jk/Jk+1. Then, φ(g) = 0 implies by homogeneity
φ(gk) = ϕk(gk + Jk+1) = 0 for all k. Now, suppose gk 6= 0 then

ϕ(gk + Jk+1) = gk + I ∩ Jk + Jk+1 = 0

implies gk = f + h, where 0 6= f ∈ (I ∩ Jk) \ Jk+1 and h belongs to Jk+1.
But, this means that gk ≡ f (mod Jk+1), which implies gk + Jk+1 = inJf and
concludes the proof.

Now to relate our definition of the tangent cone with the space we obtained
in our previous description of the specialization, just note that in our case
the roles of R and J ⊂ R are played by the ring of convergent power series
C{z1, . . . , zn}, and its maximal ideal m respectively, while I corresponds to the
ideal < f1, . . . , fk > defining the germ (X, 0) ⊂ (Cn, 0) and A to its analytic
algebra OX,0.
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More importantly, the graded ring grmR, with this choice of R, is naturally
isomorphic to the ring of polynomials C[z1, . . . , zn] in such a way that definition
2.11 coincides with the usual concept of initial form of a series and tells us that

grmOX,0 ∼=
C[z1, . . . , zn]

InmI
.

We would like to point out that there is a canonical way of working out the
specialization in the algebraic setting that, woefully, can’t be translated word for
word into the analytic case, but that, nonetheless takes us to a weaker statement.
Suppose that X is an algebraic variety, that is, the fi’s are polynomials in
z1, . . . , zn, and consider the extended Rees Algebra5 of O = OX,0 with respect
to m. (See [Za, Appendix], or [Eis, section 6.5])

R =
⊕
i∈Z

miv−i ⊂ O[v, v−1],

where mi = O for i ≤ 0. Note that R ⊃ O[v] ⊃ C[v], in fact it is a finitely gen-
erated O−algebra and consequently a finitely generated C-algebra (See [Mat,
p. 120-122]). Moreover:

Proposition 2.6. Let R be the extended Rees algebra defined above. Then:

i) The C[v]−algebra R is torsion free.

ii) R is faithfully flat over C[v]

iii) The map φ : R → grmO sending xv−i to the image of x in mi/mi+1 is
well defined and induces an isomorphism R/(v · R) ' grmO.

iv) For any v0 ∈ C \ {0} the map R → O, sending xv−i 7→ xv−i0 induces an
isomorphism R

(v−v0)·R ' O.

Proof.
See the appendix written by the second author in [Za], [Eis, p. 171], or addi-
tionally [Bo] in the exercises for §6 of of Chap VIII.

The proposition may be a little technical, but what it says is that the ex-
tended Rees algebra is a way of producing flat degenerations of a ring to its
associated graded ring, since the inclusion morphism C[v] ↪→ R is flat. Now
taking the space X associated to R and the map X → C associated to the
inclusion C[v] ↪→ R, we obtain a map:

ϕ : X −→ C

such that

· ϕ is faithfully flat.

5This algebra was introduced for an ideal I ⊂ R by D. Rees in [Rs] in the from R[v, Iv−1].
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· ϕ−1(0) is the algebraic space associated to grmO, that is the tangent cone
CX,0

· The space ϕ−1(v0), is isomorphic to X, for all v0 6= 0.

that is, we have produced a 1-parameter flat family of algebraic spaces specia-
lizing X to CX,0.

As you can see, the problem when trying to translate this into the analytic
case is first of all, that in general the best thing we can say is that the algebra
R is finitely generated over O, but not even essentially finitely generated over C.

However, given any finitely generated algebra over an analytic algebra such
as O, there is a “smallest” analytic algebra which contains it (it means that
any map from our algebra to an analytic algebra factors uniquely through this
“analytization”. The proof: our algebra is a quotient of a polynomial ring
O[z1, . . . , zs] by an ideal I; take the quotient of the corresponding convergent
power series ring O{z1, . . . , zs}, which is an analytic algebra, by the ideal gen-
erated by I; it is again an analytic algebra. So we can use this, to translate our
result, into a similar one which deals with germs of analytic spaces.

Taking the analytic algebra Rh associated to R, and the analytic germ X
associated to Rh, we have a germ of map induced by the inclusion C{t} ↪→ Rh:

ϕ : (X, 0) −→ (D, 0)

which preserves all the properties established in the algebraic case, that is:

· ϕ is faithfully flat.

· ϕ−1(0) is the germ of analytic space associated to grmO, that is the tan-
gent cone CX,0

· ϕ−1(v0) is a germ of analytic space isomorphic to (X, 0), for all v0 6= 0.

that is, we have produced a 1-parameter flat family of germs of analytic spaces
specializing (X, 0) to (CX,0, 0). The way, this construction relates to our previ-
ous analytic construction is given by the next exercise.

Exercise 2.1.
1) Suppose (X, 0) is a germ of hypersurface.
Then O = C{z1, . . . , zn}/ < f(z1, . . . , zn) >. Show that
Rh = C{v, z1, . . . , zn}/ < v−mf(vz1, . . . , tzn) >.
Note that this makes sense since, as we saw above, writing

f = fm(z1, . . . , zn) + fm+1(z1, . . . , zn) + . . . ,

where fk is an homogeneous polynomial of degree k, then:

v−mf(vz1, . . . , vzn) = fm(z1, . . . , zn)+vfm+1(z1, . . . , zn)+. . . ∈ C{v, z1, . . . , zn}.
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2)More generally, take I ⊂ C{z1, . . . , zn} and choose generators fi such that
their initial forms fi,mi generate the ideal of all initial forms of elements of I.
Then:

Rh = C{v, z1, . . . , zn}/ < v−mifi(vz1, . . . , vzn) > .

It is important to note that this computation implies that the biholomor-
phism Cn ×D∗ → Cn ×D∗, where D∗ is the punctured disk, determined by
(z, v) 7→ (vz, v) induces an isomorphism ϕ−1(D∗) ' X ×D∗.

Finally, we can use this constructions to prove that our two definitions of
the tangent cone are equivalent.

Proposition 2.7. Let |CX,0| be the underlying set of the analytic space CX,0.
Then, generating lines in |CX,0| are the limit positions of secant lines 0xi as
xi ∈ X \ {0} tends to 0.

Proof.
Since ϕ : (X, 0) → (D, 0) is faithfully flat, the special fiber of the map ϕ is
contained in the closure of ϕ−1(D∗) (See teFi). The isomorphism ϕ−1(D∗) '
X ×D∗ which we have just seen shows that for every point x ∈ ϕ−1(0) = CX,0
there are sequences of points (xi, vi) ∈ X ×D∗ tending to x. Thus x is in the
limit of secants 0xi.

So, we finally know that our two concepts of tangent cone coincide, at least
set-theoretically. However, the tangent cone contains very little information on
(X, 0).

Example 2.2.
For all curves y2−xm, m ≥ 3, the tangent cone is y2 = 0 and it is non-reduced.

2.5 Multiplicity

Nevertheless the analytic structure of CX,0 = SpecangrmO does carry some im-
portant piece of information on (X, 0), its multiplicity.

For a hypersurface, f = fm(z1, . . . , zn) + fm+1(z1, . . . , zn) + . . ., the mul-
tiplicity at 0 is just m=the degree of the initial polynomial. And, from the
example above, its tangent cone is also a hypersurface with the same multiplic-
ity at 0 in this sense. In general, it is more complicated.

Let O be the analytic algebra of X with maximal ideal m as before. We
have the following consequences of the fact that O is a noetherian C-algebra:
a) For each i ≥ 0, the quotient O/mi+1 is a finite dimensional vector space over
C, and the generating function:∑

i≥0

(dimC O/mi+1)T i =
Q(T )

(1− T )d
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is a rational function with numerator Q(T ) ∈ Z[T ], and Q(1) ∈ N. See [A-M,
p. 117-118], or [Bo, chap VIII].
b) For large enough i:

dimC O/mi+1 = em(O)
id

d!
+ lower order terms,

and em(O) = Q(1) is called the multiplicity of X at 0, which we will denote
by m0(X). See [Mat, §14].
c) A linear space Lε of dimension n−d at a sufficiently small distance ε > 0 from
the origin and of general direction has the property that in a neighborhood of
the origin, if ε is small enough Lε meets X transversally at nonsingular points
of X and em(O) points of this intersection Lε ∩X tend to 0 with ε. See [He-Or,
p. 510-555].
d) The multiplicity of X at 0 coincides with the multiplicity of CX,0 at 0. This
follows from the fact that the generating function defined above is the same for
the C-algebra O and for grmO. See [Bo, Chap. VIII, §7], and also [He-Or, Thm
5.2.1 & Cor.].

3 Normal Cone and Polar Varieties:
the normal/conormal diagram

The normal cone is a generalization of the idea of tangent cone, where the
point is replaced by a closed analytic subspace, say Y ⊂ X. If X and Y were
nonsingular it would only be the normal bundle of Y in X. We will only consider
the case where Y is a nonsingular subspace of dimension t.
However, we will take a global approach here. Let (X,OX) be a reduced complex
analytic space of dimension d and Y ⊂ X a closed complex subspace defined
by a coherent sheaf of ideals J ⊂ OX . It consists, for every open set U ⊂ X of
all elements of OX(U) vanishing on Y ∩U , and as one can expect the structure
sheaf OY is isomorphic to (OX/J)|Y . Analogously to the case of the tangent
cone, let us consider grJOX , but now as the associated sheaf of graded rings of
OX with respect to J :

grJOX =
⊕
i≥0

J i/J i+1 = OX/J ⊕ J/J2 ⊕ · · · .

Definition 3.1. We define the normal cone CX,Y of X along Y , as the
complex analytic space SpecanY (grJOX).

Note that we have a canonical inclusion OY ↪→ grJOX , which gives grJOX
the structure of a locally finitely presented graded OY -algebra and consequently,

by the Specan construction, a canonical analytic projection CX,Y
Π→ Y , in which

the fibers are cones. The natural surjection grJOX → OX/J = OY obtained
by taking classes modulo the ideal

⊕
i≥1 J

i/J i+1 corresponds to an analytic
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section Y ↪→ CX,Y of the map Π sending each point y ∈ Y to the vertex of the
cone Π−1(y).
To be more precise, note that the sheaf of graded OX -algebras grJOX is a sheaf
on X with support Y . Now if we take an open set U , where the ideal J(U) is
finitely generated and different from OX(U), then we get

grJOX(U) ∼=
OY (U) [t1, . . . , tr]

〈g1, . . . , gs〉
.

where the gi’s are homogeneous polynomials.

Now, we would like to build, in analogy to the case of the tangent cone, the
Specialization of X to the normal cone of Y .
Let us first take a look at it in the algebraic case, when we suppose that X
is an algebraic variety, and Y ⊂ X a closed algebraic subvariety defined by a
coherent sheaf of ideals J ⊂ OX .

Again, analogously to the tangent cone and the Rees algebra technique.
Consider the locally finitely presented sheaf of graded OX -algebras

R =
⊕
n∈Z

Jnv−n ⊂ OX [v, v−1], where Jn = OX,0 for n ≤ 0.

Note that we have C[v] ⊂ OX [v] ⊂ R, where C denotes the constant sheaf, thus
endowing R(X) with the structure of a C[v]-algebra that results in an algebraic
map

p : SpecR −→ C

Moreover, the C[v]-algebraR has all the analogous properties of proposition 2.6,
which in turn gives the corresponding properties to p, defining a flat 1-parameter
family of varieties such that:

1) The fiber over 0 is Spec(grJOX).

2) The general fiber is an algebraic space isomorphic to X.

that is, the map p gives a specialization of X to its normal cone along Y , namely
CX,Y .

Let us now look at the corresponding construction for germs of analytic
spaces. Going back to the complex space (X,OX), and the nonsingular sub-
space Y of dimension t, take a point 0 ∈ Y , and a local embedding (Y, 0) ⊂
(X, 0) ⊂ (Cn, 0). Since Y is nonsingular we can assume it is linear, by choosing
a sufficiently small representative of the germ (X, 0) and adequate local coordi-
nates on Cn. Let OX,0 = C{z1, . . . , zn}/ 〈f1, . . . , fk〉 be the analytic algebra of
the germ, such that, J = 〈z1, . . . , zn−t〉 is the ideal defining Y in X. Consider
now the finitely generated OX,0-algebra:

R =
⊕
n∈Z

Jnv−n, where Jn = OX,0 for n ≤ 0.
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So again, taking the analytic algebra Rh associated to R, and the analytic
germ Z associated to Rh, we have a germ of map induced by the inclusion
C{v} ↪→ Rh:

p : (Z, 0) −→ (D, 0)

which preserves all the properties established in the algebraic case, that is:

· p is faithfully flat.

· p−1(0) is the germ of analytic space associated to grJOX,0, that is the
germ of the normal cone CX,Y

· p−1(v) is a germ of analytic space isomorphic to (X, 0), for all v 6= 0.

that is, we have produced a 1-parameter flat family of germs of analytic spaces
specializing (X, 0) to (CX,Y , 0).

Using this it can be shown that after choosing a local retraction ρ : (X, 0)→
(Y, 0), the underlying set of (CX,Y , 0) can be identified with the set of limit
positions of secant lines xiρ(xi) for xi ∈ X \Y as xi tends to y ∈ Y (For a proof
of this, see [Hi]). We shall see more about this specialization in the global case
a little later.

Retaking this germ approach, with (Y, 0) ⊂ (X, 0) ⊂ Cn, and Y a linear sub-
space of dimension t we can now interpret definition 2.11 and lemma 2.4 in the
following way. Using the notation of that section, letR := C{z1, . . . , zn−t, y1 . . . , yt},
J = 〈z1, . . . , zn−t〉 ⊂ R the ideal defining Y , I = 〈f1, . . . , fk〉 ⊂ R the ideal
defining X and A = R/I = OX,0. Then, the ring R/J is by definition OY,0
which is isomorphic to C{y1, . . . , yt}, and its not hard to prove that

grJR
∼= OY,0[z1, . . . , zn−t].

More to the point, take an element f ∈ I ⊂ R, then we can write

f =
∑

(α,β)∈Nt×Nn−t

cαβy
αzβ .

Now define νyf = min {|β| | cαβ 6= 0} and one can prove that

inJf =
∑
|β|=νyf

cαβy
αzβ ,

which after rearranging the terms with respect to z gives us a polynomial in the
variables zk with coefficients in OY,0, that is, an element of grJR. Note that
this ”polynomials” define analytic functions in Y ×Cn−t = Ct×Cn−t, and thus
realize, by the Specan construction, the germ of the normal cone (CX,Y , 0) as
a germ of analytic subspace of (Cn, 0) with a canonical analytic map to (Y, 0).
Let us clarify all this with an example.
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Example 3.1. Take (X, 0) ⊂ (C3, 0) defined by x2− y2z = 0, otherwise known
as Whitney’s Umbrella. Then from what we have discussed we obtain:

i) The tangent cone at 0, CX,0 ⊂ C3, is the analytic subspace defined by
x2 = 0.

ii) For Y = z-axis, the normal cone along Y , CX,Y ⊂ C3, is the analytic
subspace defined by x2 − y2z = 0, that is the entire space X.

iii) For Y = y-axis, the normal cone along Y , CX,Y ⊂ C3, is the analytic
subspace defined by y2z = 0.

Proposition 3.1. (Hironaka, Teissier) Given a t-dimensional closed nonsingu-
lar subspace Y ⊂ X and a point 0 ∈ Y then for any local embedding (Y, 0) ⊂
(X, 0) ⊂ Cn, the following conditions are equivalent:

i) The multiplicity my(X) of X at the points y ∈ Y is locally constant on Y
near 0.

ii) The dimension of the fibers of the maps CX,Y → Y is locally constant on
Y near 0.

iii) For every point y ∈ Y there exists a dense Zariski open set of the Grass-
manian of (n− d+ t)-dimensional linear subspaces of Cn containing TyY
(the tangent space to Y at y) such that if W is a representative in an open
U ⊂ Cn of a germ (W, y) at y of a nonsingular (n − d + t)-dimensional
subspace of Cn containing Y and whose tangent space at y is in that open
set, there exists an open neighborhood B ⊂ U of y in Cn such that:

|W ∩X ∩B| = Y ∩B,

where |Z| denotes the reduced space of Z.

Proof.
See [Hi], [He-Or, Appendix III, theorem 2.2.2], and for iii) see [Te3, Chapter I,
5.5]. The meaning of the last statement is that if the equality is not satisfied,
there are t-dimensional components of the intersection |W ∩ X ∩ B|, distinct
from Y ∩ B, meeting Y at the point y; this must increase the multiplicity of
X.

Example 3.2. let us look again at Whitney’s Umbrella (X, 0) ⊂ (C3, 0) defined
by x2 − y2z = 0, and let Y be the y-axis.

Taking W as the nonsingular 2-dimensional space defined by z = ax, gives

x(x− ay2) = 0,

so that whenever a 6= 0, the intersection W ∩X has two irreducible components:
the y-axis, and the curve defined by the equations x = ay2, z = ax.
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We can do the same for Y = z-axis, and W defined by y = ax which gives

x2(1− az2),

which locally defines the z-axis.

In order to understand better the normal cone and proposition 3.1, we are
going to introduce the blowing up of X along Y . As in the case of the tangent
cone, let us start by a geometric description.

Let (Y, 0) ⊂ (X, 0) be germ of nonsingular subspace of dimension t as before.
We can choose a local analytic retraction ρ : Cn → Y , use it to define a map:

φ : X \ Y −→ Pn−1−t

x 7−→ direction of xρ(x),

and then consider its graph in (X \ Y ) × Pn−1−t. Note that, since we can
assume Y is a linear subspace, in a suitable set of coordinates the map ρ is
just the canonical linear projection ρ : Cn → Ct. Moreover, the map φ maps
x = (x1, . . . , xn) ∈ X \ Y 7→ (xt+1 : · · · : xn) ∈ Pn−1−t.

Just as in the case of the blow-up of a point, the closure of the graph is a
complex analytic space EYX ⊂ X × Pn−1−t, and the natural projection map
ey := p ◦ i:

EYX
� � i //

ey
&&

X ×Pn−1−t

p

��
X

is proper. Moreover the map ey induces an isomorphism EYX\e−1
y (Y )→ X\Y .

Note that if we take an open cover of the complex space X, consisting only of
local models, we can do an analogous construction in each local model (see proof
of 3.2) and then paste them all up to obtain a global blow-up. However there
is an algebraic construction which will save us the effort of pasting by doing it
all in one fell swoop. Let J ⊂ OX be the ideal defining Y ⊂ X as before.

Definition 3.2. The Rees algebra, or blowup algebra of J in OX is the
graded OX-algebra:

P (J) =
⊕
i≥0

J i = OX ⊕ J ⊕ J2 ⊕ · · · .

Note that P (J)/JP (J) ∼= grJOX , the associated graded ring of OX with respect
to J . Moreover, since J is locally finitely generated, P (J) is a locally finitely
presented graded OX -algebra, generated in degree 1, and as such, it has locally
a presentation, for suitable open sets U ⊂ X:

OX|U [z1, . . . , zn−t]

(g1, . . . , gm)
∼= P (J)|U,
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where the gi are homogenous polynomials in z1, . . . , zn−t with coefficients in
OX |U .

Defining ẼYX as the projective analytic spectrum of P (J), ẼYX =
ProjanP (J) (see [He-Or, Appendix III, 1.2.8]), we can view this as defining a
family of projective varieties parametrized by X, as a result of the OX -algebra
structure.

ẼYX ⊂ X ×Pn−1−t

��
X

To check that these two spaces are the same, its enough to check that they
are the same locally, that is for each open set of an appropiate open cover of X,
and that is where the next proposition comes into play:

Proposition 3.2. Take a point x ∈ X and a sufficiently small neighborhood x ∈
U ⊂ X such that the ideal J(U) ⊂ OX(U) is finitely generated. Then choosing
a system of generators J = 〈h1, . . . , hs〉 gives an embedding EYX ⊂ X ×Ps−1

and an embedding ẼYX ⊂ X ×Ps−1. Their images are equal.

Proof.
Let Y ⊂ X be the subspace defined by J , which in the following will mean
Y ∩ U ⊂ U ⊂ X to avoid complicated and unnecessary notation, but always
keeping in mind that we are working in a special open set U of X which allows
us to use the finiteness conditions. Now consider the map:

λ : X \ Y −→ Ps−1

x 7−→ (h1(x) : · · · : hs(x)),

and as before, let EYX ⊂ X ×Ps−1 be the closure of the graph of λ.
On the other hand, consider the presentation OX [z1, . . . , zs]/(g1, . . . , gm) ∼=

P (J) where the isomorphism is defined by zi 7→ hi. Note that the g′is ∈
OX [z1, . . . , zs], i = 1, . . . ,m, generate the ideal of all homogeneous relations
g(h1, . . . , hs) = 0, g ∈ OX [z1, . . . , zs] which are exactly the equations for the
closure of the graph. To see why this last statement is true, recall that:

graph(λ) = {(x, z1 : · · · : zs) ⊂ X ×Ps−1| (z1 : · · · : zs) = (h1(x) : · · · : hs(x))}.

and remember that the elements g ∈ 〈g1, . . . , gm〉 are homogeneous polynomials
in z1, . . . , zs with coefficients in OX , so they define analytic functions in X×Cs

such that the homogeneity in the z’s allow us to look at their zeros in X×Ps−1.
Moreover, if (x, z1 : · · · : zs) ∈ graph(λ), then [z] = [h(x)] thus g(z) = 0, that is
they are the equations defining the graph, and consequently its closure.

Finally, to relate all this to the normal cone, note that in the map:

ey : EYX −→ X
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the inverse image of Y is the projective family associated to the family of cones

CX,Y −→ Y

this is clear, set-theoretically, in the geometric description. In the algebraic
description, it follows from the identity:⊕

i≥0

J i
⊗
OX

OX/J ∼=
⊕
i≥0

J i/J i+1 = grJOX

and the fact that fiber product corresponds germ-wise to tensor product.

OX �
� //

��

⊕
i≥0 J

i

OX/J

X EYX
eyoo

Y
?�

OO

The real trick comes when, in the analytic setting, we want to build the
specialization to the normal cone in a global scenario. We will describe a geo-
metric construction for this. Consider the complex space X×C, and the closed
nonsingular complex subspace Y × {0} ⊂ X ×C defined by the coherent sheaf
of ideals 〈J, v〉.

Let Z → X × C denote the blowup of X × C along Y × {0}. Since v is a
generator of the ideal defining the blown-up subspace, there is an open set U ⊂
Z, where v generates the pullback of the ideal 〈J, v〉 ⊂ OX×C, that is the ideal
defining the exceptional divisor. One can verify that our old acquaintance, the
sheaf of OX -algebras R, can be identified with the sheaf of analytic functions,
algebraic in v, over U . Moreover, the analytic map:

U ⊂ Z −→ X ×C→ C

is precisely the map which gives us the specialization to the normal cone.

We will end this section with a proposition that will prove to be very useful
to prove theorem 3.7, and its generalization in the section of relative duality.

Proposition 3.3. Let X ⊂ Cn be a reduced analytic subspace of dimension d
and for x ∈ X, let ϕ : X → C be the specialization of X to the tangent cone
CX,x. Let κ = κX : T ∗XCn → X denote the conormal space of X in Cn × Čn.
Then the relative conormal space

q : T ∗X(Cn ×C/C)→ X→ C

is isomorphic, as an analytic space over C, to the specialization space of T ∗XCn

to the normal cone CT∗XCn,κ−1(x) of κ−1(x) in T ∗XCn. In particular, the fibre

q−1(0) is isomorphic to this normal cone.
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Proof. We shall see a proof in a more general situation below in subsection 4.4.

Corollary 3.1. The relative conormal space κϕ : T ∗X(Cn × C)/C) → X is
ϕ−lagrangian.

Proof. We will use the notation of the proof of proposition 4.5. From definition
2.7 we need to prove that every fiber q−1(s) is a lagrangian subvariety of {s} ×
Cn × Čn. But, by proposition 3.3 we know that for s 6= 0, the fiber q−1(s) is
isomorphic to T ∗XCn and so it is lagrangian. Thus, by proposition 2.5 all we
need to prove is that the special fiber q−1(0) has the right dimension, which in
this case is equal to n.
Proposition 3.3 also tells us that the fiber q−1(0) is isomorphic to the normal
cone

CT∗XCn,T∗{x}C
n∩T∗XCn = CT∗XCn,κ−1(x).

Finally, since the projectivized normal cone PCT∗XCn,T∗{x}C
n∩T∗XCn is obtained

as the exceptional divisor of the blowup of T ∗XCn along κ−1
X (x), it has dimension

n−1 and so the cone over this projective variety has dimension n, which finishes
the proof.

3.1 Local Polar Varieties

In this section we introduce the local polar varieties of a germ of a reduced
equidimensional complex analytic space (X, 0) ⊂ (Cn, 0). The dimension of X
is denoted by d and to make the comparison with the case of projective varieties
V of dimension d mentioned in the introduction, we must think of X as the cone
over V with vertex 0 ∈ Cn, which is of dimension d+ 1.

Local polar varieties were first constructed, using the Semple-Nash modifi-
cation and all Schubert cycles of the Grassmannian, in [L-T1]. The description
in terms of the conormal space of the local polar varieties used here, which
correspond to special Schubert cycles, is a contribution of Henry-Merle which
appears in [HM], [HMS], and [Te3]. We will in this subsection get a first glimpse
into a special case of what will be called the normal-conormal diagram. Let us
denote by C(X) and E0X respectively the conormal space of X and the blowup
of 0 in X as before, then we have the diagram:

E0C(X)
ê0 //

κ′

��

ξ

��

C(X)
� � //

κ

��

λ

%%

X × P̌n−1

pr2

��
P̌n−1

E0X e0
// X

where E0C(X) is the blowup of κ−1(0) in C(X), and κ′ is obtained from the
universal property of the blowup, with respect to E0X and the map ξ.
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It is worth mentioning, that E0C(X) lives inside the fiber product
C(X) ×X E0X and can be described in the following way: take the inverse
image of E0X \ e−1

0 (0) in C(X)×X E0X and close it, thus obtaining κ′ as the
restriction of the second projection to this space.

Let Dd−k+1 ⊂ Cn be a linear subspace of codimension d−k+1, for 0 ≤ k ≤
d− 1, and let Ld−k ⊂ P̌n−1 the dual space of Dd−k+1, that is the linear space
of hyperplanes of Cn that contain Dd−k+1.

Proposition 3.4. For a sufficiently general Dd−k+1, the image κ(λ−1(Ld−k)) is
the closure in X of the set of points of X0 which are critical for the projection
π|X0 : X0 → Cd−k+1, induced by the projection Cn → Cd−k+1 with kernel
Dd−k+1 = (Ld−k)ˇ.

Proof.
Note that x ∈ X0 is critical for π, iff the tangent map dxπ : TxX

0 → Cd−k+1

is not onto, that is iff dimkerdxπ ≥ k since dim TxX
0 = d, and kerdxπ =

Dd−k+1 ∩ TxX0.
Now, note that the conormal space C(X0) of the nonsingular part of X is equal
to κ−1(X0) so by definition:

λ−1(Ld−k) ∩ C(X0) = {(x,H) ∈ C(X)|x ∈ X0, H ∈ Ld−k, TxX0 ⊂ H}

equivalently:

λ−1(Ld−k) ∩ C(X0) = {(x,H),∈ C(X)|x ∈ X0, H ∈ Ď, H ∈ (TxX
0)ˇ }

thus H ∈ Ď ∩ (TxX
0)ˇ, and from the equation Ď ∩ (TxX

0)ˇ = (D + TxX
0)ˇ we

deduce that the intersection is not empty iff D + TxX
0 6= Cn, which implies

that dim D ∩ TxX0 ≥ k, and consequently κ(H) = x is a critical point.
Now, according to [Te3, Chapter IV,1.3], there exists an open dense set Uk in

the grasmannian of n−d+k−1-planes of Cn such that if D ∈ Uk, the intersection
λ−1(Ld−k)∩C(X0) is dense in λ−1(Ld−k). So, for any D ∈ U , since κ is a proper

map, and thus closed, we have that κ(λ−1(Ld−k)) = κ
(
λ−1(Ld−k) ∩ C(X0)

)
=

κ(λ−1(Ld−k)), which finishes the proof. See [Te3, Chap. 4, 4.1.1] for a complete
proof of a more general statement.

Remark 3.1. It is important to have in mind the following easily verifiable
facts:

a) As we have seen before, the fiber κ−1(x) over a regular point x ∈ X0 in
the (projectivized) conormal space C(X) is of dimension n− d− 1, so by
semicontinuity of fiber dimension we have that dim κ−1(0) ≥ n− d− 1.

b) The analytic set λ−1(Ld−k) can be obtained by the intersection of C(X)
and Cn×Ld−k in Cn× P̌n−1. However, the space Cn×Ld−k is “linear”,
defined by n−d+k−1 linear equations, namely it is the intersection of this
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same number of “hyperplanes”. Thus for a general Ld−k, this intersection
is of pure dimension n− 1− n+ d− k + 1 = d− k.

The proof of this is not immediate because we are working over an open
neighborhood of a point x ∈ X, so we cannot assume that C(X) is com-
pact. However (see [Te3]) we can take a Whitney stratification of C(X)
such that the closed algebraic subset κ−1(0) ⊂ P̌n−1 is a union of strata.
Now by general transversality theorems in algebraic geometry (see [Kl])
a sufficiently general Ld−k will be transversal to all the strata of κ−1(0)
in P̌n−1 and then because of the Whitney conditions Cn × Ld−k will be
transversal to all the strata of C(X), which will imply in particular the
statement on the dimension. Note that the existence of Whitney stratifi-
cations does not depend on the existence of polar varieties. In [Te3] it is
deduced from the idealistic Bertini theorem.

c) The fact that λ−1(Ld−k) ∩ C(X0) is dense in λ−1(Ld−k) means that if
a limit of tangent hyperplanes at points of X0 contains Dd−k+1, it is a
limit of tangent hyperplanes which also contain Dd−k+1. This equality
holds because transversal intersections preserve the boundary condition;
see [Ch], [Te3, Remarque 4.2.3].

d) Note that for a fixed Ld−k, the germ (Pk(X;Ld−k), 0) is empty if and only
if the intersection κ−1(0) ∩ λ−1(Ld−k) is empty. Now, from a) we know
that dim κ−1(0) = n − d − 1 + r with r ≥ 0. Thus, by the exact same
argument as in b), this implies that the polar variety is not empty, that is
dim κ−1(0) ∩ λ−1(Ld−k) ≥ 0, if and only if r ≥ k.

Definition 3.3. With the notations and hypotheses of proposition 3.4, define
for 0 ≤ k ≤ d− 1 the local polar variety.

Pk(X;Ld−k) = κ(λ−1(Ld−k))

A priori, we have just defined Pk(X;Ld−k) set-theoretically, however we have
the following result, for which a proof can be found in [Te3, Chapter IV, 1.3.2].

Proposition 3.5. The local polar variety Pk(X;Ld−k) ⊆ X is a reduced closed
analytic subspace of X, either of pure codimension k in X or empty.

We have thus far defined a local polar variety that depends on both the choice
of the embedding (X, 0) ⊂ (Cn, 0) and the choice of the linear space Dd−k+1.
However, an important information we will extract from these polar varieties
is their multiplicities at 0, and these numbers are analytic invariants provided
the linear spaces used to define them are general enough. This generalizes the
invariance of the degrees of Todd’s polar loci which we saw in the introduction.

Proposition 3.6. Let (X, 0) ⊂ (Cn, 0) be as before, then for every 0 ≤ k ≤ d−1
and a sufficiently general linear space Dd−k+1 ⊂ Cn the multiplicity of the polar
variety Pk(X;Ld−k) at 0 depends only on the analytic type of (X, 0).
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Proof.
See [Te3, Chapter IV, Théorème 3.1].

This last result allows us to associate to any reduced, pure d-dimensional,
analytic local algebra OX,x a sequence of d integers (m0, . . . ,md−1), where mk

is the multiplicity at x of the polar variety Pk(X;Ld−k) calculated from any
given embedding (X,x) ⊂ (Cn, 0), and a wise choice of Dd−k+1.

Remark 3.2. Since for a linear space Ld−k to be “sufficiently general” means
that it belongs to an open dense subset specified by certain conditions, we can
just as well take a sufficiently general flag

L1 ⊂ L2 ⊂ · · · ⊂ Ld−2 ⊂ Ld−1 ⊂ Ld ⊂ P̌n−1

which by definition of a polar variety and proposition 3.6, gives us a chain

Pd−1(X;L1) ⊂ Pd−2(X;L2) ⊂ · · · ⊂ P1(X;Ld−1) ⊂ P0(X;Ld) = X,

of polar varieties, each with generic multiplicity at the origin. This implies that
if the germ of a general polar variety (Pk(X;Ld−k), 0) is empty for a fixed k,
then it will be empty for all d − 1 ≥ l ≥ k. This fact can also be deduced from
3.1 d) by counting dimensions.

Definition 3.4. (Definition of polar varieties for singular projective varieties)
Let V ⊂ Pn−1 be a reduced equidimensional projective variety of dimension d.
Let (X, 0) ⊂ (Cn, 0) be the germ at 0 of the cone over V . The polar varieties
Pk(X,Ld+1−k), 0 ≤ k ≤ d are cones because tangent spaces are constant along
the generating lines (see lemma 2.3). The associated projective subvarieties of
V are the polar varieties of V and are denoted by Pk(V ) or Pk(V,Ld+1−k) or
Pk(V,Dd−k+2) with Ld+1−k = (Dd−k+2)ˇ⊂ P̌n−1.
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Indeed, if V is nonsingular this definition coincides with the definition of
Pk(V,Dd−k+2) given in the introduction. It suffices to take the linear subspace
Ld+1−k ⊂ P̌n−1 to be the dual of the subspace Dd−k+2 ⊂ Pn−1 of codimension
d− k + 2 which appears in that definition.

Example 3.3.
Let X := y2 − x3 − t2x2 = 0 ⊂ C3, so dim X = 2, and thus k = 0, 1. An easy
calculation shows that the singular locus of X is the t−axis, and m0(X) = 2.

Now, note that for k = 0, D3 is just the origin in C3, so the the projection

π : X0 → C3

with kernel D3 is the restriction to X0 of the identity map, which is of rank 2
and we get that the whole X0 is the critical set of such a map. Thus,

P0(X,L2) = X.

For k = 1, D2 is of dimension 1. So let us take for instance D2 = y−axis,
so we get the projection

π : X0 → C2 (x, y, t) 7→ (x, t),

and we obtain that the set of critical points of the projection is given by

P1(X,L1) =

{
x = −t2
y = 0

If we had taken for D2 the line t = 0, αx+βy = 0, we would have found that the
polar curve is a nonsingular component of the intersection of our surface with
the surface 2αy = βx(3x+ 2t2). For α 6= 0 all these polar curves are tangent to
the t-axis. As we shall see in the next subsection, this means that the t-axis is
an “exceptional cone” in the tangent cone y2 = 0 of our surface at the origin,
and therefore all the 2-planes containing it are limits at the origin of tangent
planes at nonsingular points of our surface.

3.2 Limits of tangent spaces

We have talked before of the limits of tangent spaces, but with the help of the
normal/conormal diagram and the polar varieties we will be able to describe the
limits of tangent spaces to X at 0, assuming that (X, 0) is reduced and purely
d-dimensional. This method is based on Whitney’s lemma and the two results
which follow it:

Lemma 3.1. Whitney’s lemma.- Let (X, 0) be a pure dimensional germ of
analytic subspace, choose a representative X and let {xn} ⊂ X0 be a sequence
of points tending to 0, such that

lim
n→∞

[0xn] = l and lim
n→∞

TxnX = T,

then l ⊂ T .
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This lemma originally appeared in [Whi1, Theorem 22.1], and you can also
find a proof due to Hironaka in [L] and yet another below in assertion a) of
theorem 3.7.

Theorem 3.7. (Lê-Teissier, see [L-T2])
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I) In the normal/conormal diagram

X ×Pn−1 × P̌n−1 ⊃ E0C(X)
ê0 //

κ′

��

ξ

��

C(X) �
� //

κ

��

λ

%%

X × P̌n−1

pr2

��
P̌n−1

X ×Pn−1 ⊃ E0X e0
// X

consider the irreducible components {Dα} of D = |ξ−1(0)|. Then:

a) Each Dα ⊂ Pn−1 × P̌n−1 is in fact contained in the incidence variety
I ⊂ Pn−1 × P̌n−1.

b) Each Dα is lagrangian in I and therefore establishes a projective duality
of its images:

Dα
//

��

Wα ⊂ P̌n−1

Vα ⊂ Pn−1

Note that, from commutativity of the diagram we obtain κ−1(0) =
⋃
αWα,

and e−1
0 (0) =

⋃
α Vα. It is important to notice that these expressions are not

necessarily the irreducible decompositions of κ−1(0) and e−1
0 (0) respectively,

since there may be repetitions. However, it is true that they contain the respec-
tive irreducible decompositions.

In particular, note that if dimVα0
= d − 1, then the cone O(Vα0

) ⊂ Cn

is an irreducible component of the tangent cone CX,0 and its projective dual
Wα0

= V̌α0
⊂ κ−1(0). That is, any tangent hyperplane to the tangent cone is a

limit of tangent hyperplanes to X at 0. The converse is very far from true and
we shall see more about this below.

II) For any integer k, 0 ≤ k ≤ d− 1 and sufficiently general Ld−k ⊂ P̌n−1

the tangent cone CPk(X,L),0 of the polar variety Pk(X,L) at the origin consists
of:

• The union of the cones O(Vα) which are of dimension d-k (= dim Pk(X,L)).

• The polar varieties of dimension d-k, for the projection p associated to L,
of the cones O(Vβ), for dim O(Vβ) = d− k + j, that is Pj(O(Vβ), L).
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Note that Pk(X,L) is not unique, since it varies with L, but we are saying
that their tangent cones have things in common. The Vα’s are fixed, so the first
part is the fixed part of CPk(X,L),0 because it is independent of L, the second
part is the mobile part, since we are talking of polar varieties of certain cones,
which by definition move with L.

Proof.
The proof of I), which can be found in [L-T1], is essentially a strengthening of
Whitney’s lemma (lemma 3.1) using the normal/conormal diagram and the fact
that the vanishing of a differential form (the symplectic form in our case) is a
closed condition.
The proof of II), also found in [L-T1], is somewhat easier to explain geometri-
cally:
Using our normal/conormal diagram, remember that we can obtain the blowup
E0(Pk(X,L)) of the polar variety Pk(X,L) by taking its strict transform un-
der the morphism e0, and as such we will get the projectivized tangent cone
PCPk(X,L),0 as the fiber over the origin.

The first step is to prove that set-theoretically the projectivized tangent cone
can also be expressed as

|PCPk(X,L),0| =
⋃
α

κ′(ê−1
0 (λ−1(L) ∩Wα)) =

⋃
α

κ′(Dα ∩ (Pn−1 × L))

Now recall that the intersection Pk(X,L) ∩X0 is dense in Pk(X,L), so for
any point (0, [l]) ∈ PCPk(X,L),0 there exists a sequence of points {xn} ⊂ X0

such that the secants [0xn] converge to it. So, by definition of a polar variety, if
Dd−k+1 = Ľ and Tn = TxnX

0 then by 3.4 we know that dim Tn ∩Dd−k+1 ≥ k
which is a closed condition. In particular if T is a limit of tangent spaces
obtained from the sequence {Tn}, then T ∩ Dd−k+1 ≥ k also. But if this is
the case then, since the dimension of T is d, there exists a limit of tangent
hyperplanes H ∈ κ−1(0) such that T +Dd−k+1 ⊂ H which is equivalent to H ∈
κ−1(0)∩λ−1(L) 6= ∅. Consequently, the point (0, [l], H) ∈

⋃
α ê
−1
0 (λ−1(L)∩Wα),

and so we have the inclusion:

|PCPk(X,L),0| ⊂
⋃
α

κ′(ê−1
0 (λ−1(L) ∩Wα))

For the other inclusion, recall that λ−1(L)\κ−1(0) is dense in λ−1(L) and so
ê−1

0 (λ−1(L)) is equal set theoretically to the closure in E0C(X) of ê−1
0 (λ−1(L)\

κ−1(0)). Then for any point (0, [l], H) ∈ ê−1
0 (λ−1(L) ∩ κ−1(0)) there exists a

sequence {(xn, [xn], Hn)} in ê−1
0 (λ−1(L)\κ−1(0)) converging to it. Now by com-

mutativity of the diagram, we get that the sequence {(xn, Hn)} ⊂ λ−1(L) and as
such the sequence of points {xn} lies in the polar variety Pk(X,L). This implies
in particular, that the sequence {(xn, [0xn])} is contained in e−1

0 (Pk(X,L)\{0})
and the point (0, [l]) is in the projectivized tangent cone |PCPk(X,L),0|.



Local polar varieties 40

The second and final step of the proof is to use that from a) and b) we have
that each Dα ⊂ I ⊂ Pn−1 × P̌n−1 is the conormal space of Vα in Pn−1, with
the restriction of κ′ to Dα being its conormal morphism.

Note that Dα is of dimension n− 2, and since all the maps involved are just
projections, we can take the cones over the Vα’s and proceed as in section 2.3.
In this setting, we get that since L is sufficiently general, by proposition 3.4 and
definition 3.3:

• For the Dα’s corresponding to cones O(Vα) of dimension d-k (= dim
Pk(X,L)), the intersection Dα ∩ Cn × L is not empty and as such its
image is a polar variety P0(O(Vα), L) = O(Vα).

• For the Dα’s corresponding to cones O(Vα) of dimension d-k+j, the inter-
section Dα ∩Cn×L is either empty or of dimension d− k and as such its
image is a polar variety of dimension d-k,that is Pj(O(Vα), L).

You can find a proof of these results in [L-T1], [Te3] and [Te4].

So for any reduced and purely d−dimensional complex analytic germ (X, 0) ,
we have a method to “compute” or rather describe, the set of limiting positions
of tangent hyperplanes:

1) For all integers k, 0 ≤ k ≤ d − 1, compute the “general” polar varieties
Pk(X,L), leaving in the computation the coefficients of the equations of
L as indeterminates. (Partial derivatives, jacobian minors and residual
ideals with respect to the jacobian ideal);

2) Compute the tangent cones CPk(X,L),0. (Gröbner basis);

3) Sort out those irreducible components of the tangent cone of each Pk(X,L)
which are independent of L;

4) Take the projective duals of the corresponding projective varieties (Elim-
ination).

We have noticed, that among the Vα’s, there are those which are irreducible
components of ProjCX,0 and those that don’t reach the dimension.

Definition 3.5. The cones O(Vα)’s such that

dim Vα < dim ProjCX,0

are called exceptional cones.

Remark 3.3. The dimension of κ−1(0) can be large for a singularity (X, 0)
which has no exceptional cones. This is the case for example if X is the cone
over a projective variety of dimension d − 1 < n − 2 in Pn−1 whose dual is a
hypersurface.

So, now one may wonder if having no exceptional tangents makes X look
like a cone. We wil give a partial answer to this question in section 6 in terms
of the Whitney equisingularity along the axis of parameters of the flat family
specializing X to its tangent cone.
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4 Whitney Stratifications

Whitney had observed, as we can see from the statement of lemma 3.1, that
“asymptotically” near 0 a germ (X, 0) ⊂ (Cn, 0) behaves like a cone with vertex
0, in the sense that for any sequence (xi)i∈N of nonsingular points of X tending
to zero, the limit (up to restriction to a subsequence) of the tangent spaces
TxiX

0 contains the limit of the secants [0xi]. Suppose now, that we replace 0
by a nonsingular subspace Y ⊂ X, and we want to force X to “look like a cone
with vertex Y ”.

Definition 4.1. A cone with vertex Y is a space C equipped with a map

π : C −→ Y

and homotheties in the fibers, i.e., a morphism η : C × C∗ → C with π ◦ η =
π ◦ pr1 inducing an action of the multiplicative group C∗ in the fibers of π
which has as fixed set the image of a section σ : Y → C of π; π ◦ σ = IdY and
σ(Y ) = {c ∈ C|η(c, λ) = c ∀λ ∈ C∗}.

Let us take a look at the basic example we have thus far constructed.

Example 4.1.
The reduced normal cone |CX,Y | −→ Y , with the canonical analytic projection
mentioned after definition 3.1.

Now, making an analogy with the opening statement of this section we can
ask ourselves: What does it mean that “asymptotically” X is cone-like over Y ?
Well, here is Whitney’s answer, again in terms of tangent spaces and secants:

4.1 Whitney’s conditions

Let X be a reduced, pure dimensional analytic space of dimension d, let Y ⊂ X
be a nonsingular analytic subspace containing 0 of dimension t. Choose a local
embedding (X, 0) ⊂ (Cn, 0) around 0, and a local retraction ρ : (Cn, 0) −→
(Y, 0). Note that, since Y is nonsingular we can assume it is an open subset of
Ct, (X, 0) is embedded in an open subset of Ct × Cn−t and the retraction ρ
coincides with the first projection.

We say that X0 satisfies Whitney’s conditions along Y at 0 if for any se-
quence of pairs of points {(xi, yi)}i∈N ⊂ X0 × Y tending to (0, 0) we have:

lim
i→∞

[xiyi] ⊂ lim
i→∞

TxiX,

where [xiyi] denotes the line passing throught these two points. If we compare
this to Whitney’s lemma, it is just spreading out along Y the fact observed
when Y = {0}.

In fact, Whitney stated 2 conditions, which together are equivalent to the
above. Letting ρ be the aforementioned retraction, here we state the 2 condi-
tions:
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a) For any sequence {xi}i∈N ⊂ X0, tending to 0 we have:

T0Y ⊂ lim
i→∞

TxiX.

b) For any sequence {xi}i∈N ⊂ X0, tending to 0 we have:

lim
i→∞

[xiρ(xi)] ⊂ lim
i→∞

TxiX.

Whitney’s conditions can also be characterized in terms of the conormal
space and the normal /conormal diagram, as we will see later on.

Recall that our objective is to “stratify” X. What exactly do we mean by
stratify, and how do Whitney conditions relate to this? What follows in this
section consists mostly of material from [Lip] and [Te3].

Definition 4.2. A stratification of X is a decomposition into a locally finite
disjoint union X =

⋃
Xα, of non-empty, connected, locally closed subvarietes

called strata, satisfying:

(i) Every stratum Xα is smooth (and therefore an analytic manifold).

(ii) For any stratum Xα, with closure Xα, both the boundary ∂Xα := Xα \Xα

and the closure Xα are closed analytic in X.

(iii) For any stratum Xα, the boundary ∂Xα := Xα \Xα is a union of strata.

Stratifications can be determined by local stratyfing conditions as follows.
We consider conditions C = C(W1,W2, x) defined for all x ∈ X and all pairs
(W1, x) ⊃ (W2, x) of subgerms of (X,x) with (W1, x) equidimensional and
(W2, x) smooth. For example, C(W1,W2, x) could signify that the Whitney
conditions hold at x.

For such a C and for any subvarieties W1,W2 of X with W1 closed and
locally equidimensional, and W2 locally closed, set

C(W1,W2) := {x ∈W2|W2 smooth at x , and if x ∈W1 then (W1, x) ⊃ (W2, x) and

C(W1,W2, x)},

C̃(W1,W2) := W2 \ C(W1,W2).

The condition C is called stratifying if for any such W1 and W2, C̃(W1,W2)
is contained in a nowhere dense closed analytic subset of W2. In fact, it suffices
that this be so whenever W2 is smooth, connected, and contained in W1.

Going back to our case, it is true that Whitney’s conditions are stratifying.
See [Whi1, Lemma 19.3, p. 540]. The key point is to prove, given Y ⊂ X as
in section 4.1, the set of points of Y where the pair (X0, Y ) satisfies Whitney’s
conditions contains the complement of a strict closed analytic subspace of Y . A
proof of this different from Whitney’s is given below as a consequence of Theo-
rem 4.4.
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Definition 4.3. Let X be as above, then by a Whitney Stratification of X,
we mean a stratification X =

⋃
Xα, such that for any pair of strata Xβ , Xα

with Xα ⊂ Xβ, the pair (Xβ , Xα) satisfies the Whitney conditions at every
point x ∈ Xα.

4.2 Stratifications

We will now state two fundamental theorems concerning Whitney’s conditions,
the first of which was proved by Whitney himself and the second one by R. Thom
and J. Mather. The proofs can be found in [Whi1], and [Ma] respectively.

Theorem 4.1. (Whitney) Let M be a reduced complex analytic space and let
X ⊂M be a locally closed analytic subspace of M . Then, there exists a Whitney
stratification M =

⋃
Mα of M such that:

i) X is a union of strata.

ii) If Mβ ∩Mα 6= ∅ then Mβ ⊂Mα.

In fact, one can prove that any stratifying condition gives rise to a locally
finite stratification of any space X such that all pairs of strata satisfy the given
condition. See ([Lip, §2], [Te3, p. 478-480]).

Given a germ of t-dimensional nonsingular subspace (Y, 0) ⊂ (Cn, 0), by a (germ
of) local retraction ρ : (Cn, 0)→ (Y, 0) we mean the first projection of a product
decomposition (Cn, 0) ' (Y, 0) × (Cn−t, 0). By the implicit function theorem,
such retractions always exist.
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Theorem 4.2. (Thom-Mather)
Taking M = X in the previous statement, let X =

⋃
αXα be a Whitney

stratification of X, let x ∈ X and let Xα ⊂ X be the stratum that contains
x. Then, for any local embedding (X,x) ⊂ (Cn, 0) and any local retraction
ρ : (Cn, 0) → (Xα, x) and a real number ε0 > 0 such that for all 0 < ε < ε0
there exists ηε such that for any 0 < η < ηε there is a homeomorphism h

B(0, ε) ∩ ρ−1(B(0, η) ∩Mα)
h //

ρ

&&

(ρ−1(x) ∩B(0, ε))× (Xα ∩B(0, η))

pr2

ww
Xα ∩B(0, η)

compatible with the retraction ρ, and inducing for each stratum Xβ such that
Xβ ⊃ Xα a homeomorphism

Xβ ∩B(0, ε)∩ ρ−1(B(0, η)∩Xα) −→ (Xβ ∩ ρ−1(x)∩ (B(0, ε))× (Xα ∩B(0, η))

where B(0, ε) denotes the ball in Cn with center in the origin and radius ε.

In short, each Xβ , or if you prefer, the stratified set X, is locally topologically
trivial along Xα at x. A natural question arises then, is the converse to the
Thom-Mather theorem true? That is, does local topological triviality implies
the Whitney conditions? The question was posed by the second author in [Te1]
for families of hypersurfaces with isolated singulaities.

The answer is NO, in [BS] Briançon and Speder showed that the family of
surface germs

z5 + ty6z + y7x+ x15 = 0

(each member, for small t, having an isolated singularity at the origin) is locally
topologically trivial, but not Whitney.

We shall see below in section 5 that there is a converse, proved by Lê and
Teissier (see [L-T3], and [T2]). Let us refer to the conclusion of the Thom-
Mather theorem as condition (TT ) (local topological triviality), so we can re-
state theorem 4.2 as: Whitney implies (TT ). Let X =

⋃
Xα be a stratification

of the complex analytic space X and let dα = dimXα. We say that a stratifi-
cation satisfies the condition (TT )∗ (local topological triviality for the general
sections) if in addition to the condition (TT ), for every x ∈ Xα, there exists for
every k > dimXα a Zariski open set Ω in G(k − dα, n − dα) such that for any
nonsingular space E containing Xα and such that TxE ∈ Ω, the (set-theoretic)
intersection Xβ ∩ E satisfies (TT ) for all Xβ such that Xβ ⊃ Xα.

Theorem 4.3. (Lê-Teissier)
For a stratification X =

⋃
Xα of a complex analytic space X, the following

conditions are equivalent:
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1) X =
⋃
Xα is a Whitney stratification.

2) X =
⋃
Xα satifies condition (TT )∗.

4.3 Whitney stratifications and polar varieties

We now have all the ingredients, so it is time to put them together. Let us fix a
nonsingular subspace Y ⊂ X through 0 of dimension t as before, recall that we
are assuming X is a reduced, pure dimensional analytic space of dimension d.
Let us recall the notations of section 3.1 and take a look at the normal/conormal
diagram:

EY C(X)
êY //

κ′

��

ξ

��

C(X)

κ

��
EYX eY

// Y ⊂ X

Remember that EY C(X) is the blowup of κ−1(Y ) in C(X), and κ′ is ob-
tained from the universal property of the blowup, with respect to EYX and the
map ξ. Just as in the case where Y = {0}, it is worth mentioning that EY C(X)
lives inside the fiber product C(X) ×X EYX ⊂ X × Pn−1−t × P̌n−1 and can
be described in the following way: take the inverse image of EYX \ e−1

Y (Y ) in
C(X) ×X EYX and close it, thus obtaining κ′ as the restriction of the second
projection to this space.

Looking at the definitions, it is not difficult to prove that, if we consider the
divisor:

D = |ξ−1(Y )| ⊂ EY C(X), D ⊂ Y ×Pn−1−t × P̌n−1,

we have that, denoting by P̌n−1−t the space of hyperplanes containing T0Y :

•) The pair (X,Y ) satisfies Whitney’s condition a) along Y if and only if
we have the set theoretical equality C(X) ∩ C(Y ) = κ−1(Y ). It satisfies
Whitney’s condition a) at 0 if and only if ξ−1(0) ⊂ Pn−1−t × P̌n−1−t.

Indeed, note that we have the inclusion C(X) ∩ C(Y ) ⊂ κ−1(Y ), so it all
reduces to having the inclusion κ−1(Y ) ⊂ C(Y ), and since we have already seen
that every limit of tangent hyperplanes H contains a limit of tangent spaces T ,
we are just saying that every limit of tangent hyperplanes to X at a point y ∈ Y ,
must be a tangent hyperplane to Y at y. Following this line of thought, satisfying
condition a) at 0 is then equivalent to the inclusion κ−1(0) ⊂ {0}×P̌n−1−t which
implies ξ−1(0) ⊂ Pn−1−t × P̌n−1−t.

•) The pair (X0, Y ) satisfies Whitney’s condition b) at 0 if and only if ξ−1(0)
is contained in the incidence variety I ⊂ Pn−1−t × P̌n−1−t.
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This is immediate from the relation between limits of tangent hyperplanes
and limits of tangent spaces and the interpretation of EY C(X) as the closure
of the inverse image of EYX \ e−1

Y (Y ) in C(X)×X EYX since we are basically
taking limits as x→ Y of couples (l,H) where l is the direction in Pn−1−t of a
secant line [yx] with x ∈ X0 \ Y, y = ρ(x) ∈ Y , where ρ is some local retraction
of the ambient space to the nonsingular subspace Y , and H is a tangent hyper-
plane to X at x. So, in order to verify the Whitney conditions, it is important
to control the geometry of the projection D → Y of the divisor D ⊂ EY C(X).

Remark 4.1. Although it is beyond the scope of these notes, we point out to the
interested reader that there is an algebraic definition of the Whitney conditions
for X0 along Y ⊂ X solely in terms of the ideals defining C(X) ∩ C(Y ) and
κ−1(Y ) in C(X). Indeed, the inclusion C(X)∩C(Y ) ⊂ κ−1(Y ) follows from the
fact that the sheaf of ideals JC(X)∩C(Y ) defining C(X)∩C(Y ) in C(X) contains
the sheaf of ideals Jκ−1(Y ) defining κ−1(Y ), which is generated by the pull-back
by κ of the equations of Y in X. What was said above means that condition a)
is equivalent to the second inclusion in:

Jκ−1(Y ) ⊆ JC(X)∩C(Y ) ⊆
√
Jκ−1(Y ).

It is proved in [L-T2], proposition 1.3.8 that having both Whitney conditions is
equivalent to having the second inclusion in:

Jκ−1(Y ) ⊆ JC(X)∩C(Y ) ⊆ Jκ−1(Y ).

where the bar denotes the integral closure of the sheaf of ideals, which is con-
tained in the radical and in general much closer to the ideal than the radical.
The second inclusion is an algebraic expression of the fact that locally near ev-
ery point of the common zero set the modules of local generators of the ideal
JC(X)∩C(Y ) are bounded, up to a multiplicative constant, by the supremum of
the modules of generators of Jκ−1(Y ). See [Lej-Te]. We shall see more about it
in section 6.

Definition 4.4. Let Y ⊂ X as before. Then we say that the local polar variety
Pk(X;Ld−k) is equimultiple along Y at a point x ∈ X ∩ Y if the following two
conditions are satisfied:

(i) If Pk(X;Ld−k) 6= ∅ at x, then Pk(X;Ld−k) ⊃ Y in a neighborhood of x.

(ii) The multiplicities my(Pk(X;Ld−k)) are locally constant for y ∈ Y in a
neighborhood of x.

Now we can state the main theorem of these notes, a complete proof of which
can be found in [Te3, Chapter V, Thm 1.2, p. 455].

Theorem 4.4. (Teissier; see also [HM] for another proof and [Co], [CM] for
extensions to subanalytic sets) Given 0 ∈ Y ⊂ X as before, the following con-
ditions are equivalent, where ξ is the diagonal map in the normal/conormal
diagram above:
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1) The pair (X0, Y ) satisfies Whitney’s conditions at 0.

2) The local polar varieties Pk(X,L), 0 ≤ k ≤ d − 1, are equimultiple along
Y (at 0), for general L.

3) dim ξ−1(0) = n− 2− t.

Note that since dim D = n− 2 condition 3) is open and the theorem implies
that (X0, Y ) satisfies Whitney’s conditions at 0 if and only if it satisfies Whit-
ney’s conditions in a neighborhood of 0.

Note also that by semicontinuity of fiber dimension, condition 3) is satisfied
outside of a closed analytic subspace of Y , which shows that Whitney’s is a
stratifying condition.

Moreover, since a blowup does not lower dimension, the condition dim ξ−1(0) =
n−2−t implies dim κ−1(0) ≤ n−2−t. So that, in particular κ−1(0) 6⊃ P̌n−1−t,
where P̌n−1−t denotes as before the space of hyperplanes containing T0Y . This
tells us that a general hyperplane containing T0Y is not a limit of tangent hy-
perplanes to X. This fact is crucial in the proof that Whitney conditions are
equivalent to the equimultiplicity of polar varieties since it allows the start of
an inductive process. In the actual proof of [Te3], one reduces to the case where
dimY = 1 and shows by a geometric argument that the Whitney conditions
imply that the polar curve has to be empty, which gives a bound on the di-
mension of κ−1(0). Conversely, the equimultiplicity condition on polar varieties
gives bounds on the dimension of κ−1(0) by implying the emptiness of the polar
curve and on the dimension of e−1

Y (0) by Hironaka’s result, hence a bound on
the dimension of ξ−1(0).

It should be noted that Hironaka had proved in [Hi] that the Whitney con-
ditions for X0 along Y imply equimultiplicity of X along Y .

Finally, a consequence of the theorem is that given a complex analytic space
X, there is a unique minimal (coarsest) Whitney stratification; any other Whit-
ney stratification of X is obtained by adding strata inside the strata of the min-
imal one. A detailed explanation of how to construct this “canonical” Whitney
stratification using theorem 4.4, and a proof that this is in fact the coarsest one
can be found in [Te3, Chap. VI, § 3].

4.4 Relative Duality

There still is another result which can be expressed in terms of the relative
conormal space and consequently of course, in terms of relative duality. We
first need the:
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Proposition 4.5. (Versions of this appear in [La], [Sa].) Let X ⊂ Cn be
a reduced analytic subspace of dimension d and let Y ⊂ X be a nonsingular
analytic proper subspace of dimension t. Let ϕ : X→ C be the specialization of
X to the normal cone CX,Y of Y in X, and let C(X), C(Y ) denote the conormal
spaces of X and Y respectively, in Cn × Čn. Then the relative conormal space

κϕ ◦ ϕ := q : Cϕ(X)→ X→ C

is isomorphic, as an analytic space over C, to the specialization space of C(X)
to the normal cone CC(X),C(Y )∩C(X) of C(Y ) ∩ C(X) in C(X). In particular,
the fibre q−1(0) is isomorphic to this normal cone.

Proof.
Let I ⊂ J be the coherent ideals of the structure sheaf of Cn that define the
analytic subspaces X and Y respectively, and let p : D→ C be the specialization
space of C(X) to the normal cone of C(Y ) ∩C(X) in C(X). Note that, in this
context, both spaces D and Cϕ(X) are analytic subspaces of C×Cn× Čn. Let
us consider a local chart, in such a way that Y ⊂ X ⊂ Cn, locally becomes
Ct ⊂ X ⊂ Cn with local associated coordinates:

(v, y1 . . . , yt, zt+1, . . . , zn, a1, . . . , at, bt+1, . . . , bn)

in C×Cn × Čn.

Let J := 〈zt+1, . . . , zn〉 be the ideal defining Y in Cn. One can verify that,
just as in the case of the tangent cone (see exercise 2.1 b)), if f1, . . . , fr , are
local equations for X in Cn such that their initial forms inJfi generate the
ideal of grJOX defining the normal cone of X along Y . Then the equations
Fi := v−kifi(y, vz), i = 1, . . . , r, where ki = sup{k|fi ∈ Jk} locally define the
specialization space ϕ : X → C of X to the normal cone CX,Y . Furthermore,
if you look closely at the equations, you will easily verify that the open set
X \ ϕ−1(0) is isomorphic over C∗ to C∗ × X, via the morphism Φ defined by
the map (v, y, z) 7→ (v, y, vz).

We can now consider the relative conormal space,

q : Cϕ(X)→ X→ C,

and thanks to the fact that X\ϕ−1(0) is an open subset with fibers X(v) isomor-
phic to X, the previous isomorphism Φ implies that Cϕ(X)\q−1(0) is isomorphic
over C∗ to C∗ × C(X).

On the other hand, note that, since J = 〈zt+1, . . . , zn〉 in OCn , then the
conormal space C(Y ) is defined in Cn×P̌n−1 by the sheaf of ideals JC generated
(in OCn×Čn) by (zt+1, . . . , zn, a1, . . . , at).
Thus, if we chose local generators (g1, . . . , gs) for the sheaf of ideals defining
C(X) ⊂ Cn × P̌n−1, whose JCOC(X)-initial forms generate the initial ideal,
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the equations Gi(v, y, z, a, b) = v−ligi(v, y, vz, va, b) locally define a subspace

D ⊂ C ×Cn × P̌n−1 with a faithfully flat projection D
p→ C, where the fiber

p−1(0) is the normal cone CC(X),C(Y )∩C(X). Note that in this case the li’s are
defined with respect to the ideal JCOC(X).
The open set D \ p−1(0) is isomorphic to C∗ ×C(X) via the morphism defined
by (v, y, z, a, b) 7→ (v, y, vz, va, b).

This last morphism is a morphism of the ambient space to itself over C

ψ : C×Cn × Čn −→ C×Cn × Čn

(v, y, z, a, b) 7−→ (v, y, vz, va, b)

which turns out to be an isomorphism when restricted to the open dense set
C∗×Cn× Čn. So, if we take the analytic subspace C∗×C(X) in the image, as
a result of what we just said, we have the equality ψ−1(C∗×C(X)) = D\p−1(0).

Finally, recall that both morphisms defining q, are induced by the natural
projections

C×Cn × Čn → C×Cn → C,

and therefore we have a commutative diagram:

Cϕ(X) �
� //

q

99

κϕ

��

C×Cn × Čn ψ //

π

��

C×Cn × Čn

π

��
X
� � //

ϕ
--

C×Cn φ //

$$

C×Cn

zz
C

To finish the proof, it is enough to check that the image by ψ of Cϕ(X)\q−1(0) is
equal to C∗×C(X), since we already know that ψ−1(C∗×C(X)) = D\p−1(0)
and so we will find an open dense set common to both spaces, which are faithfully
flat over C, and consequently the closures will be equal.

Let (y, z) ∈ X be a smooth point, then the vectors

∇fi(y, z) :=

(
∂fi
∂y1

(y, z), · · · , ∂fi
∂yt

(y, z),
∂fi
∂zt+1

(y, z), · · · , ∂fi
∂zn

(y, z)

)
,

representing the 1-forms dfi in the basis dyj , dzi , generate the linear subspace of
Čn encoding all the 1-forms that vanish on the tangent space T(y,z)X

0, i.e. the
fiber over the point (y, z) in C(X). Analogously, let (v, y, z) ∈ X be a smooth
point in X \ ϕ−1(0), then the vectors

∇Fi(v, y, z) :=

(
∂Fi
∂y1

(v, y, z), · · · , ∂Fi
∂yt

(v, y, z),
∂Fi
∂zt+1

(v, y, z), · · · , ∂Fi
∂zn

(v, y, z)

)
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generate the linear subspace of Čn encoding of all the 1-forms that vanish on
the tangent space T(v,y,z)X(v)0, i.e. the fiber over the point (v, y, z) in Cϕ(X).
But, according to our choice of (v, y, z), we know that φ((v, y, z)) = (v, y, vz)
is a smooth point of C∗ ×X and in particular (y, vz) is a smooth point of X.
Moreover, notice that:

∂Fi
∂yj

(v, y, z) = v−ni
∂fi
∂yj

(y, vz)

∂Fi
∂zk

(v, y, z) = v−ni+1 ∂fi
∂zk

(y, vz)

and therefore the image of the corresponding point

ψ(v, y, z,
∂Fi
∂yj

(v, y, z),
∂Fi
∂zk

(v, y, z)) = (v, y, vz, v−ni+1 ∂fi
∂yj

(y, vz), v−ni+1 ∂fi
∂zk

(y, vz))

= (v, y, vz, v−ni+1∇fi(y, vz))

is actually a point in C∗×C(X). Since v 6= 0, the v−ni+1∇fi(y, vz) also generate
the fiber over the point (v, y, vz) ∈ C∗ ×X by the map C∗ × C(X)→ C∗ ×X
induced by κϕ and the isomorphism ϕ−1(C∗) ' C∗ ×X, which implies that ψ
sends Cϕ(X) \ q−1(0) onto C∗ × C(X).

Going back to our normal-conormal diagram:

EY C(X)
êY //

κ′

��

ξ

��

C(X)

κ

��
EYX eY

// Y ⊂ X

Consider the irreducible components Dα ⊂ Y ×Pn−1−t × P̌n−1 of
D = |ξ−1(Y )|, that is D =

⋃
Dα, and its images:

Vα = κ′(Dα) ⊂ Y ×Pn−1−t,

Wα = êY (Dα) ⊂ Y × P̌n−1.

Then we have:

Theorem 4.6. (Lê-Teissier, see [L-T2, Thm 2.1.1]) The equivalent statements
of theorem 4.4 are also equivalent to:
For each α, the irreducible divisor Dα is the relative conormal space of its image
Vα ⊂ CX,Y ⊂ Y × Cn−t with respect to the canonical analytic projection Y ×
Cn−t → Y restricted to Vα, and all the fibers of the restriction ξ : Dα → Y have
the same dimension near 0.



Local polar varieties 51

In particular, Whitney’s conditions are equivalent to the equidimensionality
of the fibers of the map Dα → Y , plus the fact that each Dα is contained in
Y ×Pn−1−t× P̌n−1−t, where P̌n−1−t is the space of hyperplanes containing the
tangent space TY,0, and the contact form on Pn−1−t × P̌n−1−t vanishes on the
smooth points of Dα(y) for y ∈ Y . This means that each Dα is Y -lagrangian
and is equivalent to a relative (or fiberwise) duality:

Dα
//

��

Wα = Y−dual of Vα ⊂ Y × P̌n−1−t

Y ×Pn−1−t ⊃ Vα

The proof uses that the Whitney conditions are stratifying, and that theorem
4.4 and the result of remark 4.1 imply6 that Dα is the conormal of its image
over a dense open set of Y , and the condition dim ξ−1(0) = n− 2− t then gives
exactly what is needed, in view of proposition 2.5, for Dα to be Y -lagrangian.
Finally, we want to state another result relating Whitney’s conditions to the
dimension of the fibers of some related maps. A complete proof of this result
can be found in [L-T2, Prop. 2.1.5 and Cor.2.2.4.1].

Corollary 4.1. Using the notations above we have:

1) The pair (X0, Y ) satisfies Whitney’s conditions at 0 is and only if for each
α the dimension of the fibers of the projection Wα → Y is locally constant
near 0.

2) The pair (X0, Y ) satisfies Whitney’s conditions at 0 is and only if for each
α the dimension of the fibers of the projection Vα → Y is locally constant
near 0.

Remark 4.2. The fact that the Whitney conditions, whose original definition
translates as the fact that ξ−1(Y ) is in Y × Pn−1−t × P̌n−1−t and not just
Y ×Pn−1−t × P̌n−1 (condition a) and moreover lies in the product Y × I of Y
with the incidence variety I ⊂ Pn−1−t × P̌n−1−t (condition b)), are in fact of
a lagrangian, or legendrian, nature, explains their stability by general sections
(by nonsingular subspaces containing Y ) and linear projections.

Problem: The fact that the Whitney conditions are of an algebraic nature,
since they can be translated as an equimultiplicity condition for polar varieties
by theorem 4.4 leads to the following question: given a germ (X,x) ⊂ (Cn, 0) of
a reduced complex analytic space, endowed with its minimal Whitney stratifica-
tion, does there exist a germ (Y, 0) ⊂ (CN , 0) of an algebraic variety and a germ
(H, 0) ⊂ (CN , 0) of a nonsingular analytic variety transversal to the stratum
of 0 in the minimal Whitney stratification of (Y, 0) such that (X, 0) with its
minimal Whitney stratification is analytically isomorphic to the intersection of
(Y, 0), with its minimal Whitney stratification, with (H, 0) in (CN , 0)?

6The proof of this in [L-T2] uses a lemma, p.559, whose proof is incorrect, but easy to
correct.
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5 Whitney stratifications and the local total topo-
logical type

Warning In this section and section 7, we modify the notation for polar vari-
eties; the general linear space defining each polar variety becomes implicit, while
the point at which the polar variety is defined appears in the notation Pk(X,x).

We have seen how to associate to a reduced equidimensional germ (X,x) of
a d-dimensional complex analytic space a generalized multiplicity (recall that
(X,x) = P0(X,x)):

(X,x) 7→ (mx(X,x),mx(P1(X,x)), . . . ,mx(Pd−1(X,x))) .

We know that the multiplicitymx(X) of a reduced germ (X,x) of a d-dimensional
complex analytic space has a geometric interpretation as follows: given a local
embedding (X,x) ⊂ (Cn, 0) there is a dense Zariski open set U of the Grass-
mannian of n − d-dimensional linear subspaces L ⊂ Cn such that for L ∈ U ,
with equation `(z) = 0, there exists ε > 0 and η(ε, `) > 0 such that the affine
linear space Lt′ = `−1(t′) intersects X transversally in mx(X) points inside the
ball B(0, ε) whenever 0 < |t′| < η(ε, `). Taking t ∈ B(0, ε) such that `(t) = t′,
we can write Lt′ as L+ t.
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We may ask whether there is a similar interpretation of the other polar
multiplicities in terms of the local geometry of (X,x) ⊂ (Cn, 0). The idea, as
in many other instances in geometry, is to generalize the number of intersection
points card{Lt ∩X} by the Euler-Poincaré characteristic χ(Lt ∩X) when the
dimension of the intersection is > 0 because the dimension of Lt is > n− d.

Proposition 5.1. (Lê-Teissier, see [L-T3]) Let X =
⋃
αXα be a Whitney stra-

tified complex analytic set. Given x ∈ Xα, choose a local embedding (X,x) ⊂
(Cn, 0). Set dα = dimXα. For each n > i > dα there exists a Zariski open
dense subset Wα,i in the Grassmannian G(n − i, n) and for each Li ∈ Wα,i a
semi-analytic subset ELi of the first quadrant of R2, of the form {(ε, η)|0 <
ε < ε0, 0 < η < φ(ε)} with φ(ε) a certain Puiseux series in ε, such that the
homotopy type of the intersection X∩(Li+t)∩B(0, ε) for t ∈ Cn is independent
of Li ∈ Wα,i and (ε, t) provided that (ε, |t|) ∈ ELi . Moreover, this homotopy
type depends only on the stratified set X and not on the choice of x ∈ Xα or
the local embedding. In particular the Euler-Poincaré characteristics χi(X,Xα)
of these homotopy types are invariants of the stratified analytic set X.

Definition 5.1. The Euler-Poincaré characteristics χi(X,Xα) are called the
local vanishing Euler-Poincaré characteristics of X along Xα.

Corollary 5.1. (Kashiwara; see [K1], [K2]) The Euler-Poincaré characteristics
χ(X,Xα) of the corresponding homotopy types when i = dα + 1 depend only on
the stratified set X and the stratum Xα.

The invariants χ(X,Xα) appeared for the first time in [K1], in connexion
with Kashiwara’s index theorem for maximally overdetermined systems of linear
differential equations.

Example 5.1.

• Let d be the dimension of X. Taking Xα = {x}, which is permissible by
Whitney’s lemma (lemma 3.1), and i = d gives χd(X, {x}) = mx(X), as
we saw above.

• Assume that (X,x) ⊂ (Cd+1, 0) is a hypersurface with isolated singularity
at the point x (taken as origin in Cd+1), defined by f(z1, . . . , zd+1) = 0.
By Whitney’s lemma (lemma 3.1), in a sufficiently small neighborhood
of x, the minimal Whitney stratification (see the end of section 4.3) is
(X \ {x}) ∪ {x}, and we have

χi(X, {x}) = 1 + (−1)d−iµ(d+1−i)(X,x), (∗)

where µ(k)(X,x) is the Milnor number of the restriction of the function f
to a general linear space of dimension k through x.

Let us recall that the Milnor number µ(d+1)(X,x) of an isolated singularity
of hypersurface as above is defined algebraically as the multiplicity in
C{z1, . . . , zd+1} of the jacobian ideal j(f) = ( ∂f∂z1 , . . . ,

∂f
∂zd+1

), which is
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also the dimension of the C-vector space C{z1,...,zd+1}
j(f) since in this case

the partial derivatives form a regular sequence. Topologically it is defined
by the fact that for 0 < |λ| << ε << 1 the Milnor fiber f−1(λ) ∩B(0, ε)
has the homotopy type of a bouquet of µ(d+1)(X,x) spheres of dimension
d. In fact this is true of any smoothing of (X,x) that is, any nonsingular
fiber in an analytic family F (v, z1, . . . , zd+1) = 0 with F (0, z1, . . . , zd+1) =
f(z1, . . . , zd+1), within a ball B(0, ε) and for 0 < |v| << ε << 1. This
is a consequence of the fact that the basis of the miniversal deformation
of an isolated singularity of hypersurface (or more generally, complete
intersection) is nonsingular, and thus irreducible, and the smooth fibers
are the fibers of a locally trivial fibration over the (connected) complement
of the discriminant; see [Te2, §4]. Since f−1(0) ∩ B(0, ε) is contractible
the Milnor fiber has µ(d+1)(X,x) vanishing cycles of dimension d. For all
this, see [Mi]. The Milnor number of the restriction of the function f to a
general i-dimensional linear space through 0 is well defined and does not
depend on the choice of the embedding (X,x) ⊂ (Cd+1, 0) or the general
linear space in Cd+1 but only on the analytic algebra OX,x. It is denoted
by µ(i)(X,x); by convention, µ(0)(X,x) = 1. See [Te1].

Let us now prove the equality (∗). By the results of [Te1], it suffices to
prove the equality for i = 1. Then, we know by proposition 2.3 that a
general hyperplane L1 through x is not a limit of tangent hyperplanes
to X at nonsingular points. Thus, if 0 < |t| << ε, the intersection
X ∩ (L1 + t) ∩ B(0, ε) is nonsingular because it is a transversal inter-
section of nonsingular varieties. For the same reason, the intersection
L1 ∩ X ∩ B(0, ε) is nonsingular outside of the origin. Choosing coordi-
nates so that L1 is given by z1 = 0, we see that the intersections with
a sufficiently small ball B(0, ε) around x of f(t, z2, . . . , zd+1) = 0 and
f(0, z2, . . . , zd+1) = λ, for small |t|, |λ|, are two smoothings of the hyper-
surface with isolated singularity f(0, z2, . . . , zd+1) = 0. They are therefore
diffeomorphic and thus have the same Euler characteristic. The first one is
our χ1(X, {x}) and the second one is the Euler characteristic of a Milnor
fiber of f(0, z2, . . . , zd+1), which is 1 + (−1)d−1µ(d)(X,x) in view of the
bouquet description recalled above.

It is known from [L-T1, 4.1.8] (see also just after theorem 5.2 below) that
the image of a general polar variety Pk(X,x) by the projection p : (Cn, 0) →
(Cd−k+1, 0) which defines it has at the point p(x) the same multiplicity as
Pk(X,x) at x. This is because for a general projection p the kernel of p is
transversal to the tangent cone CPk(X,x),x of the corresponding polar variety.
Using this in the case of isolated singularities of hypersurfaces, it is known from
([Te1, Chap. II, proposition 1.2 and cor. 1.4] or [Te7, corollary p.610] that the
multiplicities of the polar varieties are computed from the µ(k)(X,x); we have
the equalities

mx(Pk(X,x)) = µ(k+1)(X,x) + µ(k)(X,x).

At this point it is important to note that the equality mx(Pd−1(X,x)) =
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µ(d)(X,x)+µ(d−1)(X,x) which, by what we have just seen, implies the equality

χ1(X, {x})− χ2(X, {x}) = (−1)d−1mx(Pd−1(X,x)),

implies the general formula

χd−k(X, {x})− χd−k+1(X, {x}) = (−1)kmx(Pk(X,x)),

simply because an affine space Ld−k + t can be viewed as the intersection of an
L1 + t for a general L1 with a general vector subspace Ld−k−1 of codimension
d− k − 1 through the point x taken as origin of Cn, and

mx(Pk(X,x)) = mx(Pk(X,x) ∩ Ld−k−1) = mx(Pk(X ∩ Ld−k−1), x)).

The first equality follows from general results on multiplicities since Ld−k−1 is
general, and the second from general results on local polar varieties found in
([Te3, 5.4], [L-T1, 4.18]). This sort of argument is used repeatedly in the proofs.

The formula for a general stratified set is the following:

Theorem 5.2. (Lê-Teissier, see [L-T1, théorème 6.1.9], [L-T3, 4.11]) With
the conventions just stated, and for any Whitney stratified complex analytic set
X =

⋃
αXα ⊂ Cn, we have for x ∈ Xα the equality

χdα+1(X,Xα)− χdα+2(X,Xα) =∑
β 6=α

(−1)dβ−dα−1mx(Pdβ−dα−1(Xβ , x))(1− χdβ+1(X,Xβ)),

where it is understood that mx(Pdβ−dα−1(Xβ , x)) = 0 if x /∈ Pdβ−dα−1(Xβ , x).

The main ingredients of the proof are Morse theory and the transversality
theorem already mentioned above which states that the kernel of the projection
defining a polar variety Pk(X,L) is transversal to the tangent cone CPk(X.L),0

at the origin provided that the projection is general enough. Thus, the image
of that polar variety by this projection, a hypersurface called the polar image,
has the same multiplicity as the polar variety (see [L-T1], 4.1.8).
This is useful because one considers the intersections X ∩ (Li + t) ∩B(0, ε) as
intersections with X ∩B(0, ε) of the fibers of linear projections Cn → Ci over
a “general” point close to the image of the point x ∈ Xα. Because we are in
complex analytic geometry the variations of Euler-Poincaré characteristics can
be computed as the number of intersection points of a general line with the polar
image, which is its multiplicity. In addition, the existence of fundamental sys-
tems of good neighborhoods of a point of Cn relative to a Whitney stratification
plays an important role.

Let us now go back to the definitions of stratifications and stratifying con-
ditions (see definition 4.2). Given a complex analytic stratification X =

⋃
αXα

of a complex analytic space, we can consider the following incidence conditions:
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1. “Punctual Whitney conditions”, the incidence condition Ŵx(Xα, Xβ): For
any α, any point x ∈ Xα, any stratum Xβ such that Xβ contains x and
any local embedding (X,x) ⊂ (Cn, 0), the pair of strata (Xβ , xα) satisfies
the Whitney conditions at x.

2. “Local Whitney conditions”, the incidence condition Wx(Xα, Xβ): same
as above except that the Whitney conditions must be satisfied at every
point of some open neighborhood of x in Xα.

3. “(Local Whitney conditions)∗”: For each α, for every x ∈ Xα and every
local embedding (X,x) ⊂ (Cn, 0), for every i ≤ n−dα there exists a dense
Zariski open set Ui of the Grassmannian G(n − i − dα, n − dα) of linear
spaces of codimension i of Cn containing the tangent space TxXα such that
for every germ of nonsingular subspace (Hi, x) ⊂ (Cn, 0) of codimension
i containing (Xα, x) and such that TxHi ∈ Ui, we have Wx(Xα, Xβ ∩Hi).

4. “Local Topological equisingularity”, the incidence condition (TT )x: For
any α, any point x ∈ Xα, any stratum Xβ such that Xβ contains x
and any local embedding (X,x) ⊂ (Cn, 0), there exist germs of retrac-
tions ρ : (Cn, 0) → (Xα, x) and positive real numbers ε0 such that for all
ε, 0 < ε ≤ ε0 there exists ηε such that for all η, 0 < η ≤ ηε, there is
an homeomorphism B(0, ε) ∩ ρ−1(B(0, η) ∩ Xα) ' (ρ−1(x) ∩ B(0, ε)) ×
(B(0, η) ∩Xα) which is compatible with the retraction ρ and the projec-
tion to B(0, η) ∩Xα and, for each stratum Xβ such that Xβ contains x,
induces an homeomorphism:

Xβ∩B(0, ε)∩ρ−1(B(0, η)∩Xα) ' (Xβ∩ρ−1(x)∩B(0, ε))×(B(0, η)∩Xα).

This embedded local topological triviality, meaning that locally around
x each Xβ is topologically a product of the nonsingular Xα by the fiber
ρ−1(x), in a way which is induced by a topological product structure of
the ambient space, will be denoted by TTx(Xα, Xβ) for each specified Xβ .

5. “(Local Topological equisingularity)∗”, the incidence condition (TT ∗)x:
For each α, for every x ∈ Xα and every local embedding (X,x) ⊂ (Cn, 0),
for every i ≤ n− dα there exists a dense Zariski open set Ui of the Grass-
mannian G(n − i − dα, n − dα) of linear spaces of codimension i of Cn

containing the tangent space TxXα such that for every germ of nonsin-
gular subspace (Hi, x) ⊂ (Cn, 0) of codimension i containing (Xα, x) and
such that TxHi ∈ Ui, we have TTx(Xα, Xβ ∩Hi).

6. “χ∗ constant”: For each α, for every x ∈ Xα, every stratum Xβ such that
Xα ⊂ Xβ , and every local embedding (X,x) ⊂ (Cn, 0), the map which
to every point y ∈ Xα in a neighborhood of x associates the sequence
χ∗(Xβ , y) = (χ1(Xβ , {y}), . . . , χn−dβ (Xβ , {y})) is constant on Xα in a

neighborhood of x. Recall that χi(Xβ , {y})) is the Euler characteristic of
the intersection, within a small ball B(0, ε) around y in Cn, of Xβ with
an affine subspace of codimension i of the form Li+ t, where Li is a vector
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subspace of codimension i of general direction and 0 < |t| < η for a small
enough η, depending on ε.

7. “M∗ constant”: For each α, for every x ∈ Xα, for every stratum Xβ

such that Xα ⊂ Xβ , and every local embedding (X,x) ⊂ (Cn, 0), the
map which to every point y ∈ Xα in a neighborhood of x associates the
sequence

M∗(Xβ , y) =
(
my(Xβ),my(P1(Xβ , y)), . . . ,my(Pdβ−1(Xβ , y))

)
∈ Ndβ

is constant in a neigborhood of x.

This condition is equivalent to saying that the polar varieties Pk(Xβ , x)
which are not empty contain Xα and are locally around x equimultiple
along Xα.

The main theorem of [L-T3] (Théorème 5.3.1) is that for a stratifica-
tion in the sense of definition 4.2 all these conditions are equivalent.
Theorem 5.2, which relates the multiplicities of polar varieties with local topo-
logical invariants, plays a key role in the proof.

Recall that we saw in subsection 4.2 the result of Thom-Mather (see [Ma])
that Whitney stratifications have the property of local topological equisingular-
ity defined above. We also mentioned that he converse is known to be false since
Briançon-Speder gave an example in [BS]. The result just mentioned provides
among other things the correct converse.

6 Specialization to the Tangent Cone and Whit-
ney equisingularity

Let us now re-examine the question of how much does a germ of singularity
(X, 0) without exceptional cones resembles a cone. The obvious choice is to
compare it with its tangent cone CX,0, assuming that it is reduced, and we can
rephrase the question by asking does the absence of exceptional cones implies
that (X, 0) is Whitney-equisingular to its tangent cone?

To be more precise, let (X, 0) ⊂ (Cn, 0) be a reduced germ of an analytic
singularity of pure dimension d, and let ϕ : (X, 0) → (C, 0) denote the special-
ization of X to its tangent cone CX,0. Let X0 denote the open set of smooth
points of X, and let Y denote the smooth subspace 0 ×C ⊂ X. Our aim is to
study the equisingularity of X along Y . More precisely, we want to determine
whether the absence of exceptional cones will allow us to construct a Whitney
stratification of X in which the parameter axis Y is a stratum.

The first result in this direction was obtained by Lê and Teissier in [L-T4,
Thm 2.2.1] and says that for a surface (S, 0) ⊂ (C3, 0) with a reduced tangent
cone the absence of exceptional cones is equivalent to {X0,SingX \ Y, Y } being
a Whitney stratification of X. In particular (S, 0) is Whitney equisingular to its
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tangent cone (CS,0, 0).

In the general case, we only have a partial answer which we will now describe.
The first step to find out if such a stratification is possible, is to verify that the
pair (X0, Y ) satisfies Whitney’s conditions. Since X \ X(0) is isomorphic to the
product C∗×X, Whitney’s conditions are automatically verified everywhere in
{0} ×C , with the possible exception of the origin.

Theorem 6.1. [Gi, Thm 8.11] Let (X, 0) be a reduced and equidimensional
germ of a complex analytic singularity, and suppose that its tangent cone CX,0
is reduced. Then the following statements are equivalent:

1. The germ (X, 0) does not have exceptional cones.

2. The pair (X0, Y ) satisfies Whitney’s condition a) at the origin.

3. The pair (X0, Y ) satisfies Whitney’s conditions a) and b) at the origin.

4. The germ (X, 0) does not have exceptional cones.

We would like to explain a little how one goes about proving this result. To
begin with, we know that Whitney’s condition b) is stronger than the condition
a). However the equivalence of statements 2) and 3) tells us that in this case,
for the pair of strata (X0, Y ) at the origin, they are equivalent, and it is the
special geometry of X that plays a crucial role in this result.

Proposition 6.2. [Gi, Proposition 6.1] If the pair (X0, Y ) satisfies Whitney’s
condition a) at the origin, then it also satisfies Whitney’s condition b) at the
origin.

Remark 6.1.

1. For any point y ∈ Y , the tangent cone CX,y is isomorphic to CX,0 × Y ,
and the isomorphism is uniquely determined once we have chosen a set
of coordinates. The reason is that for any f(z) vanishing on (X, 0), the
function F (z, v) = v−mf(vz) = fm + vfm+1 + v2fm+2 + . . ., vanishes in
(X, 0) and so for any point y = (0, v0) the initial form of F (z, v + v0) in
C{z1, . . . , zn, v} is equal to the initial form of f at 0. That is in(0,v0)F =
in0f .

2. The projectivized normal cone PCX,Y is isomorphic to Y ×PCX,0. This
can be seen from the equations used to define X (section 2, exercise 2.1),
where the initial form of Fi with respect to Y , is equal to the initial form
of fi at the origin. That is inY Fi = in0fi.

3. There exists a natural morphism ω : EY X → E0X, making the following
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diagram commute:

EY X
ω //

eY

��

E0X

eo

��
X

φ
// X

Moreover, when restricted to the exceptional divisor e−1
Y (Y ) = PCX,Y it

induces the natural map PCX,Y = Y ×PCX,0 → PCX,0.
Algebraically, this results from the universal property of the blowup E0X
and the following diagram:

EY X

eY

��

E0X

eo

��
X

φ
// X

Note that, for the diagram to be commutative the morphism ω must map
the point ((v, z), [z]) ∈ EY X\{Y×Pn−1} ⊂ X×Pn−1 to the point ((vz), [z])
in E0X ⊂ X ×Pn−1.

Now we can proceed to the proof of 6.2.

Proof. (of Proposition 6.2)
We want to prove that the pair (X0, Y ) satisfies Whitney’s condition b) at

the origin. We are assuming that it already satisfies condition a), so in particular
we have that ζ−1(0) is contained in {0} × Pn−1 × P̌n−1, but by the remarks
made at the beginning of section 4.3 it suffices to prove that any point (0, l,H) ∈
ζ−1(0) is contained in the incidence variety I ⊂ {0} × Pn−1 × P̌n−1. This is
done by considering the normal/conormal diagram of X augmented by the map
ω : EY X → E0X of the remarks above and the map ψ : C(X) → C(X) × C
defined by ((z1, . . . , zn, v), (a1 : . . . : an : b)) 7→ ((vz1, . . . , vzn), (a1 : . . . : an), v)

EY C(X)
êY //

κ′X

��

ζ

��

C(X)

κX

��

ψ // C(X)×C

EY X eY
//

ω

��

X

E0X

By construction, there is a sequence (zm, vm, lm, Hm) in EY C(X) ↪→
C(X) ×X EY X tending to (0, l,H), where (zm, vm) is not in Y . Through κ′X,
we obtain a sequence (zm, vm, lm) in EY X tending to (0, l), and through êY a
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sequence (zm, vm, Hm) tending to (0, H) in C(X).

In this case the condition a) means that b = 0 and so through ψ we obtain

the sequence (tmzm, H̃m) tending to (0, H̃) in C(X). Analogously, both the
sequence (vmzm, lm) obtained through the map ω and its limit (0, l) are in
E0X. Finally, Whitney’s lemma 3.1 tells us that in this situation we have that
l ⊂ H̃ and so the point (0, l,H) is in the incidence variety.

Lemma 6.1. [Gi, Lemma 6.4] If the tangent cone CX,0 is reduced and the
pair (X0, Y ) satisfies Whitney’s condition a) then the germ (X, 0) does not have
exceptional cones.

Proof. Since (X0, Y ) satisfies Whitney’s condition a), by proposition 6.2 it also
satisfies Whitney’s condition b). Recall that the auréole of (X, 0) along Y is
a collection {Vα} of subcones of the normal cone CX,Y whose projective duals
determine the set of limits of tangent hyperplanes to X at the points of Y in
the case that the pair (X0, Y ) satisfies Whitney conditions a) and b) at every
point of Y (S 2ee [L-T2, Thm. 2.1.1, Corollary 2.1.2, p. 559-561]). Among the
Vα there are the irreducible components of |CX,Y |. Moreover:

1. By Remark 6.1 we have that CX,Y = Y × CX,0 so its irreducible com-

ponents are of the form Y × Ṽβ where Ṽβ is an irreducible component of
|CX,0|.

2. For each α the projection Vα → Y is surjective and all the fibers are of
the same dimension. (See [L-T2], Proposition 2.2.4.2, p. 570)

3. The hyperplane H corresponding to the point (0 : 0 : · · · : 0 : 1) ∈ P̌n+1,
which is v = 0, is transversal to (X, 0) by hypothesis, and so by [L-T2,
Thm. 2.3.2, p. 572] the collection {Vα ∩H} is the auréole of X∩H along
Y ∩H.

Notice that (X ∩ H,Y ∩ H) is equal to (X(0), 0), which is isomorphic to
the tangent cone (CX,0, 0) and therefore does not have exceptional cones. This
means that for each α, either Vα ∩H is an irreducible component of CX,0 or it
is empty. But the intersection can’t be empty because the projections Vα → Y
are surjective. Finally since all the fibers of the projection are of the same
dimension, the Vα’s are only the irreducible components of CX,Y .
But this means that if we define the affine hyperplane Hv as the hyperplane
with the same direction as H and passing through the point y = (0, v) ∈ Y for
v small enough; Hv is transversal to (X, y). So we have again that the collection
{Vα ∩Hv} is the auréole of X∩Hv along Y ∩Hv, that is, the auréole of (X, 0),
so it does not have exceptional cones.

At this point it is not too hard to prove the equivalence of statements 3)
and 4) of theorem 6.1, namely that the pair (X0, Y ) satisfies both Whitney
conditions at the origin if and only if the germ (X, 0) does not have exceptional
cones (See [Gi, Proposition 6.5]).
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The idea is that on the one hand we have that the Whitney conditions imply
that (X, 0) has no exceptional cones and b = 0, but this means that the map
ψ : C(X) → C(X) ((z, v), [a : b]) 7→ ((vz), [a]) is defined everywhere. Thus,
the set of limits of tangent hyperplanes to (X, 0) is just the dual of the tangent
cone. On the other hand since CX,0 = CX,0 × C the absence of exceptional
cones implies b = 0 which is equivalent to Whitney’s condition a).

The key idea to prove Whitney’s condition a) starting from the assump-
tion that (X, 0) is without exceptional cones is to use its algebraic character-
ization given by the second author in [Te1] for the case of hypersurfaces and
subsequently generalized by Gaffney in [Ga1] in terms of integral dependence
of modules. To give an idea of how it is done let us look at the hypersurface case.

If (X, 0) ⊂ (Cn, 0) is a hypersurface then (X, 0) ⊂ (Cn+1, 0) is also a hyper-
surface say defined by F ∈ C{z1, . . . , zn, v}. Note that in this case the conormal
space C(X) coincides with the Semple-Nash modification and thus every arc

γ : (C,C \ {0}, 0)→ (X,X0, 0)

lifts uniquelyto an arc

γ̃ : (C,C \ {0}, 0)→ (C(X), C(X0), (0, T ))

given by

τ 7→
(
γ(τ), Tγ(τ)X :=

(
∂F

∂z0
(γ(τ)) : · · · : ∂F

∂zn
(γ(τ)) :

∂F

∂v
(γ(τ))

))
,

and so the vertical hyperplane {v = 0}, or (0 : · · · : 0 : 1) in projective coordi-
nates, is not a limit of tangent spaces to X at 0 if and only if ∂F

∂v tends to zero
at least as fast as the slowest of the other partials, that is

order
∂F

∂v
(γ(τ)) ≥ minj

{
order

∂F

∂zj
(γ(τ))

}
The point is that this is equivalent to ∂F

∂v being integrally dependent on the

relative jacobian ideal Jϕ :=
〈
∂F
∂zj

〉
in the local ring OX,0 as proved by Lejeune-

Jalabert and the second author in ([Lej-Te], Thm 2.1). True, this is not precisely
what we want, but it is very close because the pair (X0, Y ) satisfies Whitney’s
condition a) at the origin if and only if ∂F

∂v tends to zero faster than the slowest
of the other partials, that is :

order
∂F

∂v
(γ(τ)) > minj

{
order

∂F

∂zj
(γ(τ))

}
and according to the definition of strict dependence stated by Gaffney and
Kleiman in ([Ga-Kl], [Section 3, 555]) , not only for ideals but more generally
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for modules, this is what it means for ∂F
∂v to be strictly dependent on the relative

jacobian ideal Jϕ in OX,0.

As for the proof, note that we already have the pair (X0, Y ) satisfies Whit-
ney’s conditions at every point y ∈ Y \ {0}, that is, ∂F∂v is strictly dependent on
the relative jacobian ideal Jϕ in OX,y at all these points. That this condition
carries over to the origin can be determined by the principle of specialization of
integral dependence (see [Te6], Appendice 1, [Te3], Chap.1, §5, [Ga-Kl]) which
in this case amounts to proving that the exceptional divisor E of the normalized
blowup of X along the ideal Jϕ does not have irreducible components over the
special fiber X(0) := ϕ−1(0). Fortunately, this normalized blowup is isomorphic
to a space we know, namely the normalization of the relative conormal space
Cϕ(X) of 4.5:

κ̃ϕ : C̃ϕ(X)→ X,

and we are able to use the absence of exceptional cones to prove that E has the
desired property.
This ends our sketch of proof of theorem 6.1.

Corollary 6.1. [Gi, Corollaries 8.14 and 8.15]
Let (X, 0) satisfy the hypothesis of Theorem 6.1.

• If (X, 0) has an isolated singularity and its tangent cone is a complete
intersection singularity, then the absence of exceptional cones implies that
CX,0 has an isolated singularity and {X \Y, Y } is a Whitney stratification
of X.

• If the tangent cone (CX,0, 0) has an isolated singularity at the origin, then
(X, 0) has an isolated singularity and {X\Y, Y } is a Whitney stratification
of X.

We have verified that the absence of exceptional cones allows us to start
building a Whitney stratification of X having Y as a stratum. The question now
is how to continue. We can prove ([Gi, Proposition 8.13]) that in the complete
intersection case, the singular locus of X coincides with the specialization space
Z of |SingX| to its tangent cone.

Suppose now that the germ (|SingX|, 0) has a reduced tangent cone; then a
stratum Xλ containing a dense open set of Z will satisfy Whitney’s conditions
along Y if and only if the germ (|SingX|, 0) does not have exceptional cones.

In view of this it seems reasonable to start by assuming the existence of a
Whitney stratification {Xλ} of (X, 0) such that for every λ the germ (Xλ, 0) has
a reduced tangent cone and no exceptional cones. In this case, the specialization
space Xλ of (Xλ, 0) is canonically embedded as a subspace of X, and the partition
of X associated to the filtration given by the Xλ is a good place to start looking
for the desired Whitney stratification of X but this is to our knowledge, still an
open problem. A precise formulation is the following:
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Question1: 1) Let (X, 0) be a germ of reduced equidimensional complex ana-
lytic space, and let X =

⋃
λ∈LXλ be the minimal (section 4.3) Whitney stratifi-

cation of a small representative of (X, 0). Is it true that the following conditions
are equivalent?

• The tangent cones CXλ,0 are reduced and the (Xλ, 0) have no exceptional
cones, for λ ∈ L.

• The specialization spaces (Xλ)λ∈L are the closures of the strata of the
minimal Whitney stratification of X. If {0} is a stratum in X, we under-
stand its specialization space to be Y = {0}×C ⊂ X. Indeed, in this case
the algebra R of proposition 2.6 is k[v].

If that is the case, for a sufficiently small representative X of (X, 0), the spaces
(X, 0) and (CX,0, 0) are isomorphic to the germs, at (0, v0) and (0, 0) respec-
tively, of two transversal sections, v = 0 and v = v0 6= 0 of a Whitney strati-
fication of X ⊂ Cn × C, and so are Whitney-equisingular. Conversely, if Y is
a stratum of a Whitney stratification of X, it is contained in a stratum of the
minimal Whitney stratification of X, whose strata are the specialization spaces
Xλ of the strata Xλ of the minimal Whitney stratification of X. It follows from
theorem 6.1 that the Xλ have a reduced tangent cone and no exceptional cones.

2) Given an algebraic cone C, reduced or not, which systems of irreducible closed
subcones can be obtained as exceptional tangents for some complex analytic
deformation of C having C as tangent cone?

7 Polar varieties, Whitney stratifications, and
projective duality

See the warning concerning notation at the beginning of section 5. In this section
we go back and forth between a projective variety V ⊂ Pn−1, the germ (X, 0)
at 0 of the cone X ⊂ Cn over V , and the germ (V, v) of V at a point v ∈ V ,
so that we also use the notations of section 3.1. Note that Pk(V ), 0 ≤ k ≤ d
denotes the polar varieties in the sense of definition 3.4.
The formula of theorem 5.2 can be applied to the special singular point which is
the vertex 0 of the cone X in Cn over a projective variety V of dimension d in
Pn−1, which we assume not to be contained in a hyperplane. The dual variety
V̌ of V was defined in subsection 2.3. Remember that every complex analytic
space, and in particular V , has a minimal Whitney stratification (see the end of
section 4.3). We shall use the following facts, with the notations of proposition
5.1:

Proposition 7.1. (Compare with [Te4])

1. If V =
⋃
Vα is a Whitney stratification of V , denoting by Xα the cone over

Vα, we have that X = {0}
⋃
X∗α, where X∗α = Xα\{0}, is a Whitney strat-

ification of X. It may be that (Vα) is the minimal Whitney stratification
of V but {0}

⋃
X∗α is not minimal, if V is a cone.
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2. If Li + t is an i-codimensional affine space in Cn it can be written as
Li−1 ∩ (L1 + t) with vector subspaces Li and for general directions of Li
we have, denoting by B(0, ε) the closed ball with center 0 and radius ε, for
small ε and 0 < |t| << ε :

χi(X, {0}) := χ(X ∩ (Li+ t)∩B(0, ε)) = χ(V ∩Hi−1)−χ(V ∩Hi−1∩H1),

where Hi = PLi ⊂ Pn−1.

3. For every stratum X∗α of X, we have the equalities χi(X,X
∗
α) = χi(V, Vα).

4. If the dual V̌ ⊂ P̌n−1 is a hypersurface, its degree is equal to m0(Pd(X, 0)),
which is the number of critical points of the restriction to V of a general
linear projection Pn−1 \ L2 → P1.

Note that we will apply statements 2) and 3) not only to the cone X but
also to the cones Xβ over the closed strata Vβ .

Proof. The first statement follows from the product structure of the cones along
their generating lines outside of the origin, and the fact that Vβ × C satisfies
the Whitney conditions along Vα ×C at a point (x, λ) ∈ Vα ×C∗ if and only if
Vβ satisfies those conditions along Vα at the point x.

To prove the second one, we first remark that it suffices to prove the result
for i = 1 since we can then apply it to X ∩ Li−1. Assuming that i = 1 we may
consider the minimal Whitney stratification of V and by an appropriate choice
of coordinates assume that the hyperplane z1 = 0 is transversal to the strata.
Then, we use an argument very similar to the proof of the existence of funda-
mental systems of good neighborhoods in [L-T3]. In Pn−1 with homogeneous
coordinates (z1 : . . . : zn), we choose the affine chart An−1 ' Cn−1 ⊂ Pn−1

defined by z1 6= 0. The distance function to 0 ∈ An−1 is real analytic on the
strata of V .
Let us denote by D(0, R) the ball centered at 0 and with radius R in An−1.
By Bertini-Sard’s theorem and Thom’s isotopy theorem, we obtain that there
exits a radius R0, the largest critical value of the distance function to the origin
restricted to the strata of V , such that the homotopy type of V ∩ D(0, R) is
constant for R > R0 and equal to that of V \V ∩H, where H is the hyperplane
z1 = 0. Thus, χ(V \ V ∩H) = χ(V )− χ(V ∩H) = χ(V ∩D(0, R)). In fact, by
the proof of the Thom-Mather theorem, the intersection V ∩D(0, R) is then a
deformation retract of V \ V ∩H.
Since all that is required from our hyperplane z1 = 0 is that it should be
transversal to the strata of V , we may assume that the hyperplane L1 is defined
by z1 = 0. Given t 6= 0 and ε, the application (z1 : . . . : zn) 7→ (t, t z2z1 , . . . , t

zn
z1

)
maps isomorphically V ∩D(0, R) onto X ∩ (L1 + t) ∩B(0, ε) if R = ε

|t| .

The third statement follows from the fact that locally at any point of X∗α,
the cone X, together with its stratification, is the product of V , together with
its stratification, by the generating line through x of the cone, and product by
a disk does not change the Euler characteristic.
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Finally, we saw in lemma 2.3 that the fiber κ−1(0) of the conormal map
κ : C(X) → X is the dual variety V̌ . The last statement then follows from
the very definition of polar varieties. Indeed, given a general line L1 in P̌n−1,
the corresponding polar curve in X is the cone over the points of V where a
tangent hyperplane belongs to the pencil L1; it is a finite union of lines and its
multiplicity is the number of these lines, which is the number of corresponding
points of V .

Using proposition 7.1, we can rewrite in this case the formula of theorem
5.2 as a generalized Plücker formula for any d-dimensional projective variety
V ⊂ Pn−1 whose dual is a hypersurface:

Proposition 7.2. (Teissier, see [Te4]) Given the projective variety V ⊂ Pn−1

equipped with a Whitney stratification V =
⋃
α∈A Vα, denote by dα the dimen-

sion of Vα. We have, if the projective dual V̌ is a hypersurface in P̌n−1:

(−1)ddegV̌ =

χ(V )− 2χ(V ∩H1) + χ(V ∩H2)−
∑
dα<d

(−1)dαdegn−2Pdα(Vα)(1− χdα+1(V, Vα)),

where H1, H2 denote general linear subspaces of Pn−1 of codimension 1 and 2
respectively, degn−2Pdα(Vα) is the number of nonsingular critical points of a

general linear projection Vα → P1, which is the degree of V̌α if it is a hypersur-
face and is set equal to zero otherwise. It is equal to 1 if dα = 0.

Here we remark that if (Vα) is the minimal Whitney stratification of the
projective variety V ⊂ Pn−1, and H is a general hyperplane in Pn−1, the
Vα ∩ H that are not empty constitute the minimal Whitney stratification of
V ∩H; see [Te3, lemma 4.2.2].

This formula, in the special case where V is nonsingular, already appears
in [Kl4, formula (IV, 72)]. It is a priori different in general from the very nice
generalized Plücker formula given by Ernström in [Er], which also generalizes
the formula (IV, 72) to the singular case, even when the dual variety is not a
hypersurface:

Theorem 7.3. (Ernström, see [Er]) Let V ⊂ Pn−1 be a projective variety and
let k be the codimension in P̌n−1 of the dual variey V̌ . We have the following
equality:

(−1)ddegV̌ = kχ(V,EuV )−(k+1)χ(V ∩H1,EuV ∩H1
)+χ(V ∩Hk+1,EuV ∩Hk+1

),

where the Hi are general linear subspaces of Pn−1 of codimension i and χ(V,EuV )
is a certain linear combination with coefficients in Z of Euler characteristics of
subvarieties of V , which is built using the properties of the local Euler obstruction
Eu(V, v) ∈ Z associated to any point v of V , especially that it is constructible
i.e., constant on constructible subvarieties of V .
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The local Euler obstruction is a local invariant of singularities which plays an
important role in the theory of Chern classes for singular varieties, due to M-H.
Schwartz and R. MacPherson (see [Br]). Its definition is outside of the scope
of these notes but we shall give an expression for it in terms of multiplicities of
polar varieties below.

Coming back to our formula, if V̌ is not a hypersurface, the polar curve
Pd−1(X,L) is empty, but the degree of V̌ is still the multiplicity at the origin
of a polar variety of the cone X over V . We shall come back to this below.

The case where V has isolated singularities

Let us first treat the hypersurface case. Let f(z1, . . . , zn) be a homogeneous
polynomial of degree m defining a hypersurface V ⊂ Pn−1 with isolated singu-
larities, which is irreducible if n > 3. The degree of V̌ is the number of points
of V where the tangent hyperplane contains a given general linear subspace L
of codimension 2 in Pn−1. By Bertini’s theorem we can deform V into a non-
singular hypersurface V ′ of the same degree, by considering the hypersurface
defined by Fv0 = f(z1, . . . , zn) + v0z

m
1 = 0, where the open set z1 6= 0 contains

all the singular points of V and v0 is small and non zero.
Taking coordinates such that L is defined by z1 = z2 = 0, the class of V ′ is
computed as the number of intersection points of V ′ with the curve of Pn−1

defined by the equations
∂Fv0
∂z3

= · · · = ∂Fv0
∂zn

= 0, which express that the tangent
hyperplane to V ′ at the point of intersection contains L. This is the relative
polar curve of [Te3]. For general z1 this is a complete intersection and Bézout’s
theorem combined with proposition 7.2 gives

degV̌ ′ = (−1)n−2(χ(V ′)− 2χ(V ′ ∩H1) + χ(V ′ ∩H2)) = m(m− 1)n−2.

Now as V ′ degenerates to V when v0 → 0, by what we saw in example 5.1,
the topology changes only by µ(n−1)(V, xi) vanishing cycles in dimension n− 2
attached to each of the isolated singular points xi ∈ V (example 5.1). This gives
χ(V ) = χ(V ′)−

∑
i(−1)n−2µ(n−1)(V, xi).

We have χ(V ∩H1) = χ(V ′∩H1) and χ(V ∩H2) = χ(V ′∩H2) since H1 and H2,
being general, miss the singular points and are transversal to V and V ′ so that
V ′ ∩H1 (resp. V ′ ∩H2) is diffeomorphic to V ∩H1 (resp. V ∩H2). It follows
from a theorem of Ehresmann that all nonsingular projective hypersurfaces of
the same degree are diffeomeorphic.
We could have taken H2 general in H1 and H1 to be z1 = 0, and then V ∩H1 =
V ′ ∩H1, V ∩H2 = V ′ ∩H2.

On the other hand, in our formula the Whitney strata of dimension < n− 2
are the {xi} so all the d{xi} are equal to zero while the χ1(V, {xi}) are equal

to 1 + (−1)n−3µ(n−2)(V, xi), corresponding to the Milnor number of a generic
hyperplane section of V through xi, as we saw in example 5.1.
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Substituting all this in our formula of proposition 7.2 gives:

(−1)n−2degV̌ =

(−1)n−2m(m− 1)n−2 −
∑
i

(−1)n−2µ(n−1)(V, xi)

−
∑
i

(1− (1 + (−1)n−3µ(n−2)(V, xi)))

Simplifying and rearranging gives:

degV̌ = m(m− 1)n−2 −
∑
i

(µ(n−1)(V, xi) + µ(n−2)(V, xi)).

This formula was previously established in [Te6] by algebraic methods, based on
the fact that the multiplicity in the ring OV,xi of the jacobian ideal is equal to
µ(n−1)(V, xi)+µ(n−2)(V, xi); see [Pi] for a proof in terms of characteristic classes,
closer to the approach of Todd. This multiplicity is the intersection multiplicity
of the relative polar curve with the hypersurface, which counts the number of
intersection points of the polar curve with a Milnor fiber of the hypersurface
singularity.
This shows that the “diminution of class” due to the singularity is the number
of tangent hyperplanes containing L which are “absorbed” by the singularity;
see [Te6].
Yet another proof, relating the degree of the dual variety to integrals of curvature
and based on the relationship between (relative) polar curves and integrals of
curvature brought to light by Langevin in [Lan], can be found in [Gr, §5].

The same method works for complete intersections with isolated singula-
rities, since they can also be smoothed in the same way, and the generalized
Milnor numbers also behave in a similar way. Using the results of Navarro
Aznar in [N] on the computation of the Euler characteristics of nonsingular
complete intersections and the results of Lê in [L] on the computation of Milnor
numbers of complete intersections, as well as a direct generalization of the small
trick of example 5.1 for the computation of χ1(X, {x}) (see also [Ga2]), one
can produce a topological expression for the degrees of the duals of complete
intersections with isolated singularities, in terms of the degrees of the equations
and generalized Milnor numbers. We leave this to the reader as an interesting
exercise. The answer, obtained by a different method, can be found in [Kl3]
and a proof inspired by [Er] can also be found in [M-T]. The correction term
coming from the singularities has the same form as in the hypersurface case.

In the general isolated singularities case (see [Kl3]), both the computation
of Euler characteristics and the topological interpretation of local invariants at
the singularities offer new challenges.

Conclusion: Given a projective variety V of dimension d endowed with its
minimal Whitney stratification V =

⋃
α∈A Vα, we can write the formula of
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proposition 7.2 as follows:

(−1)ddegV̌ =

χ(V )− 2χ(V ∩H1) + χ(V ∩H2)−
∑
dα<d

(−1)dαdegn−2V̌α(1− χdα+1(V, Vα)),

where we agree that degn−2V̌α = degV̌α if dimV̌α = n− 2, and is 0 if dimV̌α <
n− 2. Then we see by induction on the dimension that:

Proposition 7.4. The degree of the dual variety, when it is a hypersurface,
ultimately depends on the Euler characteristics of the Vα (or the Vα, since it
amounts to the same by additivity of the Euler characteristic) and their general
linear sections, and the local vanishing Euler characteristics χi(Vβ , Vα).

Problem: Given V as above with a defining homogeneous ideal, describe an
algebraic method to produce an ideal defining the union of V and the duals of
the other strata of the minimal Whitney stratification of the dual V̌ .
For example, the dual of a general plane algebraic curve has only cusps and
double points as singularities. The construction described above adds to the
curve all its ”remarkable tangents”, namely its double tangents and inflexion
tangents.

Using the properties of polar varieties and theorem 5.2 one can prove a similar
formula in the case where the dual V̌ is not a hypersurface, and thus extend
proposition 7.4 to all projective varieties. The degree of V̌ is then the multi-
plicity at the origin of the smallest polar variety of the cone X over V which is
not empty. Now one uses the equalities

mx(Pk(X,x)) = mx(Pk(X,x) ∩ Ld−k−1) = mx(Pk(X ∩ Ld−k−1), x)),

which we have seen before theorem 5.2. They tell us that the degree of V̌ is the
degree of the dual of the intersection of V with a linear space of the appropriate
dimension for this dual to be a hypersurface.

More precisely, when H is general hyperplane in Pn−1, the following facts
are consequences of the elementary properties of projective duality, remark 3.1,
c), and the property that tangent spaces are constant along the generating lines
of a cone (see lemma 2.3):

• If V̌ is a hypersurface, the dual of V ∩ H is the cone with vertex Ȟ
over the polar variety P1(V̌ , Ȟ), the closure in V̌ of the critical locus of
the restriction to V̌ 0 of the projection π : P̌n−1 → P̌n−2 from the point
Ȟ ∈ P̌n−1. Since we assume that V is not contained in a hyperplane,
the degree of the hypersurface V̌ is ≥ 2, hence this critical locus is of
dimension n− 3 and the dual of V ∩H is a hypersurface. In appropriate
coordinates its equation is a factor of the discriminant of the equation of
V̌ .

• Otherwise, the dual of V ∩H is the cone with vertex Ȟ over V̌ , i.e., the
join in P̌n−1 of V̌ and the point Ȟ.
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Although they were suggested to us by the desire to extend Proposition 7.4 to
the general case, these statements are not new. The authors are grateful to
Steve Kleiman for providing the following references: for the first statement,
[Wa2, Lemma d, p.5], and for the second one [HK, Thm. (4.10(a)), p.164]. On
may also consult [Kl5].

Assuming that H is general, it is transversal to the stratum V 0 and to
verify these statements one may consider only what happens at nonsingular
points of V ∩ H, which are dense in V ∩ H. At those points, the space of
hyperplanes containing the tangent space TV,v is of codimension one in the space
of hyperplanes containing TV ∩H,v and does not contain the point Ȟ since H is
general. Any hyperplane containing TV ∩H,v and distinct from H determines
with H a pencil. Because of the codimension one, the line in P̌n−1 representing
this pencil must contain a point representing a hyperplane tangent to V at
v. The closure in P̌n−1 of the union of the lines representing such pencils is
the dual of V ∩H. It is a cone with vertex Ȟ and because tangent spaces are
constant along generating lines of cones, a tangent hyperplane to this cone must
be tangent to V̌ .
If dimV̌ = n− 3 this cone is a hypersurface in P̌n−1. Otherwise we repeat the
operation by intersecting V ∩H with a new general hyperplane, and so on; we
need to repeat this as many times as the dual defect δ(V ) = codimP̌n−1 V̌ −1. We
can then apply proposition 7.4 to V ∩Hδ(V ) because its dual is a hypersurface.

The cone Ȟ ∗ V̌ from a point Ȟ in P̌n−1 on a projective variety V̌ has the
same degree as V̌ . To see this, remember that the degree is the number of
points of intersection with a general (transversal) linear space of complementary
dimension. If a general linear space L of codimension dimV̌ +1 intersects Ȟ ∗ V̌
transversally in m points, the cone Ȟ ∗ L will intersect transversally V̌ in m
points. Thus, the iterated cone construction does not change the degree so that
the degree of the dual of V ∩Hδ(V ) is the degree of V̌ .
The smallest non empty polar variety of the cone (X, 0) over V is Pd−δ(V )(X, 0).

This suffices to show that proposition 7.4 is valid in general. Obtaining a
precise formula for the degree of V̌ in the general case is reduced to the com-
putation of Euler-Poincaré characteristics and local vanishing Euler-Poincaré
characteristics of general linear sections of V and of the strata of its minimal
Whitney stratification.

It would be interesting to compare this with the viewpoints of [Pi], [Er], and
[A]. The comparison with [Er] would hinge on the following two facts:

• By corollary 5.1.2 of [L-T1] we have at every point v ∈ V the equality

Eu(V, v) =

d−1∑
k=0

(−1)kmv(Pk(V, v)).

• As an alternating sum of multiplicities of polar varieties, in view of theo-
rem 4.4, the Euler obstruction is constant along the strata of a Whitney
stratification.
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Indeed, if we expand the formula written above proposition 7.4 in terms of
the Euler characteristics of the strata Vα and their general linear sections, and
then remove the symbols χ in front of them, we obtain a linear combination
of the Vα and their sections, with coefficients depending on the local vanishing
Euler-Poincaré characteristics along the Vα, which has the property that taking
formally the Euler characteristic gives (−1)ddegV̌ . Redistributing the terms
using theorem 5.2 should then give Ernström’s theorem. We leave this as a
problem for the reader. Another interesting problem is to work out in the same
way formulas for the other polar classes, or ranks (see [Pi, §2]).

Finally, by proposition 7.1 the formula of theorem 5.2 appears in a new
light, as containing an extension to the case of non-conical singularities of the
generalized Plücker formulas of projective geometry. Interesting connections
between the material presented here and the theory of characteristic classes for
singular varieties are presented in [Br].
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Tangentes exceptionelles, in American Journal of Math., 101, No. 2,
(Apr., 1979), 420-452.
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l’É.N.S., 4è série, tome 11, No.2 (1978), 247-276.



Local polar varieties 74

[Pi2] R. Piene, Polar varieties revisited, in: Computer Algebra and Polyno-
mials, Springer LNCS 8942, 2015, 139-150.
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