
Chapter 1

Some ideas in need of clarification

in resolution of singularities and the geometry
of discriminants

Bernard Teissier

Mathematics only exists in a living community of mathematicians that spreads un-

derstanding and breathes life into ideas both old and new. The real satisfaction from

mathematics is in learning from others and sharing with others. All of us have clear

understanding of a few things and murky concepts of many more. There is no way

to run out of ideas in need of clarification.

W. P. Thurston, quoted in [21]

Among the different ways of sharing ideas are discussions, letters, videos, platforms
such as MathOverflow or Images des Mathématiques, and publications. Publications
are subject to more precise rules, and require more prolonged effort because they are
not only a means of communication but also the main repository of ideas and results.

That is why the activity of Catriona over four decades has been so useful for the

mathematical community. She has a unique way of imagining possible publications,

encouraging without pushing, showing great patience and understanding adapted to

each author (or editor). She possesses an amazingly rich perception of the mathemat-

ical community, knowing of so many mathematicians not only what they do, but also

what they are. Catriona really cares about authors (or editors) as persons as well as

about the quality of the texts. Adding to this an inexhaustible energy, Catriona plays

a unique and very important role in the spreading of understanding, as Thurston

writes, and thus for the progress of our science. As an expression of gratitude and

friendship, I wish to dedicate to her an exposition of some of the problems I have

come across and so illustrate the last sentence of Thurston’s quote.

Abstract This text presents problems in two different areas of algebraic
geometry. The first concerns the role of “infinitely singular” or “non Ab-
hyankar” valuations in the study of local uniformization of valuations with a
view to resolution of singularities in positive characteristic. The second one
concerns the relationship of the geometry of the discriminant of real miniver-
sal unfoldings in the sense of Thom with the movements of Morse functions
on a cobordism which differential geometers use.
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1.1 Problems related to resolution of singularities

In his 1964 paper Hironaka introduced the general concept of embedded res-
olution of a singular space X embedded in a non singular variety Z. That is
a birational morphism b : Z 1 Ñ Z with Z 1 non singular, such that the strict
transform of X is non singular and transversal in Z 1 to the exceptional di-
visor of b, which is mapped to the singular locus of X . Indeed, Hironaka’s
proof builds Z 1 as the result of a sequence of blowing-ups with non singular
centers. If X is a toric variety equivariantly embedded in a non singular toric
variety Z, it is more natural to seek a birational toric morphism Z 1 Ñ Z of
non singular toric varieties such that the strict transform of X is non singular
and transversal to the toric boundary of Z 1. For toric varieties over an alge-
braically closed field, this was proved to exist in [34, §6] and [17]. The process
is purely combinatorial and therefore blind to the characteristic of the field.

If O is the local ring of a formal branch C over an algebraically closed field
k, its normalization is krrtss and the set of values which the t-adic valuation
ν takes on elements of O is a numerical semigroup Γ Ă N. It is finitely
generated. For tradition’s sake, we denote by g ` 1 its minimal number of
generators. The associated graded ring grνO of the valuation ν restricted to
O (see [34, §2], [30]) is isomorphic to the semigroup algebra krtΓs of Γ with
coefficients in k and thus corresponds to an affine toric variety CΓ Ă Ag`1pkq.
If ξ0, ξ1, . . . , ξg are elements of O whose ν-values generate Γ, the image of the
formal embedding of C in the affine space Ag`1pkq determined by the ξi can
be degenerated to CΓ inside Ag`1pkq in such a way that some toric embedded
resolutions of CΓ Ă Ag`1pkq also give embedded resolutions of C Ă Ag`1pkq.
All this is blind to the characteristic of the field k. An instance of this, in
the complex analytic world, first appeared in [16] and recently the case of
reduced plane curve singularities has been settled (and more) in [13] and also
in [10, Corollary 7.11].

An attempt to generalize this leads to the following, where k is an alge-
braically closed field.

Problem A: Let X Ă Anpkq be a reduced affine algebraic variety over k. Do
there exist algebraic embeddings Anpkq Ă AN pkq such that:

1. The intersection of the image of X (resp. Anpkq) with the torus of AN pkq
is dense in X (resp. Anpkq);

2. There exist birational equivariant maps π : Z Ñ AN pkq of non singular
toric varieties such that the strict transform Xπ of X (resp. the strict
transform of Anpkq), which exists by 1., is non singular and transversal
to the toric boundary of Z.

3. The ideal in the ring OX pXq of the singular subspace of X is generated,
up to integral closure, by monomials in the coordinates of AN pkq.

If the embedding X Ă Anpkq Ă AN pkq satisfies the first two conditions,
we call it a torific embedding for X . For example, an isolated hypersurface
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singularity which is non degenerate with respect to its Newton polyhedron
is torifically embedded in its ambient space. See [38] and [3] for generaliza-
tions. Tevelev has shown in [37] that any embedded resolution diagram of
irreducible projective varieties

X 1 //

πX

��

Z 1

π

��
X // Z

can be embedded in a diagram:

X 1 //

πX

��

Z 1 //

π

��

W 1

Π

��
X // Z // PN

,

where Z Ñ PN is an embedding, the map Π is a birational toric map of non-
singular varieties for a toric structure on PN , the images of Z and X have
dense intersections with the torus of PN , their strict transforms are the non
singular varieties Z 1 and X 1, and they are transversal to the toric boundary
of W 1.
In this sense, in characteristic zero where we have Hironaka’s theorem, and
more generally whenever embedded resolution can be proved, toric embedded
resolutions are cofinal among embedded resolutions of a given irreducible
projective variety X .

Coming back to affine or local torific embeddings, the problem of course is
to prove the existence of torific embeddings without assuming embedded res-
olution, in a way which hopefully would also work in positive characteristic.
As a bonus, torific embeddings should, as in the case of curves, contain im-
portant geometric information on the singularities of X , which do not seem,
in dimension ě 3, to be legible in the resolution by blowing ups. To my
knowledge there are two approaches to this problem:

- Mourtada’s approach (see [25], [27]) is based on a deep vision of the rela-
tionship between components of the exceptional divisor (divisorial valuations
centered in Z) of an embedded resolution of X and contact subvarieties of the
jet schemes on Z associated to the embedding X Ă Z. Suitable irreducible
components of the contact varieties mentioned above correspond to divisorial
valuations centered in Anpkq and the equations of each one give an embed-
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ding Anpkq Ă AN pkq such that the divisorial valuation is the trace on Anpkq
of a monomial divisorial valuation on AN pkq. Then a tropical/toroidal argu-
ment explains how to produce a torification. Anyway, that is the idea, and
it proves extremely fruitful in spite of the complexity of the computation of
the equations of irreducible components. Mourtada realizes this program in
a number of important cases, which I shall not detail here.

- My approach is more directly inspired by the case of curves presented above.
As in Zariski’s approach, it begins with local uniformization of valuations.
The reason is that if OX,x is the local algebra of a singularity and ν is a
rational1 valuation centered in OX,x , the associated graded algebra grνOX,x

is again isomorphic to the semigroup algebra krtΓs of the semigroup Γ of
values taken by ν on OX,x .
If Γ is finitely generated, then we have again an affine toric variety and we
can show that toric resolutions of this toric variety, which are blind to the
characteristic, provide local uniformization of the valuation after a suitable
re-embedding of pX, xq (see [30]).

However, the semigroup Γ is not at all finitely generated in general and
we have to think of SpeckrtΓs as being of infinite embedding dimension, this
embedding dimension being in fact an ordinal, see [30, corollary 3.10]. Such a
toric variety is defined by an infinite collection of binomials and does not have
a resolution so we have to show that a “finite partial” embedded resolution
extends to a local uniformization of ν. In order to do that we need equations
for the degeneration of OX,x to its graded algebra. This is something we can
do for complete equicharacteristic noetherian local domains.
Indeed, if the noetherian equicharacteristic local domain R is complete, there
exists for any rational valuation of R an embedding of the formal space corre-
sponding to R into the space where the generalized toric variety corresponding
to grνR resides; it is given by the Valuative Cohen Theorem of [30].
Since R is noetherian, the semigroup Γ is well ordered and combinatorially
finite in the sense that there are finitely many distinct expressions of an ele-
ment of Γ as a sum of other elements. As a consequence of being well ordered
it has a unique minimal system of generators pγiqiPI , the index set I being
an ordinal ď ωhpνq where hpνq is the height, or rank, of the valuation, which
is ď dimR. Taking variables puiqiPI , one can consider the k-vector space of
all formal sums ΣePEdeue where E is any set of monomials in the ui and
de P k. Since the values semigroup Γ is well ordered and combinatorially fi-
nite this vector space is in fact, with the usual multiplication rule, a k-algebra
{krpuiqiPI s which we endow with a weight w by giving ui the weight γi . Com-

binatorial finiteness means that there are only finitely many monomials with
a given weight, and we can enumerate them according to the lexicographic
order of exponents (see [30, §4]). Thus, we can embed the set of monomials

1 It means that the inclusion R Ă Rν of R in the valuation ring of the valuation not
only satisfies mνXR “ mR for maximal ideals, but also there is no residual extension:
k “ R{mR “ kν “ Rν{mν .
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um in the well ordered lexicographic product ΓˆN. Combinatorial finiteness
also implies that the initial form of every series with respect to the weight fil-

tration is a polynomial so that the corresponding graded algebra of {krpuiqiPI s
is the polynomial algebra krpUiqiPI s with Ui “ inwui , graded by giving Ui the
degree γi .

The k-algebra {krpuiqiPI s is endowed with a monomial valuation given by
the weight: wpΣePEdeueq “ minde‰0wpueq. This valuation is rational since
all the γi are ą 0. Note that 0 is the only element with value 8 because
here 8 is an element larger than any element of Γ. With respect to the ”w

ultrametric” given by upx, yq “ wpy ´ xq, the algebra {krpuiqiPI s is spherically
complete (see [32], theorem 4.2) and has most of the properties of power series
algebras, except for noetherianity unless the set I is finite, in which case it is
isomorphic to the usual power series ring, with weights on the variables.
The γi are the degrees of a minimal set of homogeneous generators pξiqiPI of
the Γ-graded k-algebra grνR. The first part of the valuative Cohen theorem
asserts that one can choose representatives pξiqiPI in R of the pξiqiPI in such
a way that ui ÞÑ ξi determines a surjective continuous (with respect to the
valuations) map of k-algebras

π : {krpuiqiPI s Ñ R

whose associated graded map with respect to the filtrations associated to the
valuations is the surjective graded map of k-algebras

grπ : krpUiqiPI s Ñ grνR, Ui ÞÑ ξi .

If the valuation ν is of rank one or the set I is finite, any set of representatives
pξiqiPI of the pξiqiPI is eligible.
Since even when the set I is infinite the non zero homogeneous components
of grνR are one dimensional k-vector spaces, and in fact grνR is isomorphic
to the semigroup algebra krtΓs (see [34, Proposition 4.7]), the kernel of the
map grπ is a prime ideal generated by binomials pUm ´ λmnUnqpm,nqPM with
λmn P k˚, and the second part of the valuative Cohen theorem states that
the kernel of π is generated, up to closure in the w ultrametric, by overweight
deformations of those binomials: series whose initial forms with respect to
the weight are those binomials.
Geometrically this corresponds to equations defining the image of an embed-
ding, via the series ξi , of the formal germ corresponding to R in an infinite
dimensional weighted affine space in such a way that the original valuation
is the trace on R of a monomial valuation on the ambient space.
In this infinite dimensional space, our singularity can be degenerated in a
faithfully flat way to the “toric variety” defined by the binomials Um´λmnUn

of krpUiqiPI s (see [34, Proposition 2.3]). However, if the number of variables
is infinite, there is no resolution of singularities for such a generalized toric
variety. It is truly “infinitely singular” and in fact for valuations centered
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in krrx, yss this corresponds exactly to the “infinitely singular” case where
the valuation is the order of vanishing of a series on a very transcendental
(non Puiseux) curve in the plane whose strict transforms remains singular in
infinitely many point blowing ups (see [34, Examples 4.20 and 4.22]).

On the other hand, we know that for rational Abhyankar valuations (=
of rational rank equal to the dimension of R), one can prove that after a
birational modification of R to an R1 still dominated by the valuation ring
of ν, we can obtain that the semigroup of values of the valuation ν on R1

is finitely generated. For this reason, rational Abhyankar valuations on an
equicharacteristic excellent local domain with an algebraically closed residue
field can be uniformized (see [30], and [20] and [6] for different approaches
for algebraic function fields). This leads to the following conjecture for non-
Abhyankar valuations, whose semigroup cannot be finitely generated (see also
[35]):

Let R be a complete equicharacteristic local domain with algebraically closed
residue field and ν a rational valuation centered in R and of rational rank
r ă dimR. Let pγiqiPI be the minimal system of generators for the semi-
group Γ of ν on R. There exist a nested system of finite subsets Bα Ă I with
Ť

α Bα “ I and for each Bα a prime ideal Kα of R such that R{Kα is of di-
mension r and endowed with an Abhyankar valuation να whose semigroup is
generated by the pγiqiPBα . We have

Ş

α Kα “ p0q and for each x P R we have
νpxq “ ναpx mod.Kαq for large enough Bα. Finally each R{Kα is an over-
weight deformation of an affine toric variety and for large enough Bα toric
embedded uniformizations of the valuation να also uniformize the valuation
ν on R.

It is a convenient way to express that the valuation can be uniformized
by “finite partial” embedded toric resolutions of SpeckrtΓs, an adapted form
of torific embedding for the valuation. The slogan is: Approximating a ratio-
nal non-Abhyankar valuation ν by rational Abhyankar semivaluations2 should
provide torific embeddings for ν.

In order to apply this to our algebraic situation we have to deduce a torific
embedding for an algebraic local ring from a torific embedding of a complete
local ring to which we can apply the valuative Cohen theorem. For that it
suffices to solve the following problem (see [34, *Proposition 5.19*] and [19]):

Problem B: Given an excellent equicharacteristic local domain R and a
valuation ν centered in R, show that there exists a prime ideal H of the mR-
adic completion R̂ such that H X R “ p0q and ν extends to a valuation ν̂ of
R̂{H with the same value group.
This means that the graded inclusion grνR Ă grν̂ R̂{H is birational.

If the valuation is of rank one, the proof is in [19, Theorem 2.1]. For
Abhyankar valuations, the proof is in [30, 7.2].

2 A semivaluation of R is a valuation of a quotient of R by a prime ideal.
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Conjecture 9.1 in [19] to the effect that after a birational ν-modification R1

of R one can even have that the semigroup of R̂1{H 1 is the same as that of R1

has been disproved by Cutkosky in [5, Theorem 1.5, Theorem 1.6] even when
completion is replaced by henselization.

Since we assume that the residue field k is algebraically closed, local uni-
formization of rational valuations entails local uniformization for all valua-
tions (see [34, Proposition 3.20]). By (quasi-)compactness of the Riemann-
Zariski manifold, the space of valuations centered in R is (quasi-)compact and
therefore there are finitely many valuations such that the collections of mor-
phisms uniformizing them by toric embedded uniformizations uniformizes all
valuations centered in R. Now the problem is to:

Problem C: Prove that those torific embeddings can be combined into one
embedding for SpecR where a toric birational map will simultaneously uni-
formize all valuations and thus provide a local embedded resolution of singu-
larities for R.
One can find some inspiration in [13, §3] as well as in the local tropicalization
methods of [29] and [10].

1.2 Problems related to the geometry of discriminants
of miniversal unfoldings

Let f pz1, . . . , znq P Rtz1, . . . , znu be a series without constant term and such
that it has an algebraically isolated critical point at the origin, which means
that dimRRtz1, . . . , znu{p

B f
Bz1

, . . . ,
B f
Bzn
q ă 8. This dimension is the Milnor

number µ of the isolated critical point associated to the complexification of
the series f pz1, . . . , znq (see [24]). A function with an algebraically isolated
critical point is finitely determined, so we may assume that f is a polynomial.
Let us consider an unfolding of the function f , say

Fpz, tq “ f pz1, . . . , znq `
µ´1
ÿ

k“1

tkgk pz1, . . . , znq,

which is miniversal (see [2, Chap. 8]) if the images of the functions 1, g1, . . . , gµ´1,
which again we may take to be polynomials, even monomials, form a basis of
the real vector space Rtz1, . . . , znu{p

B f
Bz1

, . . . ,
B f
Bzn
q, which we shall henceforth

assume.
This unfolding defines a germ of a stable map (see [14, Chap. III, Theorem
3.4] or [26, Chap 5])

F “ pF, tq : pRn ˆRµ´1, 0q Ñ pRˆRµ´1, 0q

expressed in the natural coordinates pλ, tq “ pλ, t1, . . . , tµ´1q on RˆRµ´1 by:
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λ ˝ F “ f pz1, . . . , znq `
µ´1
ÿ

k“1

tkgk pz1, . . . , znq,

tk ˝ F “tk for k “ 1, . . . , µ´ 1.

Because F is a stable map, it can be Thom-stratified (see [22], [14]) and there
exist “polycylinders” U “ Bn ˆ Bµ´1 Ă Rn ˆ Rµ´1 and V “ B1 ˆ Bµ´1 Ă

RˆRµ´1 such that F´1pVq XU is a neighborhood of 0 in which the critical
locus C is non singular, and CX pBBn ˆBµ´1q “ H. The only critical points
which appear in that neighborhood are those which tend to 0 as t Ñ 0, and
each fiber F´1pλ, tq for pλ, tq P V is transversal to BBn ˆ ttu. We shall freely
assume that the closed balls Be Ă Re are “small enough”.

Now recall that, assuming of course that 0 is a critical point, up to a
change of variables, our function can be written as

f pz1, . . . , znq “
q`
ÿ

j“1

z2i ´
q``q´
ÿ

j“q``1

z2j ` f̃ pzq``q´`1, . . . , znq,

where f̃ is of order ě 3 and has the same Milnor number as f .
Then the algebra Rtz1, . . . , znu{p

B f
Bz1

, . . . ,
B f
Bzn
q is naturally isomorphic to

Rtzq``q´`1, . . . , znu{p
B f̃

Bzq``q´`1
, . . . ,

B f̃
Bzn
q. A miniversal unfolding F̃ of f̃ is

miniversal for f , the only difference between F and F̃ being a fixed difference
of indices between the Morse singularities appearing in the unfoldings.

From now on we shall assume that the order of f pz1, . . . , znq is ě 3. Then
we may choose gi “ zi for i “ 1, . . . , n and gk of order ě 2 for k ą n. The
equations for the critical locus C Ă Bn ˆ Bµ´1 of the unfolding F are

BF
Bzi

“
B f
Bzi

` ti `
µ´1
ÿ

k“n`1

tk
Bgk

Bzi
“ 0 for i “ 1, . . . , n,

showing that C is non singular and of dimension µ´ 1.
Shrinking the balls Bn, Bµ´1 if necessary, we assume that the map

ν : C Ñ B ˆ Bµ´1 induced by F is finite by the Weierstrass preparation
theorem (an analytic map with a finite fiber is locally finite). Its image is the
real part D of a complex hypersurface, the discriminant DpCq of the com-
plexification of the morphism F (see [31, §5]). We have seen that C is non
singular, and the map ν : C Ñ D is finite. As image of C, and because all maps
in sight are algebraic, the discriminant D is a semialgebraic hypersurface in
B1 ˆ Bµ´1.

A miniversal unfolding of an algebraically isolated singularity of hyper-
surface is a versal deformation so that we can lift to D the properties of
discriminants of miniversal deformations, and in particular the product de-
composition theorem of [36, Chap. III, Théorème 2.1] and [31, Theorem 4.8.1,
Cor. 4.8.2] which remains true in real geometry and implies that non singular
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points of D are the images of Morse singularities in C. It also implies that
at a general point of the codimension one components of the singular locus
of the complexification DpCq, the singular locus is locally isomorphic either
to a cusp (y2 ´ x3 “ 0) times Cµ´2 (cusp type) or to a node (y2 ˘ x2 “ 0q
times Cµ´2 (node type).

Proposition 1.2.1 The zero set in the critical locus C of the hessian deter-
minant hzpFq of F with respect to the variables z1, . . . , zn is of codimension
one.

Proof In the real space or in the complexification the image of the zero set
of the hessian is the part of the singular locus which is the closure of the set
of points of cusp type. The real part of a complex point of cusp type is a real
point of cusp type, locally isomorphic to a cusp times Rµ´2. ˝

The singular locus of D is of codimension one and its image ∆ in Bµ´1 is a
semialgebraic hypersurface containing the bifurcation locus Σ and the conflict
strata in the sense of bifurcation theory. Indeed, a point t “ pt1, . . . , tµ´1q is
in Bµ´1z∆ if and only if the corresponding function Ft “ Fpz, tq : Rn Ñ R is
an excellent3 Morse function in Bn , all of whose Morse singularities tend to
0 as t Ñ 0. In particular the Maxwell set, which corresponds to functions Ft

attaining at least twice their absolute minimum, is contained in ∆ because
it is the image of a singular stratum of D (see [31, 5.4.1] and Michel Coste’s
examples in [9]).

We know that the geometry of the complex discriminant hypersurface
DpCq contains important information on the geometry of the hypersurface of
Cn defined by f pz1, . . . , znq “ 0, its deformations and in particular its Milnor
fiber (see [31]). The geometry of the discriminant hypersurface is very special.
For example, tangent hyperplanes to the discriminant hypersurface at non
singular points tending to the origin all have as limit the hyperplane λ “ 0
(see [31, §5, Remark 3]) and as we have seen a general plane section of DpCq
has only cusps and nodes as singularities (see [31, 4.8.2]).

The geometry of the discriminant D in the real case also contains impor-
tant information. I would like to state two problems concerning this geometry:

Given f pz1, . . . , znq P Rrz1, . . . , zns as above, Michel Herman asked, in the
early 1990’s, the following question:

If in a neighborhood of 0 the family of hypersurfaces f pz1, . . . , znq “ λ is
topologically trivial for |λ| small enough, do there exist a neighborhood U of 0
and an unfolding f pz1, . . . , znq` sgps, z1, . . . , znq such that for s ‰ 0 and small
enough, the function f pz1, . . . , znq ` sgps, z1, . . . , znq has no critical point in
U?

The geometric translation of this statement is that under the hypoth-
esis of topological triviality, for a suitable representative of the germ

3 Meaning Morse function with distinct critical values.
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F : pRn ˆRµ´1, 0q Ñ pRˆRµ´1, 0q, the map p ˝ ν : C Ñ Bµ´1 which we have
seen above is not surjective. Indeed, if that is the case the complement of the
image of C being semialgebraic we can find (see [4, Theorem 2.2.5]) in that
complement a germ of a semialgebraic arc t1psq, . . . , tµ´1psq with t jp0q “ 0,
which will give the unfolding we seek. The converse follows from the versality
of the unfolding.

From the equations of the critical locus, we see that it can be endowed with
coordinates z1, . . . , zn, tn`1, . . . , tµ´1 and then the map p ˝ ν : C Ñ Rµ´1 can
be written as follows:

t j ˝ pp ˝ νq “ ´
´

B f
Bz j
pz1, . . . , znq `

µ´1
ÿ

k“n`1

tk
Bgk

Bz j
pz1, . . . , znq

¯

for 1 ď j ď n,

t j ˝ pp ˝ νq “ t j for n ` 1 ď j ď µ´ 1.

The jacobian matrix of the map p˝ν is therefore related to the hessian matrix
HzpFq of F with respect to the variables z1, . . . , zn as follows:

Jacpp ˝ νq “

˜

´HzpFq p´
Bgk

Bz j
q

0 Idµ´1´n

¸

Taking determinants gives :

jacpp ˝ νq “ p´1qnhzpFq,

and considering signs gives, at each point of C where jacpp ˝ νq ‰ 0,

signpjacpp ˝ νqq “ p´1qnp´1qindexHz pFq.

For t P Rµ´1z∆, let Niptq be the number of critical points of index i of the
Morse function Ft on Bn . Then by definition of the local topological degree
(see [12]), we have the equality

degpp ˝ νq “ p´1qn
n
ÿ

i“0

p´1qi Niptq,

which is independent of t P Bµ´1z∆.
As t approaches the origin, the discriminant D flattens towards the hyper-

plane λ “ 0 (see [31, 5.5]). We shall only use the fact that for t P ppDq the line
pλ, tq, λ P R, has a maximum intersection point pλmaxptq, tq and a minimum
intersection point pλminptq, tq with D, which both tend to 0 with t, and D does
not contain the λ axis. If we denote by Xλ, t the fiber F´1pλ, tq Ă Bn ˆ ttu,
we note that since we may assume the Xλ, t meet BBn ˆ ttu transversally, all
the fibers Xλ, t for λ ą λmaxptq (resp λ ă λminptq) are diffeomorphic to Xλ,0
with λ ą 0 (resp Xλ,0 with λ ă 0).
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By a direct application of Morse theory (see [15, Chapitre 13, exerc. 2.12] and
[1, Lemma]), we have for small enough ε ą 0 the following relations between
Euler-Poincaré characteristics :

χpXλmax`ε, t q ´ χpXλmin´ε, t q “ 2
řn

i“0p´1qi Niptq if n is odd
χpXλmax`ε, t q ´ χpXλmin´ε, t q “ 0 if n is even.

One can verify that if the family f pz1, . . . , znq “ λ is topologically trivial
for |λ| small enough, so is the family f pz1, . . . , znq ` w2 “ λ and as we
saw, adding squares of new variables does not change the geometry of the
miniversal unfolding.
Topological triviality of the Xλ,0 implies χpXλmax`ε, t q´ χpXλmin´ε, t q “ 0, so
that we have:

Proposition 1.2.2 For all n the hypothesis of local topological triviality of
the family f pz1, . . . , znq “ λ implies that the local topological degree of the
map p ˝ ν : C Ñ Bµ´1 is zero.

And what we want to prove is that this map is not surjective.

When n “ 2 the result was proved by Gusein-Zade in [18] using an inge-
nious argument to construct explicit unfoldings without critical points using
induction on the Milnor number and resolution of singularities of curves.
In [33] it was suggested to use elimination of critical points as in the proof
of the h-cobordism theorem (see [23], [8]). In other words, is the condition
řn

i“0p´1qi Niptq “ 0 sufficient to make it possible to eliminate all the critical
points of a Morse function Ft by moving t in Bµ´1? More generally, we wish
to ask the question:

Problem D: Does the geometry of the discriminant D reflect the various
configurations of critical points of Morse functions which can appear in dif-
ferential geometry: For example, can one find values of t P Bµ´1 such that all
the critical points of the same index of Ft are at the same level (have the same
critical value)? Can one describe the obstruction to performing elimination
of critical points of the functions Ft by movements of t P Bµ´1?

For example, it is explained in [32] that if one can find values of t P Bµ´1

such that all non degenerate local minima of Ft (stable attractors) are at the
same level, one obtains a proof of Thom’s catastrophe-theoretic version of
the Gibbs phase rule. It states that the maximum number of local minima
which a Morse function Ft can have in Bn (the number of coexisting phases
of the system) is at most the codimension in Rµ´1 of the Thom stratum T0
of the origin, plus one. Since along the Thom stratum the morphology does
not vary, the coordinates of a space transversal to T0 and of complementary
dimension in Bµ´1 are the essential parameters of the system.

There are some indications towards a possible proof in [33]. Since the
hessian matrix of F is a well defined matrix valued and very special func-
tion on the critical locus C, it may be that the study of its image in the
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Grothendieck-Witt ring, as in [28], is useful. Geometrically, the question is
whether the closures of all the open sets of the discriminant hypersurface D
which are the images by ν of the sets of points of C where the index of HzpFq
has a given value, have to intersect and whether the closures of some other
sets with different indices have to meet in codimension one cusp-type compo-
nents of the singular locus of D. Two dimensional slices of the discriminant
transversal to such components correspond to plane configurations studied
by Jean Cerf (Cerf diagrams, see [7]).
From this viewpoint, we are interested in a dynamical version of Problem D:
the problem is to understand which among the deformations of functions that
are used in differential geometry, for example those used in the h-cobordism
theorem (see [23] and [8]), can be realized by the “small” movements of t in
Bµ´1.
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