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An offensive philosophy cannot content itself with endlessly rambling on about the 
'status' of scientific objects. It must stand resolutely in the vanguard of the obscure, not 
seeing the irrational as 'diabolical' and resistant to articulation, but as the means by 
which new dimensions can emerge. 

 
Gilles Châtelet, Les enjeux du mobile. 

Gilles Châtelet (1945-1999) was a mathematician, physicist and philosopher whose 
philosophy of science I greatly appreciate, as well as the passion with which he 
developed it, particularly in [C]. 

René Thom (1923-2002) was an extraordinary mathematician and philosopher who 
used mathematics to construct qualitative models of changes in the state of systems as 
a function of changes in the parameters on which these systems depend. These models 
are universal in the sense that they do not depend on particular systems but organise 
their evolution. Some of his ideas have become famous under the name of Catastrophe 
Theory. His fundamental work on the subject is [Th1]. 

Abstract: A reflection on the relation between rationality and the meaning of the tools 
it uses, centered on the approaches of Gilles Châtelet and René Thom. 

1 INTRODUCTION 
At last! more than two centuries after Kant, our culture is beginning to seriously 
question the dominance of what is commonly called rationality and its limits. One 
symptom of the relevance of this questioning is the resurgence of anti-scientific schools 



 

 

of thought, sometimes of religious origin. It seems to me that part of our society's 
disaffection with the sciences stems from a misunderstanding of the nature of rational 
thought, which is perceived as having a strong inhuman component. Along with René 
Thom, Gilles Châtelet is one of those who have had the courage, in modern times, to 
emphasise the extent to which the most rational sciences, and in particular physics and 
mathematics, are also human sciences, i.e., dependent on human nature. 

As far as Thom was concerned, in fact, it was more a question of creating a rational 
language, of mathematical origin, sufficiently flexible and rich to be able to talk about 
phenomena, such as the creation of language or the stages of embryogenesis, which 
seemed to escape classical rational thought. And this led him to a vision of the meaning 
of forms and their dynamics that was so innovative that it is still poorly understood 
except by a few experts. Gilles Châtelet, seemingly in the opposite direction, was 
relentless in his search for the forks in the road of thought, those mysterious, misty 
places where new ideas and great questions are born. And he sought them in our 
humanity, in our gestures rather than in formalism, while recognising the heuristic value 
of the latter. 

Both, apparently looking for different things, were in fact two of the great thinkers 
of an adult rationality, if we accept that rationality must be understood as a dialogue 
following the rules of rational thought between man and his environment. There are 
other modes of dialogue, such as art and poetry. 

From this point of view, reductionism is the infantile disease of rationality that 
consists in asserting that the dialogue must end one day, and that man will have the last 
word. This is contrary to all plausibility, even if man has, in areas where his perception 
of the world is on the right scale and even in certain areas where it is not, said many 
things that he finds very interesting, and that nature does not contradict. 

This desire to have the last word obviously greatly diminishes the quality of the 
dialogue, and it has another consequence: it encourages man to place himself in the role 
of God1 , and thus to deny his humanity in order to be quite certain of always being 
right (this is also known as the quest for objectivity, in the name of which some people 
shoot at anything that seems to come under the heading of introspection or psychology). 
An infantile disease, I tell you! 

Thom in [Th2] and Châtelet in [C] had clearly understood that the real problem of 
modern rationality, which has tools for founding truth, is the problem of the foundations 
of meaning. It is these foundations which give the dialogue its quality and encourage 
us to pursue it. The important thing is that they are useful for the dialogue, which 
implies on the one hand that we can use them for reliable (verifiable) intellectual 
constructs and on the other that they have meaning for us. The objects and concepts of 
science must be compatible with these two requirements. 

In fact, this compatibility is rather analogous to that which exists between the 
administrative life of a citizen and his real life. In this case, the citizen, alias the 
mathematical or physical object or concept, leads a double life in our scientific 
imagination: one life as an axiomatically defined object, and another far more exciting 
life as an object endowed with meaning. It is above all in this real life that it is used in 
dialogue with the world. 

 
1 As René Char wrote: It seems that God always has the last word, but he says it in such a low voice that no 

one ever hears him. 



 

 

And Gilles Châtelet tirelessly tracked down the occurences of extensions to the 
world of ideas of our experience of space and movement, which he calls "gestures" for 
short. Such extensions, for example by an 'allusive stratagem' or a concentration of 
ambiguity, provoke the simultaneous creation, often by a partly unconscious process, 
of a mathematical or physical object and its meaning. He understood that the objects 
and concepts we create are there first and foremost to carry a meaning, to perform a 
'gesture' in the mathematical or physical domain or to resolve an ambiguity, and only 
very distantly afterwards to have a 'status' that enables them to be bearers of truth. 

Once you have seen things in this way, you re-read the history of scientific ideas 
with fascination and, like Châtelet, you follow Oresme in his attempt to define speed 
rigorously in a framework where the division of magnitudes of different natures does 
not exist, and Grassmann in his capture of space in the nets of the algebra he creates 
for this purpose. One of the intuitive foundations of this algebra is that a rectangle must 
be a product, while Oresme is constrained by the idea that a product must be an area. 
Both refer to the Greek view that we 'see' a product of two lengths as the area of the 
rectangle that has them as sides. But for Grassmann, the product of vectors generates 
space; the Greek idea has been transfigured. We are really rediscovering rationality as 
a dialogue in which concepts and objects are created by the effect of human impulses 
very strongly linked to our perception of the world. To question the objectivity of these 
concepts and objects is quite simply irrelevant compared to what drives them. It is the 
infantile attitude mentioned above. 

Conceiving of space as a product is one of the strongest ideas in geometry, one that 
drives the Cartesian vision as well as Riemann's local definition and, in its infinitesimal 
form, the definition of differential forms, which also contains the orientation of space 
necessary for the theory of integration. And nowhere have I found more forcefully 
expressed than in Châtelet's work the idea that it is really in this type of conception that 
the real driving forces of scientific construction lie. 

2 WHERE ARE THE FOUNDATIONS? 

In my opinion, the only criticism that can be made of Châtelet's presentation is that he 
does not specify the origin of the mental operations or gestures that he evokes so well 
to explain the 'true' meaning of the constructions of physics. He does place the origin 
in our 'being in the world’ but stops there. 

I have suggested elsewhere ([T1], [T2]) that it is useful to look for the source of 
meaning in the complex structure of our perceptual system, in the links between our 
different perceptions, particularly visual, motor and vestibular, which integrate them 
into a single perception of the world around us. To this structure must be added 
unconscious judgements and impulses such as those to determine causes or origins, to 
make analogies, to complete what is incomplete. 

Certain proto-mathematical objects are very probably accessible to primates, and I 
like to say that a mathematician understands a demonstration when he or she has 
succeeded in explaining the situation to the primate inside him or her. For me, the 
'primate' represents the unconscious sedimentation of our ancestors' experiences of the 
world into the structure of our thinking. For example, rational mechanics associates 
with any dynamic system (for example a collection of spinning tops spinning on each 
other or a sun/planets system), a space in which the temporal evolution of the system 



 

 

is represented by a curve, a trajectory, and this has a strong meaning for our primate, 
who has been throwing stones for hundreds of thousands of years. During their 
apprenticeship, and indeed throughout their lives, mathematicians learn to make sense 
of increasingly elaborate objects using such examples. And understanding a proof 
literally means that it makes sense to the person looking at it. This is very different from 
logical verification, and much more complicated to explain! 

 

3 AFTERWORDS: MATHEMATICIANS NEED A 
SENSE OF THE FORMULA 

Along with René Thom, Gilles Châtelet embodied the slogan I like to repeat:  
"The mathematician must have a sense of the formula."1 
This sentence, which is intended to be creatively ambiguous in the sense of William 
Empson in [E], suggests that the mathematician must not only know how to concentrate 
a lot of information in a few concepts and signs or formulas, but also know the origin 
of the meaning of each concept and each term in a formula. Those who reflect on their 
discipline must first try to determine, as mathematicians, the meaning of each concept 
or formula, before trying to make it the subject of a philosophical discourse. 

The formulas relate to quantities that condense a very large amount of mathematical 
or physical information, such as volume, curvature, the number and nature of solutions 
to an equation, or energy, mass, temperature and many other concepts. 
 
A good example (which remains to be treated from the point of view proposed here) is 
the theorem of Hopf (see the excellent book [M]) 

χ(X)	=Σxi∈Zer(v) Indxi	v	,		

which asserts, for a compact differential variety without boundary X, the equality of 
its Euler-Poincaré characteristic and of the sum of the indices at its singular points 
(the points where it vanishes) of a differentiable and sufficiently general field v	of 
vectors tangent to the variety.		

The term on the left is topological, the one on the right is differential. In particular, 
the result implies that there is no vector field without zero on even-dimensional spheres. 
So, it is quite an elaborate result, which has had a prodigious mathematical legacy. 

But how is this meaning to be determined? It is to this question that Châtelet 
provides some very original and valuable answers, of which I have tried to give an idea 
above: a concept may be the abstraction of a 'gesture', i.e., an atavistic experience of 
our primate, such as throwing a stone, or it may resolve an apparent contradiction. In 
all cases, it has a genesis. It seems a long time ago (in the 1930s) that Bourbaki could 

 
1 "Avoir le sens de la formule" translates in English as "To have a way with words" so that the sentence "Le 
mathématicien doit avoir le sens de la formule" presents the same ambiguity in a more amusing way. 
 



 

 

write "Le traité prend les Mathématiques à leur début..." (The treatise takes 
Mathematics at their beginning) when writing Chapter 1 of the first Book of "Elements 
de Mathématique", which deals with the theory of sets, then barely forty years old. 

Mathematics has no more beginnings than the human species; it has a history and 
a dynamic that are studied by specialists. But if, like Châtelet, we are also interested in 
their 'metaphysics', in what they reveal about our being in the world - in short, in what 
a true philosophy of mathematics should be concerned with - then we must not only 
revisit history, but also realise that he is describing the coastline of a continent where 
almost everything remains to be discovered.  
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