ERRATUM TO "MONOMIAL IDEALS, BINOMIAL IDEALS, POLYNOMIAL IDEALS"

BERNARD TEISSIER

Abstract

Patrick Popescu Pampu has called my attention to several errors in the text [6]. I am grateful to him. Page and line numbers refer to the version on this site, those between parenthesis to the published version.

- p. 6, line 6 (p. 216, line 9) (Corrected in the on-site version): ...together with their faces.
- p. 14, line 8 (p. 223, line -18) (Corrected in the on-site version):... parallel to coordinate planes (intersections of coordinate hyperplanes).
- p. 14, line -7 (p. 224, line 7)(Corrected in the on-site version) : ... dual fan (except for the origin) of a Newton...
- p. 17 (p. 227) (Corrected in the on-site version, where the exercise is replaced by a remark.) : the exercise is wrong; one does not obtain, by varying $\check{a} \in \mathbf{R}_{>0}^{d}$ all collections of compact faces of the polyhedra of f_{1}, \ldots, f_{k}. Here is Popescu-Pampu's example, with $d=3, k=2$:

$$
f_{1}=x^{2}+y^{2}+z^{3}, f_{2}=x^{2}+\eta y^{3}+\zeta z^{4} \text { with } \eta, \zeta \in k^{*} .
$$

One verifies that $\left(f_{1}=f_{2}=0\right)$ is a non degenerate complete intersection in $\mathbf{A}^{3}(k)$ and the polyhedron of each has only one compact face which is a triangle. These triangles, say γ_{1}, γ_{2}, are not parallel so that there is no $\check{a} \in \mathbf{R}_{>0}^{d}$ which takes its minimum on both triangles. If we choose x_{0}, y_{0}, z_{0} such that $x_{0}^{2}=1, y_{0}^{2}=3, z_{0}^{3}=-4$, and choose $\eta=\frac{2}{3} y_{0}^{-1}, \zeta=\frac{3}{4} z_{0}^{-1}$ then $f_{1, \gamma_{1}}=f_{2, \gamma_{2}}=0$ has $\left(x_{0}, y_{0}, z_{0}\right)$ as a singular point in the torus. So for the statement of the exercise to be true in this case one has to add to the non-degeneracy of f_{1}, f_{2} an extra condition which ensures the transversality of $f_{1, \gamma_{1}}=0$ and $f_{2, \gamma_{2}}=0$ in the torus for pairs γ_{1}, γ_{2} of compact faces which are not minimizers for some common \check{a}. This can be understood in terms of the positions of the strict transforms of f_{1}, f_{2} after a desingularizing toric map. See $\S 5$ in the text.

- Popescu Pampu suggested that in addition to [5] I should have added to the bibliography [1], [2], [3], [4].

References

1. H. F. Baker, Examples of the application of Newton's polygon to the theory of singular points of algebraic functions, Trans. Camb. Phil. Soc., Vol. XV, part IV, 1893, 403-450.
2. H. F. Baker, The practical determination of the deficiency (Geschlecht) and φ-curves for a Riemann surface, Math. Ann., 45, 1894, 118-132.
3. G. Dumas. Sur la résolution des singularités des surfaces, C.R.A.S. Paris, t. 151, 1911, p. 682.
4. G. Dumas. Sur les singularités des surfaces, C.R.A.S. Paris, 1912, t. 154, no. 23, p. 1495.
5. W.V.D. Hodge, The isolated singularities of an algebraic surface, Proc. London Math. Soc. 30 (1930), 133-143.
6. B. Teissier, Monomial ideals, binomial ideals, polynomial ideals, in Trends in Commutative Algebra, MSRI Publications no. 51, 2004, 211-246.

Institut de Mathématiques de Jussieu - Paris Rive Gauche, UMR 7586 du CNRS, Bâtiment Sophie Germain, Case 7012, 75205 PARIS Cedex 13, France

E-mail address: bernard.teissier@imj-prg.fr

[^0]
[^0]: 2000 Mathematics Subject Classification. 14M25, 14E15, 14B05.
 Key words and phrases. Toric geometry, integral closure. binomial ideals.

