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PART 1: A QUICK INTRODUCTION TO VALUATION THEORY FROM A
TORIC VIEWPOINT1

1 Introduction

A valuation of an integral domain R with field of fractions K is a map

ν : K∗ → Φ

with values in a totally ordered abelian group Φ and satisfying:
ν(xy) = ν(x) + ν(y),
ν(x+ y) ≥ min(ν(x), ν(y)),
ν(x) ≥ 0 whenever x ∈ R.

Since R is a ring, the image Γ = ν(R \ {0}) ⊂ Φ+ ∪ {0} is stable under
addition, and so is a sub-semigroup of Φ+ ∪ {0}. If R is noetherian it is well-
ordered, but not finitely generated in general. According to a result of Zariski,
the ordinal type of Γ is ωhR(ν), where hR(ν) is an integer, the length in R of the
valuation ν, which is at most equal to the Krull dimension of R. Determining
or even bounding the ordinal type of the minimal set of generators of Γ is an
open question as far as I know, although when R is complete it can be shown to
be at most hR(ν)ω, so one must think of the elements γi as indexed by ordinals
≤ ωhR(ν).

Since Γ is well ordered it has a minimal system of generators

Γ = 〈γ1, γ2, . . . , γi, . . .〉,

defined by an eventually transfinite construction: γi is the smallest non zero
element of Γ not contained in the semigroup generated by the (γj)j<i.

1All references in this text are to the paper “Valuations, deformations, and toric geometry”,
Fields Institute Communications, Vol. 33, 2003, pp. 361-459, also ArXiv, Math.AC/0303200,
quoted [VDTG], and to the references of that paper.
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• To give a valuation of an integral domain R is to choose an overring R ⊂ Rν ⊂
K where divisibility is never a problem:
Given x, y ∈ Rν , either x|y or y|x in Rν

Any integral domain with this property is called a valuation ring. Then if
Uν denotes the multiplicative group of units of Rν , we have Uν ⊂ K∗ and the
preorder x ≤ y ⇐⇒ x−1y ∈ Rν induces a total order of the quotient Φ = K∗

Uν
.

The natural map

K∗ → Φ =
K∗

Uν

is a valuation. Note that the operation in Φ is noted additively although it
comes from multiplication in K∗.
Given a valuation ν on K∗, the ring Rν = {x ∈ K∗/ν(x) ≥ 0} ∪ {0} is a
valuation ring.

• Valuation rings appear in Geometry as

lim−→
Xα,ξα

OXα,ξα
= Rν

where the limit of local rings corresponds to a projective system of points (closed
or not) in a projective system of proper birational maps of schemes (you can
think of blowing-ups) which is cofinal in the system of all proper birational
maps. A sequence of points in such a system looks like:

· · ·Xi → Xi−1 → · · · → X1 → X0 = X
. . . ξi → ξi−1 → · · · → ξ1 → ξ0 = ξ

• If there was a cofinal system in the system of OXα,ξα
consisting of regular local

rings, then Rν , which is “regular” but very large, in particular not noetherian
in general, could be approximated by regular local rings.

This is the problem of local uniformization, solved by Zariski in 1940 for alge-
braic varieties over a field k of characteristic zero as a step towards resolution of
singularities, and which is also a consequence of Hironaka’s resolution theorem.
For positive characteristic, in dimension ≤ 3, it is a consequence of the results
of Abhyankar .

• Given a field extension k → K, the restriction to k of a valuation of K is a
valuation of k. The valuations of K which restrict to the trivial valuation with
value group 0 on k are known as valuations of K/k. The traditional view is to
classify them according to the “size” of their ordered group Φ of values, and
the “size” of the extension k → kν = Rν/mν . The “size” of kν relative to k is
measured by the transcendence degree of this field extension. The “size” of Φ is
measured in two ways: the rational rank r(Φ) = dimQΦ ⊗Z Q and the rank of
Φ, which I prefer to call the height, and which is the length of a maximal chain
of convex subgroups of the ordered group Φ. It is also the Krull dimension of
the ring Rν . A classical problem going back to Krull is to see how the valuation
ring of a valuation of K/k differs from the ring k[[tΦ+ ]] of formal series with
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well ordered sets of exponents in Φ+, equipped with the valuation associating
to each series the smallest exponent appearing in it.

• We are interested here in pairs (R, ν), where R is a noetherian ring and ν a
valuation of its field of fractions, non negative on R. In addition to the measures
of the complexity of the valuation just mentionned, we need to consider the
values of ν on R \ {0}. These values form a subsemigroup Γ of the semigroup
Φ+ ∪ {0}. Since R is noetherian, the set Γ is well ordered, which is not the case
for Φ+∪{0} in general. This implies that the semigroup Γ has a unique minimal
set of generators. The group Φ being given, this set of generators contains some
information about the singularities of R.

It is therefore interesting to try to build noetherian rings with a valuation
having a semigroup of values given in advance. This is the content of the next
section.

2 Examples

Let Γ be a sub semigroup of Q+. We start by building integral domains with
a valuation ν having value group Φ ⊆ Q and such that the semigroup of the
values taken by the valuation on R is exactly Γ.

Example 1: Γ = 〈γ1, . . . , γg+1〉 ⊂ N where 〈A〉 means the semigroup of all
non negative integral linear combinations of the elements of A and the γi are
collectively coprime integers, ordered according to their indices. We assume
that they form a minimal system of generators of Γ, which means that for all i,
we have γi+1 /∈ 〈γi, . . . , γi〉.

Example 2: Let (si)i≥1 be a sequence of positive integers such that si ≥ 2 for
i ≥ 2, and define inductively rational numbers (γi)i≥1 by the relations

γ1 =
1

s1
, γi+1 = siγi +

1

s1 . . . si+1

Then take
Γ = 〈γ1, γ2, . . . , γi, . . .〉 ⊂ Q+.

If ∀i si = i, the group Φ generated by Γ is Q.

To such semigroups we can associate geometric objects, the spectra of their
semigroup algebras over an algebraically closed field k. The Krull dimension of
the semigroup algebra is equal to the rational rank dimQΦ ⊗Z Q of the group
Φ generated by Γ.

In our case this rank is equal to one, so that our semigroup algebras corre-
spond to curves. In example 1, we have a monomial curve in Ag+1(k):

ui = tγi , 1 ≤ i ≤ g + 1, γi ∈ N.

Example 2 must also be thought of as a monomial curve ui = tγi but now the
embedding dimension is infinite.
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We are now going to deform these rings, and for that we need equations for them.
These equations correspond to relations with integral coefficients between the
generators γi. The equations defining the monomial curve of example 1, that
is, the relations between the γi, may be fairly complicated. We shall make the
following simplifying assumptions:
a) if ei is the gcd of (γ1, . . . , γi) and if we write ei = si+1ei+1, then for 1 ≤ i ≤ g

si+1γi+1 ∈ 〈γ1, . . . , γi〉

b) siγi < γi+1 for 2 ≤ i ≤ g.
Then the relations are generated by the following g expressions of condition

a):

si+1γi+1 =
i∑

k=1

ℓ
(i+1)
k γk, with ℓ

(i+1)
k ∈ N

These relations are not uniquely determined but in view of condition a) there is

a unique way of writing each relation satisfying the condition that ℓ
(i+1)
k < sk

for 2 ≤ k ≤ i. Condition a) implies that in the special case considered the
monomial curve is a complete intersection with equations

u
si+1

i+1 − Πi
k=1u

ℓ
(i+1)
k

k = 0, 1 ≤ i ≤ g.

In example 2, it is not difficult to see, using the fact that (γ1, . . . , γi) are in
the subgroup of Q consisting of rational numbers which can be written with
denominator s1 . . . si, that all relations are generated by the:

si+1γi+1 =

i∑

k=1

ℓ
(i+1)
k γk with ℓ

(i+1)
k ∈ N, i ≥ 1,

so that the equations of our monomial curve are

u
si+1

i+1 − Πi
k=1u

ℓ
(i+1)
k

k = 0, 1 ≤ i.

All these equations are binomial equations defining irreducible varieties in a
possibly infinite dimensional affine space. They are (non normal) toric varieties.

Let us now remark that in both examples we have γi+2 > si+1γi+1 and let us
deform the equations in the following manner: in the first example we consider
a variable v and the equations

u
si+1

i+1 − Πi
k=1u

ℓ
(i+1)
k

k − vui+2 = 0, 1 ≤ i ≤ g − 1.

u
sg+1

g+1 − Πg
k=1u

ℓ
(g+1)
k

k = 0

In the second example, we introduce a variable vi for each index i ≥ 2 and
consider for i ≥ 1 the equations

u
si+1

i+1 − Πi
k=1u

ℓ
(i+1)
k

k − vi+1ui+2 = 0
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In both cases we have an obvious elimination process in the polynomial ring
k[(v±1

j ); (ui)]. Setting vj = 1, the results are isomorphisms:

• For example 1:

R = k[u1, u2]/(F )

= k[u1, . . . , ug+1]/(u
s2
2 − u

ℓ
(2)
1

1 − u3, u
s3
3 − u

ℓ
(3)
1

1 u
ℓ
(3)
2

2 − u4, . . .),

where F (u1, u2) is the result of the elimination; for example if Γ = 〈4, 6, 13〉, the
equations of the monomial curve are

u2
2 − u3

1 = 0
u2

3 − u5
1u2 = 0

and since the deformation affects only the first equation and is u2
2 − u3

1 − vu3 = 0, we
find

F (u1, u2) = (u2
2 − u3

1)
2 − u5

1u2 = 0.

• For example 2:

R = k[u1, u2]

= k[u1, . . . , ui, . . .]/(u
s2
2 − u

ℓ
(2)
1

1 − u3, u
s3
3 − u

ℓ
(3)
1

1 u
ℓ
(3)
2

2 − u4, . . .)

In both cases, giving to the variable ui the weight γi determines a valuation on the ring
and the isomorphism gives a way to compute it: in the right hand side the value of a

polynomial P (u1, u2) rewritten replacing systematically each usi
i by Πk<iu

ℓ
(i)
k

k + uk+1

is the minimum of the values (i.e., weights) of its monomials and this determines a
valuation of R with semigroup Γ.

Giving to the variable ui the weight γi determines a monomial order on the polynomial
ring k[(ui)], and therefore a filtration by the minimal order of the monomials in a
polynomial. Each of the equations which we have created by deformation has an
initial form with respect to this filtration which is precisely the binomial equation
which we have deformed.

In fact we have a faithfully flat family parametrized by k[(vj)] specializing the
ring R to the ring of the monomial curve defined by the initial binomial equations.
The equations of R play the role of a standard, or Gröbner, basis with respect to the
monomial order.

Since we have seen that the Krull dimension of that ring is equal to one, the second
example contradicts the semicontinuity of fiber dimensions in a family. There is no
absurdity since that semicontinuity is proved under a finiteness condition which is not
fulfilled here.

The situation in our case can be described by what I call the abyssal phenomenon:

Let ut write out the system of equations appearing in the second example:

us2
2 − u

ℓ
(2)
1

1 − v2u3 = 0

us3
3 − u

ℓ
(3)
1

1 u
ℓ
(3)
2

2 − v3u4 = 0
...

...

u
si+1

i+1 − Πi
k=1u

ℓ
(i+1)
k

k − vi+1ui+2 = 0
...

...
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When all vi are nonzero, say equal to one, it amounts actually to an endless sequence of
substitutions and therefore it cannot decrease the dimension, while when we specialize
to the monomial curve, making all vi+1 = 0, we obtain equations which also express
all ui, i ≥ 3 algebraically in terms of (u1, u2), but now u1 and u2 are algebraically
dependent so that the dimension drops to 1.

However, if k is of characteristic zero we can also view these equations as defining a
very transcendental curve in A

2(k) whose Zariski closure, which is all our equations
see, is the entire affine plane.

To see this, use the order on the γj to order the equations u
sj

j − . . . as we did
above, and for a given n ∈ N truncate the system at order n in the following sense:
keep all equations of index < n, replace the equation of index n by its initial form,
which involves only variables of index ≤ n, and forget all the other equations. We are
now reduced to the case of example 1 except that we have to multiply γ1, . . . , γn by
their common denominator, obtaining a sequence of coprime integers.

If k is of characteristic zero, we can solve the corresponding equation Fn(u1, u2) = 0
by a Puiseux expansion

u
(n)
2 =

∞
X

j=1

a
(n)
j u

j
s2...sn

1

Using the Smith-Zariski formula for the intersection number of parametrized curves
one can show that as n increases these Puiseux expansions converge in the ring k[[tQ+ ]]
of series with well ordered sets of rational exponents to a series w(u1) of fractional
powers of u1 whose exponents have unbounded denominators. Because of Newton-
Puiseux, setting u2 = w(u1) cannot cause the vanishing of a polynomial (or even a
power series) in (u1, u2). It parametrizes a transcendental curve whose Zariski closure
is A

2(k).

We have produced it as a deformation of an algebraic, indeed toric, curve of infinite
embedding dimension.

This curve defines a valuation on k[u1, u2] by taking, for any polynomial P (u1, u2),
the order in u1 of P (u1, w(u1)), which is finite as we just saw. It is of course the same
valuation as that which is obtained as explained above.

Remark that we have many choices to deform our monomial curve of infinite embedding
dimension:
Given an integer t ≥ 3, we could deform by

us2
2 − u

ℓ
(2)
1

1 − v2ut = 0

us3
3 − u

ℓ
(3)
1

1 u
ℓ
(3)
2

2 − v3ut+1 = 0
...

...

ust
t − u

ℓ
(t)
1

1 ...u
ℓ
(t)
t−1

k−1 − vtu2t−2 = 0
...

...

u
si+1

i+1 − Πi
k=1u

ℓ
(i+1)
k

k − vi+1ui+t−1 = 0
...

...

And then our deformed ring is k[u1, . . . , ut−1], with a valuation which still has the
same semigroup Γ.
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We can also deform our curve into a singular space: fix an integer t ≥ 2 and for
j = 2, . . . , t a polynomial Pj(u1, . . . , ut) in which every monomial has weight > sjγj

and which contains no linear term. Fix another integer t′ ≥ 2 and then consider the
deformation

us2
2 − u

ℓ
(2)
1

1 − v2P2(u1, . . . , ut) = 0

us3
3 − u

ℓ
(3)
1

1 u
ℓ
(3)
2

2 − v3P3(u1, . . . , ut) = 0
...

...

ust
t − u

ℓ
(t)
1

1 ...u
ℓ
(t)
t−1

t−1 − vtPt(u1, . . . , ut) = 0

u
st+1
t+1 − u

ℓ
(t+1)
1

1 ...u
ℓ
(t+1)
t

t − vt+1ut+t′ = 0
...

...

u
si+1

i+1 − Πi
k=1u

ℓ
(i+1)
k

k − vi+1ui+t′ = 0
...

...

Now taking all vs = 1, we obtain a singular ring, with a valuation still having semigroup

Γ. If we take infinitely many Pj , the ring is no longer noetherian.

3 Relation with local uniformization

Now what is the use of this?
Suppose that we are interested in building a regular local ring R′ between

R and Rν , which is essentially of finite type over R; this is the problem of
local uniformization. The basic idea is that over an algebraically closed field of
any characteristic it is not difficult to resolve the singularities of an irreducible
variety defined by binomials, by toric maps. In the case of the first example,
that toric resolution will also resolve the singularities of the plane curve obtained
by elimination, viewed as embedded in affine g+ 1-space; this is due to the fact
that the deformation adds only terms of higher weight than the initial binomial
equation.

The second example is not so convincing as far as local uniformization is
concerned since the ring is regular, and also because there is no resolution in
the usual sense of a space defined by infinitely many binomial equations.

But as we saw above, we can make it more complicated as follows: in some of
the equations instead of adding a linear term uj+2, we can add with a factor vi+2

a polynomial, or even a series, where every monomial is of weight greater that
the weight of the initial binomial and where there is no linear term, and thus
manufacture a singular ring, which may be of dimension > 2. When we grow
tired, we go back to adding linear terms as above, which we must do anyway
if we want the result to be noetherian. The resulting ring still specializes to
the ring of the monomial curve wich admits as equations the initial forms, and
therefore a toric resolution of the binomial variety corresponding the finitely
many binomials which we have deformed in this new manner will provide a
local uniformization of the valuation defined on R.
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In short, if we have manufactured a complicated singular ring R by adding non
linear terms of higher weight to a finite number of the binomial equations of our
curve, we may be glad to exchange its noetherianity for the simplicity of dealing
with a toric variety, provided we can show that it suffices to resolve finitely

many of the binomials to uniformize the valuation on R.

Now the claim is that this is essentially the general situation, at least when
R is a complete equicharacteristic noetherian local ring with an algebraically
closed residue field.

Let R ⊂ Rν be the inclusion of a ring in a valuation ring. The only really im-
portant case for local uniformization is when R is an excellent equicharacteristic
local ring and Rν dominates R, i.e., mν ∩R = m, and the residue field extension
R/m ⊂ Rν/mν is trivial; we say then that ν is a rational valuation of R.
We may consider the filtration of R by the ideals

Pφ(R) = {x ∈ R/ν(x) ≥ φ}
P+
φ (R) = {x ∈ R/ν(x) > φ}

and this gives us an associated graded ring

grνR =
⊕

φ∈Γ

Pφ(R)

P+
φ (R)

,

where Γ ⊂ Φ+∪{0} is the semigroup of the values taken on elements of R\{0} by
the valuation ν with value group Φ. Remark that if φ /∈ Γ, then Pφ(R) = P+

φ (R)
and that if the valuation ν is rational and φ ∈ Γ, then the quotient is a one-
dimensional vector space over k = kν .

The first basic fact is

Proposition 1: If ν is a rational valuation of the noetherian ring local R, the
associated graded ring can be presented as a quotient of a polynomial ring in
countably many variables by a binomial ideal :

grνR = k[(Ui)i∈I ]/(U
m − λmnU

n)m,n∈E .

Now one can associate to (R, ν) a valuation algebra

Aν(R) =
⊕

φ∈Φ

Pφ(R)v−φ ⊂ R[vΦ],

where R[vΦ] is the group algebra of Φ with coefficients in R.
If R contains a field k such that the valuation takes the value 0 on k∗, we

have a natural composed map

k[vΦ+ ] → R[vΦ+ ] → Aν(R),

corresponding to a map of schemes

SpecAν(R) → Speck[vΦ+ ].
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And the second basic fact is:
Proposition 2: If in addition the ring R contains a field of representatives,
the k[vΦ+ ]-algebra Aν(R) is faithfully flat, the general fiber of the corresponding
map of schemes is isomorphic to SpecR and its special fiber is SpecgrνR.

By a result of Piltant, the Krull dimension of SpecgrνR is the rational rank
of the group Φ of the valuation, and by Abhyankar’s inequality, we have for a
rational valuation

dimgrνR ≤ dimR.

Strict inequality can occur, as we saw in example 2.

Using the properties of flatness, one can deduce from this a valuative version of
Cohen’s theorem:

Theorem 3.1. If the noetherian local ring R is complete and equicharacteristic,
given a field of representatives k ⊂ R and elements ξi ∈ R whose initial forms
ξi generate the k-algebra grνR, the surjective map of k-algebras

(∗) k[(Ui)i∈I ] → grνR

of Proposition 1, mapping Ui to ξi, extends to a continuous surjective map of
k-algebras

(∗∗) ̂k[(ui)i∈I ] → R

mapping ui to ξi ∈ R, and such that the associated graded map with respect to
the natural filtrations coincides with the map (*)

Here the hat means a scalewise completion taking into account the structure
of the group Φ of the valuation.

Moreover the kernel of the map (**) is generated, up to closure, by equations
which are deformations of the binomial equations Um − λmnU

n generating the
kernel of the map (*). They are of the form

Fmn = um − λmnu
n +

∑

p

cpu
p,

with cp ∈ k∗, w(up) > w(um) = w(un), and w is the monomial weight giving
to ui the weight γi = ν(ξi) ∈ Γ.

Now because R is noetherian, its maximal ideal is generated by finitely many
of the ξi and any variable uj not in that finite set must appear linearly in one of
the equations Fmn; In fact, modulo an implicit function theorem whose proof is
not yet written in full, one can prove that all the equations Fmn except finitely
many must be of the form

Fi = un(i) − λiu
m(i) + ciui +

∑

p

c(i)p up, ci ∈ k∗

This is beginning to look a lot like our example 2. It suffices to resolve the
toric variety defined by the finitely many binomials which do not appear in the
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Fi, this will extend to a birational toric map Z → SpecR such that Z is non
singular at the point picked by the valuation ν, and all the Fi add nothing: it
is just a graph.

This reduces us to the case where the graded k-algebra grνR is finitely
generated: one proves that an irreducible binomial variety over an algebraically
closed field of any characteristic has embedded resolutions by toric maps (joint
work with P. González Pérez), and then that the same toric map also resolves
the space defined by the deformed equations at the point picked by the valuation
provided one deforms by adding terms of higher weight. More precisely:

4 Overweight deformations of binomial ideals

Let us go back to the situation of a rational valuation on a local noetherian in-
tegral domain R with semigroup Γ = 〈γ1, γ2, . . .〉. Recall ([VDTG], Proposition
4.15) that the graded algebra grνRν of a valuation ring is the union of a nested
sequence of polynomial algebras in N = r(ν) variables over kν = Rν/mν with
maps between them sending each variable to a term. These subalgebras are
the semigroup algebras of nested free subsemigroups of the non negative part
Φ+ ∪ {0} of the value group Φ of the valuation. Let NN ⊂ Φ+ ∪ {0} be such
a free subsemigroup of the non negative part of a totally ordered group Φ. Let
(γi)i∈F , where F = {1, . . . , f} be the elements of the sequence (γi)i≥1 which are
in NN . They form a minimal set of generators of a semigroup ΓF ⊆ Γ

⋂
NN .

Given any field k this determines a monomial order on k[(Ui)i∈F ] corresponding
to the order on the weights w(Ui) = γi given by the order of Φ and a map of
semigroup algebras over k

k[(Ui)i∈F ] → k[t1, . . . , tN ].

The kernel of this map is a prime ideal I of k[(Ui)i∈F ] generated by binomials.
The vectorsmj−nj associated to these binomials generate the lattice of relations
between the elements (γj)j∈F .

Let w be a weight on a polynomial or power series ring over a field k, with
values in the positive part Φ+ of a totally ordered group Φ of finite rational
rank.

Let us consider the power series case and the ring S = k[[u1, . . . , uN ]]. The
weight w determines a filtration on S by the weight of series, which is the mini-
mum weight of a monomial appearing in the series. The graded ring associated
to this filtration is k[U1, . . . , UN ].

Definition 4.1. Given a weight w as above, a (finite dimensional) valua-

tive overweight deformation is the datum of a prime binomial ideal (um
ℓ

−

λℓu
nℓ

)1≤ℓ≤s such that the vectors mℓ − nℓ generate the lattice of relations be-
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tween the γi = w(ui) and of series

(OD)

F1 = um
1

− λ1u
n1

+ Σw(p)>w(m1)c
(1)
p up

F2 = um
2

− λ2u
n2

+ Σw(p)>w(m2)c
(2)
p up

.....

Fℓ = um
ℓ

− λℓu
nℓ

+ Σw(p)>w(mℓ)c
(ℓ)
p up

.....

Fs = um
s

− λsu
ns

+ Σw(p)>w(ms)c
(s)
p up

in k[[u1, . . . , uN ]] such that, with respect to the monomial order determined by
w, they form a Gröbner basis for the ideal which they generate.
Here we have written w(p) for w(up) and the coefficients c(ℓ) are in k.

Let us agree to call X the formal subspace of AN (k) defined by te equations
Fℓ.

Proposition 4.2. a) A valuative deformation determines a valuation ν of the
ring R = S/(F1, . . . , Fs), and the associated graded ring of R is

grνR = k[U1, . . . , UN ]/(Um
1

− λ1U
n1

, . . . , Um
s

− λsU
ns

).

b) There exists a birational toric map Z → AN (k) such that the strict transform
of X is regular at the point picked by ν.

Proof. To prove a), let us define the order of a non zero element of R as the
maximum weight of a series of S having x as image under the quotient map
S → R = R/I where I = (F1, . . . , Fs). This clearly satisfies the inequalities
ν(x+ y) ≥ min(ν(x), ν(y)) and ν(xy) ≥ ν(x) + ν(y). Thus, we have defined an
order function on R. To prove that it is a valuation is to prove that the second
inequality is an equality, and we argue as follows:
The order function ν determines a filtration onR; by construction the associated
graded ring of R with respect to this filtration is a quotient of the associated
graded ring k[U1, . . . , UN ] of S with respect to the weight filtration. Indeed if we
denote by Qφ the ideal of elements of weight ≥ φ in S, we see that by definition
of ν it maps onto the ideal of elements of R which are of order ≥ φ.

The ideal defining the quotient is the ideal of k[U1, . . . , Ur] generated by the
initial forms of the elements of I with respect to the weight filtration of S. Since
by hypothesis this initial ideal is generated by the w(mℓ) = w(nℓ), the graded
algebra grνR is equal to k[U1, . . . , UN ]/I0 where I0 is the ideal generated by
the binomials. It is therefore an integral domain, which shows that the order
function ν is actually a valuation.

To prove b), consider the system of hyperplanes Hℓ = Hmℓ−nℓ of ŘN dual to
the vectors mℓ − nℓ and remember from [VDTG] (or see below) that if Σ is a
regular fan subdividing the first quadrant of ŘN and compatible with all the
the Hℓ, then the toric modification π(Σ): Z → AN of AN determined by Σ is
an embedded resolution of singularities of the toric variety X0 corresponding

11



to the binomial ideal. Remember also that the charts of Z where the strict
transform of X0 meets the exceptional divisor are those which correspond to
cones σ = 〈a1, . . . , aN 〉 which meet the weight cone which is the intersection
with the first quadrant of the d dimensional vector space

⋂t

ℓ=1Hℓ.
More precisely:
To the regular fan Σ with support RN

≥0 corresponds a proper and birational

toric map of non singular toric varieties π(Σ): Z(Σ) → AN (k) . To each cone of
maximal dimension σ = 〈a1, . . . , aN 〉 corresponds a chart Z(σ) of Z(Σ) which
is isomorphic to AN (k). If we choose adapted coordinates y1, . . . , yN in that
chart, the restriction

π(σ) : Z(σ) → AN (k)

is described by monomials:

(∗)

u1 = y
a1
1

1 . . . y
aN
1

N

u2 = y
a1
2

1 . . . y
aN
2

N

...

uN = y
a1

N

1 . . . y
aN

N

N

,

and so for each monomial um we have

um 7→ y
〈a1,m〉
1 · · ·Y

〈aN ,m〉
N ,

where 〈ai,m〉 =
∑N

j=1 a
i
jmj .

Let us compute the transform by this map of one of our binomial generators,
denoted by um − λun. We may assume that a1, . . . , at are those among the aj

which lie on the hyperplane Hm−n dual to m− n, i.e., such that 〈aj ,m− n〉 =
0 , 1 ≤ j ≤ t. Because our fan is compatible with Hm−n, all the other 〈aj ,m−n〉
are of the same sign, say 〈aj ,m− n〉 > 0. We have then

um − λun 7→ y
〈a1,n〉
1 · · · y

〈aN ,n〉
N (y

〈at+1,m−n〉
t+1 · · · y

〈aN ,m−n〉
N − λ).

The strict transform y
〈at+1,m−n〉
t+1 · · · y

〈aN ,m−n〉
N − λ = 0 of our binomial hyper-

surface is non singular, and transversal to the exceptional divisor defined by
Πj∈Jyj = 0, where J is the set of those j, 1 ≤ j ≤ N such that aj is not a basis
vector.
It is shown in [VDTG] that the strict transform by the map π(Σ) of the toric
variety X ⊂ AN (k) defined by our prime binomial ideal is non singular and
transversal to the exceptional divisor.
Furthermore, if the intersection of σ withW is d-dimensional, then the equations
of the strict transform depend on exactly d variables, say yt+1, . . . , yN and in
view of their binomial nature their only solutions in the charts Z(σ are given
by yt+j = ct+j ∈ k∗.

We are going to show that there exist regular fans refining such a fan Σ such
that the corresponding toric modification resolves the strict transform of X at
the point picked by the valuation ν.

12



Let us examine how valuative overweight deformations behave with respect
to toric resolutions of singularities. Let w be a weight on the variables u1, . . . , uN
with values in a well ordered subsemigroup of the positive semigroup Φ+ of a
totally ordered group Φ of finite height. Let us say that a convex rational cone
σ ⊂ ŘN is w-centering if the monomial valuation on k(u1, . . . , uN) determined
by w has a center in k[σ̌ ∩ ZN ]. If we assume that σ is simplicial and write as
above σ = 〈a1, . . . , aN〉, this means that in the map determined by σ, we have
that the w(yi) are ≥ 0.

We remark that since the matrix of the aj1 is invertible, the weights of the
yj are uniquely determined by the w(ui).
If the weight w is of rank one and we identify its value group Φ with a subgroup
of R, we can consider the vector w = (w(u1), . . . , w(uN )) ∈ RN

≥0. Then the
positivity of the w(yj) is equivalent to the fact that w is in σ; a simplicial
convex cone σ is w-centering if and only if it contains the vector w.

If the rank r of Φ is greater than one, we consider the sequence of convex
subgroups, with the convention that Ψ0 = Φ:

(0) = Ψh ⊂ Ψh−1 ⊂ . . .Ψ1 ⊂ Φ,

and we notice that since Φ has no torsion and we are interested only in inequali-
ties and equalities we can work in the divisible hull Φ⊗ZQ of Φ with the natural
extension of the ordering on Φ and therefore assume that Φ is the lexicographic
product of groups of rank one

Φ = Ξ1 × . . .× Ξh

with Ψj = {0} × Ξj+1 × . . .× Ξh.
Now let us choose an ordered embedding of Φ ⊗Z Q in (Rh)lex. For each

j, 1 ≤ j ≤ h, we can define a vector w(j) ∈ ŘN ; it is the vector whose
coordinates are the projections in Ξj of the w(ui).

Lemma 4.3. Given N elements w1, . . . , wN of R, the rational rank of the
subgroup of R generated by the wi is equal to the dimension of the smallest vector
subspace 〈w〉Q of RN defined over Q containing the vector w = (w1, . . . , wN ).

Proof. Let L be the kernel of the Z-linear map b : ZN → R sending the i-th
basis vector to wi. The image of the map b is the subgroup generated by the wi
and the rank of L is the codimension of 〈w〉Q in RN . �

Let us denote by rj the rational rank of the group Ξj .

Lemma 4.4. The vectors w(j), 1 ≤ j ≤ h, of ŘN are linearly independant
over Q.

Proof. The subgroup Φ of Rh is the image of the map ZN → Rh sending the
i-th basis vector to w(ui). The kernel of this map is a lattice L of rank N − r
where r is the rational rank of Φ and its image is spanned by the coordinates
of the vectors w(j).

13



Consider the Z-linear map B : (ZN )h → Rh defined by sending the basis vector

e
(k)
i to w(k)i for 1 ≤ i ≤ N, 1 ≤ k ≤ h. Since each Ξk ⊂ R is generated by the

w(k)i, 1 ≤ i ≤ N the group Φ = Ξ1 × · · · × Ξh is the image of this map.
The kernel is the lattice M in (ZN )h determined by the kernels of the maps

ZN → Ξk sending e
(k)
i to w(k)i for each k, 1 ≤ k ≤ h. The rank of this lattice

is N − r1 + · · · +N − rh = hN − (r1 + · · · + rh).

If there was a linear relation with integral coefficients
∑h

k=1 dkw(k) = 0, it

would give N elements
∑h

k=1 dke
(k)
i , 1 ≤ i ≤ N of the kernel of B, which must

be rationally independant of M since they do not imply any relation among the
generators of the groups Ξk. The existence of such a relation contradicts the
fact that the rational rank of Φ is r1 + · · · + rh. �

For each j, 1 ≤ j ≤ h, let us denote by Sj the smallest vector subspace of
ŘN defined over Q and containing the w(k), 1 ≤ k ≤ j.
Notice that all the vector spaces Si meet the first quadrant ŘN

≥0 outside of the
origin since w(1) is in it. By the properties of the lexicographic order, the vector
space Sh meets the interior of ŘN

≥0, so that we have dim(Sh
⋂

RN
>0) = dimSh.

Lemma 4.5. a) For each j, 1 ≤ j ≤ h the dimension of the vector space Sj is∑j

k=1 rj .
b) Let Σ be a regular fan with support ŘN

≥0 which is compatible with the vector
spaces Sj. There exist N -dimensional cones σ of Σ such that w(1) ∈ σ and for
all j the face σ

⋂
Sj of σ is a cone of maximal dimension in Sj.

c) For such cones σ, for each j the number of support hyperplanes of σ which
contain Sj−1

⋂
σ but do not contain w(j) is equal to rj.

Proof. Assertion a) follows directly from Lemmas 4.3 and 4.4.
To prove b) it suffices to remark that since Σ is compatible with the Sj , for each
j the intersection Sj

⋂
Σ is a fan of Sj

⋂
ŘN

≥0, which is of the same dimension

as Sj as we saw above. Since the support of Σ is ŘN
≥0 this intersection must

contain cones of the maximal dimension, which are faces of cones of Σ. These
cones have the required property.
Assertion c) is a reformulation of b). �

Assume that σ is a regular convex cone of dimension N belonging to a
regular fan with support RN

≥0 which is compatible with the rational vector
spaces Sj, 1 ≤ j ≤ h. Assume that w(1) ∈ σ. Let us denote by (Ls)1≤s≤N the
hyperplanes bounding σ. For each j there is a largest subset I(j) ⊂ {1, . . . , N}
such that Sj ⊆

⋂
s∈I(j) Ls. By convention we set I(0) = {1, . . . , N}.

Let us denote by L≥0
s the closed half space of RN determined by Ls which

contains σ.

Lemma 4.6. In this situation, the N -dimensional regular convex cone σ is
w-centering if and only if the following holds:
For each j, 0 ≤ j ≤ h− 1, we have w(j + 1) ∈

⋂
s∈I(j) L

≥0
s .
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Proof. Since σ is regular, the determinant of its generating vectors is ±1. Ac-
cording to the description (∗) of the monomial map associated to σ, the weights
of the ui uniquely determine the weights of the yi in Φ since the determinant is
6= 0. Now writing that w(yi) is ≥ 0 in the lexicographic product Ξ1 × . . .× Ξh
reduces exactly to the expression given in the lemma. We observe that the pro-
jections in Ξk of the valuations of the (yi)1≤i≤N are the barycentric coordinates
of the vector w(k) with respect to the generators of σ. If all the barycentric
coordinates of w(1) are positive, then all the w(yi) are also positive and σ is
w-centering. If some of these barycentic coordinates are zero, it means that
w(1) is in a face of σ whose linear span is the intersection of the Ls for s ∈ I(1),
by the definition of I(1). Then, in order for the corresponding w(yj) to be non-
negative in Rh, it is necessary that the corresponding barycentric coordinates
of w(2) are ≥ 0, which is equivalent to the inclusion w(2) ∈

⋂
s∈I(1) L

≥0
s , and

so on. The proof of the converse statement is obtained in the same way. �

Remarks 4.7. : 1) If the group Φ is of rank one, the condition is simply that
the vector w(1) is in σ, as we have noted above.
2) The argument uses only the fact that σ is simplicial and N -dimensional. In
fact, given the monomial map associated to the simplicial cone σ, for each j the
images in the group Ξj of the orders w(yi) are the barycentric coordinates of
the vector w(j) with respect to the vertices of σ.

Lemma 4.8. Let w(1),w(2), . . . ,w(h) be rationally independant vectors in a
d-dimensional rational vector subspace W ⊂ RN , all lying in W

⋂
RN

≥0. Let

σ ⊂ RN
≥0 be a d-dimensional regular cone of a fan Σ supported in RN

≥0 which is
compatible with W and the vector spaces Sj defined above and containing w(1).

Assume that
∑h

i=1 ri = d and is such that σ
⋂
W is of dimension d. Then

there exists a regular cone σ′ ⊂ RN
≥0 satisfying the conditions of Lemma 4.6 and

whose intersection with W is of dimension d.

Proof. let (Ls)s∈I , I = {1, . . . , d} be the collection the supporting hyperplanes
σ. By construction there is a largest subset I(1) ⊂ I such that S1 =

⋂
s∈I(1) Ls.

In view of Lemma 4.5, c) and the compatibility of Σ with S1, it is of cardinality
N − r1. By Lemma 4.4 we know that w(2) is not in

⋂
s∈I(1) Ls. Let us denote

by I(2) ⊂ I(1) the set {s ∈ I(1)|w(2) ∈ Ls}. For each s ∈ I(1) \ I(2), which
is of cardinality r2 by Lemma 4.5, c), we denote by L≥0

s the closed half space
determined by Ls which contains w(2). Again by Lemma 4.4 we know that
w(3) /∈

⋂
s∈I(2) Ls so we can define a subset I(3) ⊂ I(2) by the condition that

w(2) ∈
⋂
s∈I(3) Ls and a closed half space L≥0

s for each s ∈ I(2) \ I(3), and so
on.

In the end we have built a sequence of subsets

{1, . . . , N} ⊃ I(1) ⊃ I(2) ⊃ · · · ⊃ I(h)

such that St =
⋂
s∈I(t) Ls and we have determined half spaces L≥0

s correspond-

ing to all the hyperplanes Ls for s ∈ {1, . . . , N} \ I(h) in such a way that each
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w(k) is always in the half space L≥0
s if Ls vanishes on w(k − 1). According to

Lemma 4.5, c), at step i we define ri half-spaces. Since
∑h

i=1 ri = d, the set I(h)
is the set of those hyperplanes Ls which contain W . Thus

⋂
s∈{1,...,N}\I(h) L

≥0
s

is a rational cone which is the intersection of d half spaces in RN . If now we
define for s ∈ I(h) the half-space L≥0

s as the one containing σ, we see that
σ′ =

⋂
s∈{1,...,N} L

≥0
s is a rational regular cone which satisfies the conditions of

Lemma 4.6. Moreover, its intersection with W is a regular d-dimensional cone
of the fan Σ

⋂
W . �

Remark 4.9. If we transform σ into the first quadrant, contained in a larger cone
which is the transform of the first quadrant, then σ′ becomes another quadrant.

Proposition 4.10. Keeping the same notations, let Σ be a regular fan with
support ŘN

≥0. Assume that it is compatible with the Sj and the Hℓ. Then there
is a cone σ of dimension N of Σ which is w-centering and whose intersection
with W is of dimension d.

Proof. Let σ be a cone of Σ containing w(1). Piltant’s theorem tells us that
the dimension d of the toric variety defined by the initial binomial ideal, which
is also the dimension of the vector space W , is equal to the rational rank of the
group Φ:

r1 + · · · + rh = rat.rkΦ = d.

It suffices now to apply Lemma 4.8.
�

Remarks 4.11. 1) The key point in the proof of Proposition 4.10 is the linear
independance over Q of the w(j).
2) We could have proved Proposition 4.10 by translating the weights into valua-
tions on the ring k[u1, . . . , uN ] and its quotient by the binomial ideal, and then
invoking the valuative criterion of properness. However some work is required
to obtain the result in this form, and more importantly this combinatorial proof
prepares the extension to the overweight deformations.

Given an overweight deformation as in (OD) above, let us define for each ℓ

indexing the binomial um
ℓ

− λℓu
nℓ

the following cones in RN :

E
(1)
ℓ (j) = 〈{p− nℓ/|w(up−n

ℓ

) ∈ Ψj \ Ψj+1|c
(ℓ)
p 6= 0, },mℓ − nℓ〉

E
(2)
ℓ (j) = 〈{p−mℓ/|w(up−m

ℓ

) ∈ Ψj \ Ψj+1|c
(ℓ)
p 6= 0, }, nℓ −mℓ〉

Lemma 4.12. For all ℓ and 0 ≤ j ≤ h − 1 the cones E
(1)
ℓ (j) and E

(2)
ℓ (j)

are contained in strictly convex polyhedral rational cones whose elements satisfy
〈w(k), q〉 = 0 for 1 ≤ k ≤ j − 1 and 〈w(j), q〉 ≥ 0, with 〈w(j), q〉 = 0 if and
only if q is on the half-line generated by mℓ − nℓ (respectively nℓ −mℓ).

Proof. Since the ring k[[u1, . . . , uN ]] is noetherian, for each ℓ the ideal generated
by the monomials up appearing in the ℓ-th series is generated by finitely many
of them, say up1 , . . . upsℓ . In view of the convexity of the subgroups Ψj the cones
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E
(1)
ℓ (j) and E

(2)
ℓ (j) are contained respectively in the convex cones generated by

the pk−n
ℓ+RN

≥0, m
ℓ−nℓ and by the pk−m

ℓ+RN
≥0, n

ℓ−mℓ (for 1 ≤ k ≤ sℓ)

for which w(p − nℓ) (respectively w(p −mℓ)) is in Ψj \ Ψj+1. These cones are
rational since the pk are finite in number and they are strictly convex since
they can be defined using strict inequalities and thus cannot contain a vector
subspace. The second part of the statement follows from the definition of the
vectors w(k). �

Since what we want in the end is to find regular convex cones contained in

the convex duals Ě
(i)
ℓ (j) of the cones E

(i)
ℓ (j), we may in view of this lemma

assume that the cones E
(i)
ℓ (j) themselves are rational strictly convex cones,

which we shall do henceforth.

Lemma 4.13. Still denoting by Hℓ the hyperplane of ŘN dual to mℓ − nℓ and
by W the intersection of the Hℓ, for each j and each ℓ we have :

• The cones Ě
(1)
ℓ (j) and Ě

(2)
ℓ (j) are N -dimensional, and their intersection

Ě
(1)
ℓ (j)

⋂
Ě

(2)
ℓ (j) is equal to Ě

(1)
ℓ (j)

⋂
Hℓ = Ě

(2)
ℓ (j)

⋂
Hℓ.

• For i = 1, 2 the dimension of Ě
(i)
ℓ (j)

⋂
Hℓ is N − 1.

• The interior in Hℓ of Ě
(1)
ℓ (j)

⋂
Ě

(2)
ℓ (j) is contained in the interior of

Ě
(1)
ℓ (j)

⋃
Ě

(2)
ℓ (j).

• For each k the cone Rw(1) + · · ·+ Rw(k− 1) + R≥0w(k) is contained in

Ě
(1)
ℓ (k)

⋂
Ě

(2)
ℓ (k) and meets its relative interior in Hℓ.

• The same statements are true if one replaces each Ě
(i)
ℓ (k) by

⋂
ℓ Ě

(i)
ℓ (k)

and Hℓ by W .

Proof. The dimensionality statement is nothing but the fact that the E
(i)
ℓ (j)

are strictly convex. An element a ∈ ŘN which is in Ě
(1)
ℓ (j)

⋂
Ě

(2)
ℓ (j) has to be

both ≥ 0 and ≤ 0 on mℓ − nℓ, so it is in Hℓ. Since p− nℓ = p−mℓ +mℓ − nℓ

an element of Hℓ which is ≥ 0 on E
(1)
ℓ (j) is ≥ 0 on E

(2)
ℓ (j) and conversely.

The second statement follows by convex duality from Lemma 4.12 which implies

that R〈mℓ − nℓ〉 is the largest vector space contained in E
(i)
ℓ (j) + R〈mℓ − nℓ〉.

The third statement is true because we join two convex cones along a common
face of codimension 1; the boundary of the union does not meet the interior of
the face.
The fourth statement also follows by convex duality from Lemma 4.12 if one
observes that convex duality, which reverses inclusions, transforms intersection
into Minkowski sum. Furthermore, if we add to a vector aw(k) with a > 0 a
vector ǫb with b ∈ Hℓ, for |ǫ| small enough the vector aw(k) + ǫb will still take
positive values on the pk − nℓ, where the pk are defined in the proof of Lemma

4.12, and therefore will belong to Ě
(1)
ℓ (k)

⋂
Ě

(2)
ℓ (k).

Finally, the same arguments apply to W .
�
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Proposition 4.14. Given an overweight deformation as in (OD), there exist
regular fans Σ with support ŘN

≥0 compatible with the hyperplanes Hℓ, the vector

spaces Sj and all the cones Ě
(i)
ℓ (k), i = 1, 2, k = 1, . . . , h.

Such fans contain w-centering regular cones σ = 〈a1, . . . , aN 〉 contained for all

ℓ and k in one of the two cones Ě
(i)
ℓ (k) i = 1, 2. For such a cone we have

〈ai, p−mℓ〉 ≥ 0 if 〈ai, nℓ −mℓ〉 ≥ 0 (resp. 〈ai, p− nℓ〉 ≥ 0 if 〈ai,mℓ − nℓ〉 ≥ 0)
for all monomials p with w(p) > w(mℓ) = w(nℓ) appearing in the overweight
deformation.

Proof. By the resolution theorem for toric varieties we know that there exist

regular fans Σ with support ŘN
≥0 compatible with theHℓ, the Sj and the Ě

(i)
ℓ (k),

which all determine rational cones in ŘN
≥0. According to Lemma 4.10 such fans

contain w-centering cones. Let us show that such a cone is contained in every

Ě
(1)
ℓ (k)

⋃
Ě

(2)
ℓ (k). In view of the compatibility, it suffices to show that σ meets

the interior of Ě
(1)
ℓ (k)

⋃
Ě

(2)
ℓ (k). To prove that, in view of Lemma 4.13 it is

enough to check that σ meets the interior of Ě
(1)
ℓ (k)

⋂
Hℓ in Hℓ.

We see that by construction the cone σ contains points of the cone Rw(1)+

· · ·+Rw(k−1)+R≥0w(k) which are in the interior of Ě
(1)
ℓ (k)

⋂
W in W . Thus

the cone σ meets the interior of each Ě
(1)
ℓ (k)

⋂
Ě

(1)
ℓ (k) and by compatibility of T

with the Ě
(i)
ℓ (k) it is contained in the union Ě

(1)
ℓ (k)

⋃
Ě

(2)
ℓ (k). By compatibility

with the Hℓ the cone σ has to be entirely on one side of Hℓ, which means that

it must be in Ě
(1)
ℓ (k) or Ě

(2)
ℓ (k). But this is decided for each ℓ by the fact that

one generating vector of σ is on one side of Hℓ.
If we write σ = 〈a1, . . . , aN 〉 we see that it has the property that whenever

for a given ℓ we have that 〈ai,mℓ − nℓ〉 is > 0 for some i then for all i we have
〈ai,mℓ − nℓ〉 ≥ 0, and 〈ai, p− nℓ〉 ≥ 0 for all p appearing in the ℓ-th equation,
and if 〈ai, nℓ −mℓ〉 is > 0 for some i, then for all i we have 〈ai, nℓ −mℓ〉 ≥ 0
and 〈ai, p −mℓ〉 ≤ 0 for those p. Given ℓ there has to be an index i for which
〈ai,mℓ − nℓ〉 6= 0. �

Let us now finish the proof of Proposition 4.2. Take a regular fan T with

support ŘN
≥0 and compatible with the Hℓ, the Sj and the Ě

(i)
ℓ i = 1, 2 (and

so depending on the deformation), and a w-centering cone σ = 〈a1, . . . , aN 〉 of
that fan as above. Let us write the transforms of the equations F1, . . . , Fs, with

the convention that y〈a,m〉 = y
〈a1,m〉
1 . . . y

〈aN ,m〉
N .

F̃1 = y〈a,m
1〉 − λ1y

〈a,n1〉 + Σw(p)>w(m1)c
(1)
p y〈a,p〉

F̃2 = y〈a,m
2〉 − λ2y

〈a,n2〉 + Σw(p)>w(m2)c
(2)
p y〈a,p〉

.....

F̃ℓ = y〈a,m
ℓ〉 − λℓy

〈a,nℓ〉 + Σw(p)>w(mℓ)c
(ℓ)
p y〈a,p〉

.....

F̃s = y〈a,m
s〉 − λsy

〈a,ns〉 + Σw(p)>w(ms)c
(s)
p y〈a,p〉
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Thanks to the properties of our cone σ we may factor out of each F̃ℓ either

y〈a,m
ℓ〉 or y〈a,n

ℓ〉. This leaves us with a deformation of the strict transform
of the toric variety, which is regular in the chart corresponding to σ. More
precisely, if for convenience of notation we rearrange the binomials in such a
way that all 〈ai,mℓ − nℓ〉 are ≥ 0, by writing nℓ − λ−1

ℓ mℓ if 〈ak,mℓ − nℓ〉 < 0
we can write

F̃1 = y〈a,n
1〉

(
y〈a,m

1−n1〉 − λ1 + Σw(p)>w(m1)c
(1)
p y〈a,p−n

1〉
)

F̃2 == y〈a,n
2〉

(
y〈a,m

2−n2〉 − λ2 + Σw(p)>w(m2)c
(2)
p y〈a,p−n

2〉
)

.....

F̃ℓ = y〈a,n
ℓ〉

(
y〈a,m

ℓ−nℓ〉 − λℓ + Σw(p)>w(mℓ)c
(ℓ)
p y〈a,p−n

ℓ〉
)

.....

F̃s = y〈a,n
s〉

(
y〈a,m

s−ns〉 − λs + Σw(p)>w(ms)c
(s)
p y〈a,p−n

s〉
)

This end the proof of the Proposition. �

5 The complete case

Now let us go back to the situation and notations of section 3 and especially of
Theorem 3.1. In this section we assume that R is a complete equicharacteristic
local domain. Assume that we are in the situation of Theorem 3.1 and that
there exists a finite set (ui)i∈F of coordinates such that for every j ∈ I \F there
exists among the Fmn one, which we denote by Fj , in which uj appears linearly.
Let us write for simplicity

Fj = un
j

− λju
mj

+ cjuj + Σpc
(j)
p up

with cj ∈ k∗, and note that since the weight of uj is greater that the weight of
the initial binomial, it cannot appear there.

By the implicit function theorem (see the Appendix), we know that uj can

be expressed, modulo the closure I in ̂k[(ui)i∈I ] of the ideal generated by the
Fmn, as a series in the (ui)i∈F . We know also that we can invert the equation
Fj as

uj = c
(−1)
j

(
un

j

− λju
mj

+ Σdpu
p
)
,

an expression where we only know that uj does not appear on the right-hand

side and the terms dpu
p are of weight greater than the weight of un

j

.

Lemma 5.1. The images of the Fmn other than Fj in the ring ̂k[(ui)i∈I ]/
(
uj−

c
(−1)
j

(
un

j

− λju
mj

+ Σdpu
p
))

≈ ̂k[(ui)i∈I\{j}] form a Gröbner basis of the ideal
which they generate, with respect to the filtration determined by w(ui) = γi for
i 6= j.

Proof. We know that the Fmn form a Gröbner basis of the ideal they generate in
̂k[(ui)i∈I ]. So the initial form of a sum ΣmnAmnFmn is in the ideal of k[(ui)i∈I ]
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generated by the binomials (um − λmnu
n)(m,n)∈E , where E is the our set of

generators of the binomial relations defining grνR. Now we have to see how

the initial terms in (ui)i6=j appear when we substitute uj by um
j

− λju
nj

+
Σw(p)>w(umj )dpu

p in a series ΣAmnFmn. Let us denote by u′ the set of variables

(ui)i6=j . In view of the definition of ̂k[(ui)i∈I ] we can write our sum

ΣmnAmnFmn = Σ∞
k=0Dk(u

′)ukj .

Given an element S ∈ ̂k[(ui)i∈I ], let us denote by S̃ ∈ ̂k[(ui)i∈I\{j}] the image

via the isomorphism ̂k[(ui)i∈I ]/(Fj) ∼= ̂k[(ui)i∈I\{j}] of the class of S modulo the

closure (Fj) of the ideal generated by Fj . Consider the filtration of ̂k[(ui)i∈I\{j}]

determined by giving ui the weight γi. We denote by InwS̃ ∈ k[(Ui)i∈I\{j}] the

initial form of S̃.

Lemma 5.2. a) If the sum S = ΣAmnFmn is not contained in (Fj), InwS̃ is a

nonzero element of k[(Ui)i∈I\{j}] of the form ΣkMk(u
nj

− λju
mj

)k.

b) If we denote by Inw Ĩ the initial ideal in k[(Ui)i∈I\{j}] of the ideal generated

by the ˜Fmn, (m,n) 6= (mj , nj) with respect to the filtration by weight, then there

is a nonzero homogeneous E ∈ k[(Ui)i∈I\{j}] such that E(Um
j

−λjU
nj

) ∈ Inw Ĩ.

Proof. To prove b), remark that by definition of F , the value group of the
valuation is rationally generated by the (γj)j∈F . Since j /∈ F , among all the
relations between the γi, there must be at least one involving γj . Therefore

among our binomials there is one of the form u
m(j)
j u′m

′

−λ′u′n
′

where monomials
denoted with u′ do not contain uj. The corresponding equation is

u
m(j)
j u′m

′

− λ′u′n
′

+ Σck,qu
′kuqj .

It cannot be in the ideal (Fj). Let us estimate its weight in ̂k[(ui)i∈I\{j}] after

the substitution uj 7→ c
(−1)
j

(
un

j

− λju
mj

+ Σdpu
p). If the lowest weight comes

from the initial binomial, it is the weight of (um
j

− λju
nj

)m(j)u′m
′

. The terms
ck,0u

′k cannot contribute to the initial form since their weight is greater than the

weight in ̂k[(ui)i∈I ] of the initial binomial and is not affected by the substitution,
while the weight of the initial binomial is strictly lowered. Therefore all the
terms in the initial form are divisible by Um

j

− λjU
nj

, which proves b). �

�

6 The excellent case

Then there is the difficulty of reducing the excellent equicharacteristic case to
the complete case. This is not entirely settled yet, although there is a precise
program to deal with it.
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PART II: ERRATA AND ADDENDA

• page 362, table of contents, section 4, read: ...valuation rings and valued
nœtherian rings.
• page 366, line -15, read: ... by Abhyankar’s inequality we have r(ν) =
dimgrνR ≤ dimR.
• page 369, footnote, the last letters in both words of the first Greek quotation
are sigmas.
• page 370 before 2.2 add the following: Remark Given a ring R and a group Φ,
the datum of a graded R-subalgebra G of the group algebra R[vΦ] is equivalent
to the datum of a family of ideals (Iφ)φ∈Φ of R such that Iφ.Iψ ⊆ Iφ+ψ, the
correspondence being described by the equality G =

⊕
φ∈Φ Iφv

−φ. If in addition

Φ is a totally ordered group, and Iφ = R for φ ≤ 0, then G is a graded R[vΦ+ ]-
algebra if and only if we have Iφ ⊇ Iψ whenever ψ ≥ φ.
• page 371, lines 11-13: it is implicitely assumed that each xφ is 6= 0.
• page 373 line -3, read: ...are respectively isomorphic to Spec(R⊗k(v

Φ+)−1k[vΦ+ ])
and to SpecR.
• page 374, line 3, the correct equality is

Aν(R)/(
⊕

φ∈Φ+

Pφ(R)v−φ +mAν(R)) ≃ k[vΦ+ ]

• page 383, at the end of subsection 3.3, add:
Indeed, except for φ = 0, all these ideals are equal to the maximal ideal of R,
which is also the ideal mν1 ∩R. The image in R1[v

Φ] = k[vΦ] of AΨ(R) is equal
to k. This is as it should be since the valuation ν is trivial.
• page 384, line -20, read: “...which can also be deduced from subsection 3.3”
• page 389, title of section 4, read: ...valuation rings and valued nœtherian rings.
• page 390, line 14, read: ...with cm,m′ ∈ k, λm,m′ ∈ k∗.
• page 392, line -14, read: “...version of (non embedded) local uniformization;”
• page 393, line 14, read: ( [Z1], B.I, page 861; see also [H-P], Chap. XVIII,
§5).
• page 397, line -3, read:..irrational and > 1,
• page 398, lines 20,21, read: where U1 = V2 is of degree 1 and U2 = V1 of
degree τ .

Addendum: In the notations of the Perron algorithm, the degree of Vi is τ
(i)
2

and the degree of Vi+1 is τ
(i)
1 .

• page 401, line 18, read: P (u2, u3).
• page 401, footnote: the third letter of the Greek word is an upsilon and the
last letter is a sigma.
• page 415, lines 4 and 5 of the proof of Lemma 5.25, replace (Xi)i∈I by (Ui)i∈I ,
cXa by cUa, Xa by Ua.
• page 415, in Example 5.27, read:

x− ĩnνx = (a− ã)f ℓ mod.f ℓ+1
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• page 415, last line of the proof of lemma 5.25: replace “the sequence x(j)” by
“ the sequence x− x(j) of elements of k[(ξi)i∈I ]”.
• page 416, line -6, add a (−1)n before the last sum sign in the formula.
• page 417 From “given in advance”, and until “we may now repeat”, replace
the text by:

Let s be the least integer such that for infinitely many values of the integer
j we have νs(x − x(j+1)) > νs(x − x(j)). If s = 1, since the valuation ν1 is of
height one, for any φ1 ∈ Φ1+, after finitely many steps we have ν1(x−x

(j)) > φ1,
hence for any φ ∈ Φ+, after finitely many steps we have ν(x − x(j)) > φ, so

we may take rj = x − x(j) and get ν(x −
∑j

r=0 Pr(ξi)) = ν(x − rj) > φ and

this shows that x ∈ R̂h. Assume now s > 1, and let x(1) be the representative
in R̂s−1[(ξi)i∈Is

] of the initial form inνs−1(x) ∈ grνs−1
R. This makes sense

because we may assume by induction on the dimension of R that the subring
R̂s−1 ⊂ R is a representative of R/(mνs−1 ∩R). We define inductively the x(j)

as representatives in R̂s−1[(ξi)i∈Is
] of inνs−1(x − x(j−1)). By definition of s,

there exists a j0 such that νs−1(x − x(j+1)) = νs−1(x − x(j)) for j ≥ j0. By
substracting from x a polynomial in the ξi, we may assume that j0 = 1.
Note that the center of νs−1 is necessarily distinct from the center of νs, since
if the two centers are equal, there are only finitely many distinct νs-ideals be-
tween two consecutive νs−1-ideals of R, according to [Z-S], Vol. II, Appendix 3,
Corollary p.345.
We consider the initial forms inνs−1(x−x

(j)) ∈ grνs−1
R; for j ≥ j0; they all have

the same degree, say φs−1 and they are in Pφs(j)
/P+

φs−1
with φs(j) increasing

strictly with j. The R/ps−1-submodules Pφs
/P+

φs−1
⊂ Pφs−1/P

+
φs−1

form a sim-
ple infinite sequence in view of Proposition 3.17. This sequence of submodules
has intersection (0) and by the module-theoretic version of Chevalley’s theorem
([B3], Chap. IV, §2, No.5, Cor.4) there is a sequence of integers t(φs(j)) tending
to infinity with the image of φs(j) in the height one group Ψs−1/Ψs and such
that Pφs(j)/P

+
φs−1

⊂ mt(φs(j))(Pφs−1/P
+
φs−1

). Since each homogeneous compo-

nent Pφs−1/P
+
φs−1

of grνs−1
R is a R/(mνs−1 ∩R)-module of finite type, it is com-

plete for the m/(mνs−1 ∩R)-topology. It is also complete for the νs topology by

(the proof of) Proposition 5.10. The sequence of the initial forms inνs−1(x−x
(j))

then converges in (grνs−1
R)φs−1 for the m-adic topology, and therefore also for

the topology defined by the Pφs
/P+

φs−1
, to a unique limit x

(1)
1 . By the definition

of R̂s, we can lift x
(1)
1 to an element x

(1)
1 ∈ R̂s. This element has the property

that for all j ≥ 1, we have νs−1(x − x
(1)
1 ) > νs−1(x − x(j)) = νs−1(x). Replac-

ing now x by x − x
(1)
1 , and repeating this construction, we build a sequence of

elements x
(q)
1 ∈ R̂h such that νs−1(x− x

(q)
1 ) increases at each step.

• page 418, from the beginning of 5.3 to: “This is a ν-adic..”, replace the text
by:
Given a system (ξi)i∈I of generators of the k-algebra grνR, giving rise to a
surjective map k[(Ui)i∈I ] → grνR, a field of representatives k ⊂ R̂(ν) and repre-
sentatives (ξi)i∈I inR of the ξi, the main result of this subsection is the extension
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of the map k[(ui)i∈I ] → R̂(ν) mapping ui to ξi to a continuous surjective map

̂k[(wj)j∈J ] → R̂(ν)

from the scalewise completion of the polynomial ring to the scalewise ν-adic

completion of R. When ̂k[(wj)j∈J ] is endowed with the term order obtained by

giving to wj the valuation of its image ηj ∈ R̂(ν), the associated graded map is
the map

k[(Wj)j∈J ] → grν̂R̂
(ν)

mapping Wj to ηj , where each ηj is a Laurent monomial in the ξi.

• page 424, replace line 5 by: Using the fact that Âν(R)
(νA)

is a faithfully flat
k[vΦ+ ]-algebra, one can show:
• page 425, replace line 6 of ‘Corollary 5.51 by:

ĉ : ̂k[(wj)j∈J ] → R̂(ν), wj 7→ c(−ν̂(ηj))ηj

• page 426, first line of the proof of Cor. 5.53: delete ”of the”.
• page 426, change the statement of Cor. 5.54 to:
Let R be a complete noetherian local ring endowed with a rational valuation ν of
height h(ν). In the minimal system of generators of the semigroup Γ of (R, ν)
there are at most hR(ν) − 1 elements without predecessor.
• page 426, in the proof of Corollary 5.54, from ”All the monomials” to the end,
replace the text by:

Finitely many of these monomials ξ′′α
′′

generate the R/p-module Pφ1/P
+
φ1

;

denote them by ξ′′
α′′

ℓ . If a linear combination Σℓaℓξ
′′α

′′

ℓ of ν1 valuation φ1

has ν valuation greater than the minimum of the ν-valuations of its terms, it

must contain binomials ξ′
α′

ξ′′
α′′

i − λijξ
′α

′

jξ′′
α′′

j . But such a binomial can be

written as a series beginning with a monomial ξ′
α′

kξ′′
α′′

k . After making all such
substitutions we obtain an expression for our sum in which the ν valuation
of each term has increased. After finitely many steps we reach the situation
where the ν-valuation of the sum is the minimum of the valuations of its terms,
and this shows that the ν-valuation of every element of Pφ1 \ P+

φ1
is a linear

combination with coefficients in N ∪ {0} of elements of the semigroup Γ of the

residual valuation ν and the valuations of the monomials ξ′′
α′′

ℓ .
• page 426, first line of the proof of Cor. 5.54, read:..height hR(ν) of ν in R.
• page 426, at the end of the proof of Cor. 5.54, read ..height of ν in R minus
one.
• page 426, line -2, replace “fact” by “condition”
• page 427 line -4, replace ∂uh+1

by ∂wh
.

• page 430
• page 436, lines -12, -13: remove the sentence “Conversely,...{1, . . . , L}”.
• page 440 line 1: ...of the canonical basis vectors...
• page 440 in the firs paragraph, after “..first quadrant of RN .”, add:
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Conversely if f̃(ei) ≥ 0 and f̃ ∈ W then f̃ is in the image of σ. This shows that
σ is exactly the intersection of W with the first quadrant of RN .
• page 444 line -15, read : Speck[v][[u1, . . . , uN ]]
• page 449 add at the bottom of the page: One difference between example 5.7
and example 4.20 is that the first one is weakly Abhyankar while the second one
is not since the completion of R in this second case is k[[u1, u2]].
• page 451, first line of the statement of Corollary 7.7, read : grν̂R̂

(ν) and not
grνR̂

(ν).
• page 457, after [H2], add
[H-P] W.V.D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. 3,
Cambridge mathematical library, Cambridge University Press.
• page 457, reference [Kr], the year is 1932.

(CNRS, Institut mathématique de Jussieu, UMR 7586 du CNRS )

24


