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The goal of this text is to provide an introduction to the local study of singu-

lar curves in complex analytic geometry. It contains resolution of singularities,

the Newton polygon and the Newton parametrization, the classical Newton-
Puiseux invariants, the semigroup associated to a branch as well as the special-

ization to the corresponding monomial curve, and a proof of Bézout’s theorem.

It ends with the computation of the class of a projective plane curve. Some fa-
miliarity with the basic concepts of commutative algebra and complex analytic

geometry is assumed.

Keywords: curve singularities, Newton-Puiseux, embedded resolution,
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1. What is a curve?

In these lecturesa I will discuss singular points of complex analytic curves.
A complex curve may locally be regarded as a family of points in complex
affine space Ad(C) depending algebraically or analytically on one complex
parameter.

• The dependence may be explicit, which means that the coordinates of our
points depend explicitely on one parameter, as in:

z1 = z1(t)
z2 = z2(t)
... =

...
zd = zd(t)

aThis text is an expansion of the notes of a course given at the CIMPA-LEBANON
school in Beyrouth in July 2004 and of lectures at the ICTP College on Singularities.
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where the zi(t) may be any functions C → C although here, since we said we
would consider families of points depending analytically on the parameter,
we shall consider only polynomials or convergent power series. In this case
the functions zi(t) may be defined only in a neighborhood of some point,
which we will usually assume to be the origin t = 0 and it is convenient to
assume that zi(0) = 0 for all i; one may reduce to this case by a translation
on the coordinates zi and t.
The curves which appear naturally are usually finite unions of parametrized
curves as above. The parametrized curves are then the irreducible compon-
ents or branches of the union. A curve is non singular at the origin if and
only if it has only one component, for which the minimum of the t-adic
orders of the zi(t) is equal to one. By the implicit function theorem, this
means that the curve is locally analytically isomorphic to the complex line.

A germ of curve at a point (which we take to be the origin) is an equivalence
class of curves given parametrically or by equations in an open neighbor-
hood of the origin. Two such objects defined respectively on U and U ′ are
equivalent if their restrictions to a third neighborhood U ′′ ⊂ U ∩ U ′ of the
origin coincide. Of course when we talk of germs we think of representatives
in some ”sufficiently small” neighborhood of 0. Because of analyticity, to
give a germ is equivalent to giving the convergent power series parametriz-
ing the branches of the curve at the origin in some coordinate system.

• A curve may also be given implicitely, which means that it is given by
equations.

Here the fact that we are dealing with a curve should manifest itself
in the fact that we have d − 1 equations in d variables, so that implicitely
all the variables depend on one of them. However, the situation is not so
simple in general, and a curve may need more than d− 1 equations.

It is a fundamental fact of the theory of analytic curves that each germ
can be decomposed uniquely as a union of irreducible germs, and that on
an irreducible germ all coordinates can be expressed as convergent power
series in the n-th root of one of them, for some integer m. This is often
called the Newton-Puiseux theorem.
The simplest case is that of a plane algebraic curve in the 2-dimensional
affine space A2(C), defined by an equation f(x, y) = 0, where f ∈ C[x, y]
is a polynomial:

f(x, y) = a0(x)yn + a1(x)yn−1 + · · ·+ an(x),

with ai(x) ∈ C[x], a0(x) 6= 0. Recall that C[z1, . . . , zd], C{z1, . . . , zd} and
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C[[z1, . . . , zd]] denote respectively the ring of polynomials in d variables
with complex coefficients, the ring of convergent complex power series in d
variables and the ring of formal power series in d variables with complex
coefficients.
The degree n in y of the polynomial is the number of solutions in y (counted
with multiplicities) for any fixed value x0 of x which is “sufficiently general”
in the sense that a0(x0) 6= 0. The curve is non-singular at the origin if at
least one of the derivatives ∂f

∂x ,
∂f
∂y does not vanish at the origin. All this

remains valid locally if f(x, y) is a convergent power series in x, y such that
f(0, 0) = 0, thanks to the Weierstrass preparation theorem which asserts
that, if f(0, y) is not identically zero, which we can always assume at the
cost of a linear change of variables, then f(x, y) can be written

f(x, y) = u(x, y)(yn + a1(x)yn−1 + · · ·+ an(x)),

with ai(x) ∈ C{x} where u(x, y) is a convergent series which does not vanish
in a neighborhood of the origin. This means that u(x, y) is an invertible
element in the ring C{x, y} and also that the curve defined by f(x, y) =
0 is just as well defined by the polynomial in y, in a sufficiently small
neighborhood of the origin.

We shall see later an interpretation for the total degree max(i + j) for
monomials xiyj appearing in a polynomial f(x, y)). To a parametrized plane
curve x(t), y(t), one can associate a series f(x, y) such that f(x(t), y(t)) ≡
0, by a process of elimination, to which we shall come back later. If the
exponents of t appearing in the two series have no common divisor, this
series is an irreducible element in the ring C{x, y}; it is not a product of two
other series vanishing at the origin. Conversely the set of zeroes f(x, y) = 0
of a convergent power series in two variables defines coincides with a finite
number of parametrized analytic curves in a small neighborhood of the
origin of the plane, (the branches of the curve defined by the equation).
The construction will be detailed below. The number r of these branches is
given by the decomposition of f(x, y) into a product fa1

1 . . . far
r of powers

of irreducible elements in the ring C{x, y}.
We shall deal here with reduced curves, which means that all the ai are

equal to one or, as we shall see that the exponents appearing in the power
series x(t), y(t) of a parametrization of each branch, taken all together, have
no non trivial common divisor.

The description of a curve in Ad(C) for d ≥ 3 is much more complicated
in general. One can prove that it requires at least d − 1 equations, but it
may require much more, and then what is important is the ideal I which
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these equations generate in the ring C[z1, . . . , zd] or the ring C{z1, . . . , zd}.
In fact, it is the quotient ring C[z1, . . . , zd]/I, or C{z1, . . . , zd}/I which we
consider, and the fact that we a re dealing with reduced complex curves is
translated into the fact that we suppose that it is a reduced C-algebra with
Krull dimension 1.
In the case of plane curves, this ideal is a principal ideal so we have one
equation only; more precisely, in the case of polynomials, this equation is
unique up to multiplication by a nonvanishing polynomial, i.e., a nonzero
constant. In fact, it is the quotient ring C[z1, . . . , zd]/I, or C{z1, . . . , zd}/I
which we consider.

Assuming that we are in the analytic (as opposed to algebraic) case and
the ring O = C{z1, . . . , zd}/I is an integral domain of dimension one, we
can bring together the equational and parametric representations together
in the following diagram of C-algebras:

C{z1, . . . , zd} → O ⊂ C{t},

where the first map is the surjection with kernel I describing O as a quo-
tient, and the second one is determined by: zi 7→ zi(t) 1 ≤ i ≤ d.

The conclusion is that a complex curve, locally, should be thought of as
a one-dimensional reduced local C-algebra O, which is the localization of
a C-algebra of finite type (algebraic case), or is a quotient of a convergent
power series ring C{z1, . . . , zd} (analytic case) or of a formal power series
ring C[[z1, . . . , zd]] (formal, or algebroid, case).

Then we can consider it as given by an ideal in a regular local ring,
namely the kernel of the map defining it as a quotient of a localization of
a polynomial ring, or as a subring of a regular one-dimensional semi-local
ring (its normalization) O, which in the analytic or formal case corresponds
to the parametrization.
It is a theorem that in the cases considered here, the normalization O is a
finitely generated O-module.

2. What does one do with curves?

Real curves (often analytic) appear everywhere in mechanics as trajectories,
and complex curves appear everywhere in Mathematics as soon as points
depend on one parameter; for example given a family of square complex
matrices depending on a complex parameter, the family of the eigenvalues
lies on a complex curve. In order to study a real analytic curve, it is often
useful to look at its complexification.
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If a complex algebraic group G acts algebraically on a variety X, one
may study the action by restricting it to one-parameter subgroups C∗ ⊂ G

and the the orbit of each point x ∈ X is a curve. Its closure in X is in
general singular.

More generally, the closure of a non singular curve will in general have
singularities.

We have seen also non singular algebraic curves which are themselves
algebraic groups; elliptic curves. However, if we want to understand the
totality of elliptic curves, we must also consider their singular limits.

Curves also appear naturally in inductive steps in algebraic geometry:
non-singular surfaces are studied in large part through the families of curves
which they contain, and singular curves must appear in these families.

To study the geometry of a non singular surface S, it is natural to
project it to a non-singular space of the same dimension. The set of points
of S where the projection p : S → P2 is not a local isomorphisme, the
critical locus of the projection, is a curve (if it is not empty) which contains
much information about the geometry of S. The critical locus may be a non
singular curve, but its image under projection p will in general be singular.

More generally, even if one is interested in non singular curves only,
their plane projections will in general be singular, having at least ordinary
double points or nodes

In these lectures, I will mostly study different ways to transform curves
into other curves, by deformation either of the parametric representation
or of the equations, by taking the transforms of curves in Ad

k under maps
Z → Ad

k, and by projection (in the case of non plane curves).
Since the passage from the implicit presentation to the parametrization

uses some form of the implicit function theorem, I will mostly work in the
context of complex analytic functions, for which there is an implicit function
theorem which does not exist for polynomials.
If one wishes to work over a field different from C, one could replace con-
vergent power series with formal power series with coefficients in a field,
keeping most of the algebra but losing a lot of geometry or one could work
in the henselizations of the polynomial ring and its quotients, keeping just
about everything. If the field has positive characteristic new phenomena
appear: Newton-Puiseux’s theorem is no longer true (see section 3 below).

Let us call analytic algebra any C-algebra which is a quotient of a conver-
gent power series ring C{z1, . . . , zd}. To any localization Rm of a finitely
generated local algebra R over the field of complex numbers at one of its
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maximal ideals is associated in a unique way (up to unique isomorphism) an
analytic algebra Rh

m, which has the property that any C-algebra morphism
Rm → A from Rm to an analytic algebra A factors in a unique manner
Rm → Rh

m → A where Rh
m → A is a morphism of analytic algebras.

The candidate for Rh is simple to see: write a presentation R =
C[T1, . . . , Tn]/I, where I is generated by finitely many polynomials. The
maximal ideal m of R is the image of a maximal ideal m̃ of C[T1, . . . , Td].
By the nullstellensatz, the ideal m̃ corresponds to a point (a1, . . . , ad) of
the affine space Ad(C). Set Rh = C{T1 − a1, . . . , Td − ad}/Ih, where Ih is
the ideal generated in C{T1 − a1, . . . , Td − ad} by the polynomials which
generate I.

In the case of curves, the first serious difficulty comes from the fact that
an irreducible polynomial P (x, y) ∈ C[x, y] may well become reducible in
C{x, y} = C[x, y]h(x,y). In other words, the analytization of a local integral
C-algebra may not be integral.
Consider for example the nodal cubic with equation

y2 − x2 − x3 = 0;

it is an irreducible affine plane curve, but the image of its equation in
C{x, y} by the natural injection C[x, y] ⊂ C{x, y} factors as

y2 − x2 − x3 = (y + x
√

1 + x)(y − x
√

1 + x).

The interaction between the global invariants of a plane projective curve
and its singularities is also an important theme requiring the local study of
singularities:
- We know how to compute the class and the genus of a non singular plane
projective curve of degree d. Assume now that it is singular; how does it
affect the formulas for the class and genus?
- The single most important result about plane curves is Bézout’s theorem,
which is the generalization of the fundamental theorem of algebra:
Given two plane projective curves C and C ′ of degrees d and d′ having no
common component, the number of their points of intersection counted with
multiplicity is the product dd′.

At the points of intersection where both curves are not regular and meet-
ing transversally, how does one properly count the intersection multiplicity?
can one effectively count it, given the equations of the two curves? In fact,
as we shall see, the best situation to compute the intersection multiplicity
is to have one curve given parametrically and the other given implicitely,
although if both are given parametrically, there is a formula, due to Max
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Noether (see [M]). What is the geometric meaning of intersection multipli-
city?

We know that we can normalize an algebraic curve to obtain a non
singular algebraic curve, and it can be shown that the same is true in
complex analytic geometry. The parametrization of an analytic curve men-
tioned above is in fact its normalization, provided we take care that the
powers of t appearing in the series are coprime; if this is the case, the inclu-
sion O ⊂ C{t} induces an isomorphism of fraction fields and is therefore
the normalization of O. The normalization, however, is a priori difficult to
compute from the equations of our curve.

An algorithm to do precisely this, in fact to compute a parametrization
from an equation of a plane curve, was given by Newton; it is based on the
Newton polygon.

3. Newton’s study of plane curve singularities

Let us recall that the ring of power series in fractional powers with fixed
denominator m of a variable x with fixed denominator m is defined as
C[[x

1
m ]] = C[[x]][T ]/(Tm − x), and similarly for C{x 1

m }. The notation
x

1
m describes a multi-valued function of x, defined as a function not on C

but on an m-fold ramified covering of C. The various ”determinations” are
exchanged by multiplying one of them by an m-th root of unity. The work
of Newton and Puiseux shows that functions on a branch can be viewed as
functions of x

1
m for some m.

Let f(x, y) ∈ C[[x, y]] be a formal power series without constant term.
We seek series y(x) without constant term such that f(x, y(x)) = 0.

Let us first eliminate a marginal case; if f(0, y) = 0, it means that
f(x, y) is divisible by some power of x; let a be the maximum power of
x dividing f(x, y), and let us set f(x, y) = xaf ′(x, y). Geometrically, the
equality f(0, y) = 0 means that the curve f(x, y) = 0 contains the y-axis,
and the equality above means that this axis should be counted a times in
the curve. This component may be parametrized by x = 0, y = t and we
are left with the problem of parametrizing the rest of the curve, which is
defined by f ′(x, y) = 0. We now have f ′(0, y) 6= 0, and we may thus reduce
to the case f(0, y) 6= 0. From now on we shall assume that f(0, y) 6= 0.
We may then write, since f(0, y) is a formal power series in y, f(0, y) =
yng(y), with g(0) 6= 0.

The proof of the existence of parametrizations proceeds by induction on
the integer n. If n = 1, we have ∂f

∂y (0, 0) 6= 0, and by the implicit function
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theorem there exists a unique formal power series y(x) ∈ C[[x]] such that
y(0) = 0 and f(x, y(x)) = 0. We now assume that n > 1.
Considering series f(x, y) of the form yn − xq with n, q > 1 and (n, q) = 1
shows that one cannot hope to find series in powers of x. Newton’s idea is to
seek solutions which are fractional power series in x, that is, he seeks series
in x

1
m for some integer m, say φ(x

1
m ) ∈ C[[x

1
m ]] such that f(x, φ(x

1
m )) = 0.

More precisely he seeks solutions of the form:

y = xν(c0 + φ0(x
1
m ))

with c0 6= 0, ν ∈ Q+, φ0 without constant term. If we write

f(x, y) =
∑

i,j∈N

ai,jx
iyj with a0,0 = 0

and substitute, we get ∑
i,j

ai,jx
i+νj(c0 + φ0(x

1
m ))j

and we seek ν, c0 6= 0 and a series φ0(x
1
m ) such that this series is zero.

In particular, its lowest order terms in x must be zero. Since φ0 has no
constant term, if we denote by µ the minimum value of i+νj for (i, j) such
that ai,j 6= 0, we have∑

i,j

ai,jx
i+νj(c0 + φ0(x

1
m ))j = xµ

∑
i+νj=µ

ai,jc
j
0 + xµh(x

1
m )

where h has no constant term. So c0 must satisfy∑
i+νj=µ

ai,jc
j
0 = 0

For this equation to have a non-zero root in C, it is necessary and sufficient
that the sum has more than one term.

Let us consider in the (i, j)-plane the set of points (i, j) such that ai,j 6=
0. It is a subset N (f) of the first quadrant

R2
0 = {(i, j) /i ≥ 0, j ≥ 0},

called the Newton cloud of the series f(x, y). Any two subset A and B of Rd

can be added coordinate-wise, to give the Minkowski sum A+B = {a+b, a ∈
A, b ∈ B} of A and B. Let us consider the subset N+(f) = N (f) + R2

0

of R2
0; its boundary is a sort of staircase with possibly infinite vertical or

horizontal parts. The Newton polygon P(f) of f(x, y) is defined as the
boundary of the convex hull of N+(f). It is a broken line with infinite
horizontal and vertical sides, possibly different from the coordinate axis.
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j axis

i axis

i+νj=µ

l

h

Just above is a picture of a Newton polygon in the case where the infinite
sides do coincide with the coordinate axis, or equivalently where the area
bounded by the polygon is finite.

Recall that the convex hull of a subset of Rd can be defined as the
intersection of the half-spaces which contain it. A half-space is the set of
points situated on one side of an affine hyperplane. Thus, the number

µ = minai,j 6=0{i+ νj}

is the minimal abscissa of the intersection points with the i-axis of the lines
with slope −1

ν meeting N+(f). Let us denote by Lν the line which gives
this minimum; an example in drawn on the picture.
So the polynomial ∑

i+νj=µ

ai,jc
j
0

corresponds to the sum of the terms ai,jx
iyj such that (i, j) lies on the

intersection of the line Lν with the Newton polygon.
A necessary and sufficient condition for this polynomial to have more than
one term is that −1

ν is the slope of one of the sides of the Newton polygon.
For simplicity of notation, let us call ν the inclination of the line of slope
−1
ν . Let us denote by l

h the inclination of the ”first side” of the Newton
polygon of f , that is, the side with the smallest inclination. Let c0 be a
non zero root of the corresponding equation, and let us make the change of
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variables

x = xl
1

y = xh
1 (c0 + y1)

The substitution in f(x, y) gives

f(xh
1 , x

`
1(c0 + y1)) =

∑
ai,jx

hi+`j
1 (c0 + y1)j .

By definition of µ, for each ai,j 6= 0, we have hi+`j ≥ µh, so we may factor
the series above as

xµh
1 f1(x1, y1) ,where f1(x1, y1) =

∑
ai,jx

hi+`j−µh
1 (c0 + y1)j .

We remark that

f1(0, y1) =
∑

i+νj=µ

ai,j(c0 + y1)j ,

and since a0,k 6= 0 by definition of n, the order in y1 of f1(0, y1) is ≤ n.
Since c0 has been chosen as a root of the polynomial

∑
i+νj=µ ai,jc

j
0,

this order is ≥ 1. We remark that
The order in y1 of f1(0, y1) is equal to n if and only if c0 is a root of
multiplicity n of the polynomial

∑
i+νj=µ ai,jT

j = 0
But then we must have an equality∑

i+νj=µ

ai,jT
j = a0,n(T − c0)n

which implies by the binomial formula and since C is a field of characteristic
zero, that the term in Tn−1 is not zero; this is possible only if ν is an
integer and then the equality above shows that the ”first side of the Newton
polygon” meets the horizontal axis at the point (νn, 0), which corresponds
to the monomial xνn, which has the non zero coefficient (−1)na0,nc

n
0 , so

it is actually the only finite side of the Newton polygon of f(x, y), which
means that we may write in this case

f(x, y) = a0,n(y − c0x
ν)n +

∑
i+νj>µ

ai,jx
iyj with ν ∈ N, µ = νn.

Making the change of variables

x = x1

y = y1 + c0x
ν
1

the series f(x, y) becomes

f ′(x, y) = a0,ky
n
1 +

∑
i+νj>µ

ai,jx
i
1(y1 + c0x

ν
1)j



16th November 2006 10:2 WSPC - Proceedings Trim Size: 9in x 6in BeyrouthWSf

Complex curve singularities 11

The monomials which appear are of the form xi+νl
1 yj−l

1 , so that they all
satisfy i + νl + ν(j − l) = i + νj > νn. This means that if the order
of f1(0, y1) is n, the Newton polygon of f1(x1, y1) still contains the point
(0, n) and the inclination ν1 of its first side is strictly greater than ν.

The proof now proceeds as follows, :
a) If the order in y1 of f1(0, y1) is less than n, by the induction hypothesis,

there exist an integer m1 and a series φ1(x
1

m1
1 ) ∈ C[[x

1
m1
1 ]] such that

f1(x1, φ1(x
1

m1
1 )) = 0

By the definition of f1, this implies that

f(xh
1 , x

`
1(c0 + φ1(x

1
m1
1 )) = 0

If we set m = m1h and φ(x
1
m ) = x

l
h (c0 + φ1(x

1
m )) ∈ C[[x

1
m ]], we have

f(x, φ(x
1
m )) = 0 and the result in this case.

b) If the order in y1 of f(0, y1) is still equal to n, we saw that ν is an integer
and the inclination of the first side of the Newton polygon of the function
f1(x1, y1) obtained from f(x, y) as above is strictly greater than ν.

We now set ν0 = ν ∈ N and repeat the same analysis for f1, defining a
function f2(x2, y2). If again the order of f2(0, y2) is n, the slope of the first
side of the Newton polygon of f1(x1, y1) is an integer ν1 > ν0 and after the
change of variables x = x2, y = y2 + c0x

ν0
2 + c1x

ν1 the slope of the Newton
polygon has become greater than ν1.

There are two possibilities;
– either after a finite number of such steps we get a function fp(xp, yp) such
that f(0, yp) is of order < n, and by the induction hypothesis we have a
series φp(x

1
mp ) ∈ C[[x

1
mp ]] such that fp(x, φp(x

1
mp )) = 0, and so a series

y = c0x
ν0 + c1x

ν1 + · · ·+ cp−1x
νp−1 + φp(x

1
mp )

such that f(x, y(x)) = 0;
Or the order remains indefinitely equal to n and we have an infinite

increasing sequence of integers

ν0 < ν1 < . . . < νp < . . .

and a formal power series

φ∞(x) = c0x
ν0 + c1x

ν1 + · · ·+ cpx
νp + · · · ∈ C[[x]]

such that the Newton polygon of the function f∞(x∞, y∞) obtained from
f(x, y) by the change of variables x = x∞ , y = y∞ +φ∞(x) has a Newton
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polygon containing the point (0, n) and with inclination 0. This means that
f∞(x∞, y∞) is divisible by yn

∞, so we may write

f∞(x∞, y∞) = yn
∞g(x∞, y∞)

This implies that the order of g(0, y∞) is zero, so g(0, 0) 6= 0. Geometrically,
our curve is the non singular curve y = φ∞(x) counted n times. Indeed, for
each integer p, we have

f(x, c0xν0 + c1x
ν1 + · · ·+ cpx

νp) = xν0+ν1+···+νpfp(x, 0),

so that by Taylor’s expansion theorem, f(x, φ(x)) = 0. This completes in
the formal case the proof of the existence of a fractional power series such
that f(x, y(x)) = 0.

In order to describe all the solutions of the equation f(x, y) = 0, it is
convenient to develop a little more the formalism of the Newton polygon.
Let P and P ′ be two Newton polygons; we can define their sum P + P ′
as the boundary of the convex hull of the Minkowski sum of the convex
domains in R2

+ bounded by P and P ′ respectively. It is easy to verify that
the following equality holds for f, f ′ ∈ C[[x, y]]

P(ff ′) = P(f) + P(f ′).

Any Newton polygon has a length and an height which are the length of the
horizontal and vertical projections of its finite part, respectively.

We say that a Newton polygon is elementary if it has only one finite
side. If it bounds a finite area, it is then uniquely determined by its length
and height. We use the following notation for such an elementary Newton
polygon.

= {——}hl

l

h
= {——}hl

l

h
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We also need a little more algebra, beginning with the following funda-
mental theorem:
One says that a holomorphic function f(x1, . . . , xd, y) defined on a neigh-
borhood of 0 in Cd×C is y-regular (of order n) if f(0, y) has a zero of finite
order n at 0 ∈ {0} ×C. Geometrically this means that if we consider the
germ of hypersurface (W, 0) ⊂ Cd ×C defined by f(x1, . . . , xd, y) = 0 and
the first projection p : W → Cd, then for a small enough representative, if
W is not empty (i.e., n ≥ 1), the fiber p−1(0) is the single point 0. In other
words, the fiber is a finite subset of {0}×C. The general idea of the avatars
of the Weierstrass preparation theorem is that finiteness of the fiber over
one point x in an analytic map implies finiteness of the fibers above points
sufficiently close to x.

Theorem 3.1. (Weierstrass preparation Theorem) If f(x1, . . . , xd, y) is
regular of order n in y, there exist a unique polynomial of the form

P (x1, . . . , xd, y) = yn + a1(x1, . . . , xd)yn−1 + · · ·+ an(x1, . . . , xd)

with ai ∈ C{x1, . . . , xd} and a convergent series u(x1, . . . , xd) with u(0) 6=
0, i.e., invertible in C{x1, . . . , xd} such that we have the equality of conver-
gent series

f(x1, . . . , xd, y) = u(x1, . . . , xd, y)P (x1, . . . , xd, y).

The polynomial P is said to be distinguished in y, or to be a Weierstrass
polynomial.

If we start with any power series f , we have the same result but in the
ring of formal power series.
It can be shown that, given a function f , for almost every choice of co-
ordinates in Cn×C, the function f is distinguished with respect to the last
coordinate.

It follows from the Weierstrass preparation theorem that provided we
have chosen coordinates such that f(0, y) 6= 0, say f(0, y) = aqy

q + · · · with
aq 6= 0, it is equivalent to seek solutions of f(x, y) = 0 and of P (x, y) = 0,
where P (x, y) is the Weierstrass polynomial

u−1(x, y)f(x, y) = yq + a1(x)yq−1 + · · ·+ aq(x) = 0 with ai(x) ∈ C[[x]]

Now from an algebraic point of view, we must consider the field of fractions
C((x)) of the integral domain C[[x]]; the irreducible polynomial Tm − x ∈
C((x))[T ] defines an algebraic extension of degree m of C((x)), denoted by
C((x

1
m )) which is a Galois extension with Galois group equal to the group
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µm of m-th roots of unity in C. The action of µm is exactly the change in
determination of x

1
m , determined by x

1
m 7→ ωx

1
m for ω ∈ µm. A series of

the form y =
∑
aix

i
m such that the greatest common divisor of m and all

the exponents i which effectively appear is 1 gives m different series as ω
runs through µm.

Suppose now that our function f is an irreducible element of C[[x, y]], and
that the order in y of f(0, y) is n < ∞. Then the construction described
above provides a series y(x

1
m ) with m ≤ n such that f(x, y(x

1
m )) = 0. In

fact m = n since f is irreducible.The product

Πω∈µm(y − y(ωx
1
m ))

is a polynomial Q(x, y) ∈ C[[x]][y] which, by the algorithm of division of
polynomials in C((x))[y], divides P (x, y); the rest of the division of P by
Q is a polynomial of degree < n− 1 with n different roots; it is zero.
We have therefore Q(x, y) = P (x, y) and m = n in this case.
We remark that the expansions y(ωx

1
n ) all have the same initial exponent

l
h , here l

n , and by the definition of Q(x, y), only monomials xiyj with
i
` + j

h ≥ µ
` appear, and the monomial xh actually appears. So we have

verified:

Proposition.- The Newton polygon of an irreducible series is elementary,
and of the form { p

n }, where n is the order of f(0, y).

Now it is known that rings such as k[[x, y]], where k is a field, or C{x, y}
are factorial ; each element has a decomposition f = fa1

1 . . . far
r where fi

is irreducible, which means that it cannot be factored again as a product
fi = gh in a non trivial way, that is, without g or h being an invertible
element in k[[x, y]], (= a series with a non zero constant term).
My aim now is to prove the following

Theorem 3.2. .- a) Let k be an algebraically closed field of characteristic
zero, and let f ∈ k[[x, y]] be a power series without constant term such
that f(0, y) 6= 0. Consider the decomposition f = ufa1

1 . . . far
r of f into

irreducible Weierstrass polynomials fai
i , with a factor u which is invertible

in k[[x, y]]. For each index i, 1 ≤ i ≤ r, there are power series without
constant term xi(t), yi(t) ∈ k[[t]] such that f(xi(t), yi(t)) ≡ 0; we may
choose xi(t) = tmi where mi is the degree of the Weierstrass polynomial fi,
and yi(t) is then uniquely determined. Moreover if we then write yi(t) =
cit

li + . . . with ci ∈ k∗, then the Newton polygon of f in the coordinates
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(x, y) is the sum

N (f) =
r∑
1

{ aimi

aili
}.

Here we have to allow the case where for some i, yi(t) ≡ 0, that is li = ∞.
b) If k = C and f ∈ C{x, y} is a convergent power series, the series xi(t)
and yi(t) are also convergent.

Remark: if we do not assume f(0, y) 6= 0, a similar result holds, but we
may no longer apply Weiertrass’ theorem and we have to allow expansions
of the form x = 0, y = t and the corresponding Newton polygons appears
as summands in N (f).

The geometric interpretation of this result is that if we take any reduced
analytic plane curve f = uf1 . . . fr with fi irreducible, i.e., all ai = 1, the
curve defined by f = 0 is a sufficiently small neighborhood of the origin is
the analytic image of a representative of a complex-analytic map-germ

r⊔
i=1

(C, 0)i −→ (C2, 0)

which we can explicitely build by using Newton’s method.
Remark The Newton polygon depends upon the coordinates. One usually
chooses the coordinates (x, y) in such a way that the degree of the Weier-
strass polynomial is equal to the order of the equation f(x, y). I leave it as
an exercize to show that if one writes the series f as a sum of homogeneous
polynomials

f(x, y) = fn(x, y) + fn+1(x, y) + · · · ,

where fi is homogeneous of degree i, this condition is equivalent to:
fn(0, y) 6= 0.

Conversely, given two power series x(t), y(t) ∈ k[[t]] without constant
term, one may eliminate t between them to produce an equation f(x, y) = 0
with the property that f(x(t), y(t) = 0. Indeed, by using the ”natural”
elimination process (see[T1]) we may do this in such a way that eliminating
t beween x(tq), y(tq) produces the equation fq(x, y), so that we may even
represent parametrically a non-reduced equation.

There are several ways to prove this theorem; one is to prove the con-
vergence first, either directly by providing bounds for the coefficient of the
series produced by Newton’s method, which works but is inelegant, or by
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considering the analytic curve f(tm, y) = 0, and proving that it is a rami-
fied analytic covering of the t-axis; it is also the union of m non singular
curves, so each of them is analytic, and this proves the convergence of the
series. (see [L], II.6).

These proofs give no basis for generalizations to higher dimension, so I
chose to present a geometric method of constructing the analytic map

r⊔
i=1

(C, 0)i −→ (C2, 0).

This method was perfected by Hironaka and is the basis for his method of
resolution in all dimensions over a field of characteristic zero.
Remark In the study of analytic functions of one variable near one of their
zeroes, a basic fact is that given two monomials xa, xb, one must divide
the other in C{x}, C[[x]], or even C[x]. This allows us to write any series
f(x) = xau(x) with u(0) 6= 0, in C{x}, and the local behavior of f is
determined by the integer a. It is no longer true that given two monomials
in (x, y), one must divide the other; the typical example is the pair of
monomials yn, xq. In particular, the ideal of C{x, y} generated by all the
monomials appearing in the expansion f(x, y) =

∑
aijx

iyj is no longer
principal. However, since C{x, y} is a nœtherian ring, this ideal is finitely
generated. If we plot the quadrant Rij = (i, j) + R2

+ for each monomial
xiyi appearing in our series, and observe that the integral points in this
quadrant correspond to the monomials which are multiples of xiyj , we
have a graphic way of representing the generators of the ideal generated by
all the monomials appearing in the series f : Consider the union of all the
Rij for (i, j)/aij 6= 0; its boundary is a sort of staircase. Our generators
correspond to the insteps of the staircase. The convex hull of the union is
the Newton polygon.
Note finally that from the viewpoint of considering lines Lν : i + jν = c

as above, and where they meet the staircase, it is the convex hull which is
relevant.
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j

i

(i,j)(i,j)

4. Puiseux exponents

Let f(x, y) ∈ C{x, y} be such that f(0, y) = ynu(y) with u ∈ C{y}, o(0) 6=
0. As we have just seen, it is equivalent to find solutions y(x) for f and to
find roots of the Weierstass polynomial

P (x, y) = yn + a1(x)yn−1 + · · ·+ an(x)

corresponding to f .
If the element f(x, y) ∈ C{x, y} is irreducible, so is the Weierstrass poly-
nomial in C{x}[y].
Newton’s theorem tells us that such an irreducible polynomial has all its
roots of the form

y =
∞∑

i=1

aiω
ix

i
n

where ω runs through the n-th roots of unity in C.
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This is equivalent to the statement that an analytically irreducible curve
as above can be parametrized in the following manner:

x = tn

y =
∑∞

i=1 ait
i

In particular, this shows that the polynomial P determines a Galois exten-
sion of the field of fractions C{{x}} of C{x}, and of the field of fractions
C((x)) of C[[x]], with Galois group µn.
A direct consequence of this is the:

Theorem 4.1. (Newton-Puiseux Theorem). The algebraic closure of
the field C{{x}} (resp. C((x)) ) is the field

⋃
n≥1 C{{x 1

n }} (resp.⋃
n≥1 C((x

1
n )) )

This result is the algebraic counterpart of the fact that the fundamental
group of a punctured disk is Z.

A linear projection onto (C, 0) of small representative of a germ of
complex analytic curve (X, 0) ⊂ (C2, 0) which is finite (the curve does not
contain the kernel of the linear projection as one of its components) can
be restricted over a small punctured disk D∗

η = Dη \ {0} to give a finite
covering of D∗

η, which is connected for all sufficiently small η if and only if
(X, 0) is analytically irreducible at 0. It can be shown that conversely the
connected coverings of a punctured disk correspond to irreducible curves as
above, and that in this correspondence, the Galois group of the covering,
which is of the form Z/kZ since the fundamental group of the disk is Z,
corresponds to the Galois group of the extension of the field C{{x}} or of
the field C((x)) defined as above by the curve.

Let

f(x, y) = 0 with f(x, y) ∈ C{x, y}

be an equation for a branch (X, 0) ⊂ (C2, 0), which means that the series
f is an irreducible element of C{x, y}.

As we saw, we may assume thanks to the Weierstrass preparation the-
orem that f is of the form

f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x)

where n is the intersection multiplicity at 0 of the branch C with the axis
x = 0.
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As we saw, after possibly a change of coordinates to achieve that x = 0 is
transversal to it at 0,the branch X can be parametrized near 0 as follows

x(t) = tn

y(t) = amt
m + am+1t

m+1 + · · ·+ ajt
j + · · · with m ≥ n

Let us now consider the following grouping of the terms of the series y(t):
set β0 = n and let β1 be the smallest exponent appearing in y(t) which is
not divisible by β0. If no such exponent exists, it means that y is a power
series in x, so that our branch is analytically isomorphic to C, hence non
singular. Let us suppose that this is not the case, and set e1 = (n, β1),
the greatest common divisor of these two integers. Now define β2 as the
smallest exponent appearing in y(t) which is not divisible by e1. Define
e2 = (e1, β2); we have e2 < e1, and we continue in this manner. Having
defined ei = (ei−1, βi), we define βi+1 as the smallest exponent appearing
in y(t) which is not divisible by ei. Since the sequence of integers

n > e1 > e2 > · · · > ei > · · ·

is strictly decreasing, there is an integer g such that eg = 1. At this point,
we have structured our parametric representation as follows:

x(t) = tn

y(t) = ant
n + a2nt

2n + · · ·+ aknt
kn+

+aβ1t
β1 + aβ1+e1t

β1+e1 + · · ·+ aβ1+k1e1t
β1+k1e1

+aβ2t
β2 + aβ2+e2t

β2+e2 + · · ·+ aβq t
βq + aβq+eq−1t

βq+eq−1 + · · ·
+aβg

tβg + aβg+1t
βg+1 + · · ·

where by construction the coefficients of the tβi ; i ≥ 1 are not zero. Let us
define integers ni and mi by the equalities

ei−1 = niei, βi = miei for 1 ≤ i ≤ g

and note that we may rewrite the expansion of y into powers of t as an
expansion of y into fractional powers of x as follows:

y = anx + a2nx2 + · · ·+ aknxk+

+aβ1x
m1
n1 + aβ1+e1x

m1+1
n1 + · · ·+ aβ1+k1e1x

m1+k1
n1

+aβ2x
m2

n1n2 + aβ2+e2x
m2+1
n1n2 + · · ·+ aβq

x
mq

n1n2···nq + aβq+eq−1x
mq+1

n1n2···nq + · · ·

+aβg
x

mg
n1n2···ng + aβg+1x

mg+1
n1n2···ng + · · ·

The set of pairs of coprime integers (mi, ni) are sometimes also called
the Puiseux characteristic pairs. Their datum is obviously equivalent to
that of the characteristic exponents βi. The sequence of integers B(X) =
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(β0, β1, . . . , βg), where β0 = n, may be characterized algebraically as fol-
lows: let µn denote the group of n-th roots of unity. For ω ∈ µn let us
compute the order in t of the series y(t)− y(ωt). If we write ω = e

2πik
n , we

have

y(ωt) = anω
ntn + · · ·+ aβ1ω

β1tβ1 + · · ·

and we see that multiplying t by ω does not affect the terms in tjn. The
term in tβ1 is unchanged if and only if ωβ1 = 1, that is kβ1

n is an integer,
i.e., kβ1 = ln or km1 = ln1 with the notations introduced above. Since
n1 and m1 are coprime, this means that k is a multiple of n1, which is
equivalent to saying that ω belongs to the subgroup µ n

n1
of µn consisting of

n
n1

= n2 · · ·ng-th roots of unity. If this is the case, then the coefficients of all
the terms of the form tβ1+je1 in the Puiseux expansion are also unchanged
when t is multiplied by ω, and the first term which may change is aβ2t

β2 . An
argument similar to the previous one shows that if ω ∈ µ n

n1
, then ωβ2 = 1

if and only if ω ∈ µ n
n1n2

, and so on.
Finally, if we denote by v the order in t of an element of C{t}, we see

that

v(y(t)− y(ωt)) = βi if and only if ω ∈ µ n
n1···ni−1

\ µ n
n1···ni

for 1 ≤ i ≤ g

This provides an algebraic characterization, and a sequence of cyclic subex-
tensions

C{x} ⊂ C{x
1

n1 } ⊂ C{x
1

n1n2 } ⊂ · · · ⊂ C{x
1

n1n2···ni } ⊂ · · · ⊂ C{x
1
n }

corresponding to the nested subgroups µ n
n1···ni

of th group µn.
This shows that the sequence (β0, β1, . . . βg) depends only upon the ring

inclusion C{x} ⊂ OX,0.
We shall see later in a different way that this sequence does not depend

upon the choice of coordinates (x, y) in which we write the Puiseux expan-
sion as long as the curve x = 0 is transversal to X. If this is not the case,
one still obtains other characteristic exponents, which are related to the
transversal ones by the inversion formula which I leave as an exercise (or
see [PP] and [GP]).
As an example consider the curve with equation y3 − x2 = 0.

Remark The Newton-Puiseux theorem is strictly a characteristic zero fact.
It implies in particular that if a fractional power series in x is a solution
of an algebraic equation with coefficients in C[x] or C{x} or C[[x]], the
denominators of the exponents of x appearing in that power series are
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bounded. Let k be a field of characteristic p, and consider the series where
the exponents have unbounded denominators:

y =
∞∑

i=1

x
1− 1

pi ;

it is a solution of the algebraic equation

yp − xp−1(1 + y),

as one can check directly. It is an Artin-Schreier equation.
The corresponding result in positive characteristic has been proved recently
by Kiran S. Kedlaya (see [Ke]) and is quite a bit more delicate.

5. From parametrizations to equations

We have just seen an algorithm to produce local parametrizations of the
branches of a complex analytic plane curve from its equation. To go in the
other direction is to eliminate for each parametrized branch the variable
t between the equations x − x(t) = 0, y − y(t) = 0, and then make the
product of the equations obtained.
Elimination is in general computationally arduous. Is this special case, we
have a direct method as follows: write our parametrization in the form
x = tn, y = ξ(t) =

∑
i ait

i. The product

Πω∈µn
(y − ξ(ωt))

is invariant under the action of µn by t 7→ ωt; it is a series f(tn, y)) =
f(x, y) which has the property that f(x, y) = 0 is an equation for our curve.
However this method does not work for curves in 3-dimensional space, or in
positive characteristic. Here is my favourite method (see [T5]) to compute
images, explained in this special case.

5.1. Fitting ideals

Let M be a finitely generated module over a commutative nœtherian ring
A; then we have a presentation, which is an exact sequence of A-modules

Aq → Ap →M → 0

The map A-linear map Aq → Ap is represented, in the canonical basis, by a
matrix with entries in A. For each integer j, consider the ideal Fj(M) of A
generated by the (p− j)× (p− j) minors of that matrix. Note that if j ≥ p,
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then Fj(M) = A (the empty determinant is equal to 1), and if p − j > q,
then Fj(M) = 0 (the ideal generated by the empty set is (0)).
It is not very difficult to check that Fj(M) depends only on the A-module
M , and not on the choice of presentation. Moreover, if A→ B is a morphism
of commutative rings, the sequence

Bq → Bp →M ⊗A B → 0

is a presentation of the B-module B⊗AM , with the same matrix; therefore
Fj(M ⊗A B) = Fj(M).B. One says that The formation of Fitting ideals
commutes with base change.

The most important feature of Fitting ideals, is as follows:

Proposition 5.1. A maximal ideal m of A contains Fj(M) if and only if

dimA/mM ⊗A A/m > j.

Proof. Tensoring with A/m the presentation of M gives for each maximal
ideal of A an exact sequence of A/m-vector spaces

(A/m)q → (A/m)p →M ⊗A A/m→ 0.

the dimension of the cokernel is > j if and only if the rank of the matrix
describing the map (A/m)q → (A/m)p is < p− j, which means that all the
p− j minors are 0 modulo m, which means that Fj(M) ⊂ m.

Let me explain what this has to do with elimination: suppose that we have
a branch parametrized by x(t), y(t). This gives a map C{x, y} → C{t}.
Observe that this map of C-algebras gives C{t} the structure of a finitely
generated C{x, y}-module. Indeed, since x 7→ tn say, it is even a finitely
generated C{x}-module, generated by (1, t, . . . , tn−1).
We can therefore write a presentation of C{t} as C{x, y}-module:

C{x, y}q → C{x, y}p → C{t} → 0.

Now it is a theorem of commutative algebra that since C{x, y} is a 2-
dimensional regular local ring, for every finitely generated C{x, y}-module
M , if we begin to write a free resolution by writing M as a quotient of
a finitely generated free C{x, y}-module, C{x, y}p → M , then writing the
kernel of that map as a quotient of a finitely generated free C{x, y}-module,
and so on, this has to stop after 2 steps. This means that the kernel above
is already free, so that in fact, in our case, we have an exact sequence

0 → C{x, y}q φ→ C{x, y}p → C{t} → 0.
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This immediately implies that we have q ≤ p. On the other hand, the
C{x, y}-module C{t} must be a torsion module, which means that it must
be annihilated by some element of C{x, y}; intuitively this means that the
image of our parametrization has an equation: an element f ∈ C{x, y}
such that fC{t} = f(x(t), y(t)) = 0. If this was not the case, there would
be an ideal T ⊂ C{t} consisting of the elements which are annihilated by
multiplication by some non zero element of C{x, y}. If we assume that T 6=
C{x, y} and remark that by construction our map of algebras C{x, y} →
C{t} induces an injection C{x, y} ⊂ C{t}/T , then either T 6= 0 and we
have an injection of C{x, y} in a finite-dimensional vector space over C,
which is absurd, or T = 0 and we have an injection C{x, y} ⊂ C{t}, but
since C{t} is a finitely generated C{x, y}-module, the two rings should
have the same dimension, by the third axiom of dimension theory (see [Ei],
8.1), which is absurd. So C{t} is a torsion C{x, y}-module, which implies
that the map induced by φ after tensorization of our exact sequence by the
field of fractions C{{x, y}} of C{x, y} is surjective, hence q ≥ p and finally
q = p.

Now we know that q must be equal to p, and that we have an exact sequence

0 → C{x, y}p φ−→ C{x, y}p → C{t} → 0.

Proposition 5.2. The 0-th Fitting ideal of the C{x, y}-module C{t} is
principal and generated by the determinant of the matrix encoding the ho-
momorphism φ in the canonical basis.

Example 5.1. Consider the parametrization x = t2, y = t3; it makes C{t}
into a C{x, y}-module generated by (e0 = 1, e1 = t). The relations are
−ye0 + xe1, x

2e0 − ye1. In this case, p = 2 and the matrix φ has entries(
−y x

x2 −y

)
Exercise: 1) For any integer k, consider the curve parametrized by x =
t2k, y = t3k. Show that the Fitting ideal is generated by (y2 − x3)k.
2) Consider the curve in C3 parametrized by x = t3, y = t4, z = 0. In this
case, the C{x, y, z}-module C{t} is generated by 1, t, t2. Of course we can
no longer hope to have q = p in its presentation, but one can compute a
presentation ( see [T5], 3.5.2)

C{x, y, z}6 → C{x, y, z}3 → C{t} → 0.

and find that the Fitting ideal

F0(C{t}) = (y3 − x4, z3, zx2, zy2, z2y, z2x)C{x, y, z}
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It defines the plane curve y3 − x4 = 0, z = 0, plus a 0-dimensional (embed-
ded) component sticking out of the z = 0 plane.

The appearance of this embedded component corresponds to the fact
that we can embed our plane curve singularity in a family of space curve
singularities, say x = t3, y = t4, z = vt5 for example, where v is a deform-
ation parameter. Now if we compute the Fitting ideal of the image of the
map C × C → C3 × C given by x = t3, y = t4, z = vt5, v = v, and then
set v = 0, we must find the Fitting ideal defining the image of our original
map C → C3. This is one of the basic properties of Fitting ideals. On the
other hand, by a classical result, the embedding dimension in a family of
singularities can only increase by specialization. Since for v 6= 0 the image
computed by the Fitting ideal has embedding dimension 3, it must also be
3 for v = 0, so the Fitting ideal must define something which contains our
plane curve but has embedding dimension 3. Our zero-dimensional com-
ponent increases the embedding dimension from 2 to 3.

Now we must prove that the generator of the 0-th Fitting ideal is an ac-
ceptable equation of the image of our parametrization.

Given our map π : C{x, y} → C{t} corresponding to the curve para-
metrization, we could say that the equation of the parametrized curve is
given simply by the kernel K of this map of algebras. We are going to
prove that the kernel K and the Fitting ideal have the same radical, and
so define the same underlying set, but they are not equal in general, and
the formation of the kernel does not commute with base extension while
the formation of the Fitting ideal does. First, we must check that, with the
notations of the definition of Fitting ideals, we have F0(M).M = 0, which
means that the Fitting ideal is contained in the kernel. In our case, where
q = p, it follows directly from Cramer’s rule if you interpret the statement
as: detφ.C{x, y}p ∈ Image(φ). Note that this is true in the general situation
of a finitely generated A-module; the Fitting ideal is contained in the anni-
hilator of M . Secondly we must prove that K is contained in the radical of
F0(M). Take a non zero element h ∈ K; we have hM = 0, so that applying
the rule of base extension to the map A→ A[h−1], with A = C{x, y} in this
case, we get F0(M)A[h−1] = A[h−1], and since F0(M) is finitely generated,
this implies that there exists an integer s such that hs ∈ F0(M), and the
result.
So we have proved the inclusions

F0(M) ⊆ K ⊆
√
F0(M).
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5.2. A proof of Bézout’s theorem (after [T5], §1)

We begin with a Fitting definition of the resultant of two polynomials in
one variable. Let A be a commutative ring and

P = p0 + p1X + · · ·+ pnX
n

Q = q0 + q1X + · · ·+ qmX
m

be two polynomials in A[X] Let us assume that pn and qm are invertible in
A. The natural ring in which to treat the resultant is

A = Z[p0, . . . , pn, q0, . . . , qm, p
−1
n , q−1

m ],

considering the two polynomials

P = p0 + p1X + · · ·+ pnX
n

Q = q0 + q1X + · · ·+ qmX
m

now with coefficients in A. The difference is that now the pi, qj have become
indeterminates.

Given any ring A and two polynomials P,Q as above with coefficients in
A and highest coefficients invertible in A, there is a unique homomorphism
ev : A → A such that ev(P) = P, ev(Q) = Q; it sends the indeterminate
pi (resp. qj) to the coefficient of Xi in P (resp. Xj in Q).
The A-module A[X]/P is a free A-module of rank n, and multiplication by
Q (which is injective since the pi, qj are indeterminates, gives us an exact
sequence

0 → A[X]/P φ→ A[X]/P → A[X]/(P,Q) → 0.

This allows us to compute the 0-th Fitting ideal of the A-module
A[X]/(P,Q) as the determinant of the matrix of φ.

Definition 5.1. A universal resultant R(P,Q) of the universal polyno-
mials P and Q is a generator with coprime integer coefficients of the 0th
Fitting ideal of the A-module A[X]/(P,Q).

Given a ring A and two polynomials as above, the resultant of P and Q is
the image ev(R(P,Q) ∈ A. It may be the zero element.

Note that the ring A has a grading given by degpi = n− i, degqj = m− j.
If we give X the degree 1, the polynomials P and Q are homogeneous of
degree n and m respectively for the corresponding grading of A[X].

In order to deal with graded free modules, it is convenient to introduce
the following notation: If A is a graded ring, for any integer e, denote by
A(e) the free graded A-module of rank one consisting of the ring A where
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the degree of an element of degree i in A is of degree i+ e in A(e). Any free
graded A-module is a sum of A(ei). The proof of Bézout’s theorem relies
on the Fitting definition of the resultant and the following two lemmas:

Lemma 5.1. Let A be a graded ring; for any homogeneous homomorphism
of degree zero between free graded A-modules

Ψ:
p⊕

i=1

A(ei) →
p⊕

j=1

A(fj),

setting M = cokerΨ, the Fitting ideals Fk(M) are homogeneous and
moreover

degF0(M) = deg(detΨ) =
p∑

i=1

ei −
p∑

j=1

fj .

Proof. To say that the morphism is of degree zero means that it sends an
homogeneous element to an homogeneous element of the same degree. This
implies that the entries of the matrix of Ψ satisfy

degΨij = ei − fj ,

and this suffices to make the minors homogeneous; let us check it for the
determinant.

Each term in its expansion is a product ψi1j1 . . . ψipjp where each i and
j appear exactly once. It is homogeneous of degree∑

eik
−

∑
fjk

=
p∑

i=1

ei −
q∑

j=1

fj .

We can now compute the degree of R(P,Q) ∈ A. If we use the presentation
given above, we find that the homomorphism φ is of degree zero if we give
each Xi in the first copy of A[X]/P the degree i+m and keep Xj of degree
j in the second.

Thus we find

Lemma 5.2. We have the equality

degR(P,Q) =
n∑

i=1

(m+ i)−
n∑

j=1

j = mn.

Remark 5.1. 1) There are other presentations for the A-module
A[X]/(P,Q). For example

0 → A[X]/(Xn)⊕A[X]/(Xm) → A[X]/(P.Q) → A[X]/(P,Q) → 0

(a, b) 7→ aQ+ bP
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or

0 → A[X]/(P.Q) → A[X]/(Xn)⊕A[X]/(Xm) → A[X]/(P,Q) → 0

a 7→ (a, a) (a, b) 7→ (a− b)

The first of these two gives the usual Sylvester determinant, of size m+n.
The second follows from from the chinese remainder theorem.
2) The total degree of a polynomial defining an affine plane curve is equal
to the degree of the homogeneous polynomial in three variables defining the
projective plane curve defining the closure of the affine curve in projective
space; it is the degree of the curve.

The other lemma is of the same nature and shows that the Fitting ideal loc-
ally computes the image of an intersection of two curve with a multiplicity
equal to the intersection multiplicity of the two curves.

Lemma 5.3. Let R be a discrete valuation ring containing a representative
of its residue field k, and let v be its valuation. Let

Ψ: Rp → Rp

be an homomorphism of free R-modules whose cokernel M is of finite length,
i.e., a finite-dimensional vector space over k. Then we have the equality

v(detΨ) = dimkM.

Proof. A discrete valuation ring is a principal ideal domain. By the main
theorem on principal ideal domains we can find bases for both Rp such
that the matrix representing Ψ is diagonal, with entries a1, . . . , ap on
the diagonal, say. Then clearly v(detΨ) =

∑p
i=1 v(ai) and dimkM =∑p

i=1 dimkR/aiR. Thus it suffices to consider the case where p = 1. Then
we have a = uπs where π is a generator of the maximal ideal of R, and u

is invertible in R. Then v(a) = s while R/aR is the k-vector space freely
generated by the images of 1, π . . . , πs−1.

This applies to R = C{t} or R = C[t](t), the valuation being the t-adic
order.

Now let us begin the proof of Bézout’s theorem.
Let A be the graded ring C[x1, x2] and let P,Q ∈ C[x0, x1, x2] be two
homogeneous polynomials defining the curves C and D in the complex
projective plane, of respective degrees m and n. We can write

P =
∑n

i=1 pi(x1, x2)xi
0 degpi = n− i

Q =
∑m

j=1 qj(x1, x2)x
j
0 degqj = m− j.
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After a change of coordinates, we may assume that the constants pn and
qm are non zero, hence invertible in A. Geometrically this means that the
point with homogeneous coordinates (1, 0, 0) does not lie on either of the
curves C and D.

As we saw above, there exists a homogeneous morphism of degree zero
ev : A → A such that ev(P) = P, ev(Q) = Q, and if the resultant R(P,Q)
is not zero, it is of degree mn by Lemma 5.2. I leave it as an exercise to
check, using the factoriality of polynomial rings over C, that R(P,Q) = 0
if and only if C and D have a common component.

Let us now consider the projection π : P2(C) \ (1, 0, 0) → P1(C) given by
(x0, x1, x2) 7→ (x1, x2). It induces a well defined projection on C and on D
since meither of them contains (1, 0, 0). For each point x ∈ P1(C) there are
finitely many points y ∈ C ∩D such that π(y) = x. By the definition of the
resultant and the fact that the formation of the Fitting ideal commutes in
particular with localization, we have the following equality:

R(P,Q)OP1,x = F0

( ⊕
π(y)=x

OP2,y/(P,Q)OP2,y

)
.

vx(R(P,Q)) =
∑

π(y)=x

dimCOP2,y/(P,Q)OP2,y.

Since, if we assume that C and D have no common component, the res-
ultant R(P,Q) is a homogeneous polynomial of degree mn in (x1, x2), it
follows from the fundamental theorem of algebra applied to the homogen-
eous polynomial R that

mn =
∑

x∈P1

vx(R(P,Q)) =
∑

y∈C∩D

dimCOP2,y/(P,Q)OP2,y.

This is Bézout’s theorem if we agree that the intersection multiplicity of C
and D at y is equal to

(C,D)y = dimCOP2,y/(P,Q)OP2,y.

We shall see later that there are many reasons to do that.
Finally we get

Theorem 5.1. (Bézout) For closed algebraic curves in P2(C) without com-
mon component, we have

degC.degD =
∑

y∈C∩D

(C,D)y.
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6. Resolution of plane curves

Let us consider the projective space Pn(C) as the space of lines through the
origin in Cn+1. If we choose coordinates x0, . . . , xn on Cn+1 the projective
space is covered by affine charts Ui, the points of each Ui corresponding to
the lines contained in the open set xi 6= 0. It is customary to take homogen-
eous coordinates (u0 : · · · : un) on the projective space, corresponding to the
lines given parametrically by xi = uit, or by the equations xiuj −xjui = 0,
where it is enough to take the n equations for which j = i + 1 and i < n.
The term ”homogeneous coordinates ” means that for any λ ∈ k∗ the co-
ordinates (u0 : · · · : un) and (λu0 : · · · : λun) define the same point.

Now consider the subvariety Z of the product space Cn+1×Pn defined
by these n equations. It is a nonsingular algebraic variety of dimension n+1
and the first projection induces an algebraic morphism B0 : Z → Cn+1.

The fiber B−1
0 (0) is the entire projective space Pn(k) since when all xi

are zero, all the equations between the uj vanish,while the fiber B−1
0 (x)

for a point x 6= 0 consists of a unique point because then the coordinates
xi determine uniquely the ratios of the uj which means a point of Pn(k).
Blowing up a point ”replaces the observer at the point by what he sees”,
because the observer essentially sees a projective space (in fact a sphere, if
we think of a real observer, but this is just a metaphor).

A basic properties of blowing up is that it separates lines: in fact con-
sider the algebraic map δ : Cn+1 \ {0} → Pn which to a point outside the
origin associates the line joining the origin to this point. Of course we can-
not extend the definition of this map through the origin; The graph of δ
however, is an algebraic subvariety of (Cn+1 \ {0})×Pn, and we may take
the closure (for the strong topology if k = C, or for the Zariski topology)
of this graph. It is a good exercise to check that this closure coincides with
Z as defined above. A point of B−1

0 (0) is precisely a direction of line, so the
map δ ◦B0 can be defined there as the map which to this point associates
the direction: in Z we have separated all the lines meeting at the origin.

Let us consider in more detail the case n = 1. Then Z is a surface
covered by two affine charts corresponding to the charts of the projective
space: for convenience of notation set u0 = u, u1 = v, x0 = x, x1 = y so
that Z is defined by vx− uy = 0. On the open set U of Z where u 6= 0 we
may taxe as coordinates x1 = x, y1 = v

u and then the map induced by B0

on U is described in these coordinates by

x ◦B0 = x1

y ◦B0 = x1y1
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and similarly on the open set V defined by v 6= 0, we take as coordinates
x1 = u

v , y1 = y and the map B0 is described by

x ◦B0 = x1y1
y ◦B0 = y1

Remark that in the first chart the projective space B−1
0 (0) is defined by

x1 = 0 and in the second by y1 = 0 (remember that they are coordinates
on two distinct charts, and on the intersection of the two charts they define
the same subspace). It is a crucial property of blowing up that it transforms
the blown-up subspace (here the origin) into a subspace defined locally by
one equation (called a divisor); it is a good exercise to check that this is
the case in any dimension. The space B−1

0 (0) is called the exceptionnal
divisor. We are now able to study the effect on a function f(x, y) (formal
or convergent) of its composition with the map B0. Consider the expansion
of f as a sum of homogeneous polynomials

f(x, y) = fm(x, y) + fm+1(x, y) + · · ·+ fm+k(x, y) + · · · ,

where fj is homogeneous of degree j. In the chart U , we may write

f ◦B0 = f(x1, x1y1) =
xm

1

(
fm(1, y1) + x1fm+1(1, y1) + · · ·+ xk

1fm+k(1, y1) + · · ·
)

and there is a similar expansion in the other chart. Now if we look at the
zero set of f ◦ B0 we see that in each chart it contains the exceptionnal
divisor counted m times. If we remove this exceptionnal divisor as many
times as possible, i.e., divide f ◦ B0 by xm

1 in the first chart and by ym
1

in the second, we obtain the equation of a curve on the surface Z, either
formal or defined near B−1

0 (0), which no longer contains the exceptionnal
divisor. This curve is called the strict transform of the original curve. We
also say that the equation obtained in this way is the strict transform of f).
In the first chart it is x−m

1 f(x1, x1y1), and in the second y−m
1 f(x1y1, y1).

By construction, the strict transform meets the exceptionnal divisor only
in finitely many points; let us determine them: in the first chart they are
given by fm(1, y1) = 0 and in the second, by fm(1, y1) = 0. By construction
of the projective space the points we seek are therefore the points in the
projective line defined by the homogeneous equation fm(u, v) = 0. The
homogeneous polynomial fm of lowest degree appearing in f(x, y) is called
the initial form and fm(x, y) = 0 is a union of m lines (counted with
multiplicity) called the tangent cone of f at the point 0. So we see that the
strict transform of f meets the exceptionnal divisor at the points in this
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projective space corresponding to the lines which are in the tangent cone
at 0 of our curve.

In particular, if our curve has two components with tangent cones meet-
ing only at the origin, their strict transforms are disjoint. Consider for ex-
ample f(x, y) = (y2 − x3)(y3 − x2).

In order to analyze in more detail what goes on, we have to assume
that k is algebraically closed, which we will do from now on, and introduce
the concept of intersection number of two curves at a point. The simplest
definition (but not the most useful for computations) is the following:
Let f, h ∈ k[[x, y]] be series without constant term and without common ir-
reducible factor. Let (f, h) denote the ideal generated by f and h in k[[x, y]].
Then the dimension

dimk[[x, y]]/(f, h)

is finite and is by definition the intersection number of the two curves at 0.
If k = C and f, h are in C{x, y}, then the dimension above is also

dimC{x, y}/(f, h)

where now (f, h) is the ideal generated in C{x, y}.
To prove the finiteness we first remark that it is sufficient to prove it

after replacing k by its algebraic closure and then we may use the Hilbert
nullstellensatz which tells us that since f = 0, h = 0 meet only at the
origin, the ideal (f, h) contains a power of the maximal ideal m = (x, y)
say mN . This implies the finiteness since k[[x, y]]/(f, h) is then a quotient
vector space of k[[x, y]]/mN and also shows that we may without changing
the ideal assume that f, h are polynomials of degree < N , so that for
example if f, h are convergent power series the vector spaces C{x, y}/(f, h)
and C[[x, y]]/(f, h) are equal.

The definition of intersection multiplicity at the point 0, of the two
curves f = 0, h = 0, say in the analytic case is then(

f, h
)
0

= dimCC{x, y}/(f, h).

Note that we use large parentheses for the intersection number, small ones
for the ideal generated by f, g.

In any case this definition of the intersection multiplicity has the ad-
vantage to suggest the following intuitive interpretation :
Consider a 1-parameter deformation of one of the two functions, say f + ε;
it is possible to show that if f, h converge in a nice neighborhood U of 0, for
small enough ε, then the two curves h = 0, f+ε = 0 meet in U transversally
at points which are non-singular on each. Moreover, these points tend to
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0 as ε tends to 0, and the number of these points is dimC{x, y}/(f, h).
So this number may be thought of as the number of ordinary intersections
(i.e., transverse intersection of non-singular curves) which are concentrated
at 0.

There is another way to present this intersection number, which is very
useful for computations:
Suppose that h(x, y) = uhe1

1 . . . her
r with u(0) 6= 0. For each i, 1 ≤ i ≤ r, let

us parametrize the curve hi(x, y) = 0 by x(ti), y(ti). Now substitute these
power series in f(x, y); we get a series in ti, the order of which we denote
by Ii. Then we have

Ii = dimCC{x, y}/(f, hi) ,

and (
f, h

)
0

=
r∑
1

eiIi.

Remark: Given a germ of curve f = 0, where

f = fm + fm+2 + · · · ,

its multiplicity at the origin may be defined as the smallest degree m of
a monomial appearing in the series f . A better definition is to say that
the multiplicity is the intersection number

(
f, `

)
0

for a sufficiently general
linear form `. In fact, we have

m ≤
(
f, `

)
0

with equality if and only if the line `(x, y) = 0 is not in the tangent cone
defined by fm(x, y) = 0.

Indeed, we may parametrize the line ` = 0 by x = αt, y = βt; then we
substitute in f :

f(αt, βt) = fm(α, β)tm + fm+1(α, β)tm+1 + · · ·

is of order ≥ m, and of order m exactly if and only if fm(α, β) 6= 0.
It is convenient, given a curve f(x, y) and a point z in the plane, to define

the multiplicity of f at z as follows: take coordinates (x′, y, ) centered at z,
which means that they vanish at z; if z = (a, b) we may take x′ = x−a, y′ =
y − b. Then expand f in those coordinates (of course we assume that z is
in the domain of convergence of f).

We get f ′(x′, y′) = f(a+x′, b+ y′). Then we compute the lowest degree
terms appearing in the expansion of f ′ and denote this by mz(f) or, if X is
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the curve f(x, y) = 0, by mz(X). We see that mz(f) = 0 unless f(z) = 0,
and that if ` is a line through z, we have mz(X) ≤

(
X, `

)
z

with equality
except if ` is in the tangent cone of X at z.

Let us apply this, in our blowing up as described above, to the line
x1 = 0 (the exceptionnal divisor) and the strict transform f1(x1, y1) = 0,
at a point x′ with coordinates x1 = 0, y1 = t1) where fm(1, t1) = 0 i.e., a
point of intersection of the strict transform with the exceptionnal divisor.
We have

f1 = fm(1, y1) + x1fm+1(1, y1) + · · ·

and if we denote by ex′ the multiplicity of t1 as a root of the polynomial
fm(1, Y ), it follows from what we saw above that we have

ex′ ≥ mx′(f1)

with equality unless the curve f1(x1, y1) = 0 is tangent to the exceptionnal
divisor at the point x′, in the sense that the tangent at x′ to the exceptionnal
divisor is in the tangent cone of f1 = 0 at the point x′. Since the multiplicity
of f1 is zero at points where fm(1, y1) does not vanish, we see that if we
look at all the points x′ in the blown up surface Z which are mapped to
our origin by the projection Z → C2, which we denote by x′ → 0, we have∑

x′→0

mx′(f1) ≤
∑

x′→0

ex′ = m ,

so that in particular, if there is a point x′ of the strict transform X ′ of X
which is mapped to 0 and is of multiplicity m on f1 = 0, then it is the only
point of X ′ mapped to 0 and X ′ is transversal to the exceptionnal divisor at
x′. This fact and its generalizations play a crucial role in Hironaka’s proof
of the resolution of singularities.

In order to show that the situation which we have just described can-
not persist indefinitely in a sequence of blowing ups, we have to use the
intersection number in another manner, according to Hironaka:

Given a germ of a plane curve (X,x) with r branches (Xi, x)1≤i≤r and
a nonsingular curve W through the point x, define the contact exponent of
W with X at x as follows:

δx(W,X) = minr
i=1

((
Xi,W

)
x

mx(Xi)

)
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and the contact exponent of X at x as followsb

δx(X) = maxW δx(W,X),

where W runs through the set of germs at x of non-singular curves.

Lemma 6.1. Let f(x, y) = 0 be an equation for X. If the coordinates (x, y)
are chosen in such a way that x = 0 is not tangent to X at x and W is
defined by y = 0, the rational number δx(W,X) is the inclination of the
first side of the Newton polygon of f(x, y).

By definition of δx(W,X) is enough to prove that for an irreducible f ,

the inclination of the only side of it Newton polygon is
(
X,W

)
x

mx(X) , but if we
parametrize X by x = tm, y = tq + · · · , we find that the transversality
condition implies m ≤ q, and we have

(
X,W

)
x

= q; the result follows.

Lemma 6.2. Assume that W is the curve y = 0 and that f(x, y) is in
Weierstrass form, i.e.,

f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x) ai(x) ∈ C{x},

then the inclination of the first side of its Newton polygon is

δx(W,X) = min1≤i≤n−1
ν0(ai)
i

.

Here as usual ν0(a(x)) denotes the order of vanishing at the origin of the
series a(x).

Indeed, the point (0, n) is a vertex of the first side of the Newton polygon,
and the lemma is just the observation that if we write ai(x) = αix

ci + · · · ,
the other vertices of the Newton polygon are among the points (ci, n− i),
which follows directly from the definition.

A nonsingular curve W such that δx(W,X) = δx(X) is said to have
maximal contact at x. non singular curves with maximal contact are the
nonsingular curves which it is hardest to separate from X by a succession
of blowing ups (in the sense of separating strict transforms), and so when
they eventually separate, something nice should happen; indeed once they
separate, there is no point of multiplicity mx(X) in the iterated strict trans-
form mapping to x. As one says, ”the multiplicity has dropped”. Hironaka’s

bThis δx(X) is not related to the δ invariant of a singularity which measures the diminu-
tion of genus due to the presence of the singularity, and which is denoted in the same

way. These are the classical notations, however.
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approach to resolution uses the existence of varieties with maximal contact
to build an induction on the dimension.

The next step is to prove the existence of curves with maximal contact.
Assume that a non singular curve W defined by y = 0 does not have

maximal contact with X at x. We way assume that the curve x = 0 is
transversal to f(x, y) = 0, which means that f(0, y) = a0,my

m + · · · , where
m is the multiplicity of f at 0. By a change of variable y = (a0,m)

1
m y′,

which does not change the contacts, we may assume that a0,m = 1. To
say that δx(W,X) < δx(X) means that there is a series A(x) such that
the contact of the curve f(x, y) = 0 with y − A(x) = 0 is greater than
its contact with y = 0. By a change of the coordinate x which does not
affect the contacts, we may assume that A(x) = ξxd for some integer d and
ξ ∈ C∗. Let us now compute the power series expansion in the coordinates
x′ = x, y′ = y −A(x);

f ′(x, y′) =
∑

i
δ +j≥m

ai,jx
i(y′ + ξxd)j =

∑
k
δ′ +`≥m

a′k,`x
ky′

`
.

By expanding the powers of y′ + ξxd we get, for each (i, j), and k ≤ j the
inequality i+kd

δ + j−k ≥ m but we know that i
δ + j ≥ m. From this follows

the inequality d ≥ δ.
Isolating the terms which lie on the first side of the Newton polygon, we
get:

(∗)
∑

i
δ +j=m

ai,jx
iyj +

∑
i
δ +j>m

ai,jx
iyj =

∑
k
δ′ +`≥m

a′k,`x
ky′

`
,

and the slope of the first side of the Newton polygon of the right-hand side
is δ′ > δ. Let us first assume that δ = 1. Remark that all the terms xky′

`

with k
δ′ + ` ≥ m except y′m are in the ideal (x, y′)m+1. Therefore we must

have the equality ∑
i
δ +j=m

ai,jx
iyj = y′

m mod.(x, y)m+1

so that the left hand side is the m-th power of y − ξxd. This implies that
d = 1 = δ since the left hand side is homogeneous.

If δ > 1 we follow the same method. Since we know that d ≥ δ, it is easy
to check that the ideal of k[[x, y]] generated by the monomials xky′

`
, k

δ′ +
` ≥ m , k 6= 0 is contained in the ideal I generated by the monomials
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xiyj , i
δ + j > m. Looking at the equation (∗) modulo I gives us∑

i
δ +j=m

ai,jx
iyj = y′

m mod.I

which again by homogeneity shows that d = δ and the sum on the left hand
side is (y − ξxd)m.

Note that this argument also works if δx(X) = ∞. So there are two
possibilities:

1) We have δx(W,X) < δx(X); in this case the sum of the terms of f(x, y)
lying on the first side of the Newton polygon is of the form (y − ξxd)m.
2) The sum of the terms of f(x, y) lying on the first side of the Newton
polygon is not of the form (y − ξxd)m.
In the first case, as we have seen, d = δx(W,X). We make the change of
variables x′ = x; y′ = y−ξxd and in the new coordinates x′, y′, if W ′ is the
curve y′ = 0, we have δx(W ′, X) > δx(W,X). This follows easily from the
computation we have just made; an effect of the change of variables is that
all the terms lying on the first side of the Newton polygon, of inclination
d, are transformed into the single term monomial y′m. So the inclination of
the new Newton polygon has to be > d; but we know this inclination to be
δx(W ′, X). If we have not reached δx(X), we continue the same procedure,
and after possibly infinitely many steps, i.e., after a change of variables of
the form

x′ = x ; y′ = y − ξ1x
d1 − ξ2x

d2 − · · · − ξrx
dr − · · ·

we reach the stage where the sum of terms on the first side of the Newton
polygon is not a m − th power, so δx(Ws, X) = δx(X), with s possibly
infinite. Since the denominators of the δx(W,X)’s are bounded, the series
is infinite only in the case where δx(X) = ∞. At least formally this series
converges, since we have d1 > d2 > · · · > dr > . . . , but we can omit the
proof of convergence if we work in C{x, y} since the equality δx(X) = ∞
means that in some coordinates f(x, y) is of the form u(x, y)ym where u
is an invertible element in k[[x, y]]; indeed for any other case, we see from
the definition that δx(X) < ∞. But the Weierstrass preparation theorem
tells us that if such a presentation exists with formal power series, it also
exists with convergent power series, so that the series defining our final
coordinates converges.

So in all cases, we can find a nonsingular curve W which has maximal
contact with X at x, i.e., such that δx(W,X) = δx(X). Remark that all

the discussion above is valid on a germ of a non singular surface, since
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it is analytically isomorphic to the plane. The definition of the blowing
up is independant of the choice of coordinates, and makes sense on any
nonsingular surface.

The next step is to study the behavior of the contact under blowing up
of the origin. I will leave the proof of this as an exercise, since it is a direct
application of what we have just seen and the definition of blowing up:

Theorem 6.1. (Hironaka) Let m be an integer, let f(x, y) = 0 define a
germ of a plane curve, (X, 0) ⊂ (C, 0) of multiplicity m and let (W, 0) ⊂
(C, 0) be a non singular curve with maximal contact with X at 0. If, after
blowing up the point 0 by the map B0 : Z → C2, there is a point x′ ∈ X ′ of
multiplicity m in the strict transform X ′ ⊂ Z of X, then
1) The point x′ is the only point of X ′ mapped to 0 by B0,
2) The strict transform W ′ of W by B0 contains the point x′, and W ′ has
maximal contact with X ′ at x′,
3) We have the equality δx′(W ′, X ′) = δx(W,X)− 1.

Corollary 6.1. The maximal length of a sequence of infinitely near points
of multiplicity m on the strict transforms of X, each mapping to its prede-
cessor in successive blowing ups

· · · → Z(r) → Z(r−1) → · · · → Z(2) → Z(1) → C2

is equal to the integral part [δx(X)].

This suffices to show that unless the curve is of the form ym = 0, the
multiplicity of its strict transform in the sequence of blowing ups obtained
by blowing up at each step the points of maximal multiplicity drops after
a finite number of steps. By induction on the multiplicity, this proves the
resolution of the singularity of X at 0 by a finite number of blowing ups of
points on non singular surfaces.We should remark that the map X ′ → X

of the strict transform of X to X is defined by itself, without any reference
to an embedding (X, 0) ⊂ (C2, 0) (see [K]).

We have proved a local result, but if now we consider any algebraic or
analytic curve, it has finitely many singular points, and the local resolution
processes at each point are independant, so we have:

Theorem 6.2. Given an algebraic or analytic plane curve X there exists a
finite sequence of point blowing ups such that in the composed map X ′ → X

the curve X ′ has no singularities.
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Actually we can get, by the same method, a better result, known as embed-
ded resolution and originally due to Max Nœther, as follows:

Theorem 6.3. Given a curve X on a non singular surface S, there exists
a finite sequence of blowing ups of points

S(r) → · · · → S(1) → S

such that if we denote by π : S(r) = S′ → S their compositum, then the in-
verse image of the singular points of X (the exceptionnal divisor) is a union
of non singular curves ( each isomorphic to P1(C)) meeting transversally
on the non singular surface S′, and the strict transform X ′ of X by π is a
non singular curve meeting transversally these curves.

In analytic terms, if f(x, y) = 0 is a local equation for X in S, then f ◦ π
is, at every point x′ of S′, of the form (f ◦ π)x′ = uavb for suitable local
coordinates of S′ at x′. Of course a and b will be zero unless we have
x′ ∈ π−1(X).The induced map π : X ′ → X is a resolution of singularities

of X. If we fix a singular point x ∈ X, let r be the number of analytically
irreducible components of the germ (X,x). The number of points in π−1(x)
is equal to r and for a small enough representative Xx of the germ (X,x),
the part π−1(Xx) of X ′ lying over Xx consists of r non singular curves Di,
each marked with one of the points of π−1(x). The image by π of each of
these non singular curves Di is one of the irreducible components of Xx.

If we choose for each non singular curve Di a coordinate ti vanishing at
the only point zi of Di lying over x, then Di is described parametrically,
in local coordinates (u, v) on S′ centered at zi, by convergent power series
u(ti), v(ti), because of the implicit function theorem. Since the map π : S′ →
S is a composition of algebraic maps, x◦π and y◦π are at worst convergent
power series in (u, v), so when we restrict them to Di, we get convergent
power series in ti. This shows that each branch of our curve has a convergent
parametrization, and from this we deduce that the formal parametrization
constructed by Newton’s method converges.

Note that this convergence argument works equally well with the first
resolution theorem. The new fact in the resolution result above with respect
to the resolution theorem is the transversality of the strict transform with
the exceptionnal divisor, which is not part of the resolution theorem as
we have stated it above. The proof of this improvement is not difficult: it
amounts to resolving singularities, by a sequence of points blowing up, of
the union of the strict transform and the exceptional divisor of the map
which resolves the singularities of X.
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As an example, given an integer m > 1, after one blowing up the strict
transform of a curve with equation ym − xm+1 = 0, is non singular, but it
is not transversal to the exceptionnal divisor.

It is the first example of a fundamental fact of analytic or algebraic
geometry: you can make spaces (in fact, their strict transforms) transversal
by well chosen sequences of blowing ups.

7. Resolution of space curves

7.1. Integral dependance

To prove a resolution theorem for space curves, one meets the difficulty that
their equations may be complicated (for example to define a curve in Cn one
may need more that n−1 equations; those for which n−1 equations suffice
are called complete intersections, and also that rather different looking sets
of equations may generate the same ideal in C{x1, . . . , xn} and therefore
define the same curve. In the proofs above we have used constructions which
depend heavily on the equation. Moreover, even to show that a germ of a
complex curve in Cd has a finite number of irreducible components, which
are analytic germs, is not completely trivial (see [L ], II.5). There are two
possibilities: we can conceptualize and abstract the proof for plane curves
to make it less dependent on the equation, or try to reduce to the plane
curve case. As it happens, the two methods are not so different, at least for
one of the ways of abstracting the ideas.
To reduce to the plane curve case, the natural idea is to project the space
curve X to a plane curve X1. One can then show that a resolution of X1

has to map to X, and that this map is a resolution of the singularities of
X!.

The key idea is that of normalization. The Italian geometers called nor-
mal a projective variety Z ∈ Pn having the property that any map Z ′ → Z

presenting Z as a ”general” projection by a linear map Pn′ \L→ Pn of an
algebraic variety Z ′ ⊂ Pn′

had to be an isomorphism. A typical non nor-
mal surface in P3 is therefore a general projection of a non singular surface
in P4 which cannot be embedded in P3; such a projection has a curve of
double points, on which are finitely many more complicated singular points,
the ”pinch points”. Here the meaning of ”general” has to be made precise;
The variety Z is normal if any map π : Z ′ → Z which
a) is finite-to-one and
b) induces an isomorphisme Z ′ \ π−1(U) → U , over the complement U of
a closed algebraic or analytic subset of Z of smaller dimension,
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is an isomorphism.
The resolution theorem we saw above shows that a singular curve in P2

cannot be normal.

The concept of normalization was ”localized” and transfigured into a
concept of commutative algebra as follows: Recall that the total ring
of quotients of a ring A is the ring of equivalence classes of couples
(a, b) of elements of A, where b is not a zero divisor in A with addition
(a, b) + (a′, b′) = (ab′ + ba′, bb′) and component wise multiplication, the
equivalence being (a, b) ≡ (a′, b′) when ab′ − ba′ = 0. The map a 7→ (a, 1)
induces an injection of A in F and we indentify A with its image in F . If
A is an integral domain, F is its field of fractions.

Definition Let A be a commutative ring without nilpotent elements, and
let F be its total ring of quotients.
Definition.- An element h ∈ F is integral over A if it satisfies an equation

hk + a1h
k−1 + · · ·+ ak = 0 with ai ∈ A.

Example.- Consider the germ of plane curve X in C2 defined by the equa-

tion yp−xq = 0. The quotient O of the ring C{x, y} by the ideal generated
by yp − xq is the ring of germs of analytic functions on the germ X (the
restrictions to X of two analytic functions on C2 coincide if and only if
their difference is in the ideal). The ring O is an integral domain; let K be
its field of fractions. If we keep the notations x, y, etc.. for the restrictions
to X of functions on C2, we have y

x ∈ F . I claim that if p ≤ q, it is integral
over O; indeed, we have the relation

(
y

x
)p − xq−p = 0 .

We can remark that the function y
x is defined and analytic on the strict

transform of X by the blowing up of the origin for any sufficiently small
representative of the germ X. We remark also that the condition p ≤ q is
equivalent to saying that the meromorphic function y

x remains bounded on
X for any small representative.

Proposition 7.1. Given a ring A without nilpotent elements, let F be its
total ring of fractions; the set of elements of F integral over A is a ring for
the operations induced by those of F .

This ring is called the normalization of A (or the integral closure of A in
F ) and often denoted by A. Of course we have A ⊂ A; a ring such that
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A = A is said to be integrally closed. Is is not difficult to check that A is
integrally closed.

If A is nœtherian and integrally closed, any injective map A → B to a
subring B of the total ring of fractions of A which makes B into a finite A-
module is an isomorphism; this is the translation of the original definition
of normality. To prove it, check that if h is an element of B, the powers
of h cannot all be linearly independant over A, so h satisfies an integral
dependance relation, and if A is normal, it is in A!

An important theorem is that if A is an analytic algebra, i.e., a quotient
of a convergent power series ring by some ideal, then A is a finite sum of
integrally closed analytic algebras, and moreover that the injection A→ A

makes A into a finitely generated A-module. Taking a common denominator
(in F ) for a finite set of generators of the A-module A, we see that the
(”conductor”) ideal C = {d ∈ A, d.A ⊂ A} is not zero.
Another important fact is that if the analytic algebra of germs of functions
on a curve at a point is normal, the point is non singular on the curve, and
the analytic algebra is isomorphic to a convergent power series ring in one
variable C{t}. ([L ], VI.3, Thm.2)

7.2. The δ invariant of a plane curve singularity

Let O be the analytic algebra of a germ of curve (X, 0), plane or not, and let
O be its normalization. Since it is an O-module of finite type with the same
total ring of quotients, a version of the Hilbert Nullstellensatz shows that
the quotient vector space over C is finite dimensional. So we may define an
invariant to measure how far O is from being integrally closed, i.e., regular:

δX,0 = dimC
O
O

In the case of plane curves, this invariant is known as the diminution of
genus which the presence of the singularity imposes on the curve:
Take a projective plane curve C of degree d. If it is non singular, it is
topologically a differentiable surface, classified by its genus. This genus is
equal to

g(C) =
(d− 1)(d− 2)

2
.

If the curve has singularities, then its normalization is topologically a dif-
ferentiable surface, and its genus is

g(C) =
(d− 1)(d− 2)

2
− Σx∈CδC,x,
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where the sum on the right is finite since δC,x is nonzero only at singular
points, and those are finite in number.
The genus of the normalization of C is traditionally called the geometric
genus of C.
Moreover, the local invariant δC,x has a local geometrical interpretation,
(see [T4], [T6]) which I will describe only in the case of a branch, for sim-
plicity:
Let tn, y(t) be a parametrization of our branch X. Consider the product
of the normalization of X with itself, with coordinates (t′t′) and the two
curves in (C2, 0) = (X ×X, 0) defined by

tn − t′
n

t− t′
= 0

y(t)− y(t′)
t− t′

= 0

The intersection number of these two curves at the origin is equal to 2δX ;
if now we perturb slightly the parametrization of X by tn +αvt, y(t) + βvt

with two ”general ” complex numbers α, β, we can see that the two curves
now have deformed equations and for small v they now meet transversally
in 2δX points in X×X. this means that the curve defined parametrically by
tn + vαt, y(t) + vβt has δX ordinary double points (two branches meeting
transversally), which tend to 0 as v tends to 0. So we can view δX as
the number of ordinary double points which have coalesced to form the
singularity of X at the origin. Of course, for an ordinary double point
δ = 1.

In fact this geometric interpretation follows from the fact that the δ invari-
ant plays a key role in understanding which deformations of curves come
from deforming the parametrization.

If a germ of plane curve is given parametrically by x(t), y(t), we can
define (one parameter) deformations of the parametrization as follows:

x(t; v) = x(t) +
∑

i ai(v)ti, ai ∈ C{v}, ai(0) = 0
y(t; v) = y(t) +

∑
j bj(v)t

j , bj ∈ C{v}, bj(0) = 0.

If on the other hand our curve is given implicitely by an equation f(x, y) =
0, then we can define a deformation as

f(x, y; v) = f(x, y) +
∑

(i,j) 6=(0,0)

gij(v)xiyj gij ∈ C{v}, gij(0) = 0.

The elimination process can be performed over C{v} to show that a de-
formation of the parametrization always give a deformation of the equation
(again this follows from the fact that the formation of Fitting ideals com-
mutes with base extension).
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Is the converse true in the sense that any deformation of the equation can
be represented by a deformation of the parametrization? The answer is NO!

In order to understand what happens, we must reinterpret the problem.
To say that a family of curves is obtained by deforming a parametrization
is to say that they all have “the same normalization” in some sense. Thus
we are led to study how the normalizations vary in an analytic family of
reduced plane curves.

Definition 7.1. Let (C, 0) be a germ of a reduced analytic curve, or let
C be a closed reduced analytic curve in a suitable open polycylinder of
Cd, or an affine curve, with ring OC . Then its δ invariant is defined by
δ0(C) = dimC

(OC,0
OC,0

)
, or δ(C) = dimC

(OC

OC

)
.

Since normalization of a sheaf of algebras form a sheaf, we have

δ(C) =
∑
x∈C

δx(C)

where the sum on the right is finite since δ is nonzero only at singular
points.

Now let f : (S, 0) → (C, 0) be a germ of a flat morphism such that f−1(0)
is a germ of a reduced analytic curve. Here flatness means that no element
of OS,0) is annihilated by multiplication by an element of C{v} where v is
a local coordinate on (C, 0).
Let n : S → S be the normalization of the surface S (a small representative
of the germ), and let

p = f ◦ n : (S, n−1(0)) → (S, 0).

Let us denote p−1(0) by (S)0, and to write δ((S)0) =
∑

x∈n−1(0) δ((S)0, x).
similarly, write δ(S0) for δ(f−1(0), 0) and δ(Sy) for δ(f−1(y) when y ∈
C \ {0} in a small enbough representative of f , so that all the singular
points of f−1(y) tend to 0 when y → 0, and 0 is the only singular point of
f−1(0). Note that δ(Sy) =

∑
z∈Sy

δ(Sy, z).
Then we have:

Proposition 7.2. (see [T6], and [CH-L] for a beautiful generalization)
a) The morphism p = f ◦ n : (S, n−1(0)) → (C, 0) is a multigerm of a flat
mapping.
b) We have the equality

δ((S)0) = δ(S0)− δ(Sy),

for y 6= 0 sufficiently small.
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To say that the normalizations of the various fibers f−1(y) glue up into
a non singular surface is therefore equivalent to saying that p−1(0) is non
singular and this is equivalent to saying that “the δ invariant of the fibers
Sy is constant as y varies in C near 0.

Note that the fiber f−1(y) will in general have several singular points,
at which it is not necessarily analytically irreducible even if f−1(0) is irre-
ducible.

This explains what happens when we deform the parametrization by x(t)+
αvt, y(t) + βvt; since it is a deformation of the parametrization, the sum of
the δ invariants must be the same for all values of v, while for v 6= 0 the
curve has only ordinary double points, whose δ invariant is one.

7.3. projections of space curves

So this abstract idea, normalization, provides us with a proof of the res-
olution of singularities of space curves: given (C, 0) ∈ (Cd, 0), the normal-
ization O → O of the (reduced) analytic algebra of germs of functions on
C is an analytic algebra which is a product Πr

i=1C{ti} of a finite number
of convergent power series rings in one variable. If x1, . . . , xd generate the
maximal ideal of O, we get r d-uples of convergent power series expan-
sions xj(ti), which are our Newton series in this case. They geometrically
correspond to a map

r⊔
i=1

(C, 0)i → (C, 0)

which is our resolution of singularities. However, normalization is geomet-
rically subtle in general, and the finiteness of normalization for the rings
one meets in Geometry is a fairly deep theorem of commutative algebra; in
addition, we may seek a more geometric proof, as follows

We now turn to the definition of plane projections of a space curve.
Let (C, 0) ∈ (Cd, 0) be a germ of a (reduced) space curve defined by an ideal
I ⊂ C{x1, . . . , xd}. Let us choose a linear projection p : Cd → C2. Let M
denote the space of all such projections; think of it as a set of d×2 matrices
of rank 2. We endow M with the topology (complex or Zariski) induced by
that of the space of matrices. We wish to consider only the projections such
that p|C : C → p(C) is finite to one. If that is not the case, the kernel of
p, which is a linear subspace of codimension 2 of Cd, contains one of the
irreducible components of the curve C; the intersection is analytic, so it is
either of dimension 0 or 1. By looking at the equations of C, it is not too
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difficult to check that the projections which do not contain a component of
C form a dense open set of M . The fact that they are those which induce
a finite map C → p(C) is a consequence of the Weierstrass preparation
theorem.
Assume now that the map C → p(C) is finite. Again by the Weiertrass
theorem, it means that the map of analytic algebras C{x, y} → O defined
by f 7→ (f ◦p)|C makes O a C{x, y}-module of finite type. Since C{x, y} is
nœtherian, as we saw in a preceding section, it means we have a presentation
by an exact sequence of C{x, y}-modules:

C{x, y}q → C{x, y}p → O → 0

An argument which we have seen above shows that since C is of dimension
1, we must have q = p, so the first map is described by a square matrix
with entries in C{x, y}. Let φ(x, y) be the determinant of that matrix.
This determinant is, up to an invertible factor, independant of the choice
of the presentation. Then the image p(C) is the plane curve with equation
φ(x, y) = 0.

On the other hand, let us say that a linear plane projection p : Cd → C2

is general for the curve C ⊂ Cd at the point 0 ∈ C if it has the following
property:
For any sequence of couples of points (ai, bi) ∈ (C \{0})× (C \{0}) tending
to 0, the limit direction of the secant line ai, bi (for any subsequence) is not
contained in the kernel of p.

We will see in the next paragraph that all general projections of a given
germ (C, 0) of space curve are topologically indistinguishable as germs of
plane curves in C2. In [T2] it is shown that if p is general for (C, 0), then
the inclusion of the ring O1 = OX1,0 of the image X1 = p(X) as defined
above into the ring O = OC,0 (induced by the composition of functions
with p) induces an isomorphism of the total rings of fractions of these two
rings, and because O is a finite O1-module, every element of O is integral
over O1, as we saw above. Therefore O is contained in the normalization
O1 of O1.
Therefore O1 is also the normalization of O, and it is a finite O-module
for general reasons (see [K]; it suffices to know that the integral closure
of O1 is a finite O1-module). Now we can use the universal property of
blowing ups: in O1 all ideals become principal and generated by a non zero
divisor in each C{ti}. By the universal property of blowing up ([L ], VII.5)
if we blow up the origin in O, the resulting algebra is still contained in
O1, and as we repeat blowing up points, we get an increasing sequence
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of O-algebras contained in O1, all having the same total ring of fractions.
Since O1 is a finite O-module, this sequence stabilizes after finitely many
steps. We have to show that this limit algebra is O1. But if this were not
the case, the maximal ideal of one of the component local algebras would
not be principal, so we could blow it up and get a strictly bigger algebra,
contradicting the stability.
In conclusion, we have shown that any space curve singularity can also be

desingularized by a finite sequence of point blowing ups.
One can also prove embedded resolution for space curves; it is not much

more difficult than in the plane curve case.

8. The semigroup of a branch

There is another natural object associated to the inclusion O → O; again I
will decribe it only in the case of a branch.

Let O be the analytic algebra of a germ of analytically irreducible curve
X, and let O be its normalization; we have an injection O → O which
makes O an O-module of finite type and O is a subalgebra of the fraction
field of O. Since O is isomorphic to C{t}, the order in t of the series defines
a mapping ν : C{t} \ 0 → N which satisfies
i) ν(a(t)b(t)) = ν(a(t)) + ν(b(t)) and
ii) ν(a(t) + b(t)) ≥ min(ν(a(t)), ν(b(t))) with equality if ν(a(t)) 6= ν(b(t));
in other words, ν is a valuation of the ring C{t}.

We consider the valuations of the elements of the subring O, i.e., the
image Γ of O \ {0} by ν; in view of i), it is a semigroup contained in N.
The fact that O is a finite O-module implies that N\Γ is finite, and in fact
(see [Z]) we have for the δ invariant of C the equality

δX = #(N \ Γ)

Now we seek a minimal set of generators of Γ as a semigroup:
Let β0 be the smallest non zero element in Γ, let β1 be the smallest element
of Γ which is not a multiple of β0, let β2 be the smallest element of Γ which
is not a combination with non negative integral coefficients of β0 and β1,
i.e., is not in the semigroup

〈
β0, β1

〉
, and so on. Finally, since N\Γ is finite,

we find in this way a minimal set of generators:

Γ =
〈
β0, β1, . . . , βg

〉
This set is uniquely determined by the semigroup Γ, and of course determ-
ines it.
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By a theorem of Apéry and Zariski (see [Z]), if (X, 0) is a plane branch, the
datum of these generators, or of the semigroup, is equivalent to the datum
of the Puiseux characteristic of (X, 0), or of its topological type.

Let us take the notations introduced for the Puiseux pairs; it is easy to
check that if we set β0 = n, the multiplicity, then β0 = β0 = n, β1 = β1.
After that it becomes more complicated. Zariski ([Z], Th. 3.9) proved the
following formula for q = 2, . . . , g:

βq = (n1 − 1)n2 . . . nq−1β1 + (n2 − 1)n3 . . . nq−1β3 + · · ·+ (nq−1 − 1)βq−1 + βq,

which can be summarized in the following recursive formula:

βq = nq−1βq−1 − βq−1 + βq

The proof relies on a formula of Max Noether which computes the con-
tact exponent (C,D)0

m0(D) of two analytic branches at the origin in terms of the
coincidence of their Puiseux expansions in fractional powers of x.
This fact leads to a very interesting constatation:
Consider the Puiseux expansion of a root y(x) of the Weierstass polynomial
defining an analytically irreducible plane curve near the origin, assuming
that x = 0 is not in the tangent cone of that curve:

y = anx + a2nx2 + · · ·+ aknxk + aβ1x
m1
n1 + aβ1+e1x

m1+1
n1 + · · ·+ aβ1+k1e1x

m1+k1
n1

+aβ2x
m2

n1n2 + aβ2+e2x
m2+1
n1n2 + · · ·+ aβq

x
mq

n1n2···nq + aβq+eq−1x
mq+1

n1n2···nq + · · ·

+aβg
x

mg
n1n2···ng + aβg+1x

mg+1
n1n2···ng + · · ·

and the following series

ξ0 = x,

ξ1 = anx + a2nx2 + · · ·+ aknxk

ξ2 = anx + a2nx2 + · · ·+ aknxk + aβ1x
m1
n1 + aβ1+e1x

m1+1
n1 + · · ·+ aβ1+k1e1x

m1+k1
n1

...

ξg = y − (aβg
x

mg
n1n2···ng + aβg+1x

mg+1
n1n2···ng + · · · )

That is, the sequence of truncations of the Puiseux series just before the
appearance of a new Puiseux exponent. Each ξj , 0 ≤ j ≤ g is a root of a
Weierstrass polynomial Qj defining a branch Cj . Note that we have Q0 = x

and that Q1 = y if y = 0 has maximal contact with C.

Proposition 8.1. (Apéry-Zariski), see also [PP] For the semigroup Γ =
〈β0, β1, . . . , βg〉 associated to a plane branch and the curves Cj just defined,
we have the equalities

βj = (C,Cj)0.
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In fact, this equality remains true if we replace the expansions ξj by any
series which coincide with the series y(x) until just before the j-th Puiseux
exponent; see [PP]. It follows easily from this that the datum of the semig-
roup is equivalent to the datum of the multiplicity n and the Puiseux ex-
ponents βi of the curve.

The semigroups coming from plane branches are characterized among
all semigroups of analytically irreducible germs of curves by the following
two properties:

1) niβi ∈
〈
β0, . . . , βi−1

〉
2) niβi < βi+1

That the semigroups of plane branches have these properties follows from
the induction formula and the inequalities βi < βi+1. The converse can be
proved by the construction outlined below (see [Z], appendix).

Conversely, given a semigroup Γ in N with finite complement, we can
associate to it an analytic (in fact algebraic) curve, called the monomial
curve associated to Γ. If Γ =

〈
β0, β1, . . . , βg

〉
, the monomial curve CΓ is

described parametrically by

u0 = tβ0

u1 = tβ1

.

.

.

ug = tβg

If the semigroup Γ comes from a plane branch, the relations 1) above mean
that there exist natural numbers `(j)i such that we have

n1β1 = `
(1)
0 β0

n2β2 = `
(2)
0 β0 + `

(2)
1 β1

.

.

njβj = `
(j)
0 β0 + · · ·+ `

(j)
j−1βj−1

.

.

.

ngβg = `
(g)
0 β0 + · · ·+ `

(g)
g−1βg−1
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These relations translate into equations for the curve CΓ ⊂ Cg+1; since
ui = tβi , our curve satisfies the g equations

uni
j − u

`
(j)
0

0 u
`
(j)
1

1 . . . u
`
(j)
j−1

j−1 = 0, 1 ≤ j ≤ g,

and it can be shown that they actually define CΓ ⊂ Cg+1, so that if Γ is
the semigroup of a plane branch, CΓ is a complete intersection.

Remark that if we give to ui the weight βi, the i-th equation is homo-
geneous of degree niβi.

The connection between a plane curve X having semigroup Γ and the
monomial curve is much more precise and interesting than the formal re-
lation we have just seen; by small deformations of the monomial curve one
obtains all the branches with the same semigroup. In fact the best way to
understand all branches with semigroup Γ is to consider the not necessarily
plane curve CΓ (CΓ is plane if and only if C has only one characteristic
exponent).

By definition of Γ, there are elements ξq ∈ O with ν(ξq) = βq. We can
write these elements in C{t} as

ξq = tβq +
∑
j>βq

γq,jt
j .

Let us consider the one-parameter family of parametrizations

u0 = tm

u1 = tβ1 +
∑

j>β1
vj−β1γ1,jt

j

.

.

ug = tβg +
∑

j>βg
vj−βgγg,jt

j

The reader can check that for v 6= 0, the curve thus described is isomorphic
to our original curve C. (hint: make the change of parameter t = vt′ and
the change of coordinates uj = v−βjv′j , and remember the definition of the
ξj). For v = 0, we have the parametric description of the monomial curve.

So we have in fact described a map

C×C → Cg+1 ×C

which induces the identity on the second factors (with coordinate v). The
image of this map is a surface, which is the total space of a deformation
of the monomial curve, all of its fibers except the one for v = 0 being
isomorphic to our plane curve C.
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So the monomial curve is a specialization, in this family, of our plane
curve. In this specialization the multiplicity and the semigroup remain
constant; in a rather precise sense it is an equisingular specialization, or
one may say that the plane curve is an equisingular deformation of the
monomial curve with the same semigroup.

The same phenomenon can be also observed in the language of equations
rather than parametrizations. Let us consider a one parameter family of
equations for curves in Cg+1, of the form

un1
1 − u

`
(1)
0

0 − vu2 = 0

un2
2 − u

`
(2)
0

0 u
`
(2)
1

1 − vu3 = 0
.

.

u
ng−1
g−1 − u

`
(g−1)
0

0 u
`
(g−1)
1

1 . . . u
`
(g−1)
g−2

g−2 − vug = 0

u
ng
g − u

`
(g)
0

0 u
`
(g)
1

1 . . . u
`
(g)
g−1

g−1 = 0

For v = o we get the equations of the monomial curve, and for v 6= 0 we
get a curve which has semigroup Γ; this is a general heuristic principle of
equisingularity: we have added to each equation of the monomial curve,
homogeneous of degree niβi, a perturbation of degree βi+1 > niβi, and this
should not change the equisingularity class (the perturbation is ”small”
compared to the equation).

Notice that for each fixed v 6= 0 the curve described by the above equa-
tions is a plane curve: for simplicity take v = 1; then use the first equation

to compute u2 = un1
1 − u

`
(1)
0

0 , substitute this in the next equation, and
use this to compute u3 as a function of u0, u1, and so on. Finally the last
equation gives us the equation of a plane curve of the form

“
· · ·

`
(un1

1 − u
`
(1)
0

0 )
n2

− u
`
(2)
0

0 u
`
(2)
1

1

´n3

− · · ·
”ng

−u
`
(g)
0

0 u
`
(g)
1

1 (un1
1 − u

`
(1)
0

0 )
`
(g)
2

· · · = 0

The first consequence (see the appendix to [Z]) is that we can produce
explicitely the equation of a plane curve with given characteristic exponents:
compute the semigroup and its generators, and then write the equation
above.

A more important fact is that one can show (see [loc. cit) that any plane
curve with a given semigroup appears up to isomorphism as a fiber in a
deformation depending on a finite number of parameters: it is a deformation
of the monomial curve obtained by adding to the j-th equation a polynomial
in the ui’s of order > njβj , and these polynomials can in principle be
explicitely computed.
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In fact it is shown in [G-T] that we can in this manner produce equations
for all branches having the same semigroup (or equisingularity type) up to
an analytic isomorphism.
The fact that the curve is plane corresponds to the condition that uj+1

appears linearly in the deformation of the j-th equation, for 1 ≤ j ≤ g− 1.
Finally, all the plane branches with the same semigroup have ”the same”
process of resolution of singularities: you have to blow up points according
to the same rules, the multiplicities of the strict transforms are the same,
and so on. So the resolution of the plane curve described above shows the
structure of the resolutions of all the curves with the same semigroup. First

you resolve the curve un1
1 − u

`
(1)
0

0 = 0; when its strict transform is non
singular (after a number of blowing ups which depends on the continued

fraction expansion of the ratio `
(1)
0
n1

, you take it as a coordinate axis: then
you have one parenthesis less in the equation above (the point is that the
form of the equation does not change), and you proceed like this. After g
such steps the branch is resolved.

There is however another way to use the structure given by the descrip-
tion of our branch as a deformation of the monomial curve to get embedded
resolution; it is the subject of the next paragraph.

9. Resolution of binomials

Let a1, a2 be two integral vectors in the first quadrant of Ř2, and assume
that their determinant is ±1. Then they are primitive vectors and they
generate the integral lattice Ž2 of Ř2. Consider the cone

σ = 〈a1, a2〉

of their positive linear combinations. It is a rational convex cone (= a convex
cone which is the intersection of finitely many half spaces determined by
hyperplanes with rational -even integral- equations). Because it is generated
by integral vectors which form a basis of the integral lattice Z2, we say tha
it is a regular cone. Since it is convex it has a convex dual which is a rational
convex cone in R2:

σ̌ = {m ∈ R2/m(`) ≥ 0 ∀ ` ∈ σ}.

The cone σ̌ is also generated by two vectors with determinant ±1, which
therefore generate the integral lattice Z2 of R2. If we interpret each integral
point of σ̌ as a (Laurent) monomial (here “Laurent” means that negative
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exponents are allowed) in variables (u1, u2), the algebra C[σ̌ ∩ Z2] is a
polynomial algebra in two variables, say C[y1, y2].

Since σ is contained in the first quadrant, its dual σ̌ contains the dual of
the first quadrant, which is the first quadrant of R2. If we remark that the
integral points of the first quadrant correspond exactly to the polynomial
algebra C[u1, u2], we see that there is therefore an inclusion

C[u1, u2] ⊂ C[y1, y2]

and it is an interesting exercise to check that it is given by

u1 7→ y
a1
1

1 y
a2
1

2

u2 7→ y
a1
2

1 y
a2
2

2

where aj
i is the i-th coordinate of the vector aj .

The transform of a monomial um = um1
1 um2

2 is, if we write m =
(m1,m2):

um1
1 um2

2 7→ y
〈a1,m〉
1 y

〈a2,m〉
2 ,

so that the transform of a binomial um − λmnu
n is

um − λmnu
n 7→ y

〈a1,m〉
1 y

〈a2,m〉
2 − λmny

〈a1,n〉
1 y

〈a2,n〉
2 .

Now the key observation is that if 〈a1,m−n〉 and 〈a2,m−n〉 are both non
zero, they have the same sign, which means that the two vectors a1 and a2

are in the same half space determined the hyperplane Hm−n dual to the
vector m − n, or equivalently that the cone σ is compatible with Hm−n in
the sense that σ ∩Hm−n is a face of σ, then we can factor the transform of
the binomial. Assume that 〈ai,m−n〉 ≥ 0. We have non negative exponents
in the identity

y
〈a1,m〉
1 y

〈a2,m〉
2 − λmny

〈a1,n〉
1 y

〈a2,n〉
2 =

y
〈a1,n〉
1 y

〈a2,n〉
2

(
y
〈a1,m−n〉
1 y

〈a2,m−n〉
2 − λmn

)
.

Now we have an exceptional divisor defined by

y
〈a1,n〉
1 y

〈a2,n〉
2 = 0

and a strict transform defined by

y
〈a1,m−n〉
1 y

〈a2,m−n〉
2 − λmn = 0
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The next observation is that the strict transform is non singular, and meets
the exceptional divisor if and only if σ ∩Hm−n is an edge of σ, i.e., is not
{0}. Say that a2 is in Hm−n; the strict transform is then

y
〈a1,m−n〉
1 − λmn = 0.

Now if we assume that the binomial um−λmnu
n is irreducible in C[u1, u2],

which is equivalent since C is algebraically closed to the fact that the vector
m − n is primitive, in the sense that it is not an integral multiple of an
integral vector, then it is not difficult to check (see [T1], Proposition 6.2)
that 〈a1,m− n〉 = 1, so that finally our strict transform in this case is y1−
λmn = 0, which is indeed non singular and transversal to the exceptional
divisor.
Actually the same proof works if the binomial is reducible but there are
then several points above the origin in the strict transform of the curve.
The next observation is that in two variables our binomial has to be of
the form um

1 − λun
2 unless the curve contains a coordinate axis, which we

exclude in the irreducible case. By a change of variable we may assume
λ = 1 and by irreducibility, we have (m,n) = 1. Now to study the strict
transform under one of our monomial maps π(σ) we have seen that the
only interesting case is when one of the generating vectors of σ, say a1, is
the vector (n,m). Let us assume that n < m. Set a2 = (a, b) and say that
am− bn = 1 (we know it has to be ±1). The transform of a monomial ui

1u
j
2

is yni+mj
1 yai+bj

2 . From this follows that if we consider a curve with equation

(∗) um
1 − un

2 +
∑

ni+mj>mn

aiju
i
1u

j
2 = 0

it transforms into

ymn
1 yam

2

(
y2 − 1 +

∑
ni+mj>mn

aijy
ni+mj−mn
1 yai+bj−am

2

)
and one checks that all exponents are positive. The strict transform of our
curve is still non singular in a neighborhood of the exceptional divisor, and
transversal to the exceptional divisor at the point y1 = 0, y2 = 1.
If we consider the other cone σ′ having the vector (n,m) as an edge, we find
that the point where the strict transform meets the exceptional divisor lies
in the open set of the corresponding chart Z(σ′) which is identified with
an open set of Z(σ); we are looking at the same object in two charts. This
shows that the toric maps which provides an embedded resolution for the
binomial um

1 − un
2 = 0 in fact also gives an embedded resolution for all the
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curves of the type (∗), where one deforms the binomial by adding terms of
higher weight, where the weight of u1 is n and the weight of u2 is m.
Now by a general combinatorial result (see [Ew]), for any integer d ≥ 2,
given a finite collection of hyperplanes whose equation has integral coeffi-
cients in the first quadrant Rd

≥0 of Rd, it is possible to find a regular fan
with support Rd

≥0, that is a finite collection Σ of regular rational cones such
as our σ above (but now with d generating vectors of determinant ±1) and
its faces, whose union is Rd

≥0, and such that if σ ∈ Σ its faces are also in
Σ, and for any σ, σ′ ∈ Σ, the intersection σ ∩σ′ is a face of each. To each σ
of dimension d corresponds a polynomial ring C[σ̌ ∩ Zd] and therefore an
affine space Ad(C) with a birational map

π(σ) : Ad(C) → Ad(C)

generalizing the map

u1 7→ y
a1
1

1 y
a2
1

2

u2 7→ y
a1
2

1 y
a2
2

2

which we have seen above in the case d = 2.
The sources of all these maps can be glued up together (see [Ew]) to form
a nonsingular algebraic rational variety Z(Σ) in such a way that the maps
π(σ) glue up into a proper and birational (hence surjective) map

π(Σ): Z(Σ) → Ad(C).

Coming back to the case d = 2 and a binomial, this gives us the existence
of a regular fan (= a fan made of regular cones) with support R2

≥0, and
compatible with the line Hm−n, which means that this line in R2

≥0 is the
common edge of two cones of the fan.
In fact in this case there is a minimal such fan, obtained as follows:
Consider the set H− of integral points of R2

≥0 which are below the line
Hm−n, and the set H+ of the integral points which are above. The bound-
aries of the convex hulls of H− and H+ contain parts of coordinates axes,
and they meet at the extremity of the primitive integral vector contained in
Hm−n. Drawing lines connecting the origin to all the integral points which
are on these boundaries defines a fan which has the required properties and
is the coarsest such fan. It is closely connected with the continued fraction
expansion of the slope of the line Hm−n.
To this fan Σ is associated a proper birational map

π(Σ): Z(Σ) → A2(C)
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which is an isomorphism outside of the origin and provides an embedded
resolution of singularities for all plane branches which have an equation of
the form

un
2 − um

1 +
∑

i
m + j

n >1

aiju
i
1u

j
2 = 0.

as one verifies by checking in each of the charts Z(σ) ' A2(C).
Since we saw that every plane branch is similarly a deformation of the
monomial curve with the same semi-group, which is defined by g binomial
equations in variables u0, . . . , ug, adding to each binomial only monomials
of higher weight, one is ready to believe that similarly, a regular fan in
Rg+1
≥0 which is compatible with the g hyperplanes corresponding to the g

binomials will provide a toric map

π(Σ): Z(Σ) → Ag+1(C)

which is an embedded resolution not only for the monomial curve, but
also for our original plane curve re-embedded in Ag+1(C) as was explained
above. This is described in detail in [G-T] and generalized in [GP] to a
much larger class of singularities.

This method of embedded resolution is quite different from the resolu-
tion by point blowing ups explained above, but it assumes that one knows
the existence of a parametrization. The connection between the toric map
and the sequence of point blowing ups is rather subtle (see [GP]); in the case
g = 1 it is equivalent to the relation between finding approximations of a
rational number by the reduced fractions of its continued fraction expansion
and finding approximations by Farey series.
So the deformation to the monomial curve also explains to us how to resolve
the singularities, and it is perhaps the best description. Can we generalize
it to higher dimensions?

10. Relation with topology

I refer to the lectures of Lê and to [B-K] for the Burau-Zariski topological
interpretation of the characteristic sequence

(β0, β1, . . . βg)

as a characteristic of the iterated torus knot that one obtains upon inter-
secting the branch X with a sufficiently small sphere in C2 centered at the
origin.
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Given a germ of a reduced plane curve X, it has a decomposition X =⋃r
i=1Xi into branches; each branch has its characteristic sequence B(Xi),

and as numerical characters of X, we have also the intersection numbers
(Xi, Xj)0 of distinct branches at 0.

If we remember that these intersection numbers are equal to the linking
numbers in S3 of the knots corresponding to Xi and Xj and are therefore
topological characters of the link X ∩ S3

ε , since Milnor proved (see Lê’s
lectures) that the curve X is homeomorphic to the cone with vertex 0 drawn
on this link, we expect that the collection of the characteristic sequences of
the branches and their intersection numbers may be a topological invariant
of the curve X.

Let us define the local topological type of a germ of subspace of CN as
follows:
Definition.- Two subspaces X1 and X2 of CN are topologically equivalent
at 0 if there exist neighbourhoods U and V of 0 in CN and an homeo-
morphism ψ : U → V such that ψ(X1 ∩ U) = X2 ∩ V . Two germs at 0 of
subspaces are topologically equivalent if they have representatives which
are topologically equivalent at 0.

Theorem 10.1. (Zariski, Lejeune-Jalabert). Two germs of plane curves
X = ∪i∈IXi and X ′ = ∪i∈I′X

′
i are topologically equivalent if and only if

there exists a bijection φ : I → I ′ between their branches which preserves
characteristics and intersection numbers, that is, satisfies

B(X ′
φ(i)) = B(Xi) for i ∈ I, (X ′

φ(i), X
′
φ(j))0 = (Xi, Xj)0 for i 6= j.

Topological equivalence is less strict a relation than analytic (or even C1)
equivalence.

Let X1 and X2 each consist of four lines through the origin in C2.
According to the previous theorem, these two germs are topologically equi-
valent. However, if there was a germ et 0 of a C1 (and in particular analytic)
isomorphism of C2 to itself, sending X1 to X2, its tangent linear map at
0 would have to send X1 onto X2. But two quadruplets of lines through 0
are linearly equivalent if and only if they have the same cross-ratio. If the
slopes of the lines of X1 are a1, b1, c1, d1, and similarly for X2, the cross
ratios are (a1 − a3

a1 − a4

)(a2 − a4

a2 − a3

)
and the numbers obtained by permutation. It is therefore easy to find ex-
amples where X1 and X2 are not C1-equivalent.
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In particular, in an analytic family of curves such as the surface in C3

with equation

(y − x)(y + x)(y − 2x)(y + tx) = 0

for small values of t, the fibers are all analytically inequivalent but topolo-
gically equivalent.

Theorem 10.2. Given two reduced germs of plane curves (X, 0) ⊂ (C2, 0)
and (X ′, 0) ⊂ (C2, 0) the following conditions are equivalent:
1) X and X ′ are topologically equivalent,
2) There exists an integer d, a germ of curve (C, 0) ⊂ (Cd, 0) and two
linear projections p, p′ : Cd → C2, both general for C at 0, and such that
p(C) = X, p′(C) = X ′,
3) There exists a one-parameter family of germs of plane curves that is a
germ along {0}×U of a surface in C2×U , where U is a disk in C, say with
equation f(x, y, u) = 0 and v, v′ ∈ U such that the germs of plane curve
f(x, y, v) = 0, f(x, y, v′) = 0 are isomorphic to X, X ′ respectively and all
the germs f(x, y, t) = 0 have the same topological type for t ∈ U .
4) There exists a bijection from the set of branches of (X, 0) to the set of
branches of (X ′, 0) which preserves characteristic (Puiseux) exponents and
intersection numbers.
5) The minimal embeded resolution processes of (X, 0) and (X ′, 0) are ”the
same” in the sense that one blows up at each step points with the same
multiplicity.

In fact, the theory of Lipschitz saturation, summarized in [T4], shows
that, given the topological type of a germ of plane curve (X, 0), there exists
a germ of a space curve (Xs, 0) ⊂ (CN , 0), unique up to isomorphism,
such that the germs of plane curves having the same topological type as
(X, 0) are exactly, up to isomorphism, the images of (Xs, 0) by the linear
projections (CN , 0) → (C2, 0) which are general for (Xs, 0).

11. Duality

A line in the projective space P2 is by definition a point in the dual pro-
jective space P̌2.

Poncelet saw that given a nondegenerate conic Q, to any point P ∈ P2,
one can associate the polar curve of P with respect to Q, which is the line
joining the points of contact with Q of the tangents to Q passing through
P . We get in this way an isomorphism between P2 and its dual P̌2
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We shall, however, refrain from identifying P2 and its dual in this way, as
was done at that time.

The collection of points of P̌2 corresponding to the lines in P2 tangent
to an algebraic curve C is an algebraic curve Č ⊂ P̌2. Here we use the fact
that one can say that a line is tangent to a curve C at a singular point x
if its direction is a limit direction of tangents to C at non singular points
tending to x.

A point x in P2 corresponds to a line x̌ in P̌2; each point of this line
represents a line in P2 which contains x, and the lines through x tangent
to C correspond to the intersection points in P̌2 of the curve Č and the
line x̌. So the class of the curve C, defined as the number of lines tangent
to C at non singular points and passing through a given general point of
P2, is the degree m̌ of Č. Let us compute it:

Poncelet considered, following Monge, the polar curve (the terminology is
his): Let

f(X,Y,X) = 0,

where f is a homogeneous polynomial of degree m, be an equation for C.
The points of C where the tangent goes though the point of P2(C) with
coordinates (ξ, η, ζ) are on C and on the curve of degree m−1 with equation

P(ξ,η,ζ)(f) = ξ
∂f

∂X
+ η

∂f

∂Y
+ ζ

∂f

∂Z
= 0

obtained by polarizing the polynomial f with respect to the point (ξ, η, ζ).
If C is non singular, the points we seek are all the intersection points of C
and P(ξ,η,ζ)(C). By Bézout’s theorem, the number of these points counted
with multiplicity is m(m−1), for every point (ξ, η, ζ) it is equal to m(m−1)
if C has no singularities.

It is “geometrically obvious” that ˇ̌C = C ; this is called biduality (it is com-
pletely wrong if we do geometry over a field of positive characteristic, so be-
ware of what is “geometrically obvious”). If the curve Č had no singularities
as well, the computation of degrees would give m(m−1)(m2−m−1) = m,
which holds only for m = 2. So if m > 2 the dual of a non singular curve
has singularities ; for a general non singular curve, double points (a.k.a.
nodes) of Č correspond to double tangents of C and cusps correspond to
its inflexion points.

To understand biduality better, it becomes important to find the class of
a projective plane curve with singularities, at least when these singularities
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are the simplest: nodes and cusps. This was done by Plücker and the formula
for a curve with δ nodes and κ cusps is

m̌ = m(m− 1)− 2δ − 3κ.

One said that“ a node decreases the class by two, and a cusp by three”
This is perhaps the first example of a search of numerical invariants of
singularities.

One can compute the diminution of class provoked by an arbitrary plane
curve singularity as follows: let f(x, y) = 0 be a local equation for the
singular curve at a singular point x which we take as origin. The ideal
j(f) = (∂f

∂x ,
∂f
∂y )C{x, y} defines set-theoretically the origin, which is the

only singular point (locally). Therefore it contains a power of the maximal
ideal and it is a vector space of finite codimension µ(C, x) in C{x, y}. It is
called the Milnor number of the singularity. Let m(C, x) be the multiplicity
of C at 0, the order of the equation f(x, y). Then (see [T6]) the diminution
of class due to the singularity is

∆C,x = µ(C, x) +m(C, x)− 1.

This means that for an arbitrary reduced projctive plane curve C of degree
m we have the equality (generalized Plücker formula)

m̌ = m(m− 1)− Σx∈C∆C,x.

This number is also the local intersection number at x of the curve C and
one of its “general local polar curves”, defined by α∂f

∂x +β ∂f
∂y = 0 for geneal

values of α, β. In this way, one can see that if we locally deform our singular
curve to a non singular one, say by taking the equation f(x, y) = λ, the
number of points where the tangent to this non singular curve has a fixed
direction and which coalesce to 0 as λ → 0 is ∆C,x; its is the number of
possible tangents that are “absorbed” by the singular point.
It is a remarkable fact that the “diminution of class” ∆C,x depends only
on the topological type of the germ of plane curve (C, x). In fact there is
a formula to express it in terms of the Puiseux exponents of the branches
of (C, x) and their local intersection numbers. The fact that the degree of
the dual of a projective variety depends only on global characters like the
degree and the “topology” of its singularities extends to an arbitrary singu-
lar projective variety if one makes the notion of topological type somewhat
more stringent.

In the theory of algebraic curves, an important formula states that given
an algebraic map f : C → C ′ between non singular algebraic curves, which
is of degree degf = d (meaning that for a general point c′ ∈ C ′, f−1(c′)
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consists of d points, and is ramified at the points xi ∈ C, 1 ≤ i ≤ r, which
means that near xi, in suitable local coordinates on C and C ′, the map f is
of the form t 7→ tei+1 with ei ∈ N, ei ≥ 1. The integer ei is theramification
index of f at xi. Then we have the Riemann-Hurwitz formula relating the
genus of C and the genus of C ′ via d and the ramification indices:

2g(C)− 2 = d(2g(C ′)− 2) +
∑

i

ei

If we have a finite map f : C → C ′ between possibly singular curves, it
extends in a unique manner to a finite map of the same degree between
their normalizations, to which we can apply the Riemann-Hurwitz formula
to get a relation between the geometric genera of C and C ′. If we apply this
formula to the case where C is non singular and C ′ = P1, knowing that any
compact algebraic curve is a finite ramified covering of P1, we find that we
can calculate the genus of C from any linear system of points made of the
fibers of a map C → P1 if we know its degree and its singularities: we get

2g(C) = 2− 2d+
∑

ei

The ramification points xi can be computed as the so-called jacobian divisor
of the linear system, which consists of the singular points, properly counted,
of the singular members of the linear system. In particular if C is a plane
curve and the linear system is the system of its plane sections by lines
through a general point x = (ξ : η : ζ) of P2, the map f is the projection
from C to P1 from x; its degree is the degree m of C and its ramification
points are exactly the points where the line from x is tangent to C. Since
x is general, these are simple tangency points, so the ei are equal to 1, and
their number is equal to the class m̌ of C; the formula gives

2g(C)− 2 = −2m+ m̌ ,

thus giving for the genus an expression which is linear in the degree and the
class, whereas our expression in terms of the degree alone is quadratic.

This is the first example of the relation between the “characteristic
classes” (in this case only the genus) and the polar classes; in this case
the curve itself, of degree m and the degree of the polar locus, or apparent
contour from x, i.e. in this case the class m̌. The extension to a non singular
projective algebraic variety in characteristic zero is due to Todd.

12. The polar curve

The (general) polar curve plays a much more important role in the study
of the plane curve singularities than just giving the diminution of class by
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its intersection number with the curve at the singular point.

Given an equation f(x, y) = 0 for a germ reduced plane curve in (C2, 0),
let us denote by `(x, y) a homogeneous linear form, i.e., the equation of a
line through the origin. The we define a map

F` : (C2, 0) → (C2, 0)

by t0 = f(x, y), t1 = `(x, y).
The critical locus P` of this map is the local avatar of the polar curve which
we saw in the previous section. More precisely if our germ of plane curve
comes from a projective plane curve, then P` is the germ at 0 of the polar
curve in the projective plane corresponding to the point at infinity in the
direction of `.
Remark now that the image of P` by the map F` is a plane curve whose
equations is given by the Fitting ideal of the algebra of P` as a C{t0, t1}-
module, at least when the map (P`, 0) → (C2, 0) induced by F` is finite,
which is the case when ` is general.
This image D` = F`(P`) is the discriminant of F`, and it lives in a plane
with given coordinates t0, t1. The Newton polygon of D` in the coordinates
t0, t1 for a general choice of the linear form ` is independant of ` and is
called the jacobian Newton polygon of f .
M. Merle proved that if f(x, y) is irreducibule, the jacobian Newton polygon
is a complete invariant of equisingularity of the curve f(x, y) = 0; it can be
computed from the Puiseux exponents and determines them. The extension
to the reducible case is due to E. Garcia Barroso (for all this, see [G]).
The jacobian Newton polygon encodes the essence of the dynamics as λ
goes to zero of the points of the non-singular curve f(x, y) = λ where the
tangent is parallel to `(x, y) = 0. Those are the points counting for the
class of a non singular curve degenerating to our singular curve which are
”absorbed” by the singularity and so decrease the class.
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