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The biLipschitz geometry of complex curves: an
algebraic approach

Arturo Giles Flores, Otoniel N. Silva, Bernard Teissier

Introduction

These are the lecture notes of the course given by Bernard Teissier during the second
week of the “ International School on Singularities and Lipschitz Geometry" which
took place in Cuernavaca, Mexico from june 11 to june 22, 2018. The aim of the
course was to explore the concept of “generic plane linear projection” of a complex
analytic germ of curve in CN . The objects of our study will therefore be germs of
curves (X, 0) Ă (CN , 0), linear maps germs π : (CN , 0) Ñ (C2, 0), and the images
(π(X ), 0) Ă (C2, 0).

Intuitively, a projection π is generic for (X, 0) if a small variation of π does
not change the "equisingularity type" (or embedded topological type) of the image
(π(X ), 0) in (C2, 0).
The main objective was to provide algebraic criteria for a projection to be generic
and to use them to prove two results related to Lipschitz geometry:
(1) That all equisingular (topologically equivalent) germs of reduced plane curves
are, up to analytic isomorphism, images of a single space curve (X, 0) Ă (CN , 0) by
generic linear projections π : CN Ñ C2, and that the restriction π|(X, 0) : (X, 0) Ñ
(π(X ), 0) to (X, 0) of such a generic projection is a biLipschitz map for the metrics
induced by the hermitian metrics of their respective ambient spaces. In particular,
all topologically equivalent germs of plane curves are biLipschitz equivalent.
(2) Given a reduced equidimensional germ of a complex space (X, 0) ãÑ (CN , 0),
with dimension d, we consider a “general” projection π : CN Ñ C2 and the polar
curve on X associated to the projection π. It is the closure in X of the critical
locus of the restriction of π to the smooth part of X . If it is not empty, it is a
curve usually denoted by Pd´1(X, π) which plays an important role in the study
of the Lipschitz geometry of X . We can consider π as defining a plane projection
of the space curve (Pd´1(X, π), 0) which varies with π. The result is that if the
projection π is sufficiently general, then it is a generic plane projection for the curve
(Pd´1(X, π), 0) Ă (CN , 0).
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The course assumed a certain familiarity with algebraic or complex analytic
geometry, such as the definition of a complex analytic space X , the fact that its local
algebras of functions are analytic algebras, that is, quotients of rings of convergent
power series with complex coefficients, that the singular locus SingX consisting of
points where the local algebra is not isomorphic to a rings of convergent power
series, is a closed analytic subspace, etc.

1.0.1 What is a germ of complex analytic curve?

A complex analytic curve1 X may be locally regarded as a family of points in
an open subset U of the complex affine space CN which is the union of finitely
many sets of points depending analytically on one complex parameter. It can also be
defined as the zero set of a finite number of holomorphic functions f1, . . . , f s on U
satisfying certain algebraic conditions:

X = tz P U | f1(z) = ¨ ¨ ¨ = f s (z) = 0u.

A germ of curve (X, 0) Ă (CN , 0) at a point which we take to be the origin is an
equivalence class of curves in open neighborhoods of the origin. Two such objects
defined respectively in U and U 1 are equivalent if their restrictions to a third neigh-
borhood of the origin U2 Ă U XU 1 coincide. Of course when we speak of germs
we think of representatives in some “sufficiently small" neighborhood of the origin.
Because of analyticity, to give a germ is equivalent to giving the convergent power
series of f1, . . . , f s around the origin with respect to some coordinate system.

This allows us to associate to the germ (X, 0) Ă (CN , 0) the analytic algebra of
germs of holomorphic functions on (X, 0):

OX,0 := Ctz1, . . . , zN u{x f1, . . . , f sy

where Ctz1, . . . , zN u denotes the ring of convergent power series. In these notes we
will only be interested in reduced germs, meaning that the ideal J := x f1, . . . , f sy is
radical and OX,0 is a reduced analytic algebra of pure dimension 1.

In the case of plane curves (N = 2) the ideal I = x f yCtx, yu is principal and f is
square free, which means that f has a factorization of the form f = f1 ¨ ¨ ¨ fr , where
each f i is irreducible in Ctx, yu and they are all different. The point is that the f i’s
correspond to germs (Xi, 0) Ă (C, 0) of analytically irreducible curves called the
branches of the curve.

(X, 0) =
r
ď

i=1
(Xi, 0)

1 For more details on what follows in this section, we refer the reader to [Tei07].
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For arbitrary N , the branches (Xi, 0) correspond to the prime ideals appearing in the
primary decomposition of the ideal (0) in OX,0

(0) = P1 X . . . X Pr, where each Pi is a minimal prime in OX,0

A germ of curve (X, 0) Ă (CN , 0) may also be described parametrically by r sets
of power series

ϕi1(ti ), . . . , ϕiN (ti ) P Cttiu, 1 ď i ď r

where again r is the number of branches. For each i, zk = ϕi
k

(ti ), 1 ď k ď N
defines a germ of map (Di, 0) ÝÑ (CN , 0) where Di is a disk in C. Together these
r n-uples of series correspond to a multigerm of map

ϕ :
r
ğ

i=1
(Di, 0) ÝÑ (CN , 0); zk = ϕik (ti ) (1.1)

The connexion between these two definitions goes back to Newton, who showed
that an equation f (x, y) = 0, with f (0, 0) = 0 has solutions y(x) which are power
series in x with rational exponents with bounded denominators and coefficients in
the algebraic closure of the smallest field containing the coefficients of f (x, y). For
Newton f (x, y) is a polynomial with real coefficients, but the method works for
series over any field k of characteristic zero. Note that if B f (x,y)

By does not vanish
at (0, 0) the implicit function Theorem gives us a power series y(x) with integers
as exponents. In the general case, such a series y(x) =

ř

iPN ai x
i
n gives rise to a

parametrization
x = tn, y =

ÿ

iPN
ai t i .

of one of the branches of the curve over an algebraic extension of k.

1.0.2 Structuring a parametrization

Suppose that we have an irreducible and reduced germ of curve in (CN , 0), given
by zk = φk (t) P Cttu, k = 1, . . . , N . For simplicity we shall write zk = φk (t) =
ř

i a(i)
k

t i . We assume that the group generated by the exponents is Z, which means
that they are coprime. Let n be the smallest exponent appearing in all the series φk (t);
up to reindexing the variables zi we may assume that it is the order of φ1(t), so that
we may write φ1(t) = a(i)

n tn (1 + ψ(t)) with ψ(0) = 0. By making a homothetic
change on the variable z1 wemay assume that a(i)

n = 1. Since we are in characteristic
zero, we may extract an n-th root of the unit 1+ ψ(t) so that 1+ ψ(t) = u(t)n where
u(t) is again invertible in Cttu. Now we make the change of parameter t1 = tu(t)
so that φ1(t1) = t1n . Now by making a linear change of the form zi ´ ai z1 on the
coordinates z2, . . . , zN we may assume that z1 is the only variable where the lowest
exponent n appears. Geometrically this means that our curve is tangent to the z1-axis
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at the origin: its set-theoretic tangent cone is the z1-axis. Similarly, by making now a
non linear change of coordinates of the form zi ´

ř

a(i)
k

zk1 we may assume that the
first exponent appearing in each φk (t1) is not divisible by n. This is geometrically
more subtle and corresponds to Hironaka’s maximal contact. Since t1 is now our
uniformizing parameter, we call it t henceforth.
Let us now compare z1 = tn with one of the other coordinates, which we may write
(up to a homothetic change of variables) zi = φi (t) = tbi + ¨ ¨ ¨ . It may be that the
exponents appearing in φi (t) and n are not coprime. As we shall see below it means
that the projection of our curve to the (z1, zi )-plane is not reduced. If that is the
case, we may begin by dividing all the exponents by their greatest common divisor.
The interesting case is therefore that of two series expansions tn, φ(t) with coprime
exponents: we are in the case N = 2 of a plane branch to which we now turn.

The case of a plane branch. As we saw, after a change of coordinates and of
uniformizing parameter, we can describe our plane branch by: z1 = tn, z2 = φ(t) P
Cttu where the smallest exponent of t in φ(t) is not divisible by n. This smallest
exponent is traditionally denoted by β1. We take the g.c.d. of n and β1; set e1 =
(n, β1) ă n. If e1 = 1, the series φ(t) is of the form tβ1 +

ř

kě1 ak tβ1+k . If e1 ą 1,
since the exponents are coprime, there has to be a smallest exponent β2 in the
series φ(t) which is not divisible by e1. Then we set e2 = (e1, β2) ă e1, and we
continue in this manner. Since n ą e1 ą e2 ą ¨ ¨ ¨ there exists an integer g such
that eg = (eg´1, βg ) = 1. Finally we have the following structure for φ(t): its
expansion is decomposed into segments corresponding to the divisibility properties
of the exponents.

z2 = t β1+

s1
ÿ

k=1
aβ1+ke1 t

β1+ke1+aβ2 t
β2+

s2
ÿ

k=1
aβ2+ke2 t

β2+ke2+¨ ¨ ¨+aβ j t
β j+

s j
ÿ

k=1
aβ j+ke j t

β j+ke j+

¨ ¨ ¨ + aβg t
βg +

8
ÿ

k=1
aβg+k t

βg+k ,

where all aβi are, 0 and each sumhas to stop before the g.c.d. of the exponents drops
and only the last segment is possibly infinite. The set of integers n, β1, β2, . . . , βg ,
which is often also denoted by β0, β1, β2, . . . , βg , is called the Puiseux characteristic
of the branch. It determines and is determined by the embedded topological type
of the branch (see [Za1, §7], [Za3, Theorem 2.1, pg. 983], [Lej73]). This means
that if two germs of plane branches (X1, 0) and (X2, 0) have the same Puiseux
characteristic there exists a homeomorphism (U1, 0) Ñ (U2, 0) of neighborhoods of
the origin mapping the representative X1 Ă U1 to X2 Ă U2, and conversely. The
two germs are also said to be equisingular. We shall meet this Puiseux characteristic
again after Example 1.4.25 below, where we shall see that it determines not only the
topology but also the biLipschitz geometry of the branch.

After what we have seen, the expansion above can be reinterpreted as a Newton
expansion in terms of t = z

1
n

1 , but here we have to choose a n-th root of z1. The

algebraic interpretation is that φ(z
1
n

1 ) P Cttz1uutz
1
n

1 u determines a cyclic extension
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of the field Cttz1uu of meromorphic functions in z1 with Galois group equal to the
group µn of n-th roots of 1. The n series φ(ωz

1
n

1 ), ω P µn , are the roots of a unitary

polynomial
ś

ωPµn

(
z2 ´ φ(ωz

1
n

1 )
)
P Ctz1urz2s whose vanishing is an equation for

our germ of curve in the sense we shall see in the next section.
The structure of the series gives rise to a filtration of the Galois group:

µn Ą µe1 Ą µe2 Ą ¨ ¨ ¨ Ą µeg = t1u

with the characteristic property that if we set n = e0 and denote by νt the t-
adic order of a series, then for 1 ď k ď g, we have that ω P µek´1zµek ðñ

νt (φ(ωt) ´ φ(t)) = βk .
Let us now refine the structure according to [Za2, Chapters III, IV,V]. The

parametrization of a branche by tn, y(t) as above presents its analytic algebra OX,0
as a subalgebra of Cttu. The t-adic orders of the series in t which are in OX,0 form
a numerical semigroup Γ Ă N since one can multiply them and stay in OX,0. Since
the exponents are coprime the complement of Γ in N is finite (Dickson’s Lemma)
and the semigroup Γ is finitely generated. The smallest element c of N such that all
integers ě c are in Γ is called the conductor of the semigroup. It is not difficult to
verify (see [Za2, Chapter III, lemma 1.1]) that if the order of a series ξ (t) P OX,0 is
ą β1, then ξ (t) P xx, yy2, and therefore if the order s of ξ (t) is in Γ we can make
a change of coordinates x1 = x, y1 = y ´ ξ (t) to eliminate a term in ts from the
expansion of y(t). Using this, and the fact that by definition any element of Γ is the
order of a series in OX,0, Zariski proved in [Za2, Chapter III, proposition 1.2]:

Proposition 1.0.1 (Zariski) 1) Assume that n ą 2. Let s1, . . . , sq be the integers of
the set tβ1+1, . . . , cuwhich do not belong to Γ. (One always has c ě β1+1 if n ą 2).
The branch (X, 0) is analytically isomorphic to a branch given parametrically by:

x1(t) = tn, y1(t) = tβ1 +
q
ÿ

i=1
a1si t

si .

2) If n = 2 then β1 is odd since our germ is irreducible and the conductor is β1; our
curve is isomorphic to x(t) = t2, y(t) = tβ1 .

Zariski call this a short representation. There are more simplifications of the expan-
sion of y(t) one can make without changing the analytic type. See [Za2, Chapters
III, IV,V].

The next thing we need to know is that the semigroup Γ determines and is
determined by the Puiseux characteristic of the branch: it is a complete invariant of
the equisingularity class. See [Za2, Chap. II, §3]. In particular, in the short expansion,
the coefficients of the tβi are , 0.

With this description of branches, we are able to describe the contact of two
branches, which plays a key role in the characterization of the topological (and
biLipschitz) type of a reduced germ of plane curve.

We shall see below how, conversely, the image of a parametrization can be defined
by equations.
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The modern presentation of the parametrization of a curve goes through the normal-
ization, which is the topic of the next section.



1 The biLipschitz geometry of complex curves: an algebraic approach 7

1.1 Normalization

The property of being normal has an algebraic aspect which has to do with integral
extension of rings.

Definition 1.1.1 Let R Ă S be rings.

• The inclusion R Ă S is called a finite extension if S is a finitely generated
R´module.

• An element s P S is called integral over R if and only if it satisfies an equation

sh + a1sh´1 + ¨ ¨ ¨ + ah´1s + ah = 0

with all ai P R. The extension is called integral if every element s P S is integral
over R. (Just as in field theory, if the extension R Ă S is finite it is integral. See
[De-P00, Lemma 1.5.2])

• The ring R is said to be integrally closed in S if every element in S which is
integral over R already belongs to R.

• The ring R is called normal if it is reduced and integrally closed in its total
quotient ring Q(R).

Suppose that R is a reduced ring. Recall that the set of non-zero divisors of a
ring R is a multiplicatively closed set and the corresponding ring of fractions Q(R)
is called the total ring of fractions. It has the property that the canonical morphism
R Ñ Q(R) is injective.

The normalization of R is defined as the set R of all elements of Q(R) which are
integral over R. It is a reduced ring, integrally closed in Q(R) and whose total ring
of fractions coincides with Q(R). In particular, the normalization R is a normal ring.
Moreover, for the rings appearing in analytic or algebraic geometry, the extension
R Ă R is finite in the sense that R is a finitely generated R-module.2

Sowhat about if we start with the analytic algebraOX,0 of a germ of analytic space
(X, 0) Ă (CN , 0)?Wewill say that the germ (X, 0) is normal ifOX,0 is a normal ring.

• Unique factorization domains are normal ([De-P00, Thm 1.5.5]) so the ring
of power series Ctz1, . . . , znu and the corresponding smooth germ (CN , 0) are
normal.

2 It is interesting to note that the term "integral" comes from algebraic number theory in the tradition
of Dedekind and the definition of the ring of integers of an algebraic number field, while the term
"normal" was used by Zariski (see [Za]) in the course of his studies in birational geometry and
resolution of singularities to designate an algebraic variety which could not be presented as the
image of a different one by a finite birational map. This is why the terms "integral closure in the
total ring of fractions" and "normalization" are used in algebraic or analytic geometry as names for
the algebraic and geometric aspects of the same operation.
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• Noetherian normal local rings are integral domains ([De-P00, Thm 1.5.7]), so a
normal germ (X, 0) is irreducible.

• Suppose (X, 0) is irreducible. Since OX,0 and its normalization have the same
total ring of fractions, which in this case is a field, it follows from what we have
just seen that OX,0 is a local noetherian domain. Moreover, by [De-P00, Cor.
3.325] it is an analytic algebra and so we can associate to it a normal germ (X, 0).
In particular we have:

OX,0 = OX,0

• Splitting of normalization ([De-P00, Thm. 1.5.20]) tells us that that if we have
the irreducible decomposition

(X, 0) = (X1, 0) Y . . . Y (Xs, 0)

then the normalization OX,0 is equal to a direct sum of analytic algebras which are
the normalizations of the analytic algebras OXi,0 corresponding to the irreducible
components (Xi, 0):

OX,0 =
s
à

i=1
OXi,0

Note that this implies that (X, 0) and (X, 0) have the same dimension.

A multi-germ of analytic spaces (X, x) is a finite disjoint union:

(X, x) := (X1, x1) \ (X2, x2) \ . . . \ (Xr, xr )

of germs of analytic spaces. The ring OX,x by definition is equal to
Àr

i=1 OXi,xi .
The multigerm (X, x) is called normal if OX,x is a normal ring.

Let (Y, y) = (Y1, y1)\ . . .\ (Ys, ys ) be another multi-germ. A map ϕ : (X, x) Ñ
(Y, y) of multi-germs is given by a system of maps

ϕi : (Xi, xi ) Ñ (Yα(i), yα(i)), i P t1, . . . , ru, α(i) P t1, . . . , su

Such a map ϕ induces, and is induced by a C´algebra map ϕ˚ : OY,y Ñ OX,x .

Definition 1.1.2 Let (X, x) be a germ of analytic space. A normalization of (X, x)
is a normal multi-germ (X, x) together with a finite, generically 1-1 map

n : (X, x) Ñ (X, x)

With this definition at hand, for any germ of analytic space (X, 0) with irreducible
decomposition

(X, 0) = (X1, 0) Y . . . Y (Xs, 0)

we can now obtain a normal multigerm

(X, x) = (X1, x1) \ . . . \ (Xs, xs )

with associated normal ring
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OX,0 =
s
à

i=1
OXi,0 =

s
à

i=1
OXi,xi

And it is not hard to prove that the inclusion map OX,0 ãÑ OX,0 induces a finite
and generically 1-1 map, proving thus the existence of normalization ([De-P00,
Thm 4.4.8]). Note that, geometrically, the normalization of a germ separates the
irreducible components and normalizes each of them separately.

Example 1.1.3 Let (X, 0) Ă (C2, 0) be the germ of plane curve defined by f (x, y) =
x2 ´ y2. It has two irreducible components (X1, 0) and (X2, 0) with associated
analytic algebras

OX1,0 = Ctx, yu{xx ´ yy OX2,0 = Ctx, yu{xx + yy

These two germs are smooth, in particular they are normal and we have:

OX,0 =
Ctx, yu
xx2 ´ y2y

ÝÑ
Ctx, yu
xx ´ yy

à Ctx, yu
xx + yy

= OX,0

f ÞÝÑ
(

f + xx ´ yy, f + xx + yy
)

Since the germs are smooth and of dimension 1, their analytic algebras are isomorphic
to the ring of convergent power series Cttu:

Ctx, yu{xx ´ yy Ñ Cttu x ÞÑ t, y ÞÑ t

Ctx, yu{xx + yy Ñ Ctuu x ÞÑ u, y ÞÑ ´u

This means that the resulting normalization map

n : (C, 0) \ (C, 0) Ñ (X, 0)

is the parametrization of each of the branches t1 ÞÑ (t, t) and t2 ÞÑ (u,´u).

It is useful to consider a function-theoretic interpretation of normal spaces. A
general result tells us that in a smooth germ (Cd, 0) if you have a meromorphic
function which is (locally) bounded then it is actually holomorphic (See for exam-
ple [Gr-F02, IV.4]). The algebraic version is that a locally bounded meromorphic
function h satisfies an integral dependence relation of the form:

hm + c1hm´1 + ¨ ¨ ¨ + cm = 0; cj P On := Ctz1, . . . , znu

and since On is normal then h P On .
Now there are many more analytic spaces for which OX,x is normal than just the non
singular ones.

Definition 1.1.4 Proposition For a reduced germ of analytic space (X, x) we call a
function f : XzSing X Ñ C weakly holomorphic on X at x P X if :

• f is holomorphic on XzSing X in a neighborhood of x.
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• f is (locally) bounded near x.

A function is weakly holomorphic on X if it is so at every point.

The key point is proving that the germs at x P X of weakly holomorphic functions
on X form a ring which is canonically isomorphic to the normalization of OX,x . That
is, f is weakly holomorphic on X if and only if it is meromorphic and satisfies an
integral dependence relation. This gives us the following characterization:

Theorem 1.1.5 [De-P00, Thm 4.4.15]

1) Let (X, x) be a germ of reduced analytic space. Then a function f is weakly
holomorphic on X if and only if f is in the integral closure of OX,x in its ring of
quotients.

2) The integral closure of OX,x in its ring of quotients is a direct sum of analytic
algebras.

3) The reduced germ (X, x) is normal if and only if every weakly holomorphic
function germ can be extended to a holomorphic function.

Remark 1.1.6 Since this fact is fundamental for what follows, here is an idea of
why boundedness and polynomial equation are related: The roots of a polynomial
are bounded in terms of its coefficients, so a solution of a polynomial equation
with holomorphic coefficients is bounded because holomorphic functions are. In
the other direction, let h = f

g , with f , g P m(X,0) be our meromorphic function,
let (Y, 0) Ă (X, 0) be the subset defined by the ideal x f , gyO(X,0) , and consider
the analytic subspace X 1 of X ˆ P1(C) which is the closure of the graph of the
map XzY Ñ P1(C) defined by x ÞÑ ( f (x) : g(x)) P P1(C). It is contained in
the hypersurface of X ˆ P1(C) defined by T2 f (x) ´ T1g(x) = 0 where (T1 : T2)
are projective coordinates on P1. The first projection induces a holomorphic map
e : X 1 Ñ X (we are blowing-up the ideal x f , gy). The fiber over 0 is a complex
analytic subspace of P1(C) and therefore is either P1(C) or a finite subset of it. If our
meromorphic function is bounded, the point (1 : 0) P P1(C) is not in the fiber, so
that by the Weierstrass preparation Theorem (see Theorem 1.1.9 below), for a small
enough representative X of the germ (X, 0) the map X 1 Ñ X is finite and X 1 has to
be a hypersurface in X ˆ C: its equation is our integral dependence relation.

Example 1.1.7 For the germ (X, 0) Ă (C2, 0) defined by xy = 0 we have

OX,0 = Ctxu ‘ Ctyu

the function f = (1, 0) meaning it is the constant function 1 on the x axis and
the constant function 0 on the y axis is holomorphic on XzSing X = Xzt0u and is
certainly bounded so it is weakly holomorphic. Note that it can not be continuously
extended to (X, 0). As a meromorphic function it can be written as

f (x, y) =
x

x + y



1 The biLipschitz geometry of complex curves: an algebraic approach 11

Let us wrap up this discussion on normal spaces and normalization by stating
several important properties of which you can find detailed expositions in [Loj91],
[G-L-S07] and [Kau83].

1. If X is reduced, the non normal locus is the set of points x P X where the local
algebra OX,x is not normal; it is the complement of the normal locus and is a
closed analytic subspace contained in the singular locus SingX of X . It is defined
by the conductor sheaf which is the annihilator of the coherent OX -module
OX{OX and thus a coherent sheaf of ideals.

2. If T is a normal space and X is reduced then any map T Ñ X which does not map
any irreducible component of T to the non-normal locus of X factors uniquely
through the normalization n : X Ñ X .

3. If X is normal then dimSing(X ) ď dim X ´ 2 (Singular locus of codimension at
least 2).

4. If X is normal, the polar locus of a meromorphic function is either of codimension
1 or empty.

Going back to the curve case, a classical result of commutative algebra ([De-P00,
Thm 4.4.9]) states that a Noetherian local ring of dimension one is normal if and
only if it is regular. This implies that if (X, 0) =

Ťr
i=1(Xi, 0) Ă (CN , 0) is a germ of

analytic curve with r branches then the normal ring OX,0 is isomorphic to a direct
sum of r copies of Cttu and the corresponding normalization map is equal to the
parametrization of each branch, thus recovering the description in (1.1).
For plane curves, this result can also be seen using algebraic field extensions, but first
we need a couple of definitions and the Weierstrass preparation Theorem. A conver-
gent power series f P Ctz1, . . . , zN u is called regular of order b in zN if the power
series f (0, . . . , 0, zN ) in the variable zN has a zero of order b. A simple calculation
shows that if f is of order b in the sense that f P xz1, . . . , zN ybzxz1, . . . , zN yb+1,
then after a general linear change of coordinates, f is regular of order b in zN
(see [De-P00, Lemma 3.2.2]). Geometrically this means that if we consider the
germ of hypersurface (X, 0) Ă (CN´1 ˆ C, 0) defined by f and the first projection
p : X Ñ CN´1, then for a small enough representative the fiber p´1(0) is the single
point 0.

For curve singularities, there is a classical invariant which measures how far
the singularity is from being normal, or non singular. It has several geometric
interpretations, the classical one being "diminution of genus", and we shall see more
about it below.

Definition 1.1.8 Let (X, 0) be a reduced curve singularity. Its δ invariant is δ =
dimC

OX,0
OX,0

.

This quotient is a finite dimensional vector space because it is the stalk of a coherent
sheaf supported at the origin. For plane, and more generally Gorenstein, branches
we have the equality c = 2δ, where c is the conductor defined before proposition
1.0.1. See [Za2, Chap. II, §1].
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Theorem 1.1.9 (Weierstrass Preparation Theorem) (see [De-P00, Thm 3.2.4])
Let f P Ctz1, . . . , zN u be regular of order b in zN . Then there exists a unique
polynomial monic polynomial P P Ctz1, . . . , zN´1urzN s

P(z1, . . . , zN ) = zbN + a1(z1, . . . , zN´1)zb´1
N + ¨ ¨ ¨ + aN (z1, . . . , zN´1)

with ai (0) = 0, and a unit u P Ctz1, . . . , zN u such that we have the equality of
convergent power series

f = uP

As a consequence of this result we deduce two important facts: if we choose
adequate coordinates such that f = uP then it is equivalent to seek solutions of
f (z1, . . . , zN ) = 0 and of P(z1, . . . , zN ) = 0. As a geometric consequence of this
we get that if we consider the first projection as before and p´1(0) = t0u, then for
any point q = (q1, . . . , qN´1) P CN´1 sufficiently close to the origin the points of
the fiber p´1(q) correspond to the roots of the polynomial of degree b

P(q1, . . . , qN´1, zN ) = zbN + a1(q1, . . . , qN´1)zb´1
N + ¨ ¨ ¨ + aN (q1, . . . , qN´1)

and so all nearby fibers are also finite. More generally one uses this result to prove
that if a complex analytic map p : X 1 Ñ X is such that for some point 0 P X we have
that p´1(0) is a finite set, then there exists a neighborhood U of 0 in X such that the
restricted map p´1(U) Ñ U is finite. See [De-P00, Thm 3.4.24]

Going back to the plane curve case, that is curves (X, 0) Ă (C2, 0) defined by
a convergent power series f P Ctx, yu, or according to the Weierstrass prepara-
tion Theorem and possibly after a linear change of coordinates, by a polynomial
P P Ctxurys. Now from an algebraic point of view, consider the field of fractions
Cttxuu of the integral domainCtxu; the irreducible polynomial yn´ x P Cttxuurys
defines an algebraic extension of degree n of Cttxuu, denoted by Cttx 1

n uu, which
is a Galois extension with Galois group equal to the group µn of n-th roots of unity
in C. The action of µn is exactly the change in determination of x

1
n determined by

x
1
n ÞÑ ωx

1
n for ω P µn . A series of the form y =

ř

ai x
i
n such that the greatest

common divisor of n and all the exponents i which effectively appear is 1 gives n
different series as ω runs through µn .

Suppose now that our polynomial P is an irreducible element ofCtxurys of degree
n. Then the Newton polygon method (see for example [Tei07], [Che78], or [Br-K86,
Section 8.3]) provides a series y(x1{m ) P Ctx 1

n u such that P(x, y(x
1
n )) = 0 and we

have the equality:
P(x, y) =

ź

ωPµn

(
y ´ y(ωx

1
n )

)
.

In particular we have that

Cttxuu˚ :=
ď

nPN
Cttx

1
n uu
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is an algebraically closed field (See [Wal78, IV.3] or [Che78, Thm 8.2.1]), and so
every polynomial P P Ctxurys has all its roots inCttxuu˚. Finally, the relation with
the parametrizations given by the normalization is the following, if

y(x
1
n ) P Ctx

1
n u Ă Cttxuu˚

is a root of P(x, y), then by taking x = tn we get the parametrization

t ÞÑ (tn, y(t)).

Let us finish this section by looking at plane projections from an algebraic per-
spective. For simplicity suppose (X, 0) Ă (CN , 0) is a reduced and irreducible germ
of complex analytic curve with N ě 3. Let us write the associated analytic algebra

OX,0 =
Ctz1, . . . , zN u

I

where I is a prime ideal, and soOX,0 is an integral domain. If we choose a sufficiently
general coordinate system (or if you prefer after a general linear coordinate change)
theNoether normalization Theorem ([De-P00, corollary 3.3.19]) tells us that we have
a finite ring extension Ctz1u ãÑ OX,0. This implies that the we have an algebraic
field extension

Cttz1uu Ă Quot
(
OX,0

)
and by the primitive element Theorem there exists an element f P OX,0 such that
Quot

(
OX,0

)
= Cttz1uur f s.

So if we denote by Ctz1, f u the analytic algebra obtained as the quotient of
Ctx, yu by the kernel of the map Ctx, yu Ñ OX,0 defined by x ÞÑ z1 + J, y ÞÑ f
then we have finite ring extensions with the same field of fractions

Ctz1, f u ãÑ OX,0 ãÑ Cttu

Now Ctz1, f u is the analytic algebra of a plane curve (X1, 0) Ă (C2, 0) and it has
the same normalization as OX,0. We have used the primitive element Theorem as a
substitute for the proof of the existence of a projectionCN Ñ C2 sufficiently general
for it to induce a “ bimeromorphic" map (X, 0) Ñ (X1, 0). However the primitive
element Theorem does not tell us the nature of the projection. That is the object of
the next section.
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1.2 Fitting Ideals - A good structure for the image of a finite map

In this section, following [Tei77], we will give the definitions of Fitting ideals,
which we will use later to give a definition of the image, as a complex analytic space,
of a finite map between complex analytic spaces.

Let A be a ring, and let M be an A-module of finite presentation, that is, there is
an exact sequence, called a presentation of M:

Aq Ψ
ÝÑ Ap ÝÑ M ÝÑ 0

where p, q P N. For each integer j we associate to M the ideal Fj (M) of A generated
by the (p ´ j) ˆ (p ´ j) minors of the matrix (with entries in A) representing Ψ.
Here we need the convention that if there are no (p´ j) ˆ (p´ j) minors because
j is too large, i.e., j ě p, then Fj (M) = A (the empty determinant is equal to 1) and
if, at the other extreme, p´ j ą q, set Fj (M) = 0 (the ideal generated by the empty
set is 0).

A Theorem of Fitting (see [To72, Chap. I, §2], [Eis95, Chap. 20, §2]) asserts
that the ideals Fj (M) depend only on the A-module M and not on the choice of a
presentation. We call Fj (M) the j-th Fitting ideal of M .

More generally, if (X,OX ) is a ringed space, and M a coherent sheaf of OX -
modules, we can define a sheaf of ideals Fi (M) of OX , by defining Fi (M) locally
as above, and then by uniqueness the ideals found locally patch up into a sheaf of
ideals. Remark also that since Fi (M) is locally finitely generated, Fi (M) will be a
coherent sheaf of ideals as soon as OX is coherent, e.g. for a complex analytic space
by Oka’s Theorem.

Let now f : (X,OX ) Ñ (Y,OY ) be a map of complex analytic spaces. We would
like to define the image of f as a complex analytic subspace of (Y,OY ). This is not
always possible, and in particular if one hopes to get a closed complex subspace of
Y it is better to assume f is proper, and here we will consider only the case where f
is finite (that is, proper with finite fibres).

The first sheaf of ideals that comes to mind as a candidate to define f (X ) is the
sheaf of functions g on Y such that g ˝ f = 0 on X , i.e., the annihilator sheaf of the
sheaf of OY -modules f˚OX :

AnnOY ( f˚(OX )) = sheaftfunctions g on Y such that g ¨ f˚OX = 0 u

This is not a good choice because its formation does not commute with base
extension, as we will show by an example below (Example 1.2.3).

The second option is the 0th Fitting ideal of f˚OX , which set theoretically
also defines the image of f , since as a set the subspace of Y defined by it is
ty P Y | dimC( f˚OX ) ą 0u = ty P Y | ( f˚OX )y , 0u.

Since both the formation of direct images and the formation of Fitting ideals
commute with base change, this definition of the image will also have this property.
So we set:

Definition 1.2.1 Let f : X Ñ Y be a finite morphism of complex analytic spaces.
The image im( f ) of f is the subspace of Y defined by the coherent sheaf of ideals
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F0( f˚OX ). It is sometimes called the Fitting image of f to distinguish it from the
one defined by the annihilator.

Proposition 1.2.2 1. The formation of im( f ) commutes with base change: Given a
complex analytic map φ : T Ñ Y , consider the map fT : X ˆY T Ñ T obtained
by base extension, where XˆY T is the fiber product. Then im( fT ) = φ´1(im( f ))
as analytic spaces.

2. We have the inclusionF0( f˚OX ) Ď Ann( f˚OX ) and the equality
a

F0( f˚OX ) =
a

Ann( f˚OX ).

Proof 1) Since OX is a finitely generated OY -module the OT -module OXˆYT is
equal to OX bOY OT and if M is a finitely presented A-module as above and A Ñ B
is a map of algebras, then

Bq ΨbA1
ÝÑ Bp ÝÑ M bA B ÝÑ 0

is a presentation of M bA B as a B-module and the matrix of Ψ bA 1 is the matrix
of Ψ so that Fj (M bA B) = Fj (M).B.
2) The inclusion follows directly from Cramer’s rule and the equality from the
definition of the Fitting ideal as defining the set of points where the cokernel of the
second second arrow is not zero. �

Example 1.2.3 Let f : (C, 0) Ñ (C2, 0) be given by x = t2k , y = t3k for some
integer k. The set-theoretic image of f is the curve y2 ´ x3 = 0. However, we
wish to obtain an ideal defining a space supported on that curve, but possibly with
nilpotent functions. Let us compute F0( f˚(OC)0 as the 0-th Fitting ideal of Cttu
considered asCtx, yu-module via the map of ringsCtx, yu Ñ Cttu sending x to t2k

and y to t3k . We must write a presentation of Cttu as Ctx, yu-module. Let e0 = 1,
e1 = t, . . . , e2k´1 = t2k´1. It is easily seen that they form a system of generators of
Cttu as Ctx, yu-module, and that between them we have the following 2k relations:

xek ´ ye0 = 0, x2e0 ´ yek = 0
xek+1 ´ ye1 = 0, x2e1 ´ yek+1 = 0

...
...

xe2k´1 ´ yek´1 = 0, x2ek´1 ´ ye2k´1 = 0

which are independent. Hence we have a sequence of Ctx, yu-modules:

0 ÝÑ
2k´1
à

i=0
Ctx, yuei

ψ
ÝÑ

2k´1
à

i=0
Ctx, yuei

ϕ
ÝÑ Cttu ÝÑ 0

with ϕ(ei ) = t i , and ψ is given by the 2k ˆ 2k matrix
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ψ =

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´y 0 ¨ ¨ ¨ 0 x 0 ¨ ¨ ¨ 0
0 ´y ¨ ¨ ¨ 0 0 x ¨ ¨ ¨ 0
...

. . .
...

. . . 0
0 0 ¨ ¨ ¨ ´y 0 0 ¨ ¨ ¨ x
x2 0 ¨ ¨ ¨ 0 ´y 0 ¨ ¨ ¨ 0
0 x2 ¨ ¨ ¨ 0 0 ´y ¨ ¨ ¨ 0
...

. . .
...

. . . 0
0 0 ¨ ¨ ¨ x2 0 0 ¨ ¨ ¨ ´y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

It is not hard to see that the sequence is exact, which means that the independent
relations we have found must generate all relations between the ei . Indeed, there is a
general reason why Cttu must have a resolution of length 1 as Ctx, yu-module: the
Ctx, yu-moduleCttu is of homological dimension one (see [Mo-P89]) and therefore
the module of relations between the ei is a free submodule of

À2k´1
i=0 Ctx, yu and

thus of rank ď 2k ´ 1.
By permuting rows and columns of ψ one checks that det(ψ) = (y2 ´ x3)k i.e.,

we have shown that

F0( f˚OC)0 = (y2 ´ x3)kCtx, yu

Let us now calculate AnnCtx,yuCttu; the annihilator is just the kernel of the map
Ctx, yu Ñ Cttu, which is the ideal generated by (y2 ´ x3), certainly different from
our Fitting ideal if k ą 1.

Let us now make a base change by restricting our map over the x-axis, i.e., by the
inclusion ty = 0u Ă (C2, 0) or algebraically by Ctx, yu Ñ Ctxu sending y to 0.
Then the annihilator of Cttu

Â

Ctx,yu Ctxu = Cttu{(t3k ) viewed as Ctxu-module
is (x2)Ctxu while the image in Ctxu of (y2 ´ x3)Ctx, yu is (x3)Ctxu. This shows
that the formation of the annihilator does not commute with base change.

1.2.1 Equations versus Parametrizations

As we said in subsection 1.0.1, a germ of curve (X0, 0), abstractly, is a germ of
a purely 1-dimensional analytic space, hence it is described by an analytic algebra
OX0,0 of pure dimension 1. Geometrically, (X0, 0) can be effectively given in two
ways:

By equations: By giving an ideal I = x f1, . . . , fmy in Ctx1, . . . , xN u such that
OX0,0 » Ctx1, . . . , xN u{I. Saying that OX0,0 is purely one-dimensional means that
the ideal x0y has a primary decomposition x0y = Q1 X . . .XQr where

?
Qi = Pi is

a minimal prime ideal in OX0,0, and dim(OX0,0{I) = 1.

By a parametrization: By giving ourselves a germ of finite map p :
Ůr

i=1(C, 0) Ñ
(CN , 0).
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Here one has to be very careful: except when n = 2, it is not true, even if r = 1 and
p is generically 1-to-1 that the image (given by the Fitting structure) of this mapping
is a reduced curve: it will have “embedded components” concentrated at the singular
points, as will be shown in Example 1.2.4. The analysis of this phenomenon is
beyond the scope of these notes.

Example 1.2.4 Consider the curve (X0, 0) parametrized by n(t) = (t4, t6, t7) which
is a complete intersection (with the reduced structure) with ideal

xy2 ´ x3, z2 ´ x2yyCtx, y, zu.

We have that Cttu is generated as a Ctx, y, zu-module by e0 = 1, e1 = t, e2 = t2

and e3 = t3 and it is not difficult to see that the relations are described by the
following matrix

Ψ =

»

—

—

—

—

—

—

—

—

—

—

–

y 0 ´x 0
0 y 0 ´x
´x2 0 y 0
0 ´x2 0 y

z 0 0 ´x
´x2 z 0 0
0 ´x2 z 0
0 0 ´x2 z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

that is, Ψ is the matrix of a presentation

Ctx, y, zu8 Ψ
ÝÑ Ctx, y, zu4 ÝÑ Cttu ÝÑ 0.

of the Ctx, y, zu-module Cttu. Computing the 4ˆ 4 minors of Ψ we find that:

F0(Cttu) =
xy2´ x3, z2´ x2yyXxz2, xy3, y4, xy2z´ x4z, y3z, x4y, x3y2, x3yz, x6, x5zyCtx, y, zu

where
a

xz2, xy3, y4, xy2z ´ x4z, y3z, x4y, x3y2, x3yz, x6, x5zy = xx, y, zyCtx, y, zu.

In general, given a morphism Ctx1, . . . , xnu Ñ Cttu corresponding to a para-
metric (and primitive) representation of a curve, we can be certain that F0(Cttu) will
define a curve, in the sense that Ctx1, . . . , xnu{F0(Cttu) is purely 1-dimensional,
only if n = 2 or if our germ of curve is non-singular.

Now, we will consider deformations of a curve. We will follow the presentation
given in [Bu-G80]. The following results in this section are due to B. Teissier (see
[Tei77]).

Let (X0, 0) Ă (CN , 0) be a germ of a reduced curve and X0 Ă B0 a representative,
where B0 Ă CN is a small open ball with center 0. Let

ϕ0 : X0 =

r
ğ

j=1
D j Ñ X0 Ă B0,

ϕ0(s) = (ϕ0,1(s), . . . , ϕ0,n (s)),
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be a representative of the normalization of X0, where
r
ğ

j=1
D j is the disjoint union of

r open discs centered at the origin in C, such that for each j the restriction φ0|D j is
a homeomorphism (D j, 0) Ñ (X j

0, 0), where (X j
0, 0) is the j-th branch of (X0, 0).

Definition 1.2.5 Let D Ă Cq be a small disc with center 0. A deformation of the
normalization of X0 is a holomorphic mapping

ϕ : X0 ˆ D =
r
ğ

j=1
(D j ˆ D) Ñ B0,

such that ϕ(s, v) = ϕ0(s) + vψ(s, v), s P X0, v P D.

Then for sufficiently small D j and D we have that φ = (ϕ, v) : X0ˆDÑ B0ˆD
is a finite mapping and therefore

Y = φ(X0 ˆ D) Ă B0 ˆ D

is a two dimensional analytic subset. Let

f : Y Ñ D

be the projection on the second factor and set Yv = f´1(v).

Now, let I = x f1, . . . , fky Ă ON be the defining ideal of X0, that is, X0 is the
set of points in CN such that f i (z1, . . . , zN ) = 0, for i = 1, . . . , k. We can also
consider a deformation3 of the equations f1, . . . , fk , given by Fi (z1, . . . , zN , v) =
f i (z1, . . . , zN ) + vgi (z1, . . . , zN , v), where gi P Ctz1, . . . , zN , vu. Since X0 is re-
duced, the space Y

1

= V (F1, . . . , Fk ) Ă B0 ˆ D is a reduced surface. Again, let

f
1 : Y

1

Ñ D

be the projection on the second factor and set Y
1

v = f
1´1(v).

Note that Y is given as the image of φ, so it is not necessarily reduced when we
consider the Fitting ideal structure. Consider now the reduction map τ : Yred Ñ Y ,
whereYred denotes the spaceY with the reduced structure. Set Xv = ( f ˝ τ)´1(v). It
is a reduced curve in B0 which by the Weierstrass preparation Theorem has finitely
many singularities which all tend to 0 when v tends to 0, provided D and B0 are
sufficiently small. Each of those singularities has a δ invariant (see definition 1.1.8)
and we denote by δ(Xv ) the sum of these invariants. So, a natural question is:

Question: Is deforming the normalization of X0 the same as deforming the
equations of X0? More precisely, given deformations of the series parametrizing
the branches of X0 is there a corresponding deformation of the equations of X0
such that Yred = Y

1? and vice-versa?

3 In general, a deformation of the equations is called an unfolding and does not produce a flat
deformation of the special fiber, unless it is a complete intersection. See [G-L-S07, Chap. II, 1.2].
Here we tacitly assume that the deformation of the equations produces a flat family.
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Proposition 1.2.6 (Teissier, [Tei77, §3]) (a) The projection f : Yred Ñ D is flat,
X0zt0u is reduced and Xv is reduced for each v , 0.

(b) Given a deformation of the equations of X0 there is a deformation of the normal-
ization of X0 such that Yred = Y

1 if and only if δ(Xv ) is constant for all v P D.

Proof See [Tei77, Lemma 7.1.1 and Prop. 7.1.3] and [G-L-S07, Theorem 2.54]. �

Example 1.2.7 Consider the of curve X0 inC3 given by the equations x = 0, z2´y3 =

0. The normalization of X0 is given by

ϕ(t) = (0, t2, t3).

Consider the deformation Φ(v, t) = (vt, t2, t3, v). So, the reduced image Yred of Φ is
given by the following equations:

x2 ´ v2y = 0, xy ´ vz = 0, xz ´ vy2 = 0, z2 ´ y3 = 0.

Now, when we consider the projection f : Yred Ñ D, the fiber f´1(0) = X0 is given
by

x2 = 0, xy = 0, xz = 0, z2 ´ y3 = 0.

Note that it is not reduced at the origin, hence there is no deformation of x = z2´y3 =

0 such that Yred = Y
1 . One can understand this as follows: while the special fiber of

our family of curves has embedding dimension two, the general fiber has embedding
dimension three. In an analytic family the embedding dimension of the fibers can
only increase by specialization so that in our analytic family f : Yred Ñ d the ideal
defining the special fiber has in its primary decomposition an infinitesimal embedded
component with ideal xx2, y, zy sticking out of the x = 0 plane, which makes the
embedding dimension of f´1(0) equal to three as it must be. This fact was stressed
also in [Tei77, §3, section 3.5].

Remark 1.2.8 We note that one can use Mond-Pellikaan’s algorithm in [Mo-P89] to
find a presentationmatrix of a finite analyticmap germ g : (X, 0) Ñ (Cd+1, 0), where
(X, x) is a germ of Cohen-Macaulay analytic space of dimension d. For the compu-
tations one can use also the software Singular [D-G-P-S] and the implementation of
Mond-Pellikaan’s algorithm given by Hernandes, Miranda, and Peñafort-Sanchis in
[H-M-P18]. At the web page of Miranda [Mir19] one can find a Singular library to
compute presentation matrices based on the results of [H-M-P18].
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1.3 General projections

For a reduced and equidimensional germ of complex analytic variety (X, 0) Ă
(CN , 0) Whitney gave 6 possible definitions of tangent vectors ([Whi65b]), the sets
of which constitute tangent cones:

C1(X, 0) Ă C2(X, 0) Ă C3(X, 0) Ă C4(X, 0) Ă C5(X, 0) Ă C6(X, 0),

and when the germ (X, 0) is smooth they all coincide with the tangent space T0X .

What is usually known as the tangent cone CX,0 is what Whitney defined as the
cone C3(X, 0) and is constructed by taking limits of secants through the origin. This
means that if we take a representative (X, 0) Ă (CN , 0) then a vector v P CN is
in C3(X, 0) if there exists a sequence of points tpiu Ă Xzt0u tending to 0 and a
sequence of complex numbers tλiu Ă C˚ such that

λipi Ñ v

Algebraically it is constructed by blowing up the point

e0 : Bl0X Ñ X

and the fiber over the origin is the projectivized tangent cone e´1
0 (0) = PC3(X, 0). In

particular it is a pure d-dimensional algebraic conewhere d is the dimension of (X, 0).

If (X, 0) is a curve then the cone C3(X, 0) is a finite number of lines, one for each
branch of X . Of course different branches may have the same tangent.

Definition 1.3.1 A linear projection π : (CN , 0) Ñ (CM, 0) with kernel D is called
C3-general (with respect to X) if it is transversal to the tangent cone. That is

D X C3(X, 0) = t0u

Note that the condition implies M ě d and that restriction of a C3-general
projection to X

π|X : (X, 0) Ñ (CM, 0)

satisfies π´1(0) = t0u since otherwise the tangent cone to π´1(0), which is contained
in C3(X, 0), would be contained in D. This finiteness is equivalent to it being finite
(proper with finite fibers) by [De-P00, Thm 3.4.24]. Since C3(X, 0) is of dimension
d then almost all (an open dense set of) linear projections π : (CN , 0) Ñ (Cd+1, 0)
are C3-general. This tells us that π(X ) Ă Cd+1 is a hypersurface and by [Chi89,
Cor. 8.2] we have that C3(π(X ), 0) = π (C3(X, 0)). We leave it as an exercise for the
reader to verify that this last equality is an equality of Fitting images. Hint: use the
specialization spacesX andY to the tangent cones for X and Cd+1 respectively (see
[Gi-T18, §2, 2.4]) and the fact that the natural map X Ñ Y is finite by Weierstrass
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preparation because the genericity assumption is equivalent to the finiteness of the
map C3(X, 0) Ñ TCd+1,0, and apply [Mo-P89, Prop. 1.6].
Moreover, a projection π : (CN , 0) Ñ (Cd, 0) is C3-general for (X, 0) if and only if
the mapC3(X, 0) Ñ C3(Cd, 0) = TCd,0 which it induces is finite, which is equivalent
to D X C3(X, 0) = t0u. These C3-general maps are all ramified analytic covers of
Cd of degree equal to the multiplicity of (X, 0).
In the curve case (d=1) this guarantees the existence of linear projections with image
a plane curve.

The cone C4(X, 0) is constructed by taking limits of tangent vectors at smooth
points. One can prove that it is equivalent to taking limits at 0 in the appropriate
Grasmannian of tangent spaces at non singular points of X and so it is determined by
the fiber of the Semple-Nash modification of X . Of course there is an analogous def-
inition of a C4-general linear projection and they do have interesting equisingularity
properties. However, since in the curve case the cones C3 and C4 coincide we will
skip this part and ask the interested reader to look at [Chi89], [Stu72a] and [Stu72b].

The cone C5(X, 0) is constructed by taking limits of secants. This means that if
we take a representative (X, 0) Ă (CN , 0) then a vector v P CN is in C5(X, 0) if
there exist sequences of pairs of distinct points tpiu, tqiu Ă Xzt0u tending to 0 as
i Ñ8 and a sequence of complex numbers tλiu Ă C˚ such that

λi (pi ´ qi ) Ñ v

To prove that C5(X, 0) is an algebraic cone and have a bound for its dimension,
take a small representative X Ă Cn consider the (closed) diagonal embedding
δ : X ãÑ X ˆ X and blow up its image ∆:

e∆ : Bl∆(X ˆ X ) Ñ X ˆ X

If we choose coordinates (z1, . . . , zN ,w1, . . . ,wN ) of the ambient space C2N , then
we can obtain the space Bl∆(X ˆ X ) as the closure of the graph of the secant map
defined away from the diagonal ∆ by:

X ˆ Xz∆ ÝÑ PN´1

(z,w) ÞÝÑ rz1 ´ w1 : ¨ ¨ ¨ : zN ´ wN s

So we have Bl∆(X ˆ X ) as a closed subspace of the product X ˆ X ˆ PN´1, the
map e∆ is induced by the projection to X ˆ X , and the exceptional fiber is the divisor
D := e´1

∆
(∆) Ă ∆ˆPN´1 which comes with a map D Ñ ∆ such that for every point

(q, q) P ∆ the fiber is the projective subvariety corresponding to the projectivization
of the C5-cone of X at q, that is PC5(X, q). This is roughly the way Whitney proved
that the C5-cone is an algebraic variety in [Whi65b, Th. 5.1]. Now C5(X ) is the
analytic space obtained by deprojectivization of the (fibers of) the divisor D and ψ
corresponds to the pullback of e∆ by δ:
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X ˆ CN Ą C5(X ) //

ψ

��

Bl∆(X ˆ X )

e∆

��
X

δ
// X ˆ X

where the upper arrow is defined only outside of X ˆ t0u. Note that the dimension
of C5(X ) is 2d, and the dimension of ψ´1(p) = C5(X, p) for a smooth point p P X
is equal to d since in this case we have C5(X, p) = TpX . By the semicontinuity of
the dimensions of the fibers of an analytic morphism, this implies that:

d ď dimC5(X, 0) ď 2d

Definition 1.3.2 A linear projection π : (CN , 0) Ñ (CM, 0) with kernel D is called
generic (or C5-general) with respect to X if it is transversal to the cone C5(X, 0).
That is

D X C5(X, 0) = t0u

In other words, no limit at 0 of secants to X is contained in D.
Note that a generic projection is in particular C3-general and C4-general.

Proposition 1.3.3 Let (X, 0) Ă (CN , 0) be a reduced equidimensional germ of
complex analytic variety of dimension d and π : (CN , 0) Ñ (CM, 0) a linear
projection.

a) If π is generic then the restriction to X induces a homeomorphism with its image.
b) (X, 0) is smooth if and only if dim C5(X, 0) = d

Proof First of all note that the transversality to the cone C5(X, 0) implies that the
restriction π|X is injective for a small enough representative of X . But then the
induced map π|X : X Ñ CM is injective, continous and the map X Ñ π(X ) is open
since π is and so π|X induces an homeomorphism of X with its image π(X ). Now
for b) sufficiency is clear since (X, 0) smooth implies C5(X, 0) = T0X and so it is of
dimension d. For necessity note that the dimension of C5(X, 0) equal to d implies
the existence of a generic linear projection to Cd

π|X : (X, 0) Ñ (Cd, 0)

By a) this gives us a homeomorphism between (X, 0) and (Cd, 0). Note that π is
also C3-general so it induces a ramified covering of degree equal to the multiplicity
of (X, 0), but the injectivity gives us multiplicity 1 and so (X, 0) is smooth. �

(For more on this and more general results see [Stu72a],[Stu77] and [Chi89, Section
9.4])

An important thing to notice is that in the reducible case the cone C5(X, 0) con-
tains but IS NOT EQUAL to the union of theC5-cones of its irreducible components.
For instance if (X,0) is a curve consisting of two smooth branches X1 and X2 then
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both cones C5(Xi, 0) are one-dimensional but since (X, 0) is singular then by the
previous result C5(X, 0) can not have dimension 1.

So now we have that if (X, 0) is singular then d + 1 ď dimC5(X, 0) ď 2d, and
in the curve case this just gives dim C5(X, 0) = 2. This guarantees the existence of
generic projections to C2.

Corollary 1.3.4 Let (X, 0) Ă (CN , 0) be a germ of reduced analytic curve. Then
almost all (an open dense set of) linear projections π : (CN , 0) Ñ (C2, 0) are
generic and its image π(X ) Ă C2 is a plane curve homeomorphic to X .

1.3.1 The case of dimension 1.

In the case of curves we have the following important results:

Proposition 1.3.5 (see [B-G-G80, Prop IV.1])
Let (X, 0) Ă (CN , 0) be a germ of reduced analytic curve. If (X, 0) is singular then
the cone C5(X, 0) is a finite union of 2-planes each one of them containing at least
one tangent line to (X, 0).

Proof We will only give an idea of the proof.
By Proposition 1.3.3 the cone C5(X, 0) is two dimensional and by the blowup
construction it has a finite number of irreducible components. So what one has
to prove is that all the irreducible components are 2-planes. Again, by this blowup
construction, any (direction of) line contained inC5(X, 0) can be picked off by lifting
an arc

(ψ1, ψ2) : (C, 0) Ñ (X ˆ X, (0, 0))

to Bl∆(XˆX ) like
(
ψ1(t), ψ2(t), rψ1(t) ´ ψ2(t)s

)
. Now eachψi (t) is an arc (C, 0) Ñ

(X, 0) and can be obtained using the parametrization of one of the branches of (X, 0).
Once you see this, what you have to do is consider the different cases and work out
the calculations.

The first case is when (X, 0) Ă (CN , 0) is irreducible of multiplicity n so we have
a parametrization of the form:

ϕ(t) = *
,
tn,

ÿ

iąn

a2, i t i, . . . ,
ÿ

iąn

an, i t i+
-

with the tangent line being the z1-axis r1 : 0 : ¨ ¨ ¨ : 0s. For every n-th root of unity
ω , 1 the lifted arc

t ÞÑ
(
ϕ(t), ϕ(ωt), rϕ(t) ´ ϕ(ωt)s

)
P X ˆ X ˆ PN´1

will define a limit line `ω P PN´1 as t Ñ 0 and if you define Hω as the 2-plane
generated by the z1-axis and the line in CN corresponding to `ω then you can prove
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that
C5(X, 0) = Hω1 Y . . . Y Hωn´1

by verifying that any line obtained by lifting an arc is contained in one of these
2-planes.

For the reducible case it is enough to consider two branches (X, 0) = (X1, 0) Y
(X2, 0). In this case you have that the C5-cone of each irreducible component (Xi, 0)
will be contained in C5(X, 0) but you will have additional components that come
from the configuration of these two branches. For instance if they have different
tangent lines `1 and `2 then all you have to add is the plane H12 generated by these
two lines.i.e:

C5(X, 0) = C5(X1, 0) Y C5(X2, 0) Y H12

When the two branches are tangent (have the same tangent line) then you have to
play a game very similar to the irreducible case by reparametrizing your branches in
such a way as to travel through them at the same “speed” and using roots of unity to
find lines `ω in the C5(X, 0) that are different from the tangent line and these will
give you the additional 2-planes. i.e.,:

C5(X, 0) = C5(X1, 0) Y C5(X2, 0) Y Hω1 Y . . . Y Hωk

Proposition 1.3.6 (see [B-G-G80, Prop IV.2])
Let (X, 0) Ă (CN , 0) be a germ of reduced analytic curve, and letΩ Ă G(N ´2, N )
be the non-empty Zariski open set of the Grassmannian of (N ´ 2)-planes of CN

which are transversal to C5(X, 0). Then:

a) For H P Ω the plane curve (πH (X ), 0) is reduced and of constant topological
(equisingularity) type with Milnor number µ0.

b) If H < Ω then one of the following statements is verified:

– 0 is not an isolated point of H X X .
– 0 is an isolated point of H X X but the curve (πH (X ), 0) is not reduced.
– 0 is an isolated point of HX X , the curve (πH (X ), 0) is reduced but its Milnor

number is greater than µ0.

Proof LetW 1 Ă G(N´2, N ) be the open subset of the the Grassmannian of (N´2)-
planes ofCN defined by the condition that H P W 1 if and only if 0 P CN is an isolated
point of H X X . Let W Ă C2N with coordinate system (a1, . . . , aN , b1, . . . , bN ) be
the associated open subset, where d = (a, b) P W if and only if the linear forms

a1z1 + ¨ ¨ ¨ + aN zN and b1z1 + ¨ ¨ ¨ + bN zN

are linearly independent and the N ´ 2 plane Hd Ă CN they define is in W 1. Let πd
be the linear projection

πd : CN ÝÑ C2

(z1, . . . , zN ) ÞÑ (a1z1 + ¨ ¨ ¨ + aN zN , b1z1 + ¨ ¨ ¨ + bN zN )
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Note that for d P W the germ πd : (X, 0) Ñ (C2, 0) is finite, and if we denote by
(πd (X ), 0) Ă (C2, 0) the image germ with the Fitting structure then by [Mo-P89,
Lemma 2.1] it is a (not necessarily reduced) plane curve.

We put all these projections in an analytic family by considering the map

Π : CN ˆW ÝÑ C2 ˆW

(z1, . . . , zN , a, b) ÞÑ (πd (z1, . . . , zN ), a, b)

Note that for every d P W the map germ

Π : (X ˆW, (0, d)) Ñ
(
C2 ˆW, (0, d)

)
is finite. And since the analytic algebra OXˆW , (0,d) is Cohen-Macaulay again by
[Mo-P89, Lemma 2.1] we have a germ of hypersurface (Π(X ,̂W ), (0, d)) Ă(
C2 ˆW, (0, d)

)
. By projecting toW Ă C2N we obtain (by [G-L-S07, ThmB.8.11])

a flat map:
G : (Π(X ,̂W ), (0, d)) Ñ (W, d)

Since the Fitting structure commutes with base change we have that the germ(
G´1(d), (0, d)

)
is isomorphic to (πd (X ), 0), and so we have a flat deformation

of (πd (X ), 0) where all the fibers are plane curves.
Note that if ϕ : (C, 0) Ñ (CN , 0), t ÞÑ (ϕ1(t), . . . , ϕN (t)) is the normalization

of a branch of (X, 0) then the plane curve (πd (X ), 0) is parametrized by:

t ÞÑ (a1ϕ1(t) + ¨ ¨ ¨ + aNϕN (t), b1ϕ1(t) + ¨ ¨ ¨ + bNϕN (t))

and by varying d we get that the deformation space of G admits a parametrization
in family.
Proof of a): When Hd is transversal to C5(X, 0) then for every d1 in a small neigh-
borhood of d the (n ´ 2)-plane Hd1 is also transversal to C5(X, 0) and all the
corresponding projections πd1 are therefore generic. By corollary 1.3.4 this tells us
that πd1 : Xzt0u Ñ G´1(d1)zt0u is an analytic isomorphism for every d1 sufficiently
close to d. This implies:

• All the curves in the family G´1(d1) have the same number of branches as X .
• The parametrization in family is actually a normalization in family and by [Tei77,

§3], see also [G-L-S07, II, Thm 2.56] the family is δ constant.

By the Milnor formula µ = 2δ´ r + 1 the family G : (Π(X ,̂W ), (0, d)) Ñ (W, d)
is µ-constant and so equisingular by [B-G-G80, Thm II.4].

Proof of b): For Hd P WzΩ we have that the map

πd : (X, 0) Ñ (C2, 0)

is finite but if it is generically k to 1 then by [Mo-P89, Prop. 3.1] the Fitting structure
of (πd (X ), 0) is not reduced.
When πd is generically 1´ 1 then (πd (X ), 0) is reduced but by assumption there is
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a line ` Ă Hd X C5(X, 0). Take a sequence of secants `k going through the points
xk, yk P Xzt0u such that `k converges (in direction) to `, since Ω is Zariski open we
can find a sequence dk tending to d such that Hdk

P Ω and it contains (the direction
of) `k . Note that πdk

(`k ) = qk , 0 and so the plane curve (G´1(dk ), qk ) is singular
which implies that µ ((πd (X ), 0)) ą µ

(
(πdk

(X ), 0)
)
. �

Example 1.3.7 Let (X, 0) Ă (C3, 0) the germ of irreducible curve parametrized by

t ÞÑ (t4, t5, t7)

then the tangent cone C3(X, 0) is the z1-axis.
By taking other arcs t ÞÑ (t4, ωt5, ω3t7) were ω P µ4zt1u and taking the limit at
t Ñ 0 of the difference (0 : (1 ´ ω)t5 : (1 ´ ω3)t7) we get the z2´ axis as a limit
of secants and we can deduce that the cone C5(X, 0) is the z1z2-plane.
For d = (1, 0, 0, 0, 1, 0) the corresponding projection

πd0 (z1, z2, z3) = (z1, z2)

isC5-general and its image πd (X, 0) Ă (C2, 0) is the reduced plane curve y4´x5 = 0
with Milnor number µ = 12.
On the other hand For d0 = (1, 0, 0, 0, 0, 1) the corresponding projection

πd0 (z1, z2, z3) = (z1, z3)

is not C5-general and its image πd0 (X, 0) Ă (C2, 0) is the reduced plane curve
y4 ´ x7 = 0 with Milnor number µ = 18.
By taking dα = (1, 0, 0, 0,´α2, 1) we get a sequence of C5-general projections πdα
converging to πd0

πdα (z1, z2, z3) = (z1, z3 ´ α2z2)

Note that the plane curve Xα := πdα (X ) has a singular point in (α4, 0) coming from
the image of the secant going through the points (α4, α5, α7) and (α4,´α5,´α7) in
X . Moreover as α tends to 0 these secants dα = r0 : 1 : α2s converge to the z2-axis
r0 : 1 : 0s in P2 which is precisely the intersection Hd0 X C5(X, 0).
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1.4 Main result

We have just seen that all (C5-)generic plane projections of a reduced analytic curve
are equisingular. Now our objective is to prove that all equisingular germs of reduced
plane curves are generic projections of a single space curve. As we shall see, given
a reduced plane curve (X, 0) Ă (C2, 0) this space curve corresponds to the one
dimensional analytic algebra which is the Lipschitz saturation Os

X,0 of OX,0 in the
sense of [P-T69]. In doing so we will also give another reason why a) of Proposition
1.3.6 is true, since we shall see that a projection π is generic for a space curve
(X, 0) Ă (CN , 0) if and only if it induces an isomorphism of the saturated algebras
Os

X,0 and O
s
π (X ),0. In particular, two germs of reduced plane curves are equisingular

(topologically equivalent) if and only if their saturations are analytically isomorphic.
In order to define these saturations we need the theory of integral closure of ideals.

1.4.1 Integral closure of ideals

Our main references for this subsection are, [Lej-T08], [Lip82], [Tei74] and
[Hu-S06].

Definition 1.4.1 Let I be an ideal in a ring R. An element r P R is said to be integral
over I if there exists an integer h and elements a j P I j , j = 1, . . . , h, such that

rh + a1rh´1 + a2rh´2 + ¨ ¨ ¨ + ah´1r + ah = 0

The set of all elements of R that are integral over I is an ideal called the integral
closure of I and denoted by I. We say that I is integrally closed if I = I. If I Ă J
are ideals we say that J is integral over I if J Ă I.

Remark 1.4.2 The following properties are easily verified:

1. I Ă I. For each r P I choose n = 1 and a1 = ´r .
2. If I Ă J are ideals then I Ă J since an integral dependence equation for r over I

is also an an integral dependence equation for r over J.
3. I Ă

?
I since the integral dependence equation implies rn P xa1, . . . , any Ă I.

4. Radical ideals are integrally closed.
5. If ϕ : R Ñ S is a ring morphism and I Ă S is an integrally closed ideal of S then
ϕ´1(I) is an integrally closed ideal of R.

A related concept is that of reduction: For ideals J Ă I Ă R we say that J is a
reduction of I if there exists a non-negative integer n such that In+1 = JIn . This
implies that I = J. We can express integral dependence using equalities of ideals
and modules.

Proposition 1.4.3 (see [Lej-T08, Chapter 1], [Hu-S06, Prop 1.1.7, Cor. 1.1.8 & Cor.
1.2.2]) For any element r P R and ideal I Ă R. The following are equivalent:
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a) r P I.
b) There exists an integer k such that (I + r)k = I (I + r)k´1.
c) I is a reduction of I+ ă r ą.
d) There exists a finitely generated R´module M such that r M Ă I M and if there

exists a P R such that aM = 0, then there exists an integer ` such that ar` = 0. .

A very important corollary of this Proposition is that I Ă R is an integrally closed
ideal of R and you can find a complete proof of this fact in [Hu-S06, Cor. 1.3.1].

We have that I Ă I Ă
?

I, but in fact the integral closure is much “closer" to
I than to the radical and a very good family of examples in which it is easy to
calculate and compare is that of monomial ideals in Ctz1, . . . , zdu, which are the
ideals generated by monomials. We begin with an example:

Example 1.4.4 For the ideal I = xx4, xy2, y3yCtx, yu we have that

I = xx4, x3y, xy2, y3y

and ?
I = xx, yy

The exponent set of I consists of all integer lattice points in the yellow region below:

exp.x

exp.y

(4,0)

(0,3)

(1,2)

(3,1)

x4

y3

xy2

x3y

Fig. 1.1 The point (3, 1) representing the monomial x3y is in the convex hull of the yellow region,
whose integral points represent monomials in I . The integral dependence relation is (x3y)2 ´
x5 .xy2 = 0.

Similarly, in Ctz1, . . . , zdu we have xzn1 , . . . , zn
d
y = xz1, . . . , zdyn .

The exponent vector of a monomial m = zm1
1 ¨ ¨ ¨ zmd

d
is (m1, . . . ,md ) P Nd . For any

monomial ideal I, the set of all exponent vectors of all the monomials is I is called
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the exponent set of I. Since a monomial m is in I if and only if it is a multiple in
Ctz1, . . . , zdu of one of the monomial generators of I, the exponent set of I consists
of all those points ofNd which are componentwise greater or equal than the exponent
vector of one of the monomial generators of I. Moreover one can prove that I is
monomial and its exponent set is equal to all the integer lattice points in the convex
hull of the set of exponents of elements of I. (See [Tei04, §3, §4], [Tei82, Chap.1,
§2], [Hu-S06, Props 1.4.2 & 1.4.6]).

To understand how this theory can be used in the setting of complex analytic
geometry the following result is fundamental.

Theorem 1.4.5 ([Lej-T08, Thm 2.1, p. 799]) Let X be a reduced complex analytic
space. Let Y Ă X be a closed, nowhere dense, analytic subspace of X , and x a point
in Y . Let I Ă OX be the coherent ideal defining Y , and let J Ă OX be another
coherent ideal. Let I (resp. J) be the stalk of I (resp. J ) at x. Then the following
statements are equivalent:

1. J Ă I
2. For every germ of morphism φ : (C, 0) Ñ (X, x)

φ˚J ¨ OC,0 Ď φ˚I ¨ OC,0

3. For every morphism π : X 1 Ñ X such that X 1 is a normal analytic space, π is
proper and surjective, and I ¨OX 1 is locally invertible, there exists an open subset
U Ă X containing x, such that:

J ¨ OX 1 |π
´1(U) Ď I ¨ OX 1 |π

´1(U)

3˚. If Π : BlIX Ñ X denotes the normalized blowup of X along I, then there exists
an open subset U Ă X containing x, such that:

J ¨ O
BlIX

|Π´1(U) Ď I ¨ O
BlIX

|Π´1(U)

4. Let V Ă X be a neighborhood of x, where both J and I are generated by their
global sections. Then for every system of generators g1, . . . , gm of Γ(V,I) and
every f P Γ(V,J ), there exist a neighborhood V 1 of x in V and a constant C
such that:

| f (y)| ď C sup
i=1, ...,m

|gi (y)|

for every y P V 1.

Let us take a closer look at statement 2: For any arc ϕ : (C, 0) Ñ (X, 0) Ă (CN , 0)
we have a corresponding morphism of analytic algebras

ϕ˚ : OX,0 = Ctz1, . . . , zN u{a ÝÑ Cttu
zi + a ÞÑ ϕi (t) = tmiui (t)

where mi ě 1 and ui (t) is a unit inCttu. So if I Ă OX,0 is an ideal then ϕ˚(I)OC,0 =
xtkyCttu for some integer k and an element g P OX,0 is in I if and only if for any
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such arc ϕ(t) the order of the series g (ϕ1(t), . . . , ϕN (t)) is greater or equal than this
k.
The fact that the normalized blowing-up map is proper implies that the condition
of statement 2 needs to be verified only for finitely many arcs. Since the general
statement is somewhat cumbersome, let us illustrate how this works in the case
where the ideal I a complete intersection defining the origin in (X, 0). Let I =
xh1, . . . , hdy Ă OX,0. The blowing up Bl I X of I in X is the subspace of X ˆ Pd´1

defined by the d ´ 1 equations h1
T1
=

h2
T2
= ¨ ¨ ¨ =

hd

Td
, again a complete intersection.

The fiber of the natural projection Bl I X Ñ Pd´1 over a point t P Pd´1 with
coordinates (t1 : t2 : ¨ ¨ ¨ : td ) is a curve in Bl I X which is isomorphic to its image
in X defined by the equations hi t j ´ h j ti = 0. So we can view Bl I X as a family
of curves Ct on X parametrized by Pd´1, which is the exceptional divisor of the
map Bl I X Ñ X . When we pass to the normalization n : Bl I X Ñ Bl I X , by general
Theorems on normalization (see Proposition 1.2.6 and use the fact that there is
a dense open U Ă Pd´1 where δ is constant), there exists a Zariski dense open
subset U Ă Pd´1 such that n´1(U) is a non singular divisor in a non singular space
n´1((X ˆU) X Bl I X ), and for each point t P U the map n induces a normalisation
of the curve Ct . This normalization is then a union of disks, one for each irreducible
component of Ct , and each disk transversal to n´1(Pd´1) in n´1((X ˆU)X Bl I X ).
Because a meromorphic function on a normal space is holomorphic if it has no poles
in codimension one, to verify that an element g P OX,0 is in I, it suffices to verify that
for some t P U , the order of vanishing of g along each arc parametrizing a branch of
Ct is larger than the order of vanishing of the ideal I. Because of what we have just
seen, the order of vanishing along these arcs will, after lifting to Bl I X , translate as
the order of vanishing along some irreducible component of the exceptional divisor
in Bl I X . Since the ideal I is locally principal on Bl I X , to prove that g P I it suffices
to prove that after lifting to Bl I X the function g becomes a multiple of the local
equations of the exceptional divisor. But the polar set of the quotient of g by that
equation is contained in that exceptional divisor and the inequalities of orders imply
that there are no poles at a general point of each irreducible component. Because
Bl I X is normal, there are no poles anywhere and on Bl I X the pull back of the
function g is indeed in the pull back of the ideal I so that g is in I.

We shall use this below to describe the saturation.

With this at hand we can now characterize C3-general projections in terms of
integral closure of ideals. Let (X, 0) Ă (CN , 0) be a reduced germ of analytic space
of pure dimension d. Let us choose coordinates z1, . . . , zN on CN , denote by L the
linear subspace of CN defined by z1 = ¨ ¨ ¨ = zd = 0 and let a be the ideal of OX,0
generated by the images of z1, . . . , zd .

Proposition 1.4.6 The linear projection

π : (X, 0) Ñ (Cd, 0) (z1, . . . , zN ) ÞÑ (z1, . . . , zd )

with kernel L is C3-general if and only if a = m where m = xz1, . . . , zN yOX,0 is the
maximal ideal of the analytic algebra OX,0.
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Proof Recall that π is C3-general if and only if C3(X, 0) X L = t0u. Let ` = ra1 :
¨ ¨ ¨ : aN s P PN´1 be a line in the (projectivized) tangent cone C3(X, 0), then ` 1 L
if and only if ai , 0 for some i P t1, . . . , du. Note that any arc ϕ : (C, 0) Ñ (X, 0)
determines a line in C3(X, 0), the limit as t Ñ 0 of

t ÝÑ rϕ1(t) : ¨ ¨ ¨ : ϕN (t)s P PN´1

and conversely any line in the tangent cone can be obtained through an arc since it
corresponds to a point in the fiber over 0 of the blowing-up Bl0X Ñ X . On the other
hand, for every arc ϕ : (C, 0) Ñ (X, 0) we have that

ϕ˚(a)OC,0 = xϕ1(t), . . . , ϕd (t)yCttu = xtkyCttu

where k = mintord0ϕi (t) | i = 1, . . . , du. Finally ai , 0 for some i P t1, . . . , du if
and only if for all j P td + 1, . . . , Nu

ord0ϕ j (t) ě k = mintord0ϕi (t) | i = 1, . . . , du

if and only if ϕ˚(z j ) P ϕ˚(I)OC,0 if and only if z j P a for all j P td + 1, . . . , Nu,
that is, a = m. �

By a linear change of coordinates in CN we can always place ourselves in the
setting of the previous result. But the theory of integral closure also gives us an
algebraic way to prove that for a given germ (X, 0) of pure dimension d almost all
linear projections π : (CN , 0) Ñ (Cd, 0) are C3-general as stated in the following
result (For a proof see [Mat89, Thm 14.14])

Theorem 1.4.7 (Rees-Samuel) Let OX,0 be a d-dimensional analytic algebra with
maximal ideal m = xz1, . . . , zN y. Then if yi =

řN
j=1 λi j z j for 1 ď i ď d are d

“sufficiently general" C-linear combinations of z1, . . . , zn the ideal a = xy1, . . . , ydy
satisfies a = m.

We can take this one step further by considering another important aspect of this
theory, namely its relation with multiplicity. For a local Noetherian ring (R,m) and
an m´primary ideal a Ă R we can define a Hilbert Samuel function

k P N ÞÑ dimR{mR{ak

The result is that for large enough k the Hilbert-Samuel function behaves like a
polynomial of degree equal to the dimension of R and its leading coefficient is of the
form e(a)kd{d!, where e(a) is a positive integer called the multiplicity of the ideal
a. In the case R is the analytic algebra OX,0 of a germ (X, 0) and a = m it IS the
multiplicity of the germ. (See [De-P00, Section 4.2])

Theorem 1.4.8 (Rees)(see [Ree61, Thm 3.2],[Hu-S06, Thm 11.3.1])
Let (OX,0,m) be a reduced and equidimensional analytic algebra and a Ă b two
m´primary ideals. Then a = b if and only if e(a) = e(b).
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A geometric interpretation of this result is described by Lipman in [Lip82]. Let
(X, 0) be a germ of reduced and equidimensional singularity of dimension d with as-
sociated analytic algebra

(
OX,0,m

)
. Every m´primary ideal is generated by at least

d elements, and every d´tuple ( f1, . . . , fd ) of elements of m defines a map-germ
F : (X, 0) Ñ (Cd, 0).

Now, the ideal a = x f1, . . . , fdy is m´primary if and only if F is finite. As we
have mentioned before you can prove that such an F : (X, 0) Ñ (Cd, 0) is then a
ramified analytic cover of degree equal to e(a) and by Rees’ TTheoremheorem this
degree will be the multiplicity of (X, 0) (= e(m)) if and only if a = m.

Moreover using Nakayama’s Lemma one checks that a is a reduction ofm (equiv-
alently a = m) if and only if in the graded C´algebra

grmO =
à

kě0
m

k{mk+1, with m0 = O

(which “corresponds” to the homogeneous coordinate ring of the projectivized tan-
gent cone PC3(X, 0) see [Gi-T18, Section 2.4]) the images f i of the f i in m{m2

generate an irrelevant ideal (that is, an ideal containing all elements of G of suffi-
ciently large degree so that its zero locus in projective space is empty).

What this last condition means is that first of all the f i are linearly independent
over C, so that there is an embedding of the germ (X, 0) into (CN , 0) for some N
and a linear projection π : (CN , 0) Ñ (Cd, 0) such that its restriction to (X, 0)
is germwise the F associated above to ( f1, . . . , fd ) and secondly, since a = m by
Proposition 1.4.6 the projection π is C3-general.

We end this section by establishing a result analogous to Proposition 1.4.6 but
with respect to generic projections of curves.

Definition 1.4.9 Let ϕ1 : R Ñ A1 and ϕ2 : R Ñ A2 morphisms of C-analytic
algebras. There is a unique C-analytic algebra, denoted A1NbR A2, together with
morphisms θi : Ai Ñ A1NbR A2, i = 1, 2, such that θ1 ˝ ϕ1 = θ2 ˝ ϕ2 and for
every pair of morphisms of C-analytic algebras ψ1 : A1 Ñ B, ψ2 : A2 Ñ B
satisfying ψ1 ˝ ϕ1 = ψ2 ˝ ϕ2 there is a unique morphism of C-analytic algebras
ψ : A1NbR A2 Ñ B making the whole diagram commute. The algebra A1NbR A2 is
called the analytic tensor product of A1 and A2 over R.
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A1
θ1

##

ψ1

��
R

ϕ1

??

ϕ2 ��

A1NbR A2
ψ // B

A2

θ2

;;

ψ2

EE

Geometrically this analytic tensor product is the operation on the analytic algebras
that corresponds to the fibre product of analytic spaces. Given holomorphic maps
φ1 : (X1, p1) Ñ (Y, q) and φ2 : (X2, p2) Ñ (Y, q) we have the fibre product:

X1 ˆY X2

Π2

��

Π1 // X1

φ1

��
X2 φ2

// Y

which induces the corresponding diagram of analytic algebras

OY,q

ϕ2

��

ϕ1 // OX1,p1

��
OX2,p2

// OX1ˆY X2, (p1,p2)

that is, the analytic algebra OX1ˆY X2, (p1,p2) is isomorphic to OX1,p1
NbOY ,qOX2,p2 .

Remark 1.4.10 See [Gr-P07, Def 1.28, Example 1.46.1&Lemma 1.89] and [Ada12].

1. When R = C in the definition, the analytic tensor product OX,xNbCOY,y is
the analytic algebra corresponding to the product germ (X ˆ Y, (x, y)). More-
over if OX,x = Ctzu{I and OY,y = Ctwu{J with z = (z1, . . . , zN ) and
w = (w1, . . . ,wM ) then

OX,xNbCOY,y =
Ctz,wu

xICtz,wu + JCtz,wuy

2. In general if (X1, p1) Ă (CN , 0), (X2, p2) Ă (CM, 0) and (Y, q) Ă (Ck, 0) then

OX1,p1
NbOY ,qOX2,p2 =

Ctzu
I

NbOY ,q
Ctwu

J

�
Ctz,wu

xICtz,wu + JCtz,wuy + xφ11(z) ´ φ12(w), . . . , φk1 (z) ´ φk2 (w)yCtz,wu
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Let (X, 0) Ă (CN , 0) be a germ of reduced singular curve. By Proposition 1.3.5 the
C5 cone is a finite union of 2-planes of Cn

C5(X, 0) = H1 Y . . . Y Hr

If we let π : (CN , 0) Ñ (C2, 0) denote the linear projection to the first two co-
ordinates (z1, . . . , zN ) ÞÑ (z1, z2) then π is generic if and only if π(Hi ) = C2 for
i = 1, . . . , r . Recall that the construction of C5(X, 0) goes through the blowup of the
diagonal of X ˆ X , so let I∆ Ă OXˆX, (0,0) be the ideal defining this diagonal

I∆ = xz1 ´ w1, . . . , zN ´ wN yOXˆX, (0,0)

Proposition 1.4.11 Let I∆2 Ă OXˆX, (0,0) be the ideal coming from the projection π,
that is, I∆2 = xz1´w1, z2´w2yOXˆX, (0,0) . Then π is generic if and only if I∆2 = I∆.

Proof The proof is now very similar to the C3-general case, and since I∆2 Ă I∆ all
we have to prove is that genericity is equivalent to the inclusion I∆ Ă I∆2 .

Let L = V (z1, z2) be the kernel of π. Then π is generic if and only ifC5(X, 0)XL =
t0u. Let ` = ra1 : ¨ ¨ ¨ : aN s P PN´1 be a line in the (projectivized) cone C5(X, 0),
then ` ( L if and only if ai , 0 for some i P t1, 2u. This time the lines in C5(X, 0)
are determined by taking the limit as t Ñ 0 of the secants associated to pairs of arcs
(ϕ, ψ) : (C, 0) Ñ (X ˆ X, (0, 0))

t ÝÑ rϕ1(t) ´ ψ1(t) : ¨ ¨ ¨ : ϕN (t) ´ ψN (t)s P PN´1

Again for every such pair of arcs (ϕ, ψ) : (C, 0) Ñ (X ˆ X, (0, 0)) we have that

(ϕ, ψ)˚(I∆2 )OC,0 = xϕ1(t) ´ ψ1(t), ϕ2(t) ´ ψ2(t)yCttu = xtkyCttu

where k = mintord0(ϕ1(t) ´ ψ1(t)), ord0(ϕ2(t) ´ ψ2(t))u. Finally ai , 0 for some
i P t1, 2u if and only if for all j P t3, . . . , Nu

ord0(ϕ j (t) ´ ψ j (t)) ě k = mintord0(ϕ1(t) ´ ψ1(t)), ord0(ϕ2(t) ´ ψ2(t))u

if and only if (ϕ, ψ)˚(z j ´ w j ) P (ϕ, ψ)˚(I∆2 )OC,0 if and only if z j ´ w j P I∆2 for
all j P t3, . . . , Nu, that is, I∆ Ă I∆2 . �

1.4.2 Lipschitz Saturation

Let n˚ : OX,0 ãÑ OX,0 be the integral closure of a reduced complex analytic algebra
which is a quotient ofCtz1, . . . , zN u. Recall that OX,0 is a direct sum of normal ana-
lytic algebras (in particular integral domains), one for each irreducible component of
the germ (X, 0). By definition 1.4.9 the following commutative diagram determines
a unique morphism Ψ of direct sums of analytic algebras:
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OX,0

θ1

%%

ψ1

��
C

22

,,

// OX,0

==

!!

OX,0NbCOX,0
Ψ // OX,0NbOX,0OX,0

OX,0

θ2

99

ψ2

CC

where θ1( f ) = fNbC1 and θ2( f ) = 1NbC f . Note that the map Ψ : OX,0NbCOX,0 Ñ

OX,0NbOX,0OX,0 is the morphism of sums of analytic algebras corresponding to the
inclusion

(
X ˆX X, (0, 0)

)
ãÑ

(
X ˆ X, (0, 0)

)
. By remark 1.4.10 if we denote by

n : (X, 0) Ñ (X, 0) the normalization map and OX,0 =
Àr

i=1 Ctt1, . . . , tmi u{Ji (t)
with t j = (t1, . . . , tmi ), then

OX,0NbCOX,0 =
à

i, j

Ctt1, . . . , tmi , u1, . . . , um j u

xJi (t j ), Jj (u j )y

and Ψ is a surjection with kernel

I∆ = xz1NbC1´ 1NbCz1, . . . , zNNbC1´ 1NbCzN yOX,0NbCOX,0.

Definition 1.4.12 The I∆ be the kernel of the morphism Ψ above. We define the
Lipschitz saturation Os

X,0 of OX,0 as the algebra

Os
X,0 :=

!

f P OX,0 | θ1( f ) ´ θ2( f ) P I∆
)

=

!

f P OX,0 | fNbC1´ 1NbC f P I∆
)

.

Example 1.4.13 Let (X, 0) Ă (C3, 0) be the irreducible curve with normalization
map:

η : (C, 0) ÝÑ (X, 0)

t ÞÑ (t4, t6, t7)

In this setting the map Ψ above is

Ψ : OX,0NbCOX,0 Ñ OX,0NbOX,0OX,0

Ψ : Ctt, uu ÝÑ
Ctt, uu

xt4 ´ u4, t6 ´ u6, t7 ´ u7y
.
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The maps θi are just inclusions, Cttu ãÑ Ctt, uu, Ctuu ãÑ Ctt, uu and the ideal
I∆ = xt4´u4, t6´u6, t7´u7y. By definition Os

X,0 :=
!

f P Cttu | f (t) ´ f (u) P I∆
)

and note that OX,0 Ă O
s
X,0. For example t5 P Cttu is in Os

X,0 if and only if
t5´ u5 is in I∆. By taking the arc φ(τ) = (τ,´τ) we have that φ˚I∆OC,0 = xτ7y and
φ˚(t5´u5) = 2τ5 < φ˚I∆OC,0, so by Theorem 1.4.5-2 the element t5 P Cttu = OX,0
is not in the Lipschitz saturation Os

X,0. For this particular arc we have φ
˚(t9´ u9) =

2τ9 P φ˚I∆OC,0, and one can actually prove that t9 P Os
X,0. As we shall see later on,

in fact Os
X,0 = Ctt4, t6, t7, t9u.

We are going to show that the Lipschitz saturation Os
X,0 is always an analytic

algebra, even if the germ (X, 0) is not irreducible. To begin to understand why this
is true, let’s look at the irreducible case. Define the map

α : OX,0 Ñ OX,0NbCOX,0

f ÞÑ θ1( f ) ´ θ2( f ) = f (z) ´ f (w)

It is not a ring map, however if n˚ : OX,0 ãÑ OX,0 denotes the inclusion coming
from the normalization map n : X Ñ X then α(n˚(OX,0)) = α(n˚(mX,0)) and
I = KerΨ = xα(n˚(mX,0))y.

By definition 1.4.9 OX,0NbOX,0OX,0 is an OX,0-algebra, in particular an OX,0-
module. However, an interesting point is that since n : X Ñ X is a finite map, by
[Gr-P07, Lemma 1.89] this algebra is isomorphic to the algebraic tensor product
OX,0 bOX,0 OX,0, so for instance

Ctt, uu
xt2 ´ u2, t3 ´ u3y

� Cttu bCtt2, t3u Ctuu

Lemma 1.4.14 The map

Ψ ˝ α : OX,0 ÝÑ OX,0NbOX,0OX,0

is a morphism of OX,0-modules.

Proof Indeed for r P OX,0 and f P OX,0:

r f α
ÞÑ r (z) f (z) ´ r (w) f (w) Ψ

ÞÑ r (z) f (z) ´ r (w) f (w) + I

but r (z) = r (w) mod(I) so r (z) f (z)´ r (w) f (w) = (r (z) + I)( f (z)´ f (w) + I) =
r (Ψ ˝ α)( f ).

By definition I∆ is an ideal of OX,0NbCOX,0 and since Ψ is a surjective ring
homomorphism we have that Ψ(I∆) Ă OX,0NbOX,0OX,0 is an ideal, in particular it is
an OX,0-module. But this implies that
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(Ψ ˝ α)´1 (Ψ(I∆)) = α´1(I∆) = Os
X,0 Ă OX,0

is an OX,0-module.

Lemma 1.4.15 The Lipschitz saturation Os
X,0 is an OX,0-algebra and a direct sum

of analytic algebras.

Proof Since Os
X,0 is a submodule of the Noetherian module OX,0, it is a finitely

generated OX,0-module. Even more, you can easily check that Os
X,0 is closed under

multiplication, so it is an OX,0-algebra and by [De-P00, Cor. 3.3.25 & 3.3.26] this
implies that Os

X,0 is a direct sum of analytic algebras.
Indeed, take f1, f2 P Os

X,0 then (Ψ ˝ α)( f1) = f1(z) ´ f1(w) + I∆ P Ψ(I∆), but
it is an ideal so ( f2(z) + I∆)( f1(z) ´ f1(w) + I∆) P Ψ(I∆). Analogously ( f1(w) +
I∆)( f2(z) ´ f2(w) + I∆) P Ψ(I∆) by taking their sum we get that (Ψ ˝ α)( f1 f2) =
f1(z) f2(z)´ f1(w) f2(w)+ I∆ P Ψ(I∆) which implies that f1 f2 P Os

X,0 as claimed.�

Before proving that Os
X,0 is actually an analytic algebra we would like to give

an idea of how things work in the non-irreducible case so suppose there are two
irreducible components (X, 0) = (X1, 0) Y (X2, 0). As we said before X is then a
multigerm (X1, p) \ (X2, q) and OX,0 = OX1,0

À

OX2,0 = OX1,p

À

OX2,q
. Since

the analytic tensor product should be the algebraic counterpart of the fibre product
then we should consider/define

OX,0NbOX,0OX,0 =

OX1,p
NbOX,0OX1,p

‘ OX1,p
NbOX,0OX2,q

‘ OX2,q
NbOX,0OX1,p

‘ OX2,q
NbOX,0OX2,q

and analogously for OX,0NbCOX,0. By componentwise taking the ring maps Ψi j

coming from the universal property of the irreducible case, for example:

Ψ12 : OX1,p
NbCOX2,q

Ñ OX1,p
NbOX,0OX2,q

we get the ring map Ψ as before with kernel I∆ = I11 ‘ I12 ‘ I21 ‘ I22. The map α
should now be defined as

α : OX,0 ÝÑ OX,0NbCOX,0

( f1, f2) ÞÑ ( f1(z) ´ f1(w), f1(z) ´ f2(w), f2(z) ´ f1(w), f2(z) ´ f2(w))

and we get the same definition for the Lipschitz saturation

Os
X,0 :=

!

f = ( f1, f2) P OX,0 | α( f ) P I∆
)

More importantly both Lemmas remain valid. Note that in this context of two
irreducible components we have α( f ) P I∆ if and only if f1(z) ´ f1(w) P I11,
f1(z) ´ f2(w) P I12, f2(z) ´ f1(w) P I21 and f2(z) ´ f2(w) P I22.
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Proposition 1.4.16 (See [P-T69, Theorem 1.2], [Tei82, Prop. 6.1.1]) The algebra
Os

X,0 is the ring of germs of meromorphic functions on (X, 0) which are locally
Lipschitz with respect to the ambient metric.

Proof Recall that OX,0 is the ring of meromorphic functions on (X, 0) that are
locally bounded and a Lipschitz meromorphic function is locally bounded. Now if
h P Os

X,0 we need to prove that there exists a real positive constant C ą 0 such that
for every couple (x1, x2) P XzSing XˆXzSing X (in a small enough representative)
we have

|h(x1) ´ h(x2)| ď C||x1 ´ x2||

Let n : X Ñ X Ă Cn be the normalization map. In the irreducible case where
OX,0 = Ctz1, . . . , zN u{x f1, . . . , f sy and OX,0 = Ctt1, . . . , tmu{J (t), the map n
induces a morphism of analytic algebras which may be described by

n˚ : OX,0 ÝÑ OX,0

zi ÞÑ zi (t1, . . . , tm ) = zi (t)

and refering to the maps α and Ψ as above we have that

I∆ = KerΨ = xz1(t) ´ z1(u), . . . , zN (t) ´ zN (u).y

By definition h P Os
X,0 if α(h) = h(t) ´ h(u) P I∆ and by Theorem 1.4.5-4 there

exists a constant C such that

|h(t) ´ h(u)| ď C sup |zi (t) ´ zi (u)| = C||z(t) ´ z(u)||

with
(
z(t), z(u)

)
P X ˆ X and so h is Lipschitz. Reading the proof in the opposite

sense gives that a meromorphic, locally Lipschitz function h is necessarily in Os
X,0.

If (X, 0) has r irreducible components then X is a multigerm and then we
have r maps nk : (Xk, xk ) Ñ (Xk, 0) Ă (X, 0) with coordinate functions
z1(tk ), . . . , zN (tk ). Then for h = (h1, . . . , hr ) P OX,0 we have that α(h) =(
hi (t i )Nb1´ 1Nbh j (u j )

)
i, j
P
Ài, j=r

i, j=1 OXi,0NbCOX j ,0, and

I∆ =
i, j=r
à

i, j=1
Ii j with Ii j = xz1(t i )Nb1´ 1Nbz1(u j ), . . . , zN (t i )Nb1´ 1NbzN (u j )yOXi ,0NbCOX j ,0

and α(h) P I∆ if and only if hi (t i )Nb1´ 1Nbh j (u j ) P Ii j for all (i, j).
So in the spirit of example 1.1.7 the “coordinate” hi of h indicates you how to evaluate
h in points of the corresponding irreducible component (Xi, 0) of (X, 0) and for i , j
the condition hi (t i )Nb1´ 1Nbh j (u j ) P Ii j tells you that the Lipschitz condition must
also be satisfied when you take points in different irreducible components. �

Corollary 1.4.17 (See [P-T69, Corollary 1.3]) Let (X, 0) Ă (CN , 0) be a reduced
germ of complex analytic singularity. The ring Os

X,0 is an analytic algebra.



1 The biLipschitz geometry of complex curves: an algebraic approach 39

Proof We already proved in Lemma 1.4.15 that Os
X,0 is a direct sum of analytic

algebras, but if there were more than one, the function (1, 0, . . . , 0) P Os
X,0 would

not be Lipschitz, contradicting Proposition 1.4.16. �

From Lemma 1.4.15 we have injective ring morphisms

OX,0 ãÑ Os
X,0 ãÑ OX,0

Since OX,0 is contained in the total ring of fractions Q(OX,0), the total ring of
fractions of the Lipschitz saturation Os

X,0 coincides with Q(OX,0) and by transitivity
of integral dependence the normalizations also coincides i.e., Os

X,0 = OX,0. In terms
of holomorphic maps we have:

X ns
ÝÑ X s ζ

ÝÑ X

where X s is the germ of complex analytic singularity corresponding to the analytic
algebra Os

X,0, the map ns : X Ñ X s is the normalization map of X s , ζ : (X s, 0) Ñ
(X, 0) is finite and induces an isomorphism outside the non-normal locus of X , and
n = ζ ˝ ns : X Ñ X is the normalization map of X .

Definition 1.4.18 The germ (X s, 0) togetherwith the finitemap ζ : (X s, 0) Ñ (X, 0)
is called the Lipschitz saturation of (X, 0).

Lemma 1.4.19 Let (X, 0) Ă (Cn, 0) be a reduced germ of complex analytic singu-
larity, then

(
Os

X,0

) s
= Os

X,0.

Proof Following the notation of Lemma 1.4.14 we have the maps:

OX,0 ãÑ Os
X,o ãÑ OX,0

α
ÝÑ OX,0NbCOX,0

and this induces a map

OX,0NbOX,0OX,0 �
OX,0NbCOX,0

xα(OX,0)y
ÝÑ

OX,0NbCOX,0

xα(Os
X,0)y

� OX,0NbOs
X,0
OX,0

that makes the following diagram commute

OX,0NbCOX,0

Ψs

((
Ψ

��
OX,0NbOX,0OX,0 // OX,0NbOs

X,0
OX,0

If we denote I∆ = KerΨ and I∆s = KerΨs we have I∆ Ă I∆s . Now by definition we
have Os

X,0 = th P OX,0 | α(h) P I∆u so α(Os
X,0) Ă I∆ which implies I∆ = I∆s and

so
(
Os

X,0

) s
= th P OX,0 | α(h) P I∆s = I∆u = Os

X,0. �
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1.4.3 The case of dimension 1

Let (X, 0) Ă (C2, 0) be a germ of reduced plane curve, and ζ : (X s, 0) Ñ (X, 0) Ă
(C2, 0) the finite map given by the Lipschitz saturation of (X, 0). What we want to
emphasize is that this map can always be realized as a linear projection on suitable
representatives. Indeed, any representative (X s, 0) Ă (Cm, 0) can be re-embedded as
the graph of ζ inCm+2, namely by the map X s Ñ C2ˆCm : p ÞÑ (ζ1(p), ζ2(p), p).
The map ζ is now the projection of (X s, 0) to (X, 0) by the first two coordinates:
(z1, . . . , zm+2) ÞÑ (z1, z2).

Proposition 1.4.20 (See [Tei82, Proposition 6.2.1]) For a germ of reduced plane
curve (X, 0) Ă (C2, 0) the Lipschitz saturation map ζ : (X s, 0) Ñ (X, 0) is a
generic projection.

Proof Suppose first that (X, 0) is irreducible, in this case we have the holomorphic
maps

(C, 0)
ηs
ÝÑ (X s, 0) Ă (Cm+2, 0)

ζ
ÝÑ (X, 0) Ă (C2, 0)

t ÞÑ (z1(t), z2(t), z3(t), . . . , zm+2(t)) ÞÑ (z1(t), z2(t))

By Proposition 1.4.11 we have to prove that the ideals I∆s = xz1 ´ w1, . . . , zm+2 ´
wm+2y and I∆s

2
= xz1´w1, z2´w2y have the same integral closure in OX sˆX s, (0,0) .

In this coordinate system we have the normalization map η˚s : OX s,0 ãÑ OX,0 given
by

Ctz1, . . . , zm+2u
I

ãÝÑ Cttu

zi + I ÞÑ zi (t) i = 1, 2 ; z j+2 + I ÞÑ z j+2(t) j = 1, . . .m

Which induces the morphism

θ : OX sˆX s, (0,0) =
Ctz1, . . . , zm+2,w1, . . . ,wm+2u

I (z) + I (w)
ãÝÑ Ctt, uu = OX,0NbCOX,0

zi + I ÞÑ zi (t) i = 1, 2 ; z j+2 + I ÞÑ z j+2(t) j = 1, . . .m

wi + I ÞÑ zi (u) i = 1, 2 ; w j+2 + I ÞÑ z j+2(u) j = 1, . . .m

But from the proof of Lemma 1.4.19 we have that the ideals I∆s
2
= xz1(t) ´

z1(u), z2(t) ´ z2(u)y and
I∆s = xz1(t) ´ z1(u), z2(t) ´ z2(u), z3(t) ´ z3(u), . . . , zm+2(t) ´ zm+2(u)y have the
same integral closure in Ctt, uu and so by remark 1.4.2-5 the ideals θ´1(I∆s ) and
θ´1(I∆s

2
) have the same integral closure in OX sˆX s, (0,0) , which is what we wanted.

In the reducible case the proof works exactly the sameway, it is just a lot messier to
write down. The only thing you have to keep track off is the following. Suppose (X, 0)
has two irreducible components (X1, 0)Y(X2, 0) then (X s, 0) also has two irreducible
components and OX,0 � Ctt1u ‘ Ctt2u. This implies that the normalization map
η˚s : OX s,0 ãÑ OX,0 is given by
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Ctz1, . . . , zm+2u
I

ãÝÑ Ctt1u ‘ Ctt2u

zi ÞÑ (zi (t1), zi (t2)) i = 1, 2 ; z j+2 ÞÑ (z j+2(t1), z j+2(t2)) j = 1, . . .m

In this case OX,0NbCOX,0 � Ctt1, u1u ‘ Ctt1, u2u ‘ Ctt2, u1u ‘ Ctt2, u2u and the
induced morphism θ looks like:

θ : OX sˆX s, (0,0) =
Ctz1, . . . , zm+2,w1, . . . ,wm+2u

I (z) + I (w)
ãÝÑ OX,0NbCOX,0

zi ÞÑ (zi (t1), zi (t1), zi (t2), zi (t2)) i = 1, 2

z j+2 ÞÑ (z j+2(t1), z j+2(t1), z j+2(t2), z j+2(t2)) j = 1, . . .m

wi ÞÑ (zi (u1), zi (u2), zi (u1), zi (u2)) i = 1, 2

w j+2 ÞÑ z j+2(u1), z j+2(u2), z j+2(u1), z j+2(u2)) j = 1, . . .m

then you have the map α as in the proof of Proposition 1.4.16 and the rest follows
through. �

Remark 1.4.21 1. Since the Lipschitz saturation map ζ : (X s, 0) Ñ (X, 0) is a
generic projection the multiplicity of (X s, 0) is equal to the multiplicity of (X, 0).

2. Except if the plane branch (X, 0) is non singular, the map (X, 0) Ñ (X, 0) is
never obtained as a generic projection since the multiplicity changes. However,
among all germs (X 1, 0) which dominate (X, 0) and are dominated by (X, 0), and
in addition are such that the map (X 1, 0) Ñ (X, 0) can be represented by a generic
linear projection, there is a unique one, up to isomorphism, which dominates all
the others: it is the saturation.

Corollary 1.4.22 Let (X, 0) Ă (C2, 0) be a reduced plane curve. The Lipschitz
saturation map ζ : (X s, 0) Ñ (X, 0) is a biLipschitz homeomorphism.

Proof We already know that a generic projection induces a homeomorphism with
its image (Prop. 1.3.3), so by Proposition 1.4.20 the map ζ is a homeorphism and
since it is the restriction to X s of the linear projection (z1, . . . , zm+2) ÞÑ (z1, z2) it is
Lipschitz. The inverse of ζ can be described on each irreducible component Xk by

(z1(tk ), z2(tk )) ÞÑ (z1(tk ), z2(tk ), z3(tk ), . . . , zm+2(tk )),

and since for all j P t1, . . . ,mu, z j+2(t) P Os
X,0 Proposition 1.4.16 tells us that it is

also Lipschitz. �

Our main result now follows from the following result.

Theorem 1.4.23 (See [P-T69, §4], [B-G-G80, Prop. VI.3.2]) LetOX,0 be the analytic
algebra of a germ of reduced plane curve (X, 0) Ă (C2, 0). The Lipschitz saturation
Os

X,0 determines and is determined by the characteristic exponents of its branches
(irreducible components) and the intersection multiplicities mi j = (Xi, X j ) of each
pair of branches. In particular the saturated curve (X s, 0) is an invariant (up to
isomorphism) of the equisingularity class of (X, 0).
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This implies that every member of the equisingularity class of a germ of reduced
plane curve (X, 0) Ă (C2, 0) can be obtained by a generic projection of the Lipschitz
saturation (X s, 0) of any one of them. The proof of the Proposition involves a lot
of calculations and can be found in the references. For this reason we would rather
describe how to calculate the saturated curve (X s, 0). Let us start with the irreducible
case:

Definition 1.4.24 Let h P Cttu be a power series with coprime exponents. If

h =
8
ÿ

j=0
a j t j

we define the set of exponents of f as Ex( f ) = t j P N | a j , 0u. And for a germ of
analytically irreducible plane curve (X, 0) Ă (C2, 0) we define the set of exponents
of OX,0 as

E(OX,0) =
ď

hPm

Ex(h)

Note that the semigroup Γ(X ) of the plane branch (X, 0) is contained in E(OX,0).(See
[Tei07, Section 8]).

If (X, 0) Ă (C2, 0) is irreducible then:

1. For every j P E(OX,0) we have that t j P Os
X,0.

2. The analytic algebra Os
X,0 is monomial, in particular:

Os
X,0 = Ctt j | j P E(Os

X,0)u

For a numerical semigroup (i.e., a subsemigroup of (N,+) with finite complement)
there is the concept of saturated semigroup (see [Ro-G09, Chapter 3, Section 2])
which can be described in the following way.

For A Ă N and a P Azt0u define

dA(a) = gcdtx P A | x ď au

Then a non-empty subset A Ă N such that 0 P A and gcd(A) = 1 is a saturated
numerical semigroup if and only if a + kdA(a) P A for all a P Azt0u and k P N.

Example 1.4.25 Let (X, 0) Ă (C2, 0) be the cusp singularity defined by y2´ x3 = 0.
Its normalization map is t ÞÑ (t2, t3) and so its semigroup is generated by x2, 3y.
Since Γ(X ) = Nzt1u then E(OX,0) = Γ(X ) is a saturated numerical semigroup.

This characterization tells us how to obtain a saturated semigroup from any A Ă N
with gcd(A) = 1, for example the set of exponents E(OX,0).
Let e0 = β0 = min tx P Au and define

Ã0 := AY β0 ¨ N
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In the case of E(OX,0) we have that e0 = β0 is the multiplicity of (X, 0). Lemma
Let β1 := mintx P A | e0 does not divide xu and e1 = gcdtβ0, β1u; note that e1 =
dA(β1). Again define

Ã1 := Ã0 Y tβ1 + ke1 | k P Nu

Continuing this way we obtain two sequences of natural numbers e0 ą e1 ą ¨ ¨ ¨ ą
eg = 1 = gcd(A) and β0 ă β1 ă ¨ ¨ ¨ ă βg and an associated sequence of subsets
of Ã0 Ă Ã1 Ă ¨ ¨ ¨ Ă Ãg Ă N where βi+1 := mintx P A | ei does not divide xu,
ei := gcdtβ0, . . . , βiu = dA(βi ) and

Ãi+1 := Ãi Y tβi+1 + kei+1 | k P Nu

Note that Ã := Ãg is a saturated semigroup which is completely determined by its
characteristic sequence tβ0, . . . , βgu. Moreover if t ÞÑ

(
tn,

ř

iěn ai t i
)
is a Puiseux

parametrization of the plane branch (X, 0) Ă (C2, 0), the characteristic sequence
of E(OX,0) is the set of characteristic exponents of (X, 0) and so it determines its
equisingularity class.

Proposition 1.4.26 (Pham-Teissier), see [P-T69, §4], [B-G-G80, Thm VI.1.6] For a
germ of irreducible plane curve singularity (X, 0) Ă (C2, 0) the Lipschitz saturation
Os

X,0 is given by

Os
X,0 = Cttp | p P KE(OX,0)u

In particular E
(
Os

X,0

)
= KE(OX,0).

Let us give a sketch of the proof: we start from a structured parametrization (tn, y(t))
of our branch X as in subsection 1.0.2 and we have to study integral dependence
over the ideal I∆ = (t ´ u)N := xtn ´ un, y(t) ´ y(u)y Ă Ctt, uu. Here N is the
primary ideal x t

n´un

t´u ,
y (t )´y (u)

t´u yCtt, uu4. According to what we saw after Theorem
1.4.5, to verify that g(t) ´ g(u) is integral over I, which is the same as g(t )´g(u)

t´u
being integral over N , it suffices to verify that its order along any of the branches
of a plane curve CT Ă C2 defined by T1 tn´un

t´u ´ T2
y (t )´y (u)

t´u = 0 is larger than that
of the ideal I for T = (T1 : T2) in the open set U Ă P1. Now we claim that the
open set U is T1 , 0. Indeed, since the order of y(t) is ą n all the plane curves CT

with T1 , 0 have a tangent cone consisting of n ´ 1 lines in general position. It is
not difficult then to show (see [Tei74, Chap. II, Lemma 2.6, Proposition 2.7]) that
they are equisingular with their tangent cone, and therefore are all equisingular, with

4 It is shown in [Tei80, 5.2] that the multiplicity, in the sense we saw after Theorem 1.4.7, of the
primary ideal N is equal to twice the invariant δ which appears in Propositions 1.2.6 and 1.3.6.
It is also shown there that δ is the maximum number of different singular points (then necessarily
ordinary double points) which can appear when deforming the parametrization of the plane branch.
Both results extends to reducible curves. One can define an analogous ideal N for a non-plane
branch but then, in view of Theorem 1.4.8 and Proposition 1.4.11, its multiplicity is twice the δ
invariant of a generic plane projection and no longer the classical dimC

OX,0
OX,0

in this case.
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simultaneous normalization. So the curve tn´un

t´u = 0 is in U , and its branches are
the lines u = ωt, ω P µnzt1u, which means that a function g(t) P Cttu is in the
saturation if and only if we have

ordt (g(t) ´ g(ωt)) ě ordt (y(t) ´ y(ωt)) for all ω P µnzt1u.

The result now follows easily from what we saw at the end of subsection 1.0.2 about
the orders of the y(t) ´ y(ωt).
It may be interesting to remark here that this construction gives an intrinsic (coor-
dinate free) definition of the Puiseux characteristic as the set of valuations (orders
of vanishing) of the ideal N along the irreducible components of the exceptional
divisor of the normalized blowing up of N in X ˆ X . For more details, see [P-T69,
§4] and [B-G-G80, Thm VI.1.6].

Example 1.4.27 Let (X, 0) Ă (C2, 0) be the plane branch with normalization map:

η : (C, 0) ÝÑ (X, 0)

t ÞÑ (t4, t6 + t7)

Then the exponent set E(OX,0) contains the semigroup Γ(X ) = x4, 6, 13yN but by
definition it also contains 7. Now β1 = 6 and e1 = 2 so

Ẽ1 = E(OX,0) Y t6 + 2k | k P Nu

In the next step β2 = 7 and e2 = 1 so g = 2 and we get the saturated semigroup

Ẽ2 = Ẽ1 Y t7 + k | k P Nu

Note that KE(OX,0) = x4, 6, 7, 9yN and so we have the normalization map for the
Lipschitz saturation (X s, 0) Ă (C4, 0) given by:

ηs : (C, 0) ÝÑ (X s, 0)

t ÞÑ (t4, t6, t7, t9)

By making the change of coordinates in (C4, 0), (x, y, z,w) ÞÑ (x, y+ z, z,w) we can
view the Lipschitz saturation map

ζ : (X s, 0) Ñ (X, 0)

as the projection on the first two coordinates as before.
Remark 1.4.28 (see [Tei82, Chap. I, theorem 6.3.1], [B-G-G80, Appendice]) A more
concrete way of seeing that all plane branches with the same Puiseux characteristic
are generic plane projections of a single space curve is to go back to the notations
of subsection 1.0.2 to write down explicitly the saturation of a plane branch (X, 0)
with given characteristic (n, β1, . . . , βg ): it is isomorphic to the monomial curve
with analytic algebra

Cttn, t2n, . . . , t β1, t β1+e1, . . . , t β2, t β2+e2, . . . , t β3, . . . , t βg , t βg+1, . . .u,
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where n = e0 = β0 as above. The semigroup generated by these exponents, which
are those of KE(OX,0), is finitely generated by Dickson’s Lemma and because the
Puiseux exponents are coprime its complement in N is finite. For more details on
the saturation of semigroups we refer to [Ro-G09, Chapter 3, Section 2].
As we saw in subsection 1.0.2, up to isomorphism, the image of this mono-
mial curve by a generic linear projection can be parametrized by x = tn, y =
ř

pP KE (OX,0)ztnu aptp . Now we see that the generic projections are precisely those
which are such that the coefficient of tn is , 0 and for p = β1, . . . , βg we have
ap , 0, which means that the projection has characteristic (n, β1, . . . , βg ).

Remark that, except if n = 2, the semigroup of integers generated by the exponents
of the monomials belonging to the saturation Os

X,0 is different from the semigroup
Γ we saw in subsection 1.0.2.

When (X, 0) is not irreducible it is a bit more complicated, nevertheless the Lipschitz
saturation Os

X,0 can be described in the following way:

Theorem 1.4.29 (see [P-T69, §4] and [B-G-G80, Thm VI.2.2]) Let OX,0 be the
analytic algebra of a reduced plane curve (X, 0) = (X1, 0) Y . . . Y (X r, 0) with
normalization OX,0 = Ctt1u ‘ ¨ ¨ ¨ ‘ Cttru. We may assume that the image of x in
OX,0 is

(
tn1
1 , . . . , t

nr
r

)
where ni is the multiplicity of the branch (Xi, 0). Let µ be the

least common multiple of tn1, . . . , nru. Then the element h = (h1, . . . , hr ) P OX,0
is in the Lipschitz saturation Os

X,0 if and only if the following two conditions are
satisfied:

1. For every j P t1, . . . , ru we have that h j P O
s
X j ,0.

2. For every µ-th root of unity ε and every couple i , j we have the inequality

mi, j,ε (h) ě mi, j,ε := inf
gPOX,0

!

ντ
(
gi (τµ{ni ) ´ g j (rετsµ{n j )

))
where mi, j,ε (h) = ντ

(
hi (τµ{ni ) ´ h j (rετsµ{n j )

)
and ντ is the valuation of Ctτu

given by the order of the series. The number mi, j,ε depends only on the characteristic
exponents and the intersection multiplicity of the branches Xi and X j .

Example 1.4.30 Let (X, 0) = (X1, 0)Y (X2, 0) be the plane curve with normalization
map:

η : (C, 0) \ (C, 0) ÝÑ (X, 0)

t1 ÞÑ (t41, t
6
1 + t71)

t2 ÞÑ (t32, t
5
2)

In the previous example we already calculated the Lipschitz saturation Os
X1,0
=

Ctt41, t
6
1, t

7
1, t

9
1u and following the algorithm we get the Lipschitz saturation Os

X2,0
=

Ctt32, t
5
2, t

7
2u. Since the branches are tangent, their intersection multiplicity is greater

than the product of their multiplicities and it is equal to order of the series in t1
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obtained by substituting the parametrization of (X1, 0) in the equation y3 ´ x5 = 0
defining (X2, 0). In this case it is equal to 18.

By definition µ = lcmt3, 4u = 12 and it is not hard to prove that for any 12´th
root of unity ε

m1,2,ε = ντ
(
y1(τ3) ´ y2(rετs4)

)
= ντ

(
τ18 + τ21 ´ ε8τ20

)
= 18

So from the Theorem 1.4.29 we have that h = (h1(t1), h2(t2)) is in Os
X,0 if and only

if h1(t1) P Os
X1,0

, h2(t2) P Os
X2,0

and m1,2,ε (h) ě 18. For example if h = (t41, t
5
2)

then

m1,2,ε (h) = ντ
(
(τ3)4 ´ (rετs4)5

)
= ντ (τ12 ´ ε8τ20) = 12ñ h < Os

X,0

On the other hand if h = (t61 + t71, t
5
2) then

m1,2,ε (h) = ντ
(
(τ3)6 + (τ3)7 ´ (rετs4)5

)
= ντ (τ18 + τ21 ´ ε8τ20) = 18ñ h P Os

X,0

We will finish this section with the following consequence of the Theorem:

Corollary 1.4.31 (see [B-G-G80, VI.3.7]) Let (X, 0) = (X1, 0) Y . . . Y (Xr, 0) be
a reduced plane curve with normalization OX,0 = Ctt1u ‘ ¨ ¨ ¨ ‘ Cttru. If Π j :
OX,0 Ñ Ctt ju denotes the canonical projection to the j´th factor then

Π j (Os
X,0) = Os

X j ,0.

1.4.4 Application to local polar curves

Let (X, 0) Ă (CN , 0) be a reduced equidimensional germ of complex analytic space.
Consider linear projections π : CN Ñ C2 and the critical locus of π restricted to
the smooth part X0 of X . It is proved in [L-T81], where the theory of (absolute)5
local polar varieties was initiated, that for a Zariski dense open set U in the space
G(N, N´2) of linear projection, this critical locus is either empty or a reduced curve.
The closure of this curve in X is an (absolute) polar curve of X and is denoted by
Pd´1(X, π) where d is the dimension of X . It is also denoted by Pd´1(X, D), where
D = kerπ. These curves play an important role in the local study of singularities, and

5 This precision refers to a distinction between absolute and relative polar varieties, which is not
relevant here but should be mentioned to avoid confusions. See [Tei82, Chap. IV, p. 417]
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especially in the study of the Lipschitz geometry of surfaces. See [L-T81], [Tei82,
Chap. IV] for more details.

Of course, if it is not empty, Pd´1(X, π) varies with the projection π P U and a
priori it could be that π remains constantly a non generic projection for Pd´1(X, π).
That seems unlikely but still we need a proof for the following:

Theorem 1.4.32 (See [Tei82, Chap. V, Lemme 1.2.2]) Given (X, 0) Ă (CN , 0) as
above and assuming that Pd´1(X, π) is a reduced curve for π P U Ă G(N, N ´ 2),
there exists a non empty Zariski open set V Ă U such that for π P V , the projection
π : CN Ñ C2 is a generic projection for the curve Pd´1(X, π) Ă CN .

The proof, which we only sketch, gives an example of the notion of Lipschitz
equisaturation , which is found in [P-T69, §6]. Fixing coordinates z1, . . . , zN on CN

and x, y on C2, we can parametrize by C2(N´2) a dense open set of the space of
linear projections CN Ñ C2 as follows:

x = z1 +
N
ÿ

3
ai zi, y = z2 +

N
ÿ

2
bi zi , (a, b) P C2(N´2) .

To simplify notations while keeping the ideas, we assume that X is a hypersurface
defined by f (z1, . . . , zN ) = 0. One can also consult [B-H80, Lemme 3.7] which
gives the proof for isolated singularities of surfaces in C3.
For any series h(z1, . . . , zN ) P Ctz1, . . . , zN u let us denote by ha,b the series

ha,b (z, a, b) = h(x ´
N
ÿ

3
ai zi, y ´

N
ÿ

3
bi zi, z3, . . . , zN ).

The equation fa,b = 0 defines a germ of hypersurface Z in CN ˆ C2(N´2) and if
we consider the projection π : CN ˆ C2(N´2) Ñ C2 ˆ C2(N´2) defined by

x = z1 +
N
ÿ

3
ai zi, y = z2 +

N
ÿ

2
bi zi, a = a, b = b,

and the closure of its critical locus on the non singular part of Z, we obtain a
subspace which, over a Zariski open subset of C2(N´2) , contains the family of polar
curves associated to the family of projections πa,b defined by x = z1+

řN
3 ai zi, y =

z2 +
řN

2 bi zi . Over a possibly smaller Zariski open subset V of C2(N´2) this family
of curves is equisingular in the sense that it has a simultaneous parametrization.
The number r of irreducible components of Z at points of t0u ˆ V Ă CN ˆ V is
constant and after choosing as origin of C2(N´2) a point of V we can parametrize
each irreducible component in a neighborhood of t0u ˆ t0u by:

z1 = tn`
`
, z2 = υ(t`, a, b), zi = ζi (t`, a, b),

with υ(t`, a, b), ζi (t`, a, b) P Ctt`, a, bu for i = 3, . . . , N . The normalization of OZ,0
being OZ,0 =

śr
i=1 Ctt`, a, bu.
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By definition ofZ we have for each ` = 1, . . . , r the identity in Ctt`, a, bu

f (tn`´
N
ÿ

3
aiζi (t`, a, b), υ(t`, a, b)´

N
ÿ

3
aiζi (t`, a, b), ζ3(t`, a, b), . . . , ζN (t`, a, b)) ” 0.

Differentiating fa,b = 0 with respec to zi gives the following equations onZ:

´ai

B fa,b
Bz1

´ bi
B fa,b
Bz2

+
B fa,b
Bzi

” 0,

for i = 3, . . . , N . which by definition are satisfied on the polar curve.
Differentiating the first identity with respect to bk and taking into account the

second set of identities, we obtain that the equation(
ζk (t`, a, b) ´

Bυ(t`, a, b)
Bbk

)
B fa,b
Bz2

= 0

must be satisfied in eachCtt`, a, bu. By general transversality results found in [L-T81,
Cor. 4.1.6] and [Tei82, Chap. IV, 5.1], B fa,b

Bz2
does not vanish because it would entail

a lack of C3 transversality (see Definition 1.3.1) of the polar curve with the kernel
of the projection which defines it. So we must have onZ the identity zk = Bυ

Bbk
.

By [Tei82, Proposition 6.4.2], after perhaps shrinking V to a smaller Zariski open
dense subset V1 of C2(N´2) we have that over V1 the family Z1 of plane curves
given parametrically by the parametrizations x = tn`, y = υ(t`, a, b), which consists
of the plane projections of our polar curves, is equisaturated. This implies that the
derivations B

Bbk
of Cta, bu extend to derivations Dk of OZ1, (0,v) = OZ, (0,v) =

śr
i=1 Ctt`, a, bu into itself which preserve the relative saturated ring (see [P-T69]).

Since of course the functions υ(t`, a, b) belong to the relative saturation of OZ1, (0,v) ,
so do the ζk (t`, a, b)) which are their images by Dk . But ζk belonging to this relative
saturation means precisely that for v P V1, the saturations of the rings OZ1 (v) and
OZ(v) of the fibers over v of Z and Z1 are equal for v P V1, which is the condition
for C5 genericity according to Proposition 1.4.11.

The fact that the plane projection of a generic polar curve by the map which
defines it is generic plays an important role in the following three domains: the
comparison of Zariski equisingularity and Whitney equisingularity for surfaces (see
[B-H80], [N-P1]), the comparison of Zariski equisingularity and Lipschitz equisin-
gularity for surfaces (see [N-P1], [PaP]), the numerical characterization of Whitney
equisingularity (see [Tei82, Chap. V]) and the valuative study of the metric geometry
of surface singularities in view of their biLipschitz classification (see [B-F-P]).
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